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In the first part of this paper we define a partial ordering on the set of all 
homogeneous identities and find necessary and sufficient conditions that an 
identity does not imply any identity lower than it in the partial ordering (we 
call such an identity irreducible). Perhaps the most interesting property 
established for irreducible identities is that they are skew-symmetric in any 
two variables of the same odd degree and symmetric in any two variables of 
the same even degree. The results of the first section are applied to commutative 
algebras in the remainder of the paper. It is proved that any commutative 
algebra with unity element of characteristic not 2, 3, or 5 satisfying an identity 
of degree 4 or less not implied by the commutative law is either power-asso­
ciative or satisfies one of two other identities. A similar, but more complicated 
theorem is proved for commutative algebras satisfying identities of degree 5. 

An application of the results of §1 to non-commutative algebras has already 
been made in (1). 

1. Let A be an algebra (possibly infinite-dimensional) over a field F, and 
let ni > n2 > . . . > nm be a set of positive integers. We shall say that A 
satisfies a homogeneous identity of type [nu n2, . . . , nm] if there exists a 
polynomial P(xi, . . . , xm) in a set of non-commuting non-associating indeter-
minates Xi, . . . , xm over the field F such that the number of x / s in each term 
of P(xi, . . . , xm) is exactly nu and such that P vanishes when X \y • • • } ̂ m d i e 
replaced by any m elements from A. Here nt is called the degree of xt in P , 
and the sum n\ + • . • + nm is called the degree of P. Note that the symbol 
[flu n2j . . . , nm] is only defined when the integers ni, . . . , nm are ordered so 
that ni > n2 > . . . > nm. 

Hereafter it will be tacitly assumed that all identities mentioned are homo­
geneous except when otherwise noted. We shall also find it convenient—and 
more concise—not to distinguish between the polynomial P and the identity 
P = 0. 

We now define a partial ordering on the set of homogeneous identities as 
follows. Let P and P' be two identities of degree n and nf and of type 
[rii, n2, . . . , nm] and [n'u n'2, . . . , n'm>\ respectively. Then P is to be lower 
than P' in the partial ordering if and only if either (i) n < n' or (ii) n = n' 
and fij > n'j for the first integer j such that tij 9e n'y. Two identities are 
incomparable if and only if they have the same order type. 
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HP and Q are two identities over F, and S is any set of identities over F, 
we shall say that P implies Q relative to S if every algebra with unity over F 
satisfying P and all the identities of S also satisfies Q. An identity will be called 
irreducible relative to 5 if it does not imply any identity lower than it in the 
partial ordering which is not already implied by the set S. If an identity is 
irreducible relative to the null set of identities, it will be called absolutely 
irreducible. 

Observe that when an identity P is partially or totally linearized, the type 
increases; while if two or more variables are set equal, the type decreases. 
Thus, if two variables are set equal in an irreducible identity, it either vanishes 
or gives an identity implied by S. It is also sometimes possible to obtain 
from P an identity lower than P that does not arise just by setting variables 
equal if one first linearizes and then sets variables equal. For example, an 
identity of type [2, 2] could be partially linearized to give an identity of type 
[2, 1, 1], then have two variables set equal to give an identity of type [3, 1]. 

Another way in which an identity can imply identities of lower type involves 
the notion of partial derivative. If we formally replace a variable xt in a 
polynomial P(xu . . . , xm) by the expression #* + 1, we get an inhomogeneous 
polynomial which can be expressed as a sum of homogeneous parts. Thus, 

yi) Jr \X\, . . . , Xj ~f" 1 , . . . , Xm) Jr \Xi, . . . , Xf, . . . , Xm) 

i -LlKpCli • • • i *i> • • • i %m) I • • • I -L ni V^lj . . . , ! , . . . , Xm), 

where xt has degree nt — k in Pk. By the &th partial derivative of P with 
respect to xt (written dkP) we shall mean the polynomial Pk just defined. 
For k > nu dkP is defined to be zero, and for k = 0 we define d^P = P. Our 
definition of the &th partial derivative has been chosen to differ from the more 
usual one by a factor of kl in order to avoid difficulties for characteristic p. 
In our notation for partial derivatives, equation (1) becomes 

CO 

(2) P(xh...,x(+l,...,xn) = X dkP. 

It is easy to verify the relations dik(djlP) = djl(dikP) and to derive 

(3) P(xi + au x2 + a2, . . . , xm + am) 

= 2«ifcl«2*2 . . . am
kmd1

kid2
k2 . . . dm

kmP(xu x2l . . . , xm), 

where ai, . . . , am Ç F and where the summation is on the &/s, each running 
from zero to nt (or to infinity). 

THEOREM 1. Let A be an algebra over a field F satisfying an identity P of type 
[tiu . . . , nm] and let the cardinality of F be at least n\ + 1. If A1 is the algebra 
consisting of A with a unity element adjoined, then A' satisfies P if and only if A 
satisfies all the partial derivatives of P. If A already has a unity element, then it 
satisfies all the partial derivatives of P. 

COROLLARY 1. An identity P of type [nu . . • , nm] over afield of at least n\ + 1 
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elements implies all of its partial derivatives. If P is irreducible relative to a set S, 
its partial derivatives are implied by S. If P is absolutely irreducible, its partial 
derivatives are all zero. 

