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Abstract

We start developing a notion of reciprocity sheaves, generalizing Voevodsky’s homotopy
invariant presheaves with transfers which were used in the construction of his
triangulated categories of motives. We hope that reciprocity sheaves will eventually
lead to the definition of larger triangulated categories of motivic nature, encompassing
non-homotopy invariant phenomena.
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Introduction

In this paper, we start developing a notion of reciprocity sheaves modelled on Voevodsky’s theory

of presheaves with transfers. Reciprocity is a weaker condition than homotopy invariance, used

by Voevodsky as the main building block for constructing his triangulated categories of motives

in [Voe00b]; as in [Voe00b, p. 195], we hope that reciprocity sheaves will eventually lead to

the definition of larger triangulated categories of motivic nature, encompassing non-homotopy

invariant phenomena which emerged in [Kah91, IR12, Rus13, KS11, BS14].

In the whole paper we fix a base field k. Our reciprocity sheaves form a full abelian

subcategory Rec of PST, the abelian category of presheaves with transfers on the category

Sm of smooth schemes over k (see § 1.1.3 for the definition). It contains the subcategory HI

of objects F ∈ PST which are homotopy invariant (i.e. F (X) ' F (A1
X) for X ∈ Sm). It also

contains the object represented by a smooth commutative algebraic group G over k (recall that

such an object is in HI if and only if G0 is a semi-abelian variety). Typical examples of objects

of Rec not contained in HI are the additive group Ga and the modules of absolute Kähler

differentials Ωi.
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As predecessors of reciprocity sheaves, there were notions of reciprocity functors studied in
[Kah91, IR12]. All definitions are inspired by the following theorem of Rosenlicht–Serre [Ser59,
ch. III].

Theorem 1. Assume that k is algebraically closed. Let G be a smooth connected commutative
algebraic group over k and α : C → G be a morphism, where C is a smooth irreducible curve
over k. Let C ↪→ C be its smooth compactification. Then there is an effective divisor D on C
supported in C − C such that α has modulus D in the sense of Rosenlicht–Serre, which means
that ∑

x∈C(k)

vx(f)α(x) = 0 in G(k) for any f ∈ G(C,D),

where vx : k(C)×→ Z is the normalized valuation at x and

G(C,D) :=
⋂
x∈D

Ker(O×
C,x
→ O×D,x). (1)

A distinguished feature of our reciprocity sheaves is their relation to relative Chow groups
of zero cycles with moduli studied in [KS11]. Let X be a smooth variety over k and choose a
compactification X ↪→ X with X integral and proper over k. For a (not necessarily reduced)
closed subscheme Y ⊂ X with X = X −Y , the relative Chow group CH0(X,Y ) of zero cycles is
the quotient of the group of zero cycles Z0(X) on X by ‘rational equivalence with modulus Y ’.
More precisely, one defines in [KS11]

CH0(X,Y ) = Coker(Φ(X,Y )(Spec k)
∂−→ Z0(X)),

where
Φ(X,Y )(Spec k) =

⊕
ϕ:C→X

G(C,ϕ∗Y ), (2)

the direct sum being over all finite morphisms ϕ : C → X, where C is a normal proper curve
over k such that ϕ(C) 6⊂ Y , G(C,ϕ∗Y ) is defined as (1) with ϕ∗Y = C ×X Y and ∂ is induced
by the divisor map on C and the pushforward of zero cycles by ϕ.

Now the key idea to define reciprocity sheaves is to enhance the abelian group CH0(X,Y )
into an object h(X,Y ) in PST. It is the cokernel of a map in PST:

Φ(X,Y )→ Ztr(X),

where Ztr(X) is the object of PST represented by X and Φ(X,Y ) ∈ PST is defined by an
analogue of (2). We have

h(X,Y )(Spec k) = CH0(X,Y ). (3)

To give more details, we introduce a terminology: a pair (X,Y ) is called a modulus pair
if X is integral and proper over k, Y ⊂ X is a (possibly non-reduced) closed subscheme and
X := X − Y is smooth and quasi-affine. Then, for a modulus pair (X,Y ) and for a section
a ∈ F (X) of a presheaf with transfers F , we define the notion of a having modulus Y , or Y
being a modulus for a (see Definition 2.1.2), as a generalization of the modulus in the sense of
Rosenlicht–Serre (see Theorem 1).

Then F ∈ PST is defined to have reciprocity (or to be a reciprocity presheaf) if for any
a ∈ F (X) with X quasi-affine smooth over k and for any dense open immersion X ↪→ X with X
integral proper over k, there exists a closed subscheme Y ⊂ X such that X = X − Y and that
Y is a modulus for a. The first main result is the following.

1853
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Theorem 2 (see Theorem 2.1.5). Let (X,Y ) be a modulus pair with X = X − Y . Then the
functor

PST→ Ab, F 7→ {a ∈ F (X) | a has modulus Y }

is represented by an object h(X,Y ) ∈ PST. If moreover Y is a Cartier divisor on X, then
h(X,Y ) has reciprocity.

It will become clear from its construction that h(X,Y ) satisfies Formula (3). When X is
smooth of dimension one, h(X,Y ) recovers Rosenlicht’s generalized Jacobian of [Ser59, ch. V];
see Proposition 9.4.1.

It is easy to see that reciprocity sheaves form a full abelian subcategory Rec of PST.
Theorems 3–5 show that Rec contains reasonably many interesting objects of PST.

Theorem 3 (see Theorem 3.1.1). If F ∈ PST is homotopy invariant, F has reciprocity.

Recall from [SS03, BK16] that a presheaf represented by a commutative algebraic group has
the structure of a presheaf with transfers.

Theorem 4 (see Theorem 4.1.1). If F ∈PST is represented by a smooth commutative algebraic
group, F has reciprocity.

In the appendices, Kay Rülling proves the following.

Theorem 5 (see Theorems A.6.2 and B.2.2). (a) The presheaf with transfers X 7→ H0(X,Ωi
X)

has reciprocity, where Ωi
X denotes the sheaf of absolute Kähler differentials. If k is perfect, the

same is true with Ωi
X replaced by relative differentials Ωi

X/k.

(b) If k is perfect of positive characteristic, the de Rham–Witt presheaves X 7→ H0(X,
WnΩi

X) have structures of presheaves with transfers and have reciprocity.

An open problem is the following.

Question 1. Is Rec closed under extensions in PST?

The next results extend part of Voevodsky’s main theorems for homotopy invariant
presheaves with transfers to reciprocity sheaves: cf. [MVW06, Proposition 11.1] for Theorem 6
and [MVW06, Theorems 22.1, 22.2 and 22.15] for Theorem 7.

Theorem 6 (See Theorem 7.1.1 and Corollary 7.1.3). Let F ∈ PST be a reciprocity presheaf.

(1) Let X be a smooth semi-local k-scheme and V ⊂ X an open dense subset. Then the map
F (X)→ F (V ) is injective.

(2) For an open dense immersion U ⊂ X in Sm, FZar(X)→ FZar(U) is injective, where FZar

is the Zariski sheafification of F as a presheaf.

(3) If F (E) = 0 for any field E, then FZar = 0.

We note that in this theorem, (2) and (3) are easy consequences of (1) (cf. [MVW06, Lemma
22.8 and Corollary 11.2]).
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Theorem 7 (see Theorems 9.1.2, 9.2.2 and 9.3.2). Let F ∈ PST be a reciprocity presheaf.

(1) FZar has a unique structure of a presheaf with transfers such that F → FZar is a morphism

in PST.

(2) If k is perfect, FZar has reciprocity.

(3) We have FZar = FNis, where FNis is the Nisnevich sheafification of F as a presheaf.

Theorems 6 and 7 may be viewed as the degree-0 part of the following conjecture.

Conjecture 1. Suppose that k is perfect. Let F be a reciprocity presheaf which is a sheaf for

the Nisnevich topology.

(1) (Gersten’s conjecture.) For any smooth semi-local k-scheme X essentially of finite type,
the Cousin resolution

0→ F (X)→
⊕

x∈X(0)

F (x)→
⊕

x∈X(1)

H1
x(X,F )→ · · ·→

⊕
x∈X(n)

Hn
x (X,F )→ · · ·

is universally exact in the sense of [Gra85].

(2) The presheaves H i
Zar(−, F ) and H i

Nis(−, F ) coincide, and have reciprocity.

Note that the conjecture is known if F is homotopy invariant [Voe00a, Theorems 4.37, 5.6

and 5.7].

As remarked before, there are objects of Rec which are not homotopy invariant. But we

show the following result in § 6.

Theorem 8 (see Theorem 6.1.1). Let F be a reciprocity presheaf which is separated for the

Zariski topology. Then F is P1-invariant, namely for any X ∈ Sm, the projection pX : P1
X → X

induces p∗X : F (X)
∼−→ F (P1

X).

This is related to the approach to Gersten’s conjecture in [CHK97, § 5.4] (where

the perfectness of k is not required). Note that P1-invariance is weaker than reciprocity

(Remark 6.1.2).

1. Notation

In the whole paper we fix a base field k. Let Sm be the category of separated smooth schemes

of finite type over k. For S ∈ Sm, let Sch/S be the category of schemes of finite type over S.

We put Sch := Sch/Spec k.

1.1.1. For an integral scheme C and a closed subscheme D ⊂ C, we put

G(C,D) =
⋂
x∈D

Ker(O×
C,x
→ O×D,x)

= lim
−→

D⊂U⊂C

Γ(U,Ker(O∗U → O∗D)), (1.1)

where U ranges over open subsets of C containing D.
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1.1.2. Let S ∈ Sm. For X ∈ Sch/S, c(X/S) denotes the free abelian group on the set of

closed integral subschemes of X which are finite over S and surjective over a component of S:

this group is denoted by C0(X/S) in [SV96, § 3] and by cequi(X/S, 0) in [Voe00a, § 2].

For any morphism f : T → S in Sm, there is a homomorphism

f∗ : c(X/S)→ c(X ×S T/T )

called pullback of cycles (see [SV00, § 3.5] and [Voe00a, p. 90], where f∗ is denoted by cycl(f);

see also [MVW06, Example 1A.12]).

For a morphism f : X → Y in Sch/S, a pushforward

f∗ : c(X/S)→ c(Y/S)

is defined as follows (see [Voe00a, paragraph before Proposition 2.1]): let Z ⊂ X be a closed

integral subscheme which belongs to c(X/S). Since it is finite over S, its image f(Z) in Y

defines an element of c(Y/S), and f |Z : Z → f(Z) is finite and surjective. We then define

f∗(Z) = deg(f |Z)f(Z).

1.1.3. Recall the category Cor of finite correspondences and the category of presheaves

with transfers PST [Voe00b, §§ 2.1 and 3.1]: the objects of Cor are those of Sm and, for

X,Y ∈ Sm, the group of morphisms Cor(X,Y ) is c(X × Y/X). The category PST is the

category of contravariant functors Cor→ Ab.

Let S̃m be the category of k-schemes X which are written as limits X = lim←−i∈IXi over a

filtered set I, where Xi ∈ Sm and all transition maps are open immersions. We frequently allow

F ∈ PST to take values on objects of S̃m by F (X) := lim−→i∈I
F (Xi).

2. Reciprocity sheaves and representability

In this section, we introduce reciprocity sheaves, our fundamental objects of study in this paper,

and prove Theorem 2.

2.1 Definition of reciprocity sheaves

Definition 2.1.1. A modulus pair is a pair (X,Y ), where X ∈ Sch/k is integral and proper

over k and Y ⊂ X is a closed subscheme such that X = X − |Y | is quasi-affine and smooth over

k, where |Y | is the support of Y .

Let (X,Y ) be a modulus pair with X = X − |Y |. For S ∈ Sm, we consider commutative

diagrams (which we denote by (ϕ : C → X × S))

X

C
ϕ //

γϕ

<<

pϕ
""

X × S

��

OO

S

(2.1)
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where:

(A) C ∈ Sch is integral normal and ϕ is a finite morphism;

(B) for some generic point η of S, dimC ×S η = 1;

(C) the image of γϕ is not contained in Y .

These conditions imply that pϕ is proper and surjective over a connected component of S.
Let G(C, γ∗ϕY ) be as in (1.1) for D = γ∗ϕY = ϕ∗(Y × S). We will see in § 2.5 that the divisor

map on C induces
divC : G(C, γ∗ϕY )→ c(C/S), (2.2)

where C = C − |γ∗ϕY | and c(C/S) is defined in § 1.1.2.

Definition 2.1.2. Let F be a presheaf with transfers, (X,Y ) a modulus pair with X = X−|Y |
and a ∈ F (X). We say that Y is a modulus for a (or a has modulus Y ) if, for any diagram (2.1),
we have

(ϕ∗ divC(f))∗(a) = 0 in F (S) for any f ∈ G(C, γ∗ϕY ), (2.3)

where ϕ∗ : c(C/S)→ c(X × S/S) = Cor(S,X) (see § 1.1.2).

Definition 2.1.3. We say that F ∈ PST has reciprocity (or F is a reciprocity presheaf ) if for
any quasi-affine X ∈ Sm, any a ∈ F (X) and any open immersion X ↪→ X with X integral
proper over k, a has modulus Y for some closed subscheme Y ⊂ X such that X = X − |Y |. Let
Rec be the full subcategory of PST consisting of reciprocity presheaves.

Remark 2.1.4. It is evident that Rec is closed in PST under taking sub and quotient objects,
so that Rec is an abelian subcategory of PST.

We now state the main result of this section.

Theorem 2.1.5. Let (X,Y ) be a modulus pair with X = X − |Y |.
(1) The functor

PST→ Ab, F 7→ {a ∈ F (X) | a has modulus Y }

is represented by a presheaf with transfers h(X,Y ).

(2) Suppose that Y is a Cartier divisor on X. Then h(X,Y ) has reciprocity.

This theorem is proven as follows. The object h(X,Y ) is constructed as the cokernel of a map
τ : Φ(X,Y )→ Ztr(X) in PST, which we describe in § 2.2 (see Proposition 2.2.2). After proving
auxiliary lemmas in § 2.3, we construct Φ(X,Y ) and τ in § 2.4 and in § 2.5, respectively. Then
(1) becomes obvious from its construction. The proof of (2) occupies §§ 2.6–2.9. We introduce a
notion of admissible correspondences in § 2.6. Using a preliminary result proven in § 2.7, we show
in § 2.8 a functoriality of Φ(X,Y ) with respect to admissible correspondences, from which (2) is
deduced in § 2.9.

Remark 2.1.6. Let (X,Y ) and X be as in Theorem 2.1.5(1). By definition, there is a surjection
π : Ztr(X)→ h(X,Y ) with the following universal property: let F ∈ PST and a ∈ F (X), which
we regard as a morphism a : Ztr(X)→ F by Yoneda’s lemma. Then a factors through π if and
only if Y is a modulus for a.
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Corollary 2.1.7. Let F ∈ PST. Then F has reciprocity if for any quasi-affine X ∈ Sm and
any a ∈ F (X), there is a modulus pair (X,Y ) with X = X−|Y | such that Y is a Cartier divisor
on X and Y is a modulus for a.

Proof. Let X ∈ Sm be quasi-affine and a ∈ F (X). Let (X,Y ) be a modulus pair given by the

hypothesis. Take any open immersion X ↪→ X
′

with X
′

integral proper over k. We need to
find a closed subscheme Y ′ ⊂ X

′
such that |Y ′| = X

′ −X and that Y ′ is a modulus for a. Let
a : Ztr(X)→ F be the map in PST corresponding to a ∈ F (X). By the assumption, it factors
as

Ztr(X)
π→ h(X,Y )

θ→ F.