COROLLARY 2. If an identity is satisfied by an algebra with unity element, then 
the sum of its coefficients is zero. 

To prove this theorem, suppose first that A has a unity element. Then the 
at s in (3) may be regarded as multiples of that unity element, and hence as 
elements of A. Thus, the left side of (3) vanishes for any way of replacing 
X\j . . . , Xm by elements from A, showing that the right side does also. Writing 

Qi = 5>2*2 . . . am
kmdiid2

k2 . . . dm
kmP 

for i = 0, 1, . . . , Wi, we may express (3) as 0 = ^Zioc^Qi. Choosing nx + 1 
distinct values for a\ gives n\ + 1 equations in the n± + 1 expressions Qt with 
a non-singular matrix of coefficients. Thus, the Qt

Js are all zero, and iterating 
this process m times shows that all partial derivatives are zero, proving the 
last part of Theorem 1. 

If A' satisfies P , then the proof that we have just given shows that A' 
satisfies all partial derivatives of P. Hence the same is true for its subalgebra A. 
Conversely, if A satisfies all partial derivatives of P , the right-hand side of (3) 
vanishes on A. But every element of A' may be represented uniquely in the 
form x + a for x G A and a £ F, so that (3) just states that P vanishes on A'. 

The first corollary follows immediately from the theorem, while the second 
follows when F has at least n\ + 1 elements from the remark that the partial 
derivative diwi . . . dm

nmP is just the sum of the coefficients of P. Corollary 2 
can also be proved directly from the relation P ( l , . . . , 1) = 0 , showing that 
no restriction on the cardinality of F is needed. 

We are now in a position to show that the properties already derived for 
irreducible identities are, in fact, sufficient to characterize the class of irre­
ducible identities. 

THEOREM 2. The identity P is irreducible relative to a set of identities S if and 
only if the following two conditions are satisfied: 

(i) Every partial derivative of P is implied by S. 

(ii) If certain of the variables in P or in a linearization of P are combined to 
give an identity lower than P , then the resulting identity will be implied by S. 

If P does not satisfy (i) or (ii), it clearly implies a lower identity, and hence 
is not irreducible. For the converse we must show that for each identity Q 
lower than P and not implied by S, there exists an algebra with unity element 
satisfying 5 and P , but not Q. To construct such an algebra, let 5* be 5 
augmented by all partial derivatives of identities in S, let Q have type 
[tu t2, . . . , tr]y and let E be the free algebra over Pon the r symbols Zi, z2j . . . , zr 
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(a basis of E is given by the set of non-associative non-commutative monomials 
in zi, . . . , zr). If J is the ideal of E generated by the set 

Jo = {a\I(ai, . . . , ak) = a for some / G S*, and a1} . . . , ak Ç E), 

then C = E/J is the free algebra satisfying S* on r generators, in the sense 
that every algebra over F satisfying 5* and having r generators is a homomorph 
of C. Since Q is not implied by 5*, there exists at least one homomorph of C 
not satisfying Q, and hence C does not satisfy Q. But letting zf

 t = zt + / , we 
observe that Q(z'lt • • • , z'r) = 0 would imply that C satisfies Q, since every 
set of r elements of C generates a subalgebra which is a homomorphic image 
of C in such a way that these r elements are the images of z\, . . . , z!

r respec­
tively. Hence QO'i, . . • , z'T) 9* 0 and Q(zu . . . , zr) Q J. 

Definining an element of E to be homogeneous if it is a linear combination 
of monomials in z\, . . . , zr, all of which have the same degree in each Zi, we 
see that every element of JQ is homogeneous. From this it is easy to see that J", 
regarded as a vector space, has a basis consisting of homogeneous elements of E. 
Letting K be the subspace of E spanned by those monomials in zly . . . , zr in 
which the degree of zt is at least tt + 1 for some i, we see that K is an ideal of E 
which also has a basis of homogeneous elements. Then any homogeneous 
element of J + K is the sum of a homogeneous element in J and a homo­
geneous element in K. In particular, a homogeneous element of degree tt in zt 

for each i can only be in / + K if it is in / . This shows that Q(zi, . . . , zr) 
& J + K. Hence, the algebra B = E/(J + K) satisfies 5* but not Q. 

We show next that B satisfies P. Letting yt = zt + (J + K) for i = 1, . . . , r, 
we observe that any product of more than 

r 

elements vanishes, since this is true for monomials in the 3>/s. If Q has degree 
less than P, this implies that P is satisfied trivially. If P also has degree t, let 
it have type [wi, . . . , nm], and let b\, . . . , bm be any m elements of B. Expres­
sing each bj as a linear combination of ;y/s and products of 3>/s, we may express 
P(bi, . . . , bm) as a linear combination of products of ;y/s and observe that each 
term of P(bi, . . . , bm) which involves a non-linear term from at least one bj 
will vanish since the degree is too high. Thus we may assume that the b/s are 
linear combinations of the yt

Js. Then P(6i, . . . , bm) may be expressed as a 
linear combination of polynomials, each of which is either P applied to a set 
of yjs in some order, or is a polynomial obtained from P by linearization or 
combining variables applied to a set of 3>/s in some order. But any such 
polynomial is satisfied trivially in B unless yt has degree no more than tt for 
each i, so that we need consider only the polynomial of type [h, . . . , tr] 
obtained from P by linearizing and combining variables. However, the condition 
(ii) states that this polynomial is implied by 5, and hence must vanish over B. 

Thus B has all the required properties except for the existence of a unity 
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element. But B satisfies all partial derivatives of P and S, so that we may 
simply adjoin a unity element and the resulting algebra will still satisfy P and 
S but not Q. 

Theorem 2 is useful in several ways in our investigation. First of all, it assures 
us that partial differentiation, linearization, and setting variables equal are the 
only methods of deriving one identity from another which need to be con­
sidered. Secondly, it gives us a very computable criterion for checking irre-
ducibility or for searching for irreducible identities. And thirdly, it guarantees 
the existence of non-trivial examples of algebras satisfying conditions (i) and 

(ii). 
It might be remarked concerning condition (i) of Theorem 2 that, if the 

characteristic of F is either zero or larger than the degree of any xt in P , then 
the vanishing of all first partial derivatives of P guarantees that the remaining 
derivatives will vanish. However, without this restriction on the characteristic, 
this does not follow. For example, over a field of characteristic 2, the first two 
derivatives of the polynomial P(x) = (x2x)x2 — (x2x2)x are 

d^Pix) = 0 and di2P(x) = xx2 + x2x. 

In general, there seems to be little that one can say about the form of an 
identity which is irreducible relative to an arbitrary set of identities 6*. How­
ever, one can say much more in certain special cases. Perhaps the most 
interesting such result is 

THEOREM 3. Let n be a positive integer and let P(xi, . . . , xm) be absolutely 
irreducible with coefficients in a field F of characteristic not dividing n\. Then P is 
either symmetric or skew-symmetric in its arguments of degree n, depending on 
whether n is even or odd. 

To prove this theorem, it is sufficient to show that P is respectively sym­
metric or skew-symmetric in any two arguments of degree n, say x and y. 
Since P is irreducible, it vanishes if x and y are set equal. Selecting any term 
T of P , the other terms which combine with it when x and y are set equal look 
identical with T in the way in which the variables are associated and in the 
way in which the other variables are placed ; the only difference is that certain 
x's and y s have interchanged positions. Ordering the positions occupied by 
x's and y s in T from left to right, and letting I denote the set of all distinct 
ways of order n x's and n y s , we shall let Tff where <r £ I, stand for the term 
derived from T by arranging the x's and y s of T in the order a. We shall let 
k„ denote the coefficient of Tff in P , and let co stand for that element of I such 
that Ta = T. I t will also be useful to define V to be the set of all ways of 
ordering (n + 1) x's and in — 1) y s , and to let Pa for a £ V denote the 
monomial that arises from T by replacing the n x's and n y's in T by (n + 1) 
x's and (n — 1) y s in the order a. If a and r are any two elements of I U P , 
we shall define their inner product a -r to be the number of positions in which 
both a- and r have a y. Then, it is easy to see that 0 < a-r < n, that a-r = n 
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if and only if <x = r G 7, and t ha t a-r = 0 for cr, r G I if and only if r == <J\ 
the ar rangement obtained from a by interchanging the symbols x and y. 

Suppose now t h a t the variable y in P is partially linearized to yield an 
ident i ty P * of degree n — 1 in y, and containing a new variable z which enters 
linearly. Then setting z — x in P * gives an ident i ty P' which vanishes 
identically, since it is lower than P in the partial ordering. During the part ial 
linearization, each term of P gives rise to n different terms of P * ; while, when 
z is set equal to x in P* , each term of Pf results from combining n + 1 distinct 
terms of P* . In particular, for each a G I, the term Ta of P gives rise to the n 
terms of the form TT of P' where r runs over those elements of V such t h a t 
CT'T = n — 1. And for each r G P , the total coefficient of TT in P' will be the 
sum of the n + 1 coefficients kff where <r runs over all those elements of I such 
t h a t a-r = n — 1. Since P' vanishes identically, this gives the relation 

(4) ]>!, f̂f = 0 (sum over a such t ha t <r-r = n — 1) 

for each r G P . 
If i = r-co, then every o- occurring in (4) satisfies either cr-co = i or 

a--co = i + 1. Each a G i* satisfying a-œ = i occurs in exactly n — i equations 
of the type (4) for which r-co = i, while each a G / satisfying cr-co = i + 1 
occurs in exactly i + 1 of the equations (4) for which r-co = i. Defining Kt to 
be the sum of those k« for which o--w = '̂, we may then add up all of the 
equations (4) for which r • co = i to get 

(n — i)ir* + (i + l)Ki+i = 0 for each i = 0, . . . , n — 1. 

Subst i tut ing these equations one into another yields 

T^ _ 1 r 1 '2 ^ _ 1 2-3 ^ _ 
n n(n — 1) n(n — l)(n — 2) 

or i£0 = (—l)wi^w. But , since a-co = n implies a = w, we have i£n = &w. 
Similarly, i£0 = &«', where co' is the ordering obtained from co by interchanging 
all of the x's and y's. Thus , ka' = ( — l)nkœ, which is wha t was to be proved. 