Noting that Y is a Cartier divisor on X, h(X,Y ) has reciprocity by Theorem 2.1.5(2). Hence,

there exists a closed subscheme Y ′ ⊂ X
′

such that |Y ′| = X
′ −X and that Y ′ is a modulus for

π ∈ h(X,Y )(X). This implies that π factors through Ztr(X)→ h(X
′
, Y ′) and hence so does a,

which means that Y ′ is a modulus for a. 2

Remark 2.1.8. For any given X ∈ Sm, we can use Nagata’s compactification theorem, then
blowup and normalization to find a modulus pair (X,Y ) such that X is normal and Y is a
Cartier divisor. If ch(k) = 0, then X can be taken to be smooth and X −X to be the support
of a normal crossing divisor on X.

2.2 Reformulation of Theorem 2.1.5(1)
Definition 2.2.1. Let (X,Y ) be a modulus pair. For S ∈ Sm, let C(X,Y )(S) be the class of all

morphisms ϕ : C → X × S satisfying Conditions (A), (B), (C) of § 2.1, and put (see (2.1))

Φ(X,Y )(S) =
⊕

(ϕ:C→X×S)∈C(X,Y )(S)

G(C, γ∗ϕY ).

For (C
ϕ−→ X × S) ∈ C(X,Y )(S) and f ∈ G(C, γ∗ϕY ), we prove that ϕ∗ divC(f) belongs to

Cor(S,X) in § 2.5 below, thereby obtaining a map

G(C, γ∗ϕY )→ Cor(S,X). (2.4)

Collecting these maps, we get

τS : Φ(X,Y )(S)→ Cor(S,X). (2.5)

Theorem 2.1.5(1) follows immediately from the following proposition.

Proposition 2.2.2. The assignment S 7→ Φ(X,Y )(S) gives a presheaf with transfers, and the
τS define a morphism

τ : Φ(X,Y )→ Ztr(X) in PST.

Moreover,
h(X,Y ) := Coker(Φ(X,Y )→ Ztr(X)) ∈ PST

represents the functor in Theorem 2.1.5(1).

Remark 2.2.3. Formula (3) is obvious from the definition.

The proof of this proposition is given in §§ 2.4–2.5. Before this, we need some preparation,
which is the object of the next subsection. Until the end of § 2.5, we fix a modulus pair (X,Y )
and put X = X − Y .
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2.3 Auxiliary lemmas
Let (ϕ : C→X×S) ∈ C(X,Y )(S) with S connected. Put C := C−|γ∗ϕY |. We consider a condition

for a Cartier divisor α on C:

the support |α| of α is contained in C. (2.6)

Lemma 2.3.1. (1) If α satisfies (2.6), then any irreducible component D of |α| is finite and
surjective over S.

(2) For any g ∈ G(C, γ∗ϕY ), α = div(g) satisfies (2.6).

Proof. (1) Since X is quasi-affine, C is quasi-affine over S and hence D is quasi-affine over S.
Since D is closed in C, it is proper over S and hence finite by Lemma 2.3.2 below. Since D is
pure of codimension one in C, dim(D) = dim(S) and D→ S must be surjective, hence (1).

Part (2) is obvious from the definition. 2

Lemma 2.3.2. Let X,S ∈ Sch. Then a morphism f : X → S which is quasi-affine and proper is
finite.

Proof. Factor f as X
j−→ X ′

f ′−→ S, where j is a dense open immersion and f ′ is affine. Since f
is proper, j is proper and hence is an isomorphism. Therefore, f is affine and the lemma is well
known. 2

Let Z ∈ Sch be integral with generic point η and let f : Z → S be a morphism in Sch. We
denote by Λ̃(ϕ,Z) the set of all irreducible components of C ×S Z and by β : C ×S Z → C the
projection map. Define

Λ(ϕ,Z) := {T ∈ Λ̃(ϕ,Z) | dimTη = 1, T 6⊂ |β∗(γ∗ϕY )|}, (2.7)

where Tη := T ×Z η.

Lemma 2.3.3. Let T ∈ Λ̃(ϕ,Z) and let α be a Cartier divisor on C satisfying (2.6). (Note that
β∗(α) is well defined by Lemma 2.3.1(1).)

(1) Let s ∈ Z and let Σ be an irreducible component of Ts := T ×Z s.
(a) We have dim Σ > 1 and Σ 6⊂ |β∗(α)|.
(b) If Σ ∩ |β∗(α)| 6= ∅, then we have dim Σ = 1.

(2) If T ∩ |β∗(α)| 6= ∅, then T ∈ Λ(ϕ,Z).

Proof. (1a) The first assertion follows from Chevalley’s theorem applied at f(s) [EGAIV,
Lemme 13.1.1]. As all components of β∗(α)×S s are finite over s by Lemma 2.3.1(1), the second
assertion follows from the first.

(1b) On the one hand, we have dim Σ > 1 by (1a). On the other hand, Σ ∩ |β∗(α)| is
of codimension 6 1 in Σ since it is the support of a Cartier divisor on Σ and hence we get
dim Σ 6 1, noting that dim Σ ∩ |β∗(α)| = 0 by Lemma 2.3.1(1). This proves (1b).

(2) The assumption that T ∩ |β∗(α)| 6= ∅ and (2.6) imply that T 6⊂ |β∗(γ∗ϕY )|. It remains
to show that dimTη = 1. Let W ⊂ Z be the closure of the image of T → Z and ξ ∈ W be the
generic point. We separate two cases.

(i) Assume that W = Z (so that ξ = η). Then Tη ∩ |β∗(α)| 6= ∅ by Lemma 2.3.1(1). Thus,
we may apply (1b) with s = η to conclude that dimTη = 1.
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(ii) Assume that W 6= Z. We show that T ∩ |β∗(α)| = ∅. By Lemma 2.3.4 below, we have
dimT > dimZ+1 and hence dimTξ = dimT−dimW > 1 since W 6= Z. By Chevalley’s theorem,
this implies that for any s ∈W and for any irreducible component Σ of Ts, we have dim Σ > 1.
Hence, by (1b), we conclude that Σ ∩ |β∗(α)| = ∅. This proves that T ∩ |β∗(α)| = ∅. 2

Lemma 2.3.4. Let S,Z,C ∈ Sch and let p : C → S, f : Z → S be two morphisms. Then, for
any irreducible component T of C ×S Z, one has

dimT > dimC + dimZ − dimS.

Proof.1 Viewing C ×S Z as the inverse image in C × Z of the diagonal ∆S ⊂ S × S via the
projection C × Z → S × S, we reduce to showing that

codimC×Z T 6 codimS×S ∆S ,

which easily follows from [Bou85, ch. VIII, p. 34, Proof of Corollary 4]. 2

2.4 Φ(X,Y ) is a presheaf with transfers
For S, S′ ∈ Sm and Z ∈ Cor(S′, S), we define a homomorphism

Z∗ : Φ(X,Y )(S)→ Φ(X,Y )(S′) (2.8)

(see Definition 2.2.1). We may assume that S, S′, Z are integral; the definition is then extended
linearly to the general case.

Take (ϕ : C → X ×S) ∈ C(X,Y )(S) and T ∈ Λ(ϕ,Z). Let TN → T be the normalization and
consider the composite map

ϕT : TN → C ×S Z
ϕ×SZ−→ X × Z → X × S′. (2.9)

Noting that ϕ and Z → S′ are finite, so is ϕT and we have

(ϕT : TN → X × S′) ∈ C(X,Y )(S
′). (2.10)

We have a commutative diagram

X

C

γϕ
>>

TN
hToo

γϕT

OO

We define a map

Z∗T : G(C, γ∗ϕY )
h∗T−→ G(TN , γ∗ϕT

Y ) ↪→ Φ(X,Y )(S′), (2.11)

where the second term comes from (2.10). To explain h∗T , take g ∈ G(C, γ∗ϕY ) and put

Σ = |divC(g)|. Note that g ∈ Γ(C\Σ,O×
C

) since C is normal. By Lemma 2.3.3(1a), TN − h−1
T (Σ)

is a dense open subset of TN and we get h∗T (g) ∈ Γ(TN−h−1
T (Σ),O×

TN ). As γ∗ϕT
(Y ) = h∗T (γϕ(Y )),

we find that h∗T (g) ∈ G(TN , γ∗ϕT
(Y )).

1 We thank J. Œsterlé for his help with this proof.
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Letting mT be the multiplicity of T in C ×S Z, we then define

Z∗ =
∑

T∈Λ(ϕ,Z)

mT · Z∗T : G(C, γ∗ϕY )→ Φ(X,Y )(S′),

which induces the desired map (2.8).
Let S, S′, S′′ ∈ Sm and Z ∈ Cor(S′, S), Z ′ ∈ Cor(S′′, S′). We need to show that

Z ′
∗
Z∗ = (ZZ ′)∗ : Φ(X,Y )(S)→ Φ(X,Y )(S′′), (2.12)

so that Φ(X,Y ) is an object of PST. To verify (2.12), one may suppose that S, S′, Z and Z ′

are integral. Let W1, . . . ,Wr be the irreducible components of Z ×S′ Z ′ ⊂ S × S′′ and nj the
multiplicity of Wj . Then we have ZZ ′ =

∑
j njWj (see [Dég07, Proof of Lemma 4.1.15]). Consider

the following two subclasses of C(X,Y )(S
′′) (where Λ(− ,−) is as in (2.7) and ϕT ′ is as in (2.9)):

Ξ1 = {ϕT ′ | T ′ ∈ Λ(ϕT , Z
′) for some T ∈ Λ(ϕ,Z)},

Ξ2 =
⋃

16j6r

{ϕT ′ | T ′ ∈ Λ(ϕ,Wj)}.

Note that in the definition of Ξ2, the sum is disjoint since the morphism T ′ → Wj for
T ′ ∈ Λ(ϕ,Wj) is surjective. For T ∈ Λ(ϕ,Z) and T ′ ∈ Λ(ϕT , Z

′) (so that ϕT ′ ∈ Ξ1), we have a
commutative diagram

T ′
↪→ //

��

TN ×S′ Z ′

��
T̃ ′

↪→ // T ×S′ Z ′ ↪→ // C ×S Z ×S′ Z ′ C ×S Wj
←↩oo

(2.13)

where T̃ ′ is the image of T ′ in T ×S′ Z ′. It suffices to prove the following.

(i) There is an inclusion Ξ2 ↪→ Ξ1.

(ii) For ϕT ′ ∈ Ξ1, if there is a Cartier divisor α on C such that |α| ⊂ C and that T̃ ′ ∩ (|α| ×S
Z ×S′ Z ′) 6= ∅, then ϕT ′ ∈ Ξ2.

(iii) Let T ∈ Λ(ϕ,Z), T ′ ∈ Λ(ϕT , Z
′), T ′′ ∈ Λ(ϕ,Wj), 1 6 j 6 r and suppose that ϕT ′ ∈ Ξ1

corresponds to ϕT ′′ ∈ Ξ2 by (i). Then we have mTmT ′ = njmT ′′ .

We show (i). Take ϕT ′′ from Ξ2. The canonical map T ′′N → C must factor through the
normalization TN of some irreducible component T of C ×S Z. We claim that T ∈ Λ(ϕ,Z) (see
(2.7)), which yields a desired correspondence. It is obvious that T 6⊂ |β∗(γ∗ϕY )|. If dimTη 6= 1,
Lemma 2.3.3(1a) shows that dimTη > 1 and hence we get dimT ′′η > 1 by Chevalley’s theorem
[EGAIV, 13.1.1], which contradicts T ′′ ∈ Λ(ϕ,Wj). Thus, we get dimTη = 1, and (i) is proved.

Next we show (ii). In view of (2.13), there are j ∈ [1, r] and an irreducible component of T ′′

of C ×S Wj such that the map T ′→ C ×S Z ×S′ Z ′ factors through T ′′. By the assumption, we
have T ′′ ∩ (|α| ×S Wj) 6= ∅. By Lemma 2.3.3(2), this implies that T ′′ ∈ Λ(ϕ,Wj).

Finally, (iii) can be seen by a computation:

mTmT ′ = l(OT×S′Z
′,ηT ′

)l(OC×SZ,ηT
)

= l(OZ×S′Z
′,ηWj

)l(OT×ZWj ,ηT ′′ )l(OC×SZ,ηT
)

= l(OZ×S′Z
′,ηWj

)l(OC×SWj ,ηT ′′
) = njmT ′′ ,

where we denote by l(R) the length of an Artin local ring R and by ηV the generic point of an
integral scheme V .
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Remark 2.4.1. Here is an example where the inclusion Ξ2 ↪→ Ξ1 in (i) is not surjective.2 Let
X = P1 ×P1 and Y :=∞×P1 ∪P1 ×∞. Let B be the blow-up of S := A2 at 0, regarded as
a closed subscheme of P1 × S. Denote by i : B ↪→ P1 × S the inclusion map. Put C := P1 ×B
and define ϕ = idP1 × i : C → X × S. Then ϕ defines an element of C(X,Y )(S). Set S = A2 ⊃
Z = S′ = 0 × A1 ⊃ Z ′ = S′′ = 0 × 0. Let E ⊂ B be the exceptional curve, L ⊂ B the strict
transform of S′ and p := L ∩ E. Then Ξ2 = ∅, because C ×S S′′ = P1 × E does not belong
to Λ(ϕ,Z ′) (2.7). On the other hand, we have Ξ1 = {ϕP1×p} because Λ(ϕ,Z) = {P1 × L} and
Λ(ϕP1×L, Z

′) = {P1 × p}.
2.5 Construction of τ

Let S ∈ Sm, (ϕ : C → X × S) ∈ C(X,Y )(S) and put C = ϕ−1(X × S). Lemma 2.3.1 shows that

divC(g) satisfies (2.6) for any g ∈ G(C, γ∗ϕ(Y )). Hence, the divisor map on C induces (2.2). We
obtain the map τS in (2.5) by composing (2.2) with

ϕ∗ : c(C/S)→ Cor(S,X) = c(X × S/S).

To show that τ is a morphism in PST, we need to show that the following diagram commutes
for any Z ∈ Cor(S′, S), S, S′ ∈ Sm:

Φ(X,Y )(S)
τS //

Z∗

��

Cor(S,X)

Z∗

��
Φ(X,Y )(S′)

τS′ // Cor(S′, X)

(2.14)

As Cor(S′, X)→ Cor(S′ × k′, X × k′) is injective for any extension k′/k, we may suppose that
k is perfect. Also note that Cor(S′, X)→ Cor(V,X) is injective for any open dense immersion
V → S′. After such a base change, we may assume that Z is regular and hence Z ∈ Sm by the
assumption that k is perfect. By (2.12), we may assume that Z is either (i) the transpose of
a finite surjective morphism S = Z → S′ or (ii) the graph of a morphism f : S′ = Z → S. In
the case of (i), we have c(C/S) = c(C/S′) and the statement becomes trivial. We consider the
case (ii). By shrinking Z further, f : Z → S can be written as the composite of a flat map and
regular immersions of codimension one in S. Again by (2.12), we may assume that f is one such
morphism. Here we present a proof of the commutativity of (2.14) assuming that f is a regular
immersion of codimension one in S. We omit the proof for the case f is flat, as it can be shown
in a similar (and much easier) way.

Let (ϕ : C → X × S) ∈ C(X,Y )(S). Then the desired assertion will follow from the
commutativity of the diagram

G(C, γ∗ϕY )
divC //

∑
h∗T

��

c(C/S)
ϕ∗ //

f∗

��

c(X × S/S)

f∗

��⊕
T∈Λ(ϕ,Z)

G(TN , γ∗ϕT
Y )

⊕
div

TN ''

c(CZ/Z)
ϕ∗ // c(X × Z/Z)

⊕
T∈Λ(ϕ,Z)

c(T 0/Z)

∑
mT (iT )∗

OO

2 This example was communicated to us by R. Sugiyama.
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where C = C − |γ∗ϕY |, T 0 := TN − |γ∗ϕT
Y |, CZ = C ×S Z and iT : T 0→ CZ is the natural map.