I t might be remarked t h a t one cannot hope to prove t h a t identities irre­
ducible relative to a non-vacuous set S satisfy the conclusion of Theorem 3. 
For, let P be an absolutely irreducible identi ty in the variables Xi, . . . , xm, a t 
least two of which are of degree n, and let Q' be any identi ty in a subset of 
Xi, . . . , xm which is implied by 5 and which has degree in each xt less than the 
degree of P in t h a t xt. Multiplying Qr on the right by a sufficient number of 
Xt's for different values of i to obtain an identi ty Q of the same type as P , we 
observe t h a t Q is not symmetric or skew-symmetric in its variables of degree n. 
But then P + Q is an identi ty irreducible relative to 5 which does not satisfy 
the conclusion of Theorem 3. 
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For certain sets of identities S, one may modify Theorem 3 to get a true 
statement for identities irreducible relative to S. For example, if 5 consists of 
the associative law, we may combine terms of P which differ only in the wTay 
in which they are associated and think of P as having associative monomials, 
in which case the conclusion of Theorem 3 holds (the proof of Theorem 3 may 
be used for this case without alteration). If S consists of the commutative law, 
we may combine terms of P which may be transformed into each other using 
the commutative law, and prove that P is skew-symmetric in its arguments of 
degree 1 and symmetric in its arguments of degree 2. However, in this case it 
can be shown that the property (ii) of Theorem 2 (which is all that is used in 
the proof of Theorem 3) is not strong enough to establish skew-symmetry in 
variables of degree 3. 

2. We now turn to the problem of finding those identities of low degree 
which are irreducible relative to the commutative law. In this section we prove 

THEOREM 4. Over afield of characteristic not 2 or 3, an identity of degree < 4 is 
irreducible relative to the commutative law if and only if it is one of the following: 

(5) (yx)x = yx2, 

(6) {x2x)x = x2x2, 

(7) 2{{yx)x)x + yx* = 3(yx2)x, 

(8) 2{y2x)x — 2{{yx)y)x — 2((yx)x)y + 2(x2y)y — y2x2 + (yx)(yx) = 0. 

Since 5 implies (6) and since (6) is equivalent to power-associativity in a 
commutative algebra of characteristic not 2, 3, or 5, this theorem has the 
following 

COROLLARY. Let A be a commutative algebra with unity element over a field F 
of characteristic not 2, 3, or 5, and let A satisfy an identity of degree < 4 not 
implied by the commutative law. Then either A is power-associative, or it satisfies 
at least one of the two identities (7) and (8). 

An investigation of algebras satisfying (7) may be found in (3). The identity 
(8) has so far resisted attack. 

The proof of Theorem 4 will consist of checking the most general identity 
of each type of degree < 4 for irreducibility using the criteria given in Theorem 
2. We shall consider only degrees 3 and 4, since it is obvious that there are no 
non-trivial identities of degree 1 or 2 except for the commutative law itself, 
using the fact that the sum of the coefficients must be zero. Similarly, since 
there is only one term of type [3] when the commutative law is assumed, there 
cannot be an irreducible identity of this type either. For each of the two types 
[2, 1] and [4] there are exactly two terms, and the requirement that the sum 
of the coefficients be zero leads to (5) and (6) respectively. It is easy to check 
that both of these identities satisfy the irreducibility criteria of Theorem 2. 
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T o show t h a t there are no irreducible identities of types [1, 1, 1] or [1, 1, 1, 1], 
w e prove 

L E M M A 1. For characteristic not two, an identity P irreducible relative to the 
commutative law is skew-symmetric in its variables of degree one. P cannot contain 
a term which is carried into itself {modulo the commutative law) when two linear 
variables are transposed. In particular, no multilinear identity is irreducible 
relative to the commutative law. 

Let T be a term in an irreducible identi ty P containing the two variables 
x and y linearly, and let T' be obtained from T by switching the positions of 
x and y. If T = T', then no other terms of P combine with T when x and y 
are set equal. Bu t since P vanishes identically when x and y are set equal, the 
coefficient of T mus t be zero. If T 9^ T', then T and Tr combine when x and y 
are set equal, and no other terms of P combine with them. T h u s the coefficient 
of T' is jus t the negative of the coefficient of T in this case. For the last s ta te­
ment of the lemma, we observe tha t , in any term of a multilinear identi ty, there 
are two variables t h a t may be interchanged using the commuta t ive law. 

Returning to the proof of Theorem 4, we still have the types [3, 1], [2, 2], 
and [2, 1, 1] to consider. In the first case, the identi ty mus t have the form 

(9) ai(yx-x)x + a2(yx2)x + a^yxd + a±{yx)x2 = 0 

for some choice of «i, a2, a3, a4 £ F. Sett ing y = x in (9) gives 

(«i + «2 + ctz)xdx + a±x2x2 = 0, 

which implies a\ + a2 + a3 = 0 and a± = 0 if (9) is irreducible. We may also 
differentiate (9) with respect to x to get 

(3«i + 2a2 + 2a4)(yx)x + (a2 + 3a3 + ocA)yx2 = 0, 

or 3ai + 2a2 = 0 and a2 + 3a3 = 0 using the relation a4 = 0. Thus the only 
identi ty of type [3, 1] t ha t could be irreducible is (7). On the other hand, the 
coefficients of (7) satisfy the two sets of relations jus t derived, and since the 
derivative of (7) with respect to y vanishes identically, we have satisfied the 
criteria of Theorem 2. Thus (7) must be irreducible. 

Consider next identities of type [2, 2]. The possible te rms in such an identi ty 
are r± = (y2x)x, r2 = ((yx)y)x, r% = ((yx)x)y, r4 = (x2y)y, r5 = y2x2

1 and 
r6 = (yx)(yx), so t h a t an identi ty of type [2, 2] will be of the form 

6 

(10) £ cttrt = 0. 

Linearizing y in (10) and setting one of the new variables equal to x gives an 
ident i ty of type [3, 1] which mus t vanish if (10) is irreducible. This gives the 
relations 

2«i + a2 + a3 = 0, a2 + a4 = 0, a3 + a4 = 0, and 2a:5 + 2a6 = 0. 

https://doi.org/10.4153/CJM-1965-008-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-008-3


86 J. MARSHALL OSBORN 

On the other hand, differentiating (10) with respect to x yields 

2a i + a2 + 2o!5 = 0 and a2 + 2a3 + 2a4 + 2a6 = 0. 

Solving all these relations simultaneously leads to 

-az = «4 = —2a5 = 2a6, « i = -a2 = 

which gives (8). Since (8) is symmetric in x and y, neither differentiation with 
respect to y nor linearizing x and setting one of the new variables equal to y will 
give any new relations on the a / s . Thus (8) is irreducible by Theorem 2. 

Finally, let us consider irreducible identities of type [2, 1,1]. By Lemma 1, 
the terms ((yz)x)x, (yz)x2, and (yx)(zx) cannot occur. Then, setting 
Si = ((yx)z)x, s2 = ((yx)x)z, s3 = (x2y)z, sA = (x2z)y, s s = ((zx)x)y, and 
SQ = ((zx)y)x, such an identity must be of the form 

(H) ] £ oil st = 0. 

Lemma 1 also tells us that a6 = —«i, a$ = — a2, and a± = — a3, while setting 
z = x in (11) gives a\ + a2 = 0, a3 + a6 = 0, and a4 + «5 = 0. Also, differen­
tiating (11) with respect to x gives «i + 2a2 + 2a3 = 0, ax + a6 = 0, and 
2Û!4 + 2Û:5 + « 6 = 0 . Solving these relations simultaneously, we readily see 
that all the a / s are zero. Thus, no identity of type [2, 1, 1] is irreducible, and 
the theorem is proved. 

3. In this final section we find all identities of degree five which are 
irreducible relative to the commutative law. Algebras satisfying identities 
from the first two of the five families that turn up are investigated in (4) and 
(2) respectively. 

THEOREM 5. Over a field of characteristic not 2, 3, or 5, an identity of degree 5 
is irreducible relative to the commutative law if and only if it belongs to one of the 
following families of identities: 

(12) 

(13) 

(14) \ 

2{(x2x)x)x — 3(x2x2)x + (x2x)x2 = 0, 

fii[y(xz-x) — ^{yxz)x + 6((yx2)x)x — S((yx-x)x)x] 
+ 02 [ — y{x2-x2) + o{yx*)x — 9((yx2)x)x + 4:((yx-x)x)x 
+ ({yx)x2)x + (yx2)x2 — (yx)xz] 
+ Pz[((yx2)x)x — ((yx-x)x)x — (yx2)x2 + (yx-x)x2] = 0, 

7i[((yx'x)y)x — ((yx-x)x)y — ((yx2y)x + ((yx2)x)y] 
+ y2[— ((y2x)x)x + ((yx-y)x)x + {{yx-x)x)y 
— ({yx2)x)y + (y2x)x2 — (yx-y)x2 — (yx-x)(yx) + (yx2)(yx)] 
+ j's[4:((y2x)x)x — 6((yx-y)x)x 
— 2((yx-x)x)y + 2{{yx2y)x + ^{{yx2)x)y —• 2(yxz)y 
— 4:(y2-x2)x + 4:(yx-yx)x + (y2x)x2 — 2(yx-x)(yx) 
+ yV] = 0, 
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(15) 

(16) 

[ ôi[((yx'x)z)x — {{zx'x)y)x — {{yx-x)x)z 
+ ((zx-x)x)y — ((yx2)z)x + ((zx2)y)x + ((yx2)x)z — {{zx2)x)y] 
+ d2[((yx-z)x)x — ((zx-y)x)x 

— ((yx-x)x)z + {{zx-x)x)y + ((yx2)x)z — ((zx2x)y 
— (3>x-2)x2 + (zx-y)x2 + (;yx-x)(;3x) — (zx-x)(yx) 
— (yx2)(zx) + (zx2){yx)] = 0, 