(See (2.11) for h∗T and § 1.1.2 for f∗). The commutativity of the right-hand squares is obvious.
To prove that of the left-hand pentagon, we use the following facts.

(1) For a Cartier divisor ι : D ↪→ C, we have an identity

D · [CZ ] = CZ · [D] as cycles on D ∩ CZ ,

where [CZ ] (respectively [D]) is the cycle on C associated to the Cartier divisor CZ (respectively
D) and D · − (respectively CZ · −) is the intersection product (see [Ful98, Theorem 2.4]).

(2) If D = divC(g) for g ∈ k(C)× and W ⊂ C is integral closed such that W 6⊂ |D|, we have

D · [W ] = divW (g|W ) = π∗ divWN (g|WN ),

where π : WN →W is the normalization of W .

Take g ∈ G(C, γ∗ϕY ). We have divC(g) = divC(g) and

f∗ divC(g) = CZ · [divC(g)]
(1)
= divC(g) · [CZ ].

For each T ∈ Λ(ϕ,Z), we have

divC(g) · [T 0]
(2)
= divT 0(g|T 0) = divTN (h∗T (g)).

Noting that CZ =
∑

T∈Λ(ϕ,Z)mTT
0 as a divisor on C, we get the desired commutativity.

The last claim of Proposition 2.2.2 (representability) is now tautologically true. This
completes the proof of Proposition 2.2.2. 2

2.6 Admissible correspondences
In order to prove Theorem 2.1.5(2), we need to show a functoriality of Φ(X,Y ) with respect to
modulus pairs (X,Y ): this will be done in Proposition 2.8.1. In this subsection, we introduce a
notion of admissible correspondences, and prove their existence in suitable cases.

For two closed subschemes Y1, Y2 in a scheme X, we write Y1 > Y2 if the inclusion Y2 → X
factors through Y1 → X (equivalently, if for all x ∈ X one has IY1,x ⊂ IY2,x, where IYi is the
ideal sheaf of Yi).

Definition 2.6.1. Let Mi = (Xi, Yi) (i = 1, 2) be modulus pairs and put Xi = Xi\|Yi|. Let
Z ∈ Cor(X1, X2) be an integral finite correspondence. We write Z̄N for the normalization of the
closure of Z in X1×X2 and pi : Z̄N → Xi for the canonical morphisms for i = 1, 2. We say that
Z is admissible for (M1,M2) if p∗1Y1 > p∗2Y2. An element of Cor(X1, X2) is called admissible if
all of its irreducible components are admissible.

Lemma 2.6.2. Let Z ∈ Cor(X1, X2), where X1, X2 ∈ Sm are quasi-affine. For i = 1, 2, let
Xi ∈ Sch be a normal proper k-scheme which contains Xi as an open dense subset. Let Y2 ⊂ X2

be a closed subscheme supported on X2 − X2. Then there exists a closed subscheme Y1 ⊂ X1

supported on X1 −X1 such that Z is admissible for ((X1, Y1), (X2, Y2)).

Proof. We may assume that Z ⊂X1×X2 is integral and finite surjective overX1. Let Z ⊂X1×X2

be the closure of Z and pi : Z → Xi (i = 1, 2) be the natural maps. We remark that

p−1
1 (X1 −X1)red = Z − Z and p−1

2 (Y2)red ⊂ Z − Z. (2.15)
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The first assertion follows from Lemma 2.6.3 below, noting that Z → X1 is finite. The second
assertion is obvious since p2 induces Z → X2. Hence, one can find a closed subscheme Y1 ⊂ X1

supported on X1 −X1 such that p∗1Y1 > p∗2Y2 on Z3 and therefore on Z
N

. 2

Lemma 2.6.3. Let

X
j //

p

��

X̄

p̄

��
Y

j′ // Ȳ

be a commutative diagram of schemes, where j, j′ are dense open immersions and p is proper.
Then p̄−1(Y ) = X.

Proof. Let Z = p̄−1(Y ). The dense open immersion X ↪→ Z is proper and hence an isomorphism.
2

2.7 An invariance property for G(C,D)

Proposition 2.7.1. Let f : C
′→ C be a proper surjective morphism of k-varieties and D ⊂ C

be an effective Cartier divisor. Assume that f∗OC′ = O
C
′ . Then, for D′ = C

′ ×C D, we have

f∗ : G(C,D)
∼−→ G(C

′
, D′).

For the proof, we need a lemma.

Lemma 2.7.2. Let f : C
′ → C be a proper surjective morphism of schemes. Let D ⊂ C be a

closed subscheme. Then the system

{f−1(U) | U ⊃ D,U open}

is cofinal among the open neighbourhoods of f−1(D) in C
′
.

Proof. Let U ′ be an open neighbourhood of f−1(D) and Z = C
′ − U ′. Then f(Z) is closed and

f−1(D) ⊂ f−1(U) ⊆ U ′ with U = C − f(Z). 2

Proof of Proposition 2.7.1. By Lemma 2.7.2, it suffices to show that

O∗U |D
∼−→ f∗O∗U ′|D′

for U running through the open neighbourhoods of D in C and U ′ = f−1(U). In the commutative
diagram of exact sequences

0 // O∗U |D //

a

��

O∗U //

b

��

O∗D
c

��
0 // f∗O∗U ′|D′ // f∗O∗U ′ // f∗O∗D′

3 Note that if F ↪→ W is a closed immersion in Sch defined by the ideal sheaf I, there exists n > 0 such that
I ⊇ In0 , where I0 is the ideal sheaf of Fred.
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b is an isomorphism by the assumption that f∗OC′ = OC . Hence, it suffices to show that c is
injective. For this, it suffices to show that c′ is injective in the diagram

0 // ID //

a′

��

OU //

b′ '
��

OD //

c′

��

0

0 // f∗ID′ // f∗OU ′ // f∗OD′

which will follow from the surjectivity of a′. To see this, note that

f∗ID = ID ⊗OU
OU ′ ∼−→ IDOU ′ = ID′

by the assumption that D is a Cartier divisor. Thus, we get

f∗OU ′ ⊗ ID ' f∗(f∗ID)
∼−→ f∗ID′

by the projection formula and hence the claim since OU ∼−→ f∗OU ′ . 2

2.8 Functoriality of Φ(X,Y )
Proposition 2.8.1. Let Mi = (Xi, Yi) (i = 1, 2) be modulus pairs with Xi = Xi\|Yi|, and let
Z ∈Cor(X1, X2) be admissible for (M1,M2). We assume that Y2 is a Cartier divisor. Then there
is a morphism

Z∗ : Φ(X1, Y1)→ Φ(X2, Y2) in PST

which fits into a commutative diagram

Φ(X1, Y1)
τ //

Z∗
��

Ztr(X1)

Z∗
��

Φ(X2, Y2)
τ // Ztr(X2)

(2.16)

so that Z∗ induces a map h(X1, Y1)→ h(X2, Y2).

Proof. We may assume thatZ ⊂X1×X2 is integral and finite surjective overX1. Let Z ⊂X1×X2

be the closure of Z and pi : Z → Xi (i = 1, 2) be the natural maps. Take S ∈ Sm connected and

(ϕ : C → X1 × S) ∈ C(X1,Y1)(S) with C = ϕ−1(X1 × S).

Let CZ,i (i ∈ I) be the irreducible components of C×X1Z, CZ,i be the closure of CZ,i in C×X1
Z

and C
N
Z,i be its normalization. We have the composite map

ψ′i : C
N
Z,i→ C ×X1

Z
ϕ×X1

Z

−→ Z × S → X2 × S.

By construction, ψ′i is proper. Let

C
N
Z,i

p2,i−→ CX2,i
ψi−→ X2 × S (2.17)

be its Stein factorization. Note that CX2,i is normal and ψi is finite. Let J ⊂ I be the subset of
those i ∈ I such that dim(CX2,i ×S η) = 1, where η is the generic point of S.
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For i ∈ J , we have

(ψi : CX2,i→ X2 × S) ∈ C(X2,Y2)(S).

Indeed, it suffices to check that the image of ψ′i is not contained in Y2×S. The normalization

CNZ,i of CZ,i is dense open in C
N
Z,i and ψ′i induces a morphism

CNZ,i→ C ×X1 Z
ϕ×X1

Z

−→ Z × S → X2 × S,

which implies the desired assertion. We obtain a commutative diagram

C

γϕ

��

C
N
Z,i

p1,ioo p2,i //

γZ,i

��

CX2,i

γX2,i

��
X1 Z

p1oo p2 // X2

From this, we get a composition

Zi∗ : G(C, γ∗ϕY1)→ G(C
N
Z,i, p

∗
1,iγ
∗
ϕY1) = G(C

N
Z,i, γ

∗
Z,ip

∗
1Y1) ↪→ G(C

N
Z,i, γ

∗
Z,ip

∗
2Y2)

' G(CX2,i, γ
∗
X2,iY2) ⊂ Φ(X2, Y2)(S),

where the first map is the pullback by p1,i, the middle inclusion comes from the assumption
that p∗1Y1 > p∗2Y2 and the isomorphism is the inverse of the pullback along p2,i, which is an
isomorphism by Proposition 2.7.1 (here we use the assumption that Y2 is a Cartier divisor; also,
p2,i satisfies the assumption of Proposition 2.7.1 by the construction (2.17)). Letting mi be the
multiplicity of CZ,i in C ×X1 Z, we then define

Z∗ =
∑
i∈J

miZ
i
∗ : G(C, γ∗ϕY1)→ Φ(X2, Y2)(S),

which induces Z∗ : Φ(X1, X1)(S) → Φ(X2, Y2)(S). It is easy to check (essentially as a special
case of (2.12)) that this induces a map Z∗ : Φ(X1, Y1)→ Φ(X2, Y2) in PST.

To prove the commutativity of (2.16), we may assume that S = SpecK for a field K by the

same reason as for the commutation of (2.14). Then C and C
N
Z,i are regular of dimension one, so

that p1,i is flat. We are reduced to showing the commutativity of the diagram

G(C, γ∗ϕY1)
divC //

⊕mip2,i∗p∗1,i
��

c(C/K)
ϕ∗ //

⊕mip2,i∗p∗1,i
��

c(X1 ×K/K)

Z∗

��⊕
i∈J

G(CX2,i, γ
∗
X2,iY2)

⊕divCX2,i //
⊕
i∈J

c(CX2,i/K)
⊕ψi∗ // c(X2 ×K/K)

where p∗1,i is the flat pullback of cycles. Each square of the diagram is easily seen to be
commutative. This completes the proof of Proposition 2.8.1. 2

2.9 Proof of Theorem 2.1.5(2)
Let (X,Y ) be as in the theorem. Assume that we are given a connected quasi-affine V ∈ Sm and
a ∈ h(X,Y )(V ). Let V be a proper normal scheme over k containing V as a dense open subset.
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Let ã ∈ Ztr(X)(V ) = Cor(V,X) be a lift of a under the canonical surjection Ztr(X)(V ) →
h(X,Y )(V ). We have a commutative diagram

Ztr(V )
ã∗ //

a∗ %%

Ztr(X)

��
h(X,Y )

where a∗ and ã∗ are respectively induced by a and ã via the Yoneda embedding. By Lemma 2.6.2
and Proposition 2.8.1, there is a closed subscheme W ⊂ V supported on V − V such that a∗
factors through Ztr(V )→ h(V ,W ), which implies that a has modulus W . 2

3. Homotopy invariance implies reciprocity

3.1 Introduction
In this section, we prove Theorem 3. Actually, we prove the following stronger result.

Theorem 3.1.1. Let F ∈ PST. We consider the following condition.

(♦) If X ∈ Sm and a ∈ F (X), then Y is a modulus for a for any modulus pair (X,Y ) with
X = X − Y . (Equivalently: for any modulus pair (X,Y ) with Y reduced, Y is a modulus for a.)

Then we have the following.

(1) If F is homotopy invariant, then (♦) holds.

(2) If F is separated for the Zariski topology and satisfies (♦), then F is homotopy invariant.

For the proof, we need some preliminary results on relative Picard groups and relative Suslin
homology, which will occupy §§ 3.2 and 3.3. The proofs of (1) and (2) will be given in §§ 3.4 and
3.5, respectively.

3.2 Relative Picard group
We recall [SV96, §§ 2–3] with some modifications. Let X be an integral scheme and Y a closed
subscheme of X. We denote by Pic(X,Y ) the group of all isomorphism classes of pairs (L, σ)
of an invertible sheaf L and an isomorphism σ : L|Y ∼= OY . Note that Pic(X) = Pic(X, ∅). We
have an exact sequence

Γ(X,O×X)→ Γ(Y,O×Y )→ Pic(X,Y )→ Pic(X)→ Pic(Y )

and an isomorphism
Pic(X,Y ) ∼= H1

Zar(X,GX,Y ),

where GX,Y := ker(O×
X
→ O×Y ). An element (L, σ) of Pic(X,Y ) is called liftable if there exists

a pair (U, σ̃) consisting of an open subset U ⊂ X and an isomorphism σ̃ : L|U ∼= OU such that

Y ⊂ U and σ̃|Y = σ. We define P̃ic (X,Y ) to be the subgroup of Pic(X,Y ) consisting of liftable
elements. Let Div(X,Y ) be the group of Cartier divisors on X whose support does not intersect
with Y .

Lemma 3.2.1. Let X and Y be as above.

(1) We have an exact sequence

0→ Γ(X,GX,Y )→ G(X,Y )
div X−→ Div(X,Y )→ P̃ic(X,Y )→ 0.

1867

https://doi.org/10.1112/S0010437X16007466 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007466


B. Kahn et al.

(2) If X is normal and Y is reduced, the pullback by the projection p : X×A1→ X induces
isomorphisms

p∗ : Pic(X,Y ) ' Pic(X ×A1, Y ×A1), (3.1)

p∗ : P̃ic(X,Y ) ' P̃ic(X ×A1, Y ×A1). (3.2)

(3) If Y has an affine open neighbourhood in X, then P̃ic (X,Y ) = Pic(X,Y ).

Proof. The assertions are shown in [SV96, 2.3 and 2.5] except for (3.2), which we deduce from
(3.1). Let

i∗ : Pic(X ×A1, Y ×A1)→ Pic(X,Y )

be the pullback along the zero section i : Spec k→ A1. By definition,

i∗(P̃ic(X ×A1, Y ×A1)) ⊂ P̃ic(X,Y )

and i∗p∗ is the identity. Hence, (3.2) follows from the fact that Ker(i∗) = 0, which follows from
(3.1). 2

3.3 Relative Suslin homology
We take a connected S ∈ Sm and X ∈ Sch/S. Let Y ⊂ X be a closed subscheme. Suppose that
X is normal and set X := X − Y . Let c(X/S) be as in § 1.1.2. We define for each n ∈ Z>0

Cn(X/S) := c(X ×∆n/S ×∆n),

where ∆n = Spec k[t0, . . . , tn]/(
∑
ti−1) is the standard cosimplicial scheme over k. The complex

C∗(X/S) of abelian groups thus obtained is called the relative Suslin complex. Its homology group
is denoted by HS

∗ (X/S) and called the relative Suslin homology.
Now suppose that the generic fiber of X → S is one dimensional and that X is quasi-affine

over S. By definition, the components of Z ∈ Cn(X/S) are closed in X×∆n, so that Z is a Weil
divisor on X × ∆n. Let C̃n(X/S) ⊂ Cn(X/S) be the subgroup of all Z ∈ Cn(X/S) which are
Cartier divisors on X ×∆n. We have

C̃n(X/S) = Div(X ×∆n, Y ×∆n). (3.3)

As a pullback of a Cartier divisor is Cartier, C̃∗(X/S) is a subcomplex of C∗(X/S). Its homology
groups are denoted by H̃S

∗ (X/S).