[ ei[((^3;-3')x)x + ((zx-x)y)y — ((y2z)x)x + ((;yx-s)30x 
+ {{yx-z)x)y — {{x2z)y)y — (zy-y)x2 + (zy-x)(yx) 
+ (JSX • ;y) (;yx) — {zx-x)y2 + (;y2;s)x2 — 2{yx-z){yx) 
+ (x2s);y2 — (;y2x)(zx) + (yx-y)(zx) + (;yx • x) (23O — (x2y)(zy)] 
+ e2[((z3/-x)y)x + ( ( s x - ^ x ) ^ — {{y2x)z)x 
+ ( (^x-^y^x + {{yx-x)z)y — ((x2y)z)y] 
— (ci + €2)[((z;y-x)x);y + ((sx-;y):y)x — ((y2x)x)z + ((yx-y)x)z 
+ ((;yx-x)3>)3 — {{x2y)y)z\ = 0. 

Observing t h a t (6) and (7) imply (12) and t h a t (8) implies an ident i ty of 
the family (13), we see t h a t Theorem 5 has the following 

COROLLARY. Let A be a commutative algebra with unity element of characteristic 
not 2, 3, or 5, and let A satisfy an identity of degree < 5 not implied by the 
commutative law. Then A satisfies at least one of the identities (12)-(16). 

T o prove Theorem 5, we need to consider the ident i ty types [5], [4, 1], 
[3, 2], [3, 1, 1], [2, 2, 1], and [2, 1, 1, 1]. T h e remaining type of degree 5, 
[1, 1, 1, 1, 1], cannot have any irreducible identities by Lemma 1. T h e general 
equat ion of type [5] is 

(17) «i((x2x)x)x + a2(x
2x2)x + a3(x2x)x2 = 0. 

Sett ing the derivative of this equation identically equal to zero gives the 
relations bax + 4a2 + 2a3 = 0 and a2 + 3a3 = 0, or a2 = — 3a3 and ai = 2a3, 
so t h a t (17) reduces to (12). Conversely, the vanishing of its derivative is 
sufficient to make an identi ty in one variable irreducible by Theorem 2. 

T h e possible te rms occurring in an identi ty of type [4, 1] are ux = y(x2-x2), 
u2 = 3>(x3-x), Uz = (yx*)x, u± = ((^x2)x)x, u5 = ((yx-x)x)x, u^ = {{yx)x2xy 

U-J = (yx2)x2, Us = (yx-x)x2, and u§ = (yx)xz. The general identi ty of this 
type is then 

9 

(18) £ atut = 0. 

Set t ing y = x in (18) gives the relations 

ai + a6 = 0, a2 + otz + «4 + «5 = 0, a7 + as + «9 = 0, 

while sett ing y = 1 in (18) gives 

oi\ + «7 + oi8 = 0 and a2 + a3 + a4 + a5 + «6 + a9 = 0. 
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These equations are easily seen to be equivalent to 

(19) «i = — «6 = «9 = — «7 — «8 and #2 + 0:3 + 0:4 + 0:5 = 0. 

On the other hand, differentiating (18) with respect to x yields the relations 

4«i + 4«2 + 0:3 + 0-9 = 0 , 3«3 + 2«4 + «e + 2«7 = 0, 
2«4 + 4«5 + 2«6 + 2«8 = 0 , «6 + 2«7 + 2«8 + 3«9 = 0, 

which reduce to 

(20) 4«2 + o3 — 5«7 — 5«8 = 0 and 3«3 + 2«4 + 3«7 + «8 = 0, 

after using (19) to eliminate «1, 0:5, «6, and «9. We may equivalently replace 
(20) and the second equation of (19) by 

,2-i\ («3 = —4a2 + 5«7 + 5«8, 0:4 = 6«2 — 9«7 — 8«8, 
\«5 = — 3a2 + 4«7 + 3«8. 

Thus, «2, «7, «8 may be determined arbitrarily, and the remaining « / s deter­
mined from them. Setting 0i = «2, fi2 = «7, 03 = «8 in (18) and using (21) 
and the first part of (19) to express the other coefficients in terms of the 0/s, 
we obtain (13). Since we have been careful not to lose any relations in solving 
for the cii's, we may conclude from Theorem 2 that any way of choosing 
values for the /3/s gives an irreducible identity. 

Turning next to identities of type [3, 2], the possible terms are vi = ((y2x)x)x, 
v2 = {(yx-y)x)x, v% = ((yx-x)y)x, v^ = ((yx-x)x)y, v$ = ((yx2)y)x, 
VQ = ((yx2)x)y, V7 = (yxz)yy vs = (y2-x2)x, v9 = (yx-yx)x, vio = ((yx)x2)y} 

flu = (y2x)x2, v\i = (yx-y)x2, vu = (yx-x)(yx), vu = (yx2)(yx), and 
1̂5 — y2x*, and the general equation is 

(22) £ aivt = 0. 
i=l 

Linearizing y in (22) and setting one of these variables equal to x, we get the 
following relations: 

(23) 

2«i + «2 + «3 + «4 = 0, «2 + 0-5 + «6 = 0, 
0:3 + 0:5 + «7 = 0, 0:4 + «6 + «7 = 0, 2«8 + 2a9 + «10 = 0, 
«10 = 0, 2an + «12 + «13 = 0, QJ12 + «14 = 0, 
«13 + « H + 2«i5 = 0; 

and differentiating (22) with respect to y leads to the relations 

2«i + 2«2 + «3 + «4 + 2«9 + «13 = 0, 
«3 + 2«5 + «6 + 2«8 + «14 = 0 , «4 + «6 + 2«7 + «10 + 2«i5 = 0, 
«10 + 2«n + 2«i2 + «13 + «14 = 0, 

which reduce to 

(24) «2 + 2«9 + «13 = 0 , «7 + 2«i5 = 0, 
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using the relations (23). W e may now easily solve (23) and (24) for 11 of the 
aj 's in terms of the remaining 4 to obtain a set of relations equivalent to (23) 
and (24): 

(25) 

«13 = — «H — 2 « i 5 , «12 = —«14, «11 = «14 + «15, 
«10 = 0 , «8 = — «9, «7 = —2«i5, «6 = «3 + 2«9 — «14 — 4« i 5 , 
«5 = ~ « 3 + 2«i5, «4 = —«3 — 2«9 + «14 + 6«i5, 
«2 = —2«9 + «14 + 2«i5, «1 = 2«9 — «14 — 4«i5. 

On the other hand, differentiating (22) with respect to x gives 

3«i + «2 + 2«8 + 2«n = 0, 2«2 + 2«3 + 2«5 + 2«9 + 2« i 2 = 0, 
«3 + 3«4 + 2«6 + 2«io + «13 = 0, 
«5 + «6 + 3«7 + «10 + «14 = 0 , «8 + «11 + «12 + 3«i5 = 0, 
«9 + 2«i3 + 2«i4 = 0, 

and using (25) to eliminate all the a / s except for «3, «9, «14, «15 yields the rela­
tion «9 — 4«i5 = 0 six times. Replacing «9 by 4« i 5 in (25) and making the 
subst i tut ions (25) in (22), we obtain (14) with 71 = «3, 72 = «14, and 73 = «15. 
Again Theorem 2 guarantees t h a t all of the identities of this family are irre­
ducible. 

Let us consider next identities of type [3, 1, 1]. By Lemma 1, an irreducible 
ident i ty of this type cannot contain terms which are carried into themselves 
when the two linear variables are switched, and terms which are carried into 
each other when the two linear variables are switched have coefficients which 
add to zero. Thus , the irreducible identities of this type must be of the form 

10 

(26) £ aiti = 0, 

where 

h = ((yx-z)x)x — ((zx-y)x)x, t2 = {{yx-x)z)x — {{zx-x)y)x, 
tz = ((yx-x)x)z — {{zx-x)x)y, t^ = {{yx2)z)x — {{zx2)y)x, 
h = {{yx2)x)z — ((zx2)x)y, t6 = (yxz)z — (zxz)y, 
h = ((yx)x2)z — {{zx)x2)y, t8 = (yx-z)x2 — (zx-y)x2 

h = (yx-x)(zx) — (zx-x)(yx), ho = (yx2){zx) — (zx2)(yx). 

Sett ing z = x in (26) gives the relations 

f «i + «2 + «3 = 0, —«1 + «4 + «5 = 0 , —«2 — «4 + «6 = 0 , 
—«3 — «5 — «6 = 0, «7 = 0, «8 + «9 = 0, —«s + «10 = 0, 
—«9 — «10 = 0, 

while sett ing z = 1 in (26) yields 

(2R) ia2 + a s + «9 = 0, —«2 + «5 + «10 = 0, —«3 — «5 — «7 = 0, 
(«7 — «9 — «10 = 0. 
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Choosing a2 and 0:9 as parameters, we may now solve for the remaining a / s 
using (27) and (28) to obtain 

/OQ\ («10 = —«9, «8 = —«9, a7 = 0, a6 = 0, 
(a 5 = «2 + «9, «4 = —«2, «3 = —a2 — «9, «1 = ûf9. 

Substituting these values in (26) gives (15) with $1 = a2 and <52 = a9. In order 
to use Theorem 2 to show that every identity of this family is irreducible, we 
must show that differentiating (26) with respect to x imposes no relations on 
the a / s not implied by (29). But this differentiation yields 

2a 1 + 2a2 + 2a4 + 2a8 = 0 , a2 + 3a3 + 2a5 + 2a7 + a9 = 0, 
a4 + a5 + 3a6 + «7 + «15 = 0, 

which all follow from (29). 
The argument for identities of type [2, 1, 1, 1] is very similar to the one just 

completed. Again using Lemma 1, an irreducible identity of this type must 
have the form 

4 

(30) E««2<, 

where 

qi = {{x2y)z)w + {{x2z)w)y + {{x2w)y)z — {{x2y)w)z 
— {{x2w)z)y — ((x2z)y)w, 

#2 = {{xy-x)z)w + {{xZ'x)w)y + ((xw-x)y)z — {{xy-x)w)z 
— {{xw-x)z)y — ({xz'x)y)w, 

#3 = ((xy-z)x)w + {{xz-w)x)y + {{xw-y)x)z — {(xy-w)x)z 
— {{xw-zx)y — ((xz-y)x)w, 

g 4 = ((xy-z)w)x + ((xz-w)y)x + {{xw-y)z)x — {{xy-w)z)x 
— {{xw'z)y)x — ((xz-y)x)w. 