Theorem 3.3.1. Assume that Y reduced. Then we have

H̃S
n (X/S) ∼=

{
P̃ic(X,Y ) (n = 0),

0 (n > 0).

Proof. By Lemma 3.2.1(1) and (3.3), we have an exact sequence of complexes of abelian groups

0→ Γ(X ×∆∗,GX×∆∗,Y×∆∗)→ G(X ×∆∗, Y ×∆∗)

→ C̃n(X/S)→ P̃ic(X ×∆∗, Y ×∆∗)→ 0.

The assumption that X is quasi-affine over S is preserved under any base change [EGAII,
(5.1.10)(iii)] and hence remains true after passing to the geometric fibers. This shows that Y
meets every component of these fibers, which implies as in [SV96, Proof of Theorem 3.1] that the
first term vanishes: Γ(X ×∆∗,GX×∆∗,Y×∆∗) = 0. It is also proved in loc. cit. that G(X ×∆∗,
Y ×∆∗) is acyclic. Now the theorem follows from Lemma 3.2.1(2). 2

Corollary 3.3.2. Under the same assumption as in the previous theorem, the following
composition is zero:

G(X,Y )→ C̃0(X/S)→ H̃S
0 (X/S).
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3.4 Proof of Theorem 3.1.1(1)
Suppose that F ∈ PST is homotopy invariant. Let (X,Y ) and a ∈ F (X) be as in (♦). We show
that Y is a modulus for a. Let S ∈ Sm and (ϕ : C → XS) ∈ C(X,Y )(S). Put YC = ϕ∗(YS),

C = C − YC . We need to show that the composition

G(C, YC)→ c(C/S)
ϕ∗−→ c(XS/S) = Ztr(X)(S)

a→ F (S) (∗)

is zero. By [MVW06, Lemma 7.5], the homotopy invariance of F implies that the last map factors
as

c(XS/S)→ HS
0 (XS/S)→ F (S).

Therefore, the map (∗) factors as

G(C, YC) ⊂ G(C, (YC)red)→ C̃0(C/S)→ H̃S
0 (CS/S)→ HS

0 (CS/S)→ HS
0 (XS/S)→ F (S),

which is zero by Corollary 3.3.2. 2

3.5 Proof of Theorem 3.1.1(2)
This proof is adapted from [Voe00a, Proposition 3.11]. Suppose that F ∈ PST is separated for
Zariski topology and satisfies (♦), and take S ∈ Sm. Let p : S ×A1→ S be the projection and
i : Spec k ↪→A1 be the 0-section. We must show that p∗ : F (S)→ F (S×A1) is an isomorphism,
which will follow from the injectivity of (idS×i)∗ : F (S×A1)→ F (S) (see Proof of Lemma 3.2.1).
Since F ∈ PST is separated for Zariski topology, we may assume that S is affine. Consider the
commutative diagram

S ×A1 idS×δ // (S ×A1)×A1
p×idA1// S ×A1

S ×A1 p //

idS×A1×i
OO

S

idS×i

OO

Since (p× idA1)(idS × δ) = idS×A1 , it suffices to show that

(idS × δ)∗ = (idS×A1 × i)∗ : F ((S ×A1)×A1)→ F (S ×A1). (∗)

Take a proper integral variety S which contains S as an open dense subscheme. Put X :=
(S×A1)×A1, X := (S×P1)×P1 and Y := (X−X)red, so that (X,Y ) is a modulus pair (here we
used the assumption that S is affine). Let C := (S×A1)×P1 and let ϕ : C→X×(S×A1) be the
morphism defined by the natural inclusion C ↪→X and the projection C→ S×A1. Then ϕ is an
element of C(X,Y )(S×A1) (cf. Definition 2.2.1). Since Y is a modulus for any a ∈ F (X) by (♦), we

get (ϕ∗ divC(f))∗(a) = 0 for any f ∈ G(C, Y |C), where Y |C = ϕ∗(Y × (S×A1)) = (S×A1)×∞.
If we write x, y for the coordinates of P1 × P1, then the function f = 1 − (x/y) belongs to
G(C, Y |C), and ϕ∗ divC(f) ∈ Cor(S × A1, (S × A1) × A1) agrees with the difference of the
graphs of idS × δ and idS×A1 × i. This proves (∗) and hence completes the proof. 2

Remark 3.5.1. Let (X,Y ) be a modulus pair with Y reduced. Put X = X − |Y |. Let h0(X)
be the presheaf with transfers introduced in [Voe00b, p. 207], which is characterized as the
maximal homotopy invariant quotient of Ztr(X). By Theorem 3, we get a (surjective) map
h(X,Y )→ h0(X). It is an interesting problem to know when this is an isomorphism: it is true
(after Zariski sheafification) if dimX = 1 by Theorem 9.4.1 below.
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4. Algebraic groups have reciprocity

4.1 Introduction
In this section, we show the following result by adapting an argument of [Ser59].

Theorem 4.1.1. Any smooth commutative group scheme G locally of finite type over k, regarded
as a presheaf with transfers, has reciprocity.

The proof goes as follows. In § 4.2, we reduce the proof to the case k is algebraically closed and
G connected. We then prove Theorem 4.1.1 for characteristic zero in § 4.3, and for characteristic
p > 0 in § 4.4.

In what follows we identify G with the object of PST represented by G (cf. [SS03, Proof of
Lemma 3.2] and [BK16, Lemma 1.4.4]). Before going to the proof of Theorem 4.1.1, we make a
simple remark, which will be used frequently in this paper.

Remark 4.1.2. Assume that k is perfect. Let (X,Y ) be a modulus pair withX =X−Y , F ∈PST
and a ∈ F (X). Assume that F has global injectivity, which means that for any dense open
immersion j : U ↪→ X in Sm, j∗ : F (X)→ F (U) is injective. Then, in order to show that Y is
a modulus for a, it suffices to verify the following condition (cf. (2.3)).

Let K = k(S) be the function field of a connected S ∈ Sm, C a normal integral proper curve
over K and ϕ : C → X ×K a finite morphism such that ϕ(C) 6⊂ Y ×K. Put C = ϕ−1(X ×K)

and let ψ : C → X be the induced map. Since C is regular and k is perfect, we have C ∈ S̃m,
whence ψ∗ : F (X)→ F (C) (cf. § 1.1.3). Then

(divC(g))∗(ψ∗(a)) = 0 in F (K) for any g ∈ G(C,D),

where D = ϕ∗(Y ×K) and divC(g) ∈ c(C/K) is viewed as an element of Cor(K,C) by the map
C → C ×K induced by the identity on C and the projection C → SpecK.

4.2 Reduction to algebraically closed and connected cases
Let k̄ be an algebraic closure of k. We assume that Gk̄ has reciprocity (over k̄), and prove that G
has reciprocity (over k). TakeX ∈ Sm connected quasi-affine, a ∈G(X) andX a compactification
of X: we must find a closed subset Y ⊂ X with support X − X which is a modulus for a. By
hypothesis, there is such a Y ⊂ X k̄ for the image ak̄ of a in G(Xk̄) (more accurately, this is true
component by component in case X is not geometrically connected). We may choose Y such
that IY = In

(X k̄−Xk̄)red
for some n > 0, which implies that Y is defined over k. We claim that

Y is the desired modulus for a. Indeed, let S ∈ Sm and C ∈ C(X,Y )(S): with the notation of

Definition 2.1.2, we obviously have for f ∈ G(C, γ∗ϕY )

((ϕ∗ divC(f))∗(a))k̄ = ((ϕk̄)∗ divCk̄
(fk̄))

∗(ak̄) = 0 ∈ G(Sk̄)

and hence the claim since G(S)→ G(Sk̄) is injective.
Now assume that k is algebraically closed. We reduce the proof of Theorem 4.1.1 to the case

G is connected. Indeed, G then splits as a direct product G0 × D, where G0 is the connected
component of 0 and D is discrete; in particular, the choice of such a splitting yields a translation
isomorphism τδ :Gδ

∼−→G0 for any δ ∈D. By construction of the action of finite correspondences,
a finite correspondence of degree d in Cor(S,X) maps Gδ(X) to Gdδ(S) for any δ ∈ D; in
particular, (ϕ∗ divC(f))∗(a) maps Gδ(X) to G0(S). Since the action of (ϕ∗ divC(f))∗(a) clearly
commutes with τδ, reciprocity for G0 implies reciprocity for G.

From now on until the end of this section, we assume that k is algebraically closed
and G connected.
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4.3 Proof of Theorem 4.1.1 in characteristic zero
We take an integral quasi-affine X ∈ Sm and a ∈ G(X) = Mork(X,G). Let X be a proper
smooth integral variety that contains X as an open dense subset and W := (X − X)red be a
normal crossing divisor (Remark 2.1.8). In view of Corollary 2.1.7, it suffices to find n ∈ Z>0

such that (X,nW ) is a modulus for a.
Let {ω1, . . . , ωd} be a basis of the space of invariant differential forms on G. Noting that

lim
−→n

Γ(X,Ω1
X/k
⊗OX

OX(nW )) = Γ(X,Ω1
X/k), take n > 0 such that

a∗ωi ∈ Γ(X,Ω1
X/k
⊗OX

OX(nW )) for all i = 1, . . . , d.

We claim that Y := nW is a modulus for a. For this, it suffices to verify the condition in
Remark 4.1.2, but it follows from the following result from [Ser59]. 2

Proposition 4.3.1 [Ser59, III, Proposition 10]. Let G be a commutative algebraic group over a
field K of characteristic zero, and let {ω1, . . . , ωd} be a basis of the space of invariant differential
forms on G. Let C be a proper normal curve over K, C an open dense subscheme of C and
a : C → G a morphism. Let D be an effective divisor on C such that |D| = C − C and that

a∗ωi ∈ Γ(C,Ω1
C/K
⊗OC

OC(D)) for all i = 1, . . . , d.

Then we have (divC(g))∗(a) = 0 ∈ G(K) for any g ∈ G(C,D), where a is viewed as a section
over C of the object of PST represented by G.

4.4 Proof of Theorem 4.1.1 in positive characteristic
In this case, the following lemma is proved in [Ser59, III, §§ 7 and 9].

Lemma 4.4.1. There exist a semi-abelian variety G1, a unipotent group U and a homomorphism
θ : G→ G1 × U with finite kernel.

Here we include a sketch of the proof taken from [Ser59]. Let A be the maximal abelian
quotient of G, and put L = ker(G→ A). Write L = Lu×Lm, where Lu is a unipotent group and
Lm is a torus. Put G1 := G/Lu, which is semi-abelian. Take an N ∈ Z>0 such that pNLu = 0
and put U := (G/Lm)/pN , which is unipotent. Define θ to be the product of the canonical
surjective maps G→ G1 and G→ U . One checks that ker(θ) is finite. 2

Proposition 4.4.2 (cf. [Ser59, III, Proposition 14]). Let θ : G→ G′ be a morphism of smooth
connected commutative algebraic groups such that Ker(θ) is finite. Let (X,Y ) be a modulus pair
such that Y is a Cartier divisor on X. Put X = X −Y and let a ∈ G(X). If (X,Y ) is a modulus
for θ(a) ∈ G′(X), then (X,Y ) is a modulus for a ∈ G(X).

Proof. Since G satisfies global injectivity, it suffices to check the condition in Remark 4.1.2. We
use the notation therein.

Let g ∈ G(C,D) be non-constant and g : C → P1
K be the corresponding morphism. Let

Ug = P1
K − g(C − C) ⊂ P1

K and Cg = g−1(U ′) ⊂ C. Then Cg is finite over Ug and we let
[g] ∈ Cor(Ug, C) denote the finite correspondence given by Cg, which induces [g]∗ : G(C) →
G(Ug). It is proved in [Ser59, III, Proposition 9] that, for any effective divisor D on C such that
|D| = C − C and b ∈ G(C), the following conditions are equivalent:

(1) (divC(g))∗(b) = 0 ∈ G(K) for any g ∈ G(C,D);
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(2) for any non-constant g ∈ G(C,D), [g]∗(b) ∈ G(Ug), viewed as a morphism Ug → G, is

constant.

Thus, we are reduced to showing (2) for D = ϕ∗(Y ×K) and b = ϕ∗(a) with ϕ : C→ X×K.

Let us take a non-constant g ∈ G(C,D). Since θ(a) ∈ G′(X) has modulus (X,Y ) by assumption,

(1) holds for θ(b) ∈ G′(C) instead of b ∈ G(C). Hence, the morphism [g]∗(θ(b)) : Ug → G′ is

constant. Note that [g]∗(θ(b)) factors as

Ug
[g]∗(b)−→ G

θ−→ G′.

Since ker(θ) is finite and Ug is connected, [g]∗(b) must be constant too. 2

Proposition 4.4.3. If G is unipotent, it has reciprocity.

Proof. We take integral quasi-affine X ∈ Sm and a ∈ G(X). We also take a modulus pair (X,W )

such that X is normal, that W is an effective Cartier divisor on X and that X = X − |W |
(Remark 2.1.8). In view of Corollary 2.1.7, it suffices to find n ∈ Z>0 such that (X,nW ) is a

modulus for a.

We fix an embedding G→ GLr. Then our section a ∈ G(X) can be represented as a matrix

(aij)
r
i,j=1 ∈ GLr(X), where aij ∈ O(X) are regular functions on X. Take such n > 0 that

aij ∈ Γ(X,OX(nW )) for all i, j = 1, . . . , r.

We claim that Y = nW is a modulus for a. For this, it suffices to verify the condition in

Remark 4.1.2, but it follows from the following result from [Ser59]. 2

Proposition 4.4.4 [Ser59, III, Proposition 15]. Let G be a connected unipotent commutative

algebraic subgroup of GLr. Let C be a proper normal curve over K, C an open dense subscheme

of C and a : C → G a morphism. Write aij ∈ O(C) for the (i, j)th-entry of a ∈ G(C) ⊂ GLr(C).

Let D be an effective divisor on C such that |D| = C − C and that

aij ∈ Γ(C,OC(D)) for all i, j = 1, . . . , r.

Then we have (divC(g))∗(a) = 0 ∈ G(K) for any g ∈ G(C,D), where a is viewed as a section

over C of the object of PST represented by G.

Proof of Theorem 4.1.1 in positive characteristic. Lemma 4.4.1 and Proposition 4.4.2 reduce us

to the cases of a semi-abelian variety and of a unipotent group. We have proved the theorem for

unipotent groups in Proposition 4.4.3. A semi-abelian variety is homotopy invariant and hence

has reciprocity by Theorem 3. 2

Remark 4.4.5. Let G be a commutative algebraic group over an arbitrary field k. Let C be a

smooth projective curve over k, D an effective divisor on C, C := C −D and a ∈ G(C). If D is

a modulus for a in the sense of Rosenlicht–Serre (cf. Theorem 1), then D is a modulus for a in

our sense. Indeed, by Remark 4.1.2 it suffices to show that, for any field K ∈ S̃m, the image aK
of a in G(C ×K) has modulus D ×K. But this follows from the proof in this section.
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5. Weak reciprocity

In this section, we introduce the notion of ‘weak reciprocity’. It is weaker than reciprocity defined

in Definition 2.1.3 but strong enough to imply the injectivity property stated in Theorem 6.

An advantage of reciprocity in Definition 2.1.3 over weak reciprocity is that the analogue

of Theorem 2 fails for weak reciprocity (Remark 5.1.8). Weak reciprocity can be formulated

for pretheories, a more general notion than presheaves with transfers (see Definition 5.1.3).

Theorem 6 follows from Theorem 7.1.1.

5.1 Definition of weak reciprocity

Definition 5.1.1. For S ∈ Sm, relC(S) is the class of the morphisms p : X → S in Sm which

are quasi-affine and equidimensional of relative dimension one. We sometimes write X/S for

p : X → S.