But, letting w = x in (30), the coefficient of ((x2j)s)x is «i + a4 = 0, while 
differentiating (30) with respect to x yields 

2«i + 2a2 + «3 + «4 = 0, a3 = 0, and a^ = 0. 

Hence, ai = a2 = a% = a^ — 0, and there are no irreducible identities of this 
type. 

There remain only the identities of type [2, 2, 1] to be considered. This 
time the possible terms are: 

Pi — ((zy-y)x)x, P2 = ((zy-x)y)x, Pz = ((zyx)x)y, 
p* = ((zx-y)y)x, Ps = ((zx-y)x)y, P* = ((zx-x)y)y, 
P7 = {(y2z)x)x, P* = ((yx'z)y)x, P* = ((yx-z)x)y, 
P10 = ((x2z)y)y, Pll = ((y2x)z)x, P12 = ((yx-y)z)x, 
pu = ((yx-x)z)y, pu = ((x2y)z)y, p\h = ((y2x)x)z, 
Pn = ((yx-y)x)z, pYl = ((yx-x)y)z, Pis = ((x2y)y)z, 
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pu = (y2-x2)z, P20 = (yx-yx)z, P21 = (zy-yx)x, 
p22 = ((zy)x2)y, p2Z = ((zx)y2)x. p2\ = (zx-yx)y, 
p2ï> = (zyy)x2, p2Q = (zy - x) (yx), p27 = (zx-y)(yx), 
p2S = (zx-x)y2, p29 = (y2z)x2, P30 = (yx-z)(yx), 
Pn = (x2z)y2, pS2 = (y2x) (zx), P'iZ = (yx - y) (zx), 
pu = (yx - x) (zy), p3b = (x2y)(zy), 

and the general ident i ty of this type is 
35 

(31) £ « i / > « = 0. 

Linearizing y in (31) and sett ing one of the new variables equal to x, the 
relations involving the first six terms are 

ai + a2 + at = 0, ax + a:4 + ah = 0, 
a2 + 0:4 + «6 = 0, 0:3 + 0:5 + 0:6 = 0, 

which are equivalent to 

(32) «6 = 0!i, 0:5 = «2, 04 = «3 = —Ofi — 0:2. 

T h e next four terms yield the relations 2o:7 + 0:3 + 0:9 = 0, o:8 + 0:10 = 0, and 
«9 + «10 = 0, which lead to 

(33) 0:10 = —0:9 = —0:3 = 0:7. 

In each of these two cases we have t rea ted together all those te rms which 
differ from each other only in t h a t x's and y's have been interchanged. T h e 
difference is t h a t in the first case none of the four positions involved m a y be 
interchanged using the commuta t ive law (so t h a t the resulting relations are 
exactly as in the proof of Theorem 3), while in the second case exactly one pair 
of positions may be interchanged using the commuta t ive law (the first two 
positions). Since the relations t h a t arise from a set of terms differing only in 
the order of their x's and y s depend only on which positions m a y be inter­
changed using the commutat ive law, the other five cases where exactly one 
pair of positions may be interchanged will come out exactly like (33), giving 

a u = —an = —0^12 = « n , «is = —«17 = —«16 = «15, 
(34) «24 = —«23 — —«22 = «21, «28 = —«27 = ~«26 = «25, 

«35 = —«34 ~ —«33 = «32-

T h e two remaining cases have more symmetries, and easily yield 

(35) «20 = —«19, «31 = — |«30 = «29-

Using (32)-(35) we have found 25 of the « / s in te rms of the remaining 10. 
T o get some relations between these 10, we now set z = x in (31). Some of the 
relations obtained in this way are 

«6 + «10 = 0 , «2 + «11 = 0 , «3 + «15 = 0, 
«20 + «2i = 0, «28 + «ai = 0, and «25 + «33 = 0, 

https://doi.org/10.4153/CJM-1965-008-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-008-3


92 J. MARSHALL OSBORN 

which may be reduced using (32)-(35) to 

/oft\ a 7 = — «l, a n = — «2, «i5 = — « I — a2, «21 = «19, 

«32 = —«29 — «25-

Combining this with (32)-(35) allows all the a / s to be expressed in terms of 
« l , «2, «i9, a n d «25-

If we now differentiate (31) with respect to y, two of the relations we get are 
2ai + «2 + «3 + 2a7 + «2i + «26 = 0 and a2 + 2a4 + «5 + «s + 2a23 + «27 = 0, 
which m a y be reduced to —ai + «19 — «25 = 0 and —«i — 2ai9 — «25 = 0 
using (31)-(36) . B u t the last two equat ions imply 

(37) «i9 = 0, a25 = —«1. 

Using (32)-(37) to express the a / s in (31) in t e rms of a\ and a2, we obtain (16) 
with ei = «i and e2 = «2. I t m a y be verified t h a t (16) is symmetr ic with 
respect to x and y, and t h a t (16) vanishes either when we set z = x or when 
it is differentiated with respect to y. Hence every ident i ty of this family is 
irreducible. 
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