5.1.2. For S ∈ Sm and (p : X → S) ∈ relC(S), we have a map

ψX/S : c(X/S)→ Cor(S,X) = c(X × S/S) (5.1)

induced by X
idX×p−→ X × S. For F ∈ PST, we define a pairing

〈 , 〉X/S : c(X/S)× F (X)→ F (S),

〈Z, a〉X/S = ψX/S(Z)∗(a) for Z ∈ c(X/S), a ∈ F (X).
(5.2)

It satisfies the following conditions.

(i) If i : S → X is a section of X → S, then 〈i(S), a〉X/S = i∗a for a ∈ F (X).

(ii) If f : S′→ S is a morphism, then f∗〈Z, a〉X/S = 〈f∗Z, g∗a〉X′/S′ for Z ∈ c(X/S) and any

a ∈ F (X), where X ′ = S′ ×S X and g : X ′→ X is the second projection (see § 1.1.2 for f∗Z).

(iii) For (pi : Xi→ S) ∈ relC(S) with i = 1, 2 and for an S-morphism f : X1→ X2, we have

〈f∗(Z), α〉X2/S = 〈Z, f∗(a)〉X1/S for Z ∈ c(X/S) and a ∈ F (X2).

5.1.3. Following Voevodsky [Voe00a, Definition 3.1], a pretheory over k is defined as a

presheaf F : Smop→ Ab, commuting with coproducts and provided with bilinear pairings (5.2)

for all S ∈ Sm and X/S ∈ relC(S) subject to the conditions (i) and (ii). If it satisfies additionally

(iii), F is called of homological type. Pretheories form an abelian category containing PST as a

(non-full) subcategory via (5.1).

Definition 5.1.4. Let S ∈ Sm and X/S ∈ relC(S). A good compactification of X/S is a dense

open immersion j : X ↪→ X of S-schemes such that:

(1) X is normal and p : X → S is proper and equidimensional of dimension one;

(2) X −X has an affine neighbourhood in X.

A good compactification of X/S with modulus is a pair (j : X ↪→ X,Y ) of a good

compactification of X/S and a closed subscheme Y ⊂ X with X = X − Y . We sometimes

write (X/S, Y ) for (j : X ↪→ X,Y ) for simplicity. Note that this is not a modulus pair in the

sense of Definition 2.1.1 unless S is proper [EGAII, 5.4.3(ii)].
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5.1.5. Let (X/S, Y ) be as in Definition 5.1.4 with X = X−Y . Let Pic(X,Y ) be the relative
Picard group (see § 3.2). As in the proof of [SV96, Theorem 3.1], it follows from [SV96, Lemma
2.3] that we have a short exact sequence

0→ G(X,Y )
divX−→ c(X/S)

τ−→ Pic(X,Y )→ 0 (5.3)

(compare (3.3)). The map τ can be described as follows. The components of Z ∈ c(X/S) are
closed and of codimension one in X, so that Z is a Cartier divisor on X whose support is disjoint
from Y and that there is a natural isomorphism σ : OX(Z)|Y ' OY . Then τ sends Z to the class
of the pair (OX(Z), σ).

Definition 5.1.6. Let F be a pretheory.

(1) Given S ∈ Sm and X/S ∈ relC(S) and a good compactification (X/S, Y ) of X/S with
modulus and a ∈ F (X), we say that Y is a weak modulus for a ∈ F (X) (or a has weak modulus Y )
if

〈divX(g), a〉X/S = 0 for any g ∈ G(X,Y );

equivalently, the morphism
〈− , a〉X/S : c(X/S)→ F (S)

factors through τ in (5.3).

(2) We say that F has weak reciprocity if, for any affine S ∈ Sm and X/S ∈ relC(S) with a
good compactification X ↪→ X, any section a ∈ F (X) has a weak modulus.

Lemma 5.1.7. If F ∈ PST has reciprocity, it has weak reciprocity.

Proof. Let S ∈ Sm be affine and take C/S ∈ relC(S) with a good compactification C ↪→ C. (Note
that C is quasi-affine because S is affine and X/S ∈ relC(S).) Take a ∈ F (C). We must show
that a has a weak modulus. Take an integral proper k-scheme X which contains C as a dense
open subset. By the assumption on F , a has a modulus Y ⊂ X in the sense of Definition 2.1.2
such that |Y | = X − C. Let ϕ be the composite map

C
γp̄−→ C × S ↪→ X × S

with p̄ : C → S the projection and γp̄ its graph. Then (ϕ : C → X × S) ∈ C(X,Y )(S) and

C ×X×S (Y × S) is a weak modulus for a (cf. Definition 2.2.1). 2

Remark 5.1.8. The analogue of Theorem 2.1.5(1) still holds for weak reciprocity, but the analogue
of Theorem 2.1.5(2) does not hold. More precisely, for (X/S, Y ) as in Definition 5.1.4 with
X = X − Y , the functor

PST→ Ab, F 7→ {a ∈ F (X) | a has weak modulus Y }

is representable. But the representing object does not have weak reciprocity, even if S = Spec k.

5.2 Local symbols
In this subsection, we show the equivalence between weak reciprocity for F ∈ PST in the sense
of Definition 5.1.6 for curves over a function field and the existence of local symbols satisfying
‘Weil reciprocity’, in analogy with [Ser59, ch. III].
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Let E = k(S) be the function field of a connected S ∈ Sm. Let X be a normal projective
irreducible curve over E with function field K = E(X). Let X(0) be the set of closed points of X.
For each x ∈ X(0), let vx : K×→ Z be the normalized valuation at x.

We fix F ∈ PST. Set, for a ∈ F (OX,x),

a(x) = 〈x, ã〉U/E ,

where U is an open neighbourhood of x such that a is the image of some ã ∈ F (U). Note that a(x)
is independent of choices of U and ã. In fact, we have a(x) = fx∗i

∗
xa, where ix : x→ SpecOX,x

is the closed immersion and fx is the finite morphism x → SpecE. (By Proposition 6.1.5 and
Lemma 6.3.3 below, this formula holds more generally for a pretheory which is P1-rigid in the
sense of Definition 6.1.3.)

Proposition 5.2.1. The following conditions are equivalent.

(1) For any dense open affine U ⊂ X and a ∈ F (U), there exists an effective divisor Z ⊂ X
such that U = X\|Z| and that

〈divX(f), a〉U/E = 0 ∈ F (E) for all f ∈ G(X,Z). (♣)

(2) There exists a family of bilinear pairings

{(− ,−)x : K× × F (K)→ F (E)}x∈X(0)

which satisfies the following conditions:

(a) for any x ∈ X(0), a ∈ F (OX,x) and g ∈ K×, we have (g, a|K)x = vx(g)a(x);

(b) for any x ∈ X(0) and a ∈ F (K), we have (U
(m)
x , a)x = 0 for sufficiently large m > 0, where

U (m)
x = {u ∈ K× | vx(u− 1) > m};

(c)
∑

x∈X(0)
(g, a)x = 0 for any a ∈ F (K) and g ∈ K×.

Moreover, if (2) holds, (♣) for a ∈ F (U) is equivalent to the condition

(U (mx)
x , a)x = 0 for all x ∈ X − U, (♥)

where mx is the multiplicity of x in Z.

Proof. Assume (1). By (5.3), we have an isomorphism

Coker(G(X,Z)→ c(U/E)) ' Pic(X,Z).

Hence, passing to the limit over all U ⊂ X and Z, the pairings 〈− ,−〉U/E induce

〈− ,−〉K/E : lim←−
Z

Pic(X,Z)× F (K)→ F (E).

By weak approximation, we have an isomorphism

Pic(X,Z) ' Coker

(
K×→

⊕
x∈X(0)−|Z|

Z⊕
⊕
x∈|Z|

K×/U (mx)
x

)
,
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where mx is the multiplicity of x in Z. Whence a natural map

πx : K×→ lim←−
Z

Pic(X,Z) for x ∈ X(0)

is induced by the projections K×→ K×/U
(mx)
x . Define

(− ,−)x : K× × F (K)→ F (E)

by (f, a)x = 〈πx(f), a〉K/E for f ∈ K× and a ∈ F (K). It is easy to verify (a)–(c). Hence,
(1) ⇒ (2).

Now suppose (2) and take a ∈ F (U), U ⊂ X as in (1). For each x ∈ X\U , there exists an

integer mx > 1 such that (U
(mx)
x , a)x = 0 by (b). Define Z =

∑
x∈X\U mxx. For g ∈ G(X̄, Z),

we get

〈divX(g), a〉U/E
(a)
=

∑
u∈U(0)

(g, a)u
(!)
=

∑
x∈X(0)

(g, a)x
(c)
= 0.

Here (!) holds since g ∈ G(X̄, Z) implies that g ∈ U (mx)
x for x ∈ |Z|. This proves (2) ⇒ (1) and

the implication (♥) ⇒ (♣).
It remains to show the implication (♣)⇒ (♥). Fix x ∈ X−U and let mx be the multiplicity

of x in Z. Take f ∈ U
(mx)
x . By (2)(b), for each y ∈ X − U there exists ny > my such that

(U
(ny)
y , a)y = 0. By the approximation theorem, we find g ∈ K× such that g/f ∈ U (nx)

x and

g ∈ U (ny)
y for all y ∈ X −U . This implies that g ∈ G(X,Z) and hence (♣) and (2)(a) imply that

0 = 〈divX(g), a〉U/E =
∑
y∈U(0)

vy(g)a(y).

Then, using properties in (2), we compute

(f, a)x = (g, a)x
(c)
= −

∑
y∈X(0)−{x}

(g, a)y = −
∑
y∈U(0)

(g, a)y
(a)
= −

∑
y∈U(0)

vy(g)a(y) = 0.

The proposition is proved. 2

6. P1-invariance

In this section, we discuss P1-invariance and P1-rigidity for a pretheory with weak reciprocity,
and draw a few consequences.

6.1 P1-invariance and P1-rigidity
Theorem 6.1.1. Let F be a pretheory which is separated for the Zariski topology. If F has
weak reciprocity, then it is P1-invariant, namely π∗ : F (S)

∼−→ F (P1
S) for any S ∈ Sm, where

π : P1
S → S is the projection.

Remark 6.1.2. The property of P1-invariance is clearly stable under arbitrary products in PST.
On the other hand, one can easily see that the Zariski separated presheaf with transfers GN

a does
not have (weak) reciprocity, by checking that the evaluation in the proof of Proposition 4.4.3 is
optimal.
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Theorem 6.1.1 will be deduced from Proposition 6.1.5 below, for which we need to introduce
the notion of P1-rigidity. For t ∈ P1(k), let it : S → P1

S be the corresponding section of π at t.

Definition 6.1.3. A presheaf F : Smop→Ab of abelian groups is P1-rigid if i∗0 = i∗∞ : F (P1
S)→

F (S) for any S ∈ Sm.

Proposition 6.1.4. For a presheaf F of abelian groups, P1-invariance implies P1-rigidity. The
converse is true if F is separated for the Zariski topology.

Proof. It is obvious that P1-invariance implies P1-rigidity. We prove the converse: it suffices to

show that Ker(F (P1
S)

i∗0−→ F (S)) = 0 for any S ∈ Sm. We apply P1-rigidity to X = A1
S to get

ı̃∗0 = ı̃∗∞ : F (P1
X)→ F (X), (6.1)

where (for clarity) ı̃t is relative to the base X. Consider the morphisms

ϕ1, ϕ2 : P1
X = P1 ×A1

S → P1
S

given by
ϕ1((u0 : u1), t) = (u0 : u1 + tu0), ϕ2((u0 : u1), t) = (u1 + tu0 : u0).

Letting p : A1
S → S be the projection, we compute

ϕ1 ◦ ı̃0 = j∞ : A1
S → P1

S , t 7→ (1 : t),

ϕ1 ◦ ı̃1 = i1 ◦ p : A1
S → P1

S , t 7→ 1,

ϕ2 ◦ ı̃0 = j0 : A1
S → P1

S , t 7→ (t : 1),

ϕ2 ◦ ı̃1 = i0 ◦ p : A1
S → P1

S , t 7→ 0.

(6.2)

Take a ∈ Ker(F (P1
S)

i∗0−→ F (S)). Then a ∈ Ker(F (P1
S)

i∗∞−→ F (S)) by rigidity. By (6.1),

ı̃∗0ϕ
∗
ν(a) = ı̃∗∞ϕ

∗
ν(a) (ν = 1, 2).

By (6.2), this implies that

j∗∞a = p∗i∗∞a = 0, j∗0a = p∗i∗0a = 0.

Noting that F is separated for the Zariski topology, this implies that a = 0 since P1
S = j0(A1

S)∪
j1(A1

S) is an open covering of P1
S . 2

Theorem 6.1.1 now follows from the next proposition.

Proposition 6.1.5. A pretheory F having weak reciprocity is P1-rigid.

Proof. Let S ∈ Sm and a ∈ F (P1
S). Let t be the standard coordinate on A1

k = P1
k − {∞}.

Let j0 : A1
S ↪→ P1

S be the natural inclusion and j∞ be the composite of j0 and the morphism
P1
S→ P1

S ; t→ t−1. These define two good compactifications of A1
S . Since F has weak reciprocity,

there exists n0 > 0 such that for all n > n0, we have

〈divA1
S
(1 + t−n), j∗0a〉A1

S/S
= 〈divA1

S
(1 + tn), j∗∞a〉A1

S/S
= 0 ∈ F (S).

Noting that
1 + tn

1 + t−n
= tn,

we deduce that
n(i∗0a− i∗∞a) = 0.

Replacing n by n+ 1, we get the desired rigidity. 2
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6.2 Application to 0-cycles
Corollary 6.2.1. Let F ∈ PST be such that the associated pretheory has weak reciprocity,
and let X be a smooth proper k-variety. Then the natural pairing 〈 , 〉X : Z0(X)×F (X)→ F (k)
factors through a pairing

CH0(X)⊗ F (X)→ F (k).

Proof. Let C ⊂ X be an irreducible curve and let f ∈ k(C)∗: we must show that the map
F (X)→ F (k) induced by pairing with div(f) is 0. Let C̃ be the normalization of C: we have a
diagram

C̃
i //

f

��

X

P1

Let a ∈ F (X). We have

〈div(f), a〉X = 〈div(f), i∗a〉C̃ = 〈0−∞, f∗i∗a〉P1 = 0,

where the last equality follows from Proposition 6.1.5. 2

6.3 Functoriality for pretheories with weak reciprocity
We apply the above to show that weak reciprocity is sufficient to yield some important properties
to a pretheory, which are automatic for presheaves with transfers. This generalizes [Voe00a,
Propositions 3.12, 3.14 and 3.15] (the homotopy invariant case).

Proposition 6.3.1. Let F be a P1-rigid pretheory. Let S ∈ Sm and X/S ∈ relC(S) and j :
U ↪→ X be an open embedding. Then, for any (Z, a) ∈ c(U/S)× F (X), one has

〈j∗Z, a〉X/S = 〈Z, j∗a〉U/S .

Proof. This is proven by adapting the proof of [Voe00a, Proposition 3.12]. Let Ξ = X − U and
W = X ×P1\Ξ× {0}, so that we have a commutative diagram

W
q //

��

X

��
S ×P1 π // S

where q is induced by the projection X × P1 → X. For the sections i0 (at 0) and i1 (at 1)
of π, we have i∗0W = U and i∗1W = X. Let Z̃ ∈ c(W/S × P1) be the unique element whose
image in c(X ×P1/S ×P1) equals π∗Z = Z ×P1. Then we have i∗0Z̃ = Z and i∗1Z̃ = j∗Z. Put
ϕ = 〈Z̃, q∗a〉W/S×P1 ∈ F (X ×P1). By condition (ii) in § 5.1.2, we get

i∗0ϕ = 〈Z, j∗a〉U/S , i∗1ϕ = 〈j∗Z, a〉X/S .

By P1-rigidity, we have i∗0ϕ = i∗1ϕ and hence the claim. 2

Let E be a finite separable extension of k and f : SpecE→ Spec k the projection. Let F be
a pretheory. In [Voe00b, p. 101], Voevodsky defined a trace map f∗ : F (E)→ F (k) by

f∗a = 〈{0}E , p∗a〉A1
E/k

,
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where p : A1
E → SpecE is the structural map. Taking T ∈ Sm, we apply the above construction

to the pretheory S → F (T × S) and get a map f∗ : F (TE)→ F (T ) with TE = T × SpecE. By
construction, f∗ satisfies the obvious functoriality with respect to T ∈ Sm.

Proposition 6.3.2. If F has weak reciprocity, one has the identity

f∗f
∗ = ×[E2 : E1],

where f∗ : F (T )→ F (TE) is the pullback by f .

Proof. We adapt that of [Voe00b, Corollary 3.15]. We give details, especially as one line of
that proof has been omitted from the published edition. We may assume that T = Spec k. Let
x0, x∞ ∈ P1 be the points at zero and infinity. Since E/k is separable, the choice of a primitive
element α yields a point x ∈ P1 with residue field E. Let P be the minimal polynomial of
α and put d := [E : k]. For n ∈ Z>0, the function t−dnPn belongs to G(P1, ndx∞) and has
divisor nx−ndx0. Thus, by weak reciprocity, for any a ∈ F (P1

k) there exists n0 ∈ Z>0 such that
〈nx− ndx0, a〉P1/k = 0 for all n > n0. Applying this to n = n0 and n0 + 1, we get

〈x− dx0, a〉P1/k = 0.

Let π : P1→ Spec k be the structure map and iy : y→ P1 the natural embedding for y = x, x0.
Taking a = π∗a0 for a0 ∈ F (k), we get from the lemma below that

0 = f∗i
∗
xπ
∗a0 − di∗x0

π∗a0 = f∗f
∗a0 − da0,

as requested. 2

Lemma 6.3.3. Let C be a smooth curve over k and let x be a closed point of C with separable
residue field. Then, for any P1-rigid pretheory F and any a ∈ F (C), one has

fx∗i
∗
xa = 〈x, a〉C/k,

where fx : x→ Spec k is the structural map and ix : x ↪→ C is the closed immersion.

Proof. This is proven by adapting the argument of [Voe00a, Proposition 3.13] in the same manner
as Proposition 6.3.1. The details are left to the reader. 2

7. Injectivity

7.1 Statement of the results
The purpose of this section is to prove Theorem 6 of the introduction. It results from the following
stronger theorem.

Theorem 7.1.1. Theorem 6 is valid for any pretheory F which has weak reciprocity.

Theorem 7.1.1 is in turn a direct consequence of the following, whose proof will be given in
§ 7.2.

Theorem 7.1.2. Let F be a pretheory with weak reciprocity. Let X ∈ Sm, V ⊂ X be an
open dense subset and x1, . . . , xn ∈ X a finite collection of points. Then there exists an open
neighbourhood U of {x1, . . . , xn} such that we have a injection

Ker(F (X)→ F (V )) ⊂ Ker(F (X)→ F (U)).
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This strengthens [MVW06, Theorem 11.3], where the same assertion is proven assuming
that F is homotopy invariant. By the argument of [MVW06, Lemma 22.8] and [MVW06,
Corollary 11.2], the above theorem implies the following.

Corollary 7.1.3. Let F be as in Theorem 7.1.1. Let FZar be the Zariski sheafification of F as
a presheaf.

(1) For an open dense immersion U ↪→ X in Sm, FZar(X)→ FZar(U) is injective.

(2) If F (E) = 0 for any field E, then FZar = 0. 2

Remark 7.1.4. We prove Theorem 7.1.2 following Voevodsky’s proof of [MVW06, Theorem 11.3].
Under the additional assumption that F is a Nisnevich sheaf, one could alternatively deduce
Theorem 7.1.2 from P1-invariance (Theorem 6.1.1) by the method of [CHK97].

7.2 Proof of Theorem 7.1.2
We will use the notion of standard triples as in [Voe00a, Definition 4.1] and [MVW06,
Definitions 11.5 and 11.11] and two results about them (Proposition 7.2.3 and Lemma 7.2.4).

Definition 7.2.1. Let S ∈ Sm be connected.

(1) A triple (p̄ : X̄ → S,X∞, Z) with X := X̄\X∞ is called a standard triple if the following
conditions are satisfied:

(a) Z,X∞ ⊂ X are closed reduced and Z ∩X∞ = ∅;
(b) X/S ∈ relC(S) with X → S smooth, and p : X → S is its good compactification;

(c) Z ∪X∞ has an affine open neighbourhood in X.

(2) A standard triple (p̄ : X̄ → S,X∞, Z) is called split over an open subset U ⊂ X̄\X∞
if L|U×SZ is trivial, where L is the line bundle on U ×S X̄ corresponding to the graph of the
diagonal map.

Remark 7.2.2. By [MVW06, Remark 11.6], Definition 7.2.1(1) implies the following:

(1) S is affine, and both Z and X∞ are finite over S;

(2) X is a good compactification of both X and X\Z.

Proposition 7.2.3 (Mark Walker, see [MVW06, Theorem 11.17]). Assume that k is infinite.
Let W ∈ Sm be connected and quasi-projective over k and Y ( W a closed subset with points
y1, . . . , yn ∈ Y . Then there exist an affine open neighbourhood X ⊂ W of y1, . . . , yn and a
standard triple (X̄ → S,X∞, Z) such that (X,X ∩ Y ) ' (X̄\X∞, Z).

Lemma 7.2.4 [MVW06, Lemma 11.14]. Let T = (X̄ → S,X∞, Z) be a standard triple, and
x1, . . . , xn ∈ X := X̄\X∞. Then there exists an open neighbourhood U ⊂ X of x1, . . . , xn such
that T is split over U .

We need a lemma. Its second assertion will be used in § 8.

Lemma 7.2.5. Let (X/S,X∞, Z) be a standard triple and Y ⊂ X a closed subscheme with
|Y | = X∞. We have a commutative diagram

c(X − Z/S)
τ //

j∗
��

Pic(X,Y t Z)

f

��
c(X/S) τ

// Pic(X,Y )
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where the left vertical map is the pushforward along immersion j : X − Z ↪→ X and the right

vertical map is defined by f(L, σ) = (L, σ|Y ). Moreover, we have an exact sequence

O×(Z)→ Pic(X,Y t Z)
j∗→ Pic(X).

Proof. The first part is proven in [Dég07, Lemma 3.1.5(2)]. To show the second part, we consider

a commutative diagram with exact rows (see § 3.2)

O×(X̄) // O×(Y t Z) //

a

��

Pic(X̄, Y t Z) //

j∗
��

Pic(X̄)

O×(X̄) // O×(Y ) // Pic(X̄, Y ) // Pic(X̄)

As the Chinese reminder theorem shows that ker(a) = O×(Z), the lemma follows from the

diagram. 2

The following proposition is the key to the proof of Theorem 7.1.2.

Proposition 7.2.6. Let F be as in Theorem 7.1.2. Let T = (X̄
p→ S,X∞, Z) be a standard

triple. Let U ⊂ X := X̄\X∞ be an affine open subset such that T is split over U . Then, for any

a ∈ F (X), there is a homomorphism ϕa : F (X\Z)→ F (U) such that ϕa(a|X\Z) = a|U .

Proof (Compare [MVW06, Proposition 11.15]). For any S-scheme W , we write WU = W ×S U
and denote by prW the projection WU → W . We write j : U → X and j′ : X\Z → X for the

inclusion maps. Put j′U = j′ ×S 1U : (X\Z)U → XU . We then obtain a commutative diagram

F (X\Z)

pr∗X−Z

��

F (X)
j′∗oo j∗ //

pr∗X
��

F (U)

F ((X\Z)U ) F (XU )
j′∗Uoo

γ∗j // F (U)

where γj : U → XU is the graph of j.

Let a ∈ F (X). Since XU/U ∈ relC(U) admits the good compactification XU ↪→ XU , there

exists a weak modulus Y ⊂ XU for pr∗X(a) ∈ F (XU ) such that |Y | = (X∞)U . We shall construct

a homomorphism

ϕ̃Y : F ((X\Z)U )→ F (U)

such that γ∗j (ã) = ϕ̃Y (j′∗U (ã)) for any ã ∈ F (XU ) having weak modulus Y . The proposition will

then follow by setting ϕa := ϕ̃Y ◦ pr∗X−Z .

Consider the standard triple TU = (X̄U → U, (X∞)U , ZU ). Let γj(U) ∈ c(XU/U) be the

image of U ∈ c(U/U) under γj∗ : c(U/U)→ c(XU/U) and (L, σ) ∈ Pic(X̄U , Y ) be the image of

γj(U) under τ in (5.3), where L ∈ Pic(X̄U ) and σ : L|Y ' OY is a trivialization. To say that T

is split over U means that there exists a trivialization τ : L|ZU
' OZU

. Since ZU is disjoint from

Y , σ and τ define a trivialization σ ⊕ τ : L|Y tZU
' OY tZU

.
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By construction, the image of (L, σ ⊕ τ) via the canonical map

Pic(X̄U , Y t ZU )→ Pic(X̄U , Y )

(see Lemma 7.2.5) agrees with (L, σ). Choose a lift δ̃ of (L, σ⊕τ) in c((X\Z)U/U) via τ in (5.3).
Now we define

ϕ̃Y := 〈δ̃,−〉(X\Z)U/U : F ((X\Z)U )→ F (U).

If ã ∈ F (XU ), by Proposition 6.3.1, we have

ϕ̃Y (j′U
∗
ã) = 〈δ̃, j′U

∗
ã〉(X\Z)U/U = 〈j′U ∗δ̃, ã〉XU/U .

If, moreover, ã has weak modulus Y , then 〈j′U ∗δ̃, ã〉XU/U only depends on the image of j′U ∗δ̃ in
Pic(X̄U , Y ) and hence

〈j′U ∗δ̃, ã〉XU/U = 〈γj(U), ã〉XU/U = γ∗j ã

by Definition 5.1.2(i). This completes the proof of the proposition. 2

Remark 7.2.7 (Comparison with [MVW06, Theorem 11.3]). If F is homotopy invariant, then
Yred will be a weak modulus for all ã ∈ F (XU ). Consequently, one can choose ϕa independently
of a. Hence, there is a homomorphism ϕ : F (X −Z)→ F (U) such that ϕ(a|X−Z) = a|U for any
a ∈ F (X).

We are now ready to prove Theorem 7.1.2.

Proof of Theorem 7.1.2. First we assume that k is infinite. In this case, Theorem 7.1.2 results
from the following claim.

Claim 7.2.8. Assume that k is infinite, and keep the notation and assumptions of Theorem 7.1.2.
Then there exists an open neighbourhood U of x1, . . . , xn satisfying the following property: for
any a ∈ F (X), there is a homomorphism ϕa : F (V )→ F (U) such that ϕa(a|V ) = a|U .

Proof. By replacing V by V \{x1, . . . , xn}, we may assume that x1, . . . , xn ∈ X\V . By
Proposition 7.2.3, we can replace X by an open neighbourhood of x1, . . . , xn in such a way
that there exists a standard triple T = (X̄ → S,X∞, Z) with (X,X\V ) ' (X̄\X∞, Z).
By Lemma 7.2.4, T splits over some open neighbourhood U ⊂ X of x1, . . . , xn. Now apply
Proposition 7.2.6. 2

Next we treat the case where k is finite. Let E be a finite separable extension of k and
f : SpecE → Spec k the projection. For T ∈ Sm, the transfer structure on F induces a map
f∗ : F (TE)→ F (T ) with TE = T × SpecE. It satisfies the standard functoriality with respect to
T ∈ Sm together with the identity f∗f

∗ = ×[E : k], where f∗ : F (T )→ F (TE) is the pullback
by f . Now a standard norm argument using Proposition 6.3.2 reduces us to the case where k is
infinite. 2

8. MV-effaceablity

In this section, we define (Definition 8.1.5) a condition for a pretheory to be MV-effaceable. We
then prove that a pretheory having weak reciprocity is MV-effaceable (Theorem 8.1.6). This
is a key technical result for the proof (to be given in the next section) of Theorem 7 in the
introduction.

1882

https://doi.org/10.1112/S0010437X16007466 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007466


Reciprocity sheaves

8.1 MV-effaceable pretheories

Definition 8.1.1. An upper distinguished square is a Cartesian diagram

B
i //

f

��

Y

f

��
A

i // X

(8.1)

of objects in Sm such that (i) i is an open immersion, (ii) f is étale and (iii) f induces an

isomorphism Y \B ' X\A.

We denote the square (8.1) by Q(X,Y,A). Note that this induces for a pretheory F a complex

0→ F (X)

(
i∗
f∗
)

−→ F (A)⊕ F (Y )
(−f∗,i∗)−→ F (B)→ 0.

Definition 8.1.2. Let TX = (X̄ → S,X∞, ZX) and TY = (Ȳ → S, Y∞, ZY ) be standard triples,

with X = X̄ −X∞ and Y = Ȳ − Y∞. A covering morphism f : TY → TX is a finite morphism

f : Ȳ → X̄ such that: (i) f−1(X∞) ⊂ Y∞; (ii) f |Y : Y → X is étale; (iii) ZY = f−1(ZX)∩Y and

(iv) f induces an isomorphism ZY ' ZX .

Remark 8.1.3. If f : TY → TX is a covering morphism, then the square Q = Q(X,Y,X\ZX) is

upper distinguished with Y − ZY = (X − ZX)×X Y .

The following lemma is proved in [MVW06, Lemma 21.3].

Lemma 8.1.4. Let f : TY → TX be a covering morphism. If TX is split over U ⊂ X := X̄\X∞,

then TY is split over f−1(U) ∩ Y .

Definition 8.1.5. A pretheory F is said to be MV-effaceable if the following condition is

satisfied: let TX = (X̄ → S,X∞, ZX) and TY = (Ȳ → S, Y∞, ZY ) be standard triples,

and f : TY → TX a covering morphism so that Q(X,Y,X\ZX) is upper distinguished.

Put A = X\ZX , B = Y \ZY . Let Q′ = Q′(X ′, Y ′, A′) be another upper distinguished square

such that X ′ and Y ′ are affine. Put B′ = A′ ×X′ Y ′. Let

j =

(
jB jY
jA jX

)
: Q′ =

 B′
i′ //

f ′

��

Y ′

f ′

��
A′

i′ // X ′

→ Q =

 B
i //

f

��

Y

f

��
A

i // X


be a morphism of squares. We then get a morphism of complexes

0 // F (X)

(
i∗
f∗
)

//

j∗X
��

F (A)⊕ F (Y )
(−f∗,i∗) //(

j∗A 0
0 j∗Y

)
��

F (B) //

j∗B
��

0

0 // F (X ′)

(
i′∗

f ′∗
)

// F (A′)⊕ F (Y ′)
(−f ′∗,i′∗) // F (B′) // 0

(8.2)

The condition for F to be MV-effaceable is that (8.2) induces the zero map on all cohomology

groups if jX : X ′→ X is an open immersion, and the triple TX is split over X ′.
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In [MVW06, Theorem 21.6], a homotopy invariant presheaf with transfers is shown to be
MV-effaceable. The following generalizes this result.

Theorem 8.1.6. A pretheory having weak reciprocity is MV-effaceable.

The proof of this theorem will be completed in § 8.3. Before that, we need to prepare a few
lemmas in § 8.2.

8.2 Functoriality of the relative Picard group
Lemma 8.2.1. Let S ∈ Sm and X/S ∈ relC(S). Let (X/S, Y ) be its good compactification with
modulus. For any morphism f : S′→ S in Sm, we have a commutative diagram

c(X/S)
τ //

f∗

��

Pic(X,Y )

f∗

��
c(X ×S S′/S′) τ // Pic(X ×S S′, Y ×S S′)

where the right vertical map is defined by f∗(L, σ) = (f∗L, f∗σ).

Proof. See [Dég07, Lemma 3.1.5(1)]. 2

Lemma 8.2.2. Let S ∈ Sm. We take X/S, Y/S ∈ relC(S) and let (X/S, V ), (Y /S,W ) be their
good compactifications with moduli. Let f : X → Y be a finite surjective S-morphism. Suppose
that f∗W 6 V . Then there is a unique homomorphism

f∗ : Pic(X,V )→ Pic(Y ,W ),

which fits into a commutative diagram

c(X/S)
τ //

f∗
��

Pic(X,V )

f∗
��

c(Y/S)
τ // Pic(Y ,W )

Proof. We may suppose that X and Y are irreducible. Uniqueness is obvious from the surjectivity
of τ . Thus, it suffices to show that Nk(X)/k(Y )(G(X,V )) ⊂ G(Y ,W ), which follows from
Lemma 8.2.3 below. 2

Lemma 8.2.3. Let R ⊂ R′ be an extension of domains, where R is normal and R′ is finite over
R, and let I ⊂ R be an ideal. Let K and K ′ be the fraction fields of R and R′, respectively.
Write (1 + I)∗ = (1 + I)∩R∗ and (1 + IR′)∗ = (1 + IR)∩R′∗. Then NK′/K(1 + IR′)∗ ⊂ (1 + I)∗.

Proof. The hypotheses imply that NK′/K(R′∗) ⊆ R∗ and TrK′/K(R′) ⊆ R and hence clearly
TrK′/K(IR′) ⊆ I. So, it suffices to show that NK′/K(1 + a) ≡ 1 + TrK′/K(a) mod I2 for any
a ∈ IR′. We have

NK′/K(1 + a) = Pa(1),

where Pa(T ) = Tn − σ1(a)Tn−1 + · · · ± σn(a) is the characteristic polynomial of a, with
n = [K ′ : K]. But σi : K ′→K is given by a homogeneous polynomial of degree i with coefficients
in K, and σi(R

′) ⊆ R by integrality. In particular, if a =
∑
λαµα with λα ∈ I, µα ∈ R′, then

σi(a) is a homogeneous polynomial of degree i in the λα, with coefficients in R. 2

1884

https://doi.org/10.1112/S0010437X16007466 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007466


Reciprocity sheaves

8.3 Proof of Theorem 8.1.6
We follow the method of [MVW06, Theorem 21.6]. We give ourselves all the data in
Definition 8.1.5, and prove that (8.2) induces the zero map on all cohomology groups. We
take a closed subscheme V = V∞ t V0 on X̄ (respectively W = W∞ t W0 on Ȳ ) such that
|V∞| = X∞, |V0| = ZX (respectively |W∞| = Y∞, |W0| = ZY ). We suppose that f∗V 6 W and
f induces W0 ' V0.

In the sequel, we use the notation

(−)X′ = −×S X ′ etc.

throughout. The main part of the proof is in the following proposition.

Proposition 8.3.1. There exist λA ∈ c(AX′/X ′), λB ∈ c(BY ′/Y ′) and ψ ∈ c(BA′/A′) satisfying
the following conditions:

i∗λA − ̃X ∈ Ker(c(XX′/X
′) −→→ Pic(X̄X′ , V∞X′)), (1)

i∗λB − ̃Y ∈ Ker(c(YY ′/Y
′) −→→ Pic(ȲY ′ ,W∞Y ′)), (2)

f ′
∗
λA − f∗λB ∈ Ker(c(AY ′/Y

′) −→→ Pic(X̄Y ′ , VY ′)), (3)

f∗ψ − i′∗λA + ̃A ∈ Ker(c(AA′/A
′) −→→ Pic(X̄A′ , VA′)), (4)

f ′
∗
ψ − i′∗λB + ̃B ∈ Ker(c(BB′/B

′) −→→ Pic(ȲB′ ,WB′)), (5)

i∗ψ ∈ Ker(c(YA′/A
′) −→→ Pic(ȲA′ ,W∞A′)). (6)

Here ̃X : X ′→ XX′ is the graph of jX , and similarly for ̃Y , ̃A, ̃B.

Given λA ∈ c(AX′/X ′), λB ∈ c(BY ′/Y ′) and ψ ∈ c(BA′/A′), we define maps

s1 : F (A)⊕ F (Y )→ F (X ′), s2 : F (B)→ F (A′)⊕ F (Y ′) (8.3)

by s1(a, b) = 〈λA, aX′〉AX′/X
′ , s2(a) = (〈ψ, aA′〉BA′/A

′ , 〈λB, aY ′〉BY ′/Y
′).

Remark 8.3.2. When F is homotopy invariant, Theorem 8.1.6 is proved in [MVW06,
Theorem 21.6] as follows: let us take V and W to be reduced. By applying Proposition 8.3.1,
one obtains λA, λB and ψ. Then the maps s1, s2 given by (8.3) define a chain homotopy from
(8.2) to zero. (By homotopy invariance, the map λ∗A : F (A) → F (X ′) depends only on the
class of Pic(X̄X′ , VX′), for instance. Hence, the conditions in Proposition 8.3.1 contain sufficient
information to prove this assertion.)

When F is not homotopy invariant (but has reciprocity), we need to choose V and W
depending on elements of F (X), F (A), F (Y ) and F (B). Thus, we cannot construct a globally
defined chain homotopy. However, the following corollary can be deduced.

Corollary 8.3.3. Let s1, s2 be as in (8.3).

(a) Let a ∈ F (X). If the image of a in F (XX′) has modulus V∞X′ , then we have

j∗Xa = s1

(
i∗
f∗
)
a.
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(b) Let (a, b) ∈ F (A)×F (Y ). Suppose that the image of a in F (AX′) (respectively in F (AY ′))

has modulus VA′ (respectively VY ′), and suppose that the image of b in F (YA′) (respectively in

F (YY ′)) has modulus W∞A′ (respectively W∞Y ′). Then we have

(j∗Aa, j
∗
Y b) =

(
i′∗

f ′∗

)
s1(a, b) + s2(−f∗, i∗)(a, b).

(c) Let a ∈ F (B). If the image a in F (BB′) has modulus WB′ , then we have

j∗Ba = (−f ′∗, i′∗)s2a.

Proof. Proposition 8.3.1(1) implies (a). Parts (2), (3), (4) and (6) imply (b). Part (5) implies (c).

(We used all the axioms of a pretheory, plus Proposition 6.3.1.) 2

Theorem 8.1.6 follows from this corollary, because, for instance, for any a ∈ F (X) by weak

reciprocity one can always find a closed subscheme V∞ on X/S with |V∞| = X∞ such that V∞X′

is a modulus for a.

It remains to prove Proposition 8.3.1. We divide it into three steps.

8.3.1 Construction of λA and λB. We consider the commutative diagram

c(BY ′/Y
′)

i∗ //

f∗
��

c(YY ′/Y
′)

f∗
��

c(AY ′/Y
′)

i∗ // c(XY ′/Y
′)

c(AX′/X
′)

i∗ //

f ′∗

OO

c(XX′/X
′)

f ′∗

OO

Observe that ̃X ∈ c(XX′/X
′) and ̃Y ∈ c(YY ′/Y ′) have the same image in c(XY ′ , Y

′). By

passing to the quotient, we obtain the right half of the following commutative diagram (see

Lemmas 7.2.5, 8.2.1 and 8.2.2):

O∗(W0Y ′) //

(∗)
��

Pic(ȲY ′ ,WY ′) //

��

Pic(ȲY ′ ,W∞Y ′)

��
O∗(V0Y ′) // Pic(X̄Y ′ , VY ′) // Pic(X̄Y ′ , V∞Y ′)

Pic(X̄X′ , VX′)

OO

// Pic(X̄X′ , V∞X′)

OO

The upper two rows are exact by Lemma 7.2.5. Note also that (∗) is surjective since f |ZY
: ZY =

|W0| ∼−→ ZX = |V0| and f∗V0 'W0.

Since TX is split over X ′, as in the proof of Proposition 7.2.6 we get λA ∈ c(AX′/X
′)

such that i∗λA and ̃X agree in Pic(X̄X′ , V∞X′). Similarly, in view of Lemma 8.1.4, there exists

λB ∈ c(BY ′/Y ′) such that i∗λB and ̃Y agree in Pic(ȲY ′ ,W∞Y ′). Moreover, using the surjectivity

of (∗), λB can be chosen so that its image in Pic(X̄Y ′ , VY ′) agrees with that of λA. We have proven

(1)–(3).
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8.3.2 Preliminary computation. Before we construct ψ, we do some computations on λA
and λB. Let L be the invertible sheaf on X̄X′ corresponding to (the graph of) jX : X ′ ↪→ X. The
image of λA in Pic(X̄X′ , VX′) defines a trivialization τ = τ∞ t τ0, where τ∞ : L|V∞X′ ' OV∞X′ ,
τ0 : L|V0X′ ' OV0X′ . Since L is defined by an effective divisor, it has a canonical global section

σ ∈ L(X̄X′) (given by the image of 1 ∈ O(X̄X′)). The image of ̃X in Pic(X̄X′ , V∞X′) is given
by the class of (L, σ|V∞X′ ), which equals the image of i∗λA. This proves that τ∞ = σ|V∞X′ . As
τ0 is a trivialization, there exists r ∈ O(V0X′) such that σ|V0X′ = rτ0. By pulling back along
i′ : A′ ↪→ X ′, we find that

the class of − λA′ + jA is represented by (OX̄A′
, 1 t (r|V0A′ )) (8.4)

in Pic(X̄A′ , VA′). (Note that σ|V0A′ defines a trivialization L|V0A′ ' OV0A′ because A′ ⊂ X ′\ZX .
Thus, r|V0A′ ∈ O(V0A′) is invertible.)

Similarly, let L′ be the invertible sheaf on ȲY ′ corresponding to jY : Y ′ → Y . The image
of i∗λB in Pic(ȲY ′ ,WY ′) defines a trivialization τ ′ = τ ′∞ t τ ′0, where τ ′∞ : L′|W∞Y ′ ' OW∞Y ′ ,
τ ′0 : L′|W0Y ′ 'OW0Y ′ . We also have a canonical global section σ′ ∈ L′(ȲY ′). We have τ ′∞ = σ′|W∞Y ′ .
As τ ′0 is a trivialization, there exists r′ ∈ O(W0Y ′) such that σ′|W0Y ′ = r′τ ′0. We find that

the class of − λB′ + jB is represented by (OȲB′ , 1 t (r′|W0B′ )) (8.5)

in Pic(ȲB′ ,WB′). (Note that σ′|W0B′ defines a trivialization L′|W0N′ 'OW0B′ because B′⊂Y ′\ZY .
Thus, we have r′|W0B′ ∈ O∗(W0B′).)

8.3.3 Construction of ψ (compare [MVW06, 21.9]). We consider the commutative diagram

W0Y ′
⊂ //

o
��

ȲY ′
f ′ //

f
��

ȲX′

f
��

W0X′
⊃oo

o
��

V0Y ′
⊂ // X̄Y ′

f ′ // X̄X′ V0X′
⊃oo

(8.6)

Let r̃ ∈ O(W0X′) be the pullback of r ∈ O(V0X′) along f . By the definition of standard
triple, there is an affine open neighbourhood U ⊂ Ȳ of Y∞ t ZY . Thus, UX′ is an affine open
neighbourhood of WX′ . By the Chinese reminder theorem, we can find h ∈ O(UX′) which is
mapped to 1 in O(W∞X′) and to r̃ in O(W0X′). (Thus, h is a rational function on ȲX′ .) Now
we define ψ to be −div(h) considered as an element of c(BA′/A

′). Note that the support of ψ is
contained in (Ȳ \U)A′ ⊂ BA′ , since r|V0A′ ∈ O(V0A′)

∗.
By definition, the image of ψ in Pic(ȲA′ ,WA′) is represented by α := (OȲA′ , 1 t r̃

−1). We
consider the images of α by three maps. First,

Pic(ȲA′ ,WA′)→ Pic(ȲA′ ,W∞A′)

(see Lemma 7.2.5) sends α to the class of (OȲA′ , 1). This proves (6). Second,

f∗ : Pic(ȲA′ ,WA′)→ Pic(X̄A′ , VA′)

(see Lemma 8.2.2) sends α to the class of (OX̄A′
, 1tN(h)|−1

V0A′
). On the other hand, it is proved

in [MVW06, 21.10] that N(h)|V0A′ = r|V0A′ in O(V0A′) . (In [MVW06, 21.10], V is assumed to
be reduced, but this assumption is not used in the proof) Part (4) follows from this and (8.4).
Finally,

f ′
∗

: Pic(ȲA′ ,WA′)→ Pic(ȲB′ ,WB′)
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(see Lemma 8.2.1) sends α to the class of (OȲB′ , 1 t (f ′∗r̃−1)). In view of (8.5), (5) is reduced

to f ′∗r̃|W0B′ = r′|W0B′ in O(W0B′). By the diagram (8.6) and the definition of r̃, we have
f ′∗r̃|W0B′ = f∗f ′∗r|W0B′ . Since f induces an isomorphism W0 ' V0, it suffices to show that
f ′∗r|V0B′ = f∗r

′|V0B′ , but this follows from (3). This completes the proof of Proposition 8.3.1.

9. Sheafification preserves reciprocity

We prove Theorem 7 in the introduction. Parts (1), (2) and (3) are respectively shown in §§ 9.1,
9.2 and 9.3. In the last subsection § 9.4, we make a brief discussion of the generalized Jacobian
of a curve.

9.1 Zariski sheafification preserves transfers
In [MVW06, Theorem 22.15], Zariski sheafification of a homotopy invariant presheaf with
transfers is shown to have transfers. The proof actually shows the following result.

Theorem 9.1.1 [MVW06, Theorem 22.15]. If F ∈ PST is MV-effaceable, then FZar has a
unique structure of presheaf with transfers such that F → FZar is a morphism in PST.

Combined with Theorem 8.1.6, we obtain the following theorem.

Theorem 9.1.2. If F ∈ PST has weak reciprocity, FZar has a unique structure of presheaf with
transfers such that F → FZar is a morphism in PST.

Remark 9.1.3. Étale and Nisnevich analogues of the above theorem hold for any F ∈ PST
(without assuming reciprocity). See [MVW06, 6.17 and 14.1].

9.2 Zariski sheafification preserves reciprocity
In [MVW06, Theorem 22.2], it is proved that Zariski sheafification of a homotopy invariant
presheaf with transfers is homotopy invariant. The same argument does not work for reciprocity
sheaves. The proofs of the following results are based on a different idea.

Lemma 9.2.1. If F ∈ PST has weak reciprocity, so does FZar (note that the statement makes
sense by Theorem 9.1.2).

Proof. Let S ∈ Sm and X/S ∈ relC(S) with a good compactification X ↪→ X, and take
a ∈ FZar(X). We need to prove that a has a weak modulus Y ⊂ X such that X = X\|Y |.
We may assume that X and S are connected. By Corollary 7.1.3, FZar(S)→ FZar(V ) is injective
for any dense open subset V ⊂ S. Hence, we may prove the assertion after the base change to
the generic point η of S. Now the theorem follows from Proposition 5.2.1 since the condition (2)
of the proposition is insensible to Zariski sheafification. 2

Theorem 9.2.2. Assume that k is perfect. If F ∈ PST has reciprocity, then FZar has reciprocity.

Proof. Let ρ : F → FZar be the canonical morphism. Let X ⊂ X be an open immersion such
that X is an integral proper variety over k and X ∈ Sm is quasi-affine. Let a ∈ FZar(X). We
need to show that a has a modulus Y ⊂ X such that |Y | = X −X.

There exist a Zariski open covering X =
⋃r
i=1 Ui and ai ∈ F (Ui) such that ρ(ai) = a|Ui for

each i. By assumption, ai has a modulus Yi ⊂ X such that |Yi| = X −Ui. Then Yi is a modulus
for ρ(ai) ∈ FZar(Ui). Put Y := Y1 ×X · · · ×X Yr. Since X =

⋃r
i=1 Ui, we have |Y | = X − X.
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We shall prove that Y is a modulus for a. By Corollary 7.1.3 and Lemma 5.1.7, FZar(S) →
FZar(V ) is injective for any dense open subset V ⊂ S. Hence, it suffices to verify the condition
in Remark 4.1.2.

Put K = k(S) and let ϕ : C → X ×K and ψ : C → X be as in Remark 4.1.2. We need to
show that 〈g, ψ∗(a)〉C/K = 0 ∈ F (K) for all g ∈ G(C,ϕ∗Y ), where ϕ∗Y is the pullback of Y ×K
by ϕ. For each i, we put Ci := ϕ−1(Ui ×K) ⊂ C and I = {i | Ci 6= ∅}. Note that i ∈ I if and
only if ϕ(C) 6⊂ (X − Ui)×K. Since X =

⋃r
i=1 Ui, we have C =

⋃
i∈I Ci. Let i ∈ I. We write ψi

for the composition Ci → Ui ×K
pr→ Ui. We have ψ∗i (ρ(ai)) = ψ∗(a)|Ci . As ρ(ai) has modulus

Yi, we have 〈G(C,ϕ∗Yi), ψ
∗(a)|Ci〉Ci/K = 0 ∈ FZar(K). Hence, the claim is a consequence of the

following lemma. 2

Lemma 9.2.3. Let K be as above and C be a normal integral proper curve over K, C an open
dense subscheme of C and C =

⋃r
i=1Ci a Zariski covering. Let F ∈ PST and a ∈ F (C).

Suppose that for each i we are given an effective divisor Yi ⊂ C satisfying |Yi| = C − Ci
and 〈G(C, Yi), a|Ci〉Ci/K = 0 ∈ F (K). Then we have 〈G(C, Y ), a〉C/K = 0 in F (K), where

Y := Y1 ×C · · · ×C Yr ⊂ C.

Proof. This is an easy consequence of Proposition 5.2.1. 2

9.3 Comparison of Zariski/Nisnevich sheafification
In [MVW06, Theorem 22.2], it is proved that FZar = FNis if F is a homotopy invariant presheaf
with transfers. The proof actually shows the following.

Theorem 9.3.1 [MVW06, Theorem 22.2]. Let F be a Zariski sheaf with transfers. If F is MV-
effaceable, then one has F = FNis.

Theorems 8.1.6 and 9.2.2 and Lemma 9.2.1 imply the following.

Theorem 9.3.2. Let F ∈ PST.

(a) If F has weak reciprocity, we have FZar = FNis.

(b) Assume that k is perfect. If F has reciprocity, so does FNis.

9.4 Generalized Jacobian
Let C be a smooth projective geometrically connected curve over k, D an effective divisor on
C and C := C − D. The map Ztr(C) → Z induced by the structure map C → Spec k factors
through deg : h(C,D)→ Z (see Theorem 2.1.5). We write h(C,D)0 for its kernel.

Proposition 9.4.1. Suppose that k is perfect and that C has a k-rational point. Then
Rosenlicht’s generalized Jacobian J := Jac(C,D) is isomorphic to the Zariski sheafification of
h(C,D)0.

Proof. Let s : Ztr(J) → J be the canonical map constructed in [SS03, Proof of Lemma 3.2].
(For S ∈ Sm and Z ∈ Ztr(J)(S) = Cor(S, J) integral, s(Z) is given by the composition

S
(i)→ Symd(Z)

(ii)→ Symd(J)
(iii)→ J , where d is the degree of Z over S, (i) is given by [SV96, p. 81],

(ii) is induced by Z → J and (iii) is given by the addition map of J .) Let ã : Ztr(C)→ Ztr(J)
be the map induced by the universal map a : C → J with respect to a k-rational point. Since
a has modulus D in the sense of Rosenlicht–Serre, Remark 4.4.5 shows that sã has modulus
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D in our sense. Thus, we get an induced map u : h(C,D)0 → J (see Remark 2.1.6). For any

field K ∈ S̃m, u(K) : h(C,D)0(K)→ J(K) is an isomorphism as both groups are isomorphic

to Div(C × K)/G(C × K,D × K). Note that J = JZar and h(C,D)0
Zar have reciprocity by

Theorems 4 and 7(2). Now the proposition follows from Theorem 6(3) applied to the kernel and

cokernel of u. 2
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Appendix. Kähler differentials and de Rham–Witt differentials
have reciprocity

Kay Rülling4

In this appendix we prove that the absolute Kähler differentials of any degree are reciprocity

presheaves. If the ground field k is perfect, ditto for the Kähler differentials relative to k. If

k has positive characteristic, we show that the de Rham–Witt complex on a finite level of

Bloch–Deligne–Illusie is a complex of reciprocity presheaves.

Appendix A. Kähler differentials

We use the notation from § 1. For a k-scheme X, we denote by Ωj
X/k, j > 0, the sheaf of Kähler

differentials of degree j relative to k and by Ωj
X = Ωj

X/Z the sheaf of absolute Kähler differentials

of degree j.

We recall some constructions from [CR11].

A.1 Pullback

Let f : X → Y be a morphism of k-schemes; then there is a natural pullback map

f∗ : H i(Y,Ωj
Y/k)→ H i(X,Ωj

X/k) for all i, j > 0,

which is functorial in the obvious sense.

A.2 Pushforward

Let f : X → Y be a morphism in Sm of pure relative dimension r, Z ⊂ X a closed subset

such that f|Z : Z → Y is proper and Z ′ ⊂ Y a closed subset with Z ⊂ f−1(Z ′). Then there is a

pushforward morphism (see [CR11, 2.3])

f∗ : H i+r
Z (X,Ωj+r

X/k)→ H i
Z′(Y,Ω

j
X/k) for all i, j > 0,

which is functorial in the obvious sense.

4 The author is supported by the ERC Advanced Grant 226257.

1890

https://doi.org/10.1112/S0010437X16007466 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007466


Reciprocity sheaves

A.3 Cycle class
Assume that k is a perfect field. Let X ∈ Sm be integral and V ⊂ X a closed integral subscheme
of codimension c. Then (see e.g. [CR11, Proposition 3.1.1]) there is an element

cl(V ) ∈ Hc
V (X,Ωc

X/k),

which is unique with the following property: for any (or some) open subset U ⊂ X such that
the closed immersion i : V ∩ U ↪→ U is a regular embedding of codimension c, the restriction of
cl(V ) to U equals the image of 1 under the pushforward i∗ : H0(V ∩ U,OV )→ Hc

V ∩U (U,Ωc
U/k).

A.4 Correspondence action
Assume that k is a perfect field. Let X,Y ∈ Sm be equidimensional and Z ⊂ X × Y a closed
integral subscheme which is proper over X. Set r := dimZ − dimX. We define the action of Z
on Hodge cohomology

Z∗ : H i+r(Y,Ωj+r
Y/k)→ H i(X,Ωj

X/k) for all i, j > 0

as the composition

H i+r(Y,Ωj+r
Y/k)

p∗Y−→ H i+r(X × Y,Ωj+r
X×Y/k)

∪cl(Z)−−−−→ H i+dimY
Z (X × Y,Ωj+dimY

X×Y/k )
pX∗−−→ H i(X,Ωj

X/k),

where we denote by pX , pY : X × Y → X,Y the projection maps. If f : X → Y is a morphism
and Z := Γf ⊂ X × Y is its graph, then Z∗ = f∗; if f is also proper and Zt ⊂ Y ×X denotes
the transpose of Z, then (Zt)∗ = f∗: see [CR11, 3.2.1].

The following theorem is a particular case of [CR11, Theorem 3.1.8] together with [CR11,
1.3.18, Lemma 1.3.19].

Theorem A.4.1. Assume that k is a perfect field. Then the correspondence action from §A.4
above induces the structure of a presheaf with transfers on the presheaf

Sm 3 X 7→ H i(X,Ωj
X/k) ∈ (k-vector spaces)

for all i, j > 0.

Remark A.5. It follows from [CR11, Theorem 1.2.3] and [CR11, 1.3.18, Lemma 1.3.19] that any
weak cohomology theory in the sense of [CR11, 1.1.9] which satisfies the conditions of [CR11,
Theorem 1.2.3] defines a graded presheaf with transfers. In [CR11, Theorem 3.1.8], it is proven
that Hodge cohomology defines such a weak cohomology theory.

A.6 The absolute case
Let k be a field and k0 ⊂ k its prime field. Let I be the set of smooth k0-subalgebras of k.
The ordering by inclusion makes I a filtered partially ordered set. For each X ∈ Sm, we find a
k0-algebra A ∈ I and a smooth separated A-scheme XA with XA ⊗A k = X. Fix such an A for
each X and set XB := XA ⊗A B ∈ Smk0 for each B ∈ I containing A. For X ∈ Sm, we have

H i(X,Ωj
X) = lim−→

B∈I
H i(XB,Ω

j
XB/k0

).

For Z ⊂ X×Y as in §A.4, we find a k0-algebra A ∈ I such that there exists a closed integral
subscheme ZA ⊂ XA×A YA which is proper over XA, flat over A and satisfies ZA⊗A k = Z. For
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B ∈ I with B ⊃ A, we set ZB := ZA⊗AB. Let f : SpecB′→ SpecB be the map induced by an
inclusion B ⊂ B′ in I; then

Z∗B′ ◦ (idY × f)∗ = (idX × f)∗ ◦ Z∗B : H i+r(YB,Ω
j+r
YB/k0

)→ H i(XB′ ,Ω
j
XB′/k0

)

for all i, j > 0. (Indeed, by [CR11, Theorem 3.1.8], the two compositions are given by the
correspondences (ΓidY ×f ◦ ZB′) and (ZB ◦ ΓidX×f ), which are both equal to ZB′ viewed as
correspondences from XB′ to YB via the closed immersion XB′×B′YB′ =XB′×BYB ⊂XB′×k0YB.
Here we view correspondences as elements in the Chow groups with supports; see [CR11, 1].)
Therefore, we can define the action of Z on absolute Hodge cohomology

Z∗ : H i+r(Y,Ωj+r
Y )→ H i(X,Ωj

X)

by the formula
lim−→
B∈I

Z∗B : lim−→
B∈I

H i+r(YB,Ω
j+r
YB/k0

)→ lim−→
B∈I

H i(XB,Ω
j
XB/k0

).

We obtain the following result.

Corollary A.6.1. Let k be an arbitrary field. Then the correspondence action from §A.6 above
induces the structure of a presheaf with transfers on the presheaf

Sm 3 X 7→ H i(X,Ωj
X) ∈ (k-vector spaces)

for all i, j > 0.

Theorem A.6.2. The presheaf with transfers

Sm 3 X 7→ H0(X,Ωi
X), i > 0,

has reciprocity in the sense of Definition 2.1.3. If k is perfect, the same is true with Ωi
X replaced

by Ωi
X/k.

Proof. First, assume that k is perfect; we show that Ωi
−/k has reciprocity. Let X ∈ Sm be

quasi-affine and take a ∈ H0(X,Ωi
X/k). Choose an open immersion X ↪→ X̄ of X into an integral

and proper k-scheme X̄ such that X̄\X is the support of a Cartier divisor Y0. Then for some
large enough integer n the form a is the restriction of a section in H0(X̄,Ωi

X̄/k
(nY0)), where we

write Ωi
X̄/k

(nY0) := Ωi
X̄/k
⊗OX̄

OX̄(nY0). By Corollary 2.1.7, it suffices to prove that

Y := (n+ 1)Y0 is a modulus for a. (A.1)

To this end, take S ∈ Sm, consider a diagram (ϕ : C̄ → X̄ × S) as in (2.1) (we will use the
notation from (2.1) freely) and a function f ∈ G(C̄, γ∗ϕY ). We have to show that

(ϕ∗ divC̄(f))∗(a) = 0 in H0(S,Ωi
S/k). (A.2)

Clearly, we can assume that S is connected. Further, Ωi
S/k is locally free and hence restriction to

open subsets is injective. Therefore (cf. Remark 4.1.2), we can replace S by a non-empty open
subset. Using the perfectness of k, we can thus assume that C̄ is smooth and connected over
k, the map pϕ : C̄ → S is proper and flat of pure relative dimension one and the support of
divC̄(f) is a disjoint union of smooth prime divisors |divC̄(f)| =

⊔
i Zi. Set C := ϕ−1(X × S)
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and denote by b ∈ H0(C,Ωi
C/k) the pullback of a to C. By assumption, b extends to a section

H0(C̄,Ωi
C̄/k

(nγ∗ϕY0)). We have to show that

divC̄(f)∗(b) = 0 in H0(S,Ωi
S/k), (A.3)

where we consider divC̄(f) as an element in Cor(S,C) via the transpose of the graph map
C → S × C of pϕ. For Z a prime divisor in the support of divC̄(f), denote by i : Z ↪→ S × C
the induced closed immersion and by pS , pC : S × C → S,C the projections. We get

Z∗(b) = pS∗(p
∗
C(b) ∪ cl(Z)) = pS∗(p

∗
C(b) ∪ i∗(1)) = TrZ/S(b|Z), (A.4)

where we denote by TrZ/S the pushforward along the finite morphism Z → S and the first
equality holds by definition, the second equality by the characterization of the cycle class in §A.3
and the last equality follows from the projection formula [CR11, Proposition 1.1.16]. Writing
divC̄(f) =

∑
j njZj , we therefore have to show that∑

j

njTrZj/S(b|Zj
) = 0 in H0(S,Ωi

S/k). (A.5)

By the functoriality of the pushforward, the map TrZj/S equals the composition

H0(Zj ,Ω
i
Zj/k

)
ij∗−→ H1

D(C,Ωi+1
C/k)→ H1(C̄,Ωi+1

C̄/k
)
pϕ∗−−→ H0(S,Ωi

S/k);

here D := |divC̄(f)| and ij : Zj ↪→ C is the closed immersion. We claim that∑
j

nj ij∗(b|Zj
) = −δ

(
df

f
∧ b
)

in H1
D(C,Ωi+1

C/k),

where δ : H0(C\D,Ωi+1
C/k)→ H1

D(C,Ωi+1
C/k) is the connecting homomorphism. Indeed, it suffices

to check this equality after restricting to an open subset of C which contains all the generic
points of D; in particular, we can assume that the Zj are the zero loci of sections in H0(C,OC)
and then the claim follows from [CR11, Proposition 2.2.19]. Since b ∈ H0(C̄,Ωi

C̄/k
(nγ∗ϕY0)) and

f ∈ G(C̄, (n+ 1)γ∗ϕY0), the section (df/f)∧ b extends to a section in H0(C̄\D,Ωi+1
C̄/k

). Therefore,

the image of δ((df/f) ∧ b) in H1(C̄,Ωi+1
C̄/k

) is zero, which implies the vanishing of (A.5).

Now let k be an arbitrary field with prime field k0. We want to show that Ωi
−/Z has reciprocity.

Let X ∈ Sm be quasi-affine and take a ∈ H0(X,Ωi
X). With the notation from §A.6, we find a

smooth k0-algebra A ∈ I such that a comes via pullback from an element aA ∈ H0(XA,Ω
i
XA/k0

).
If B ∈ I contains A, we denote by aB the pullback of aA to XB. Choose an open immersion
XA ↪→ X̄A with X̄A an integral and proper A-scheme such that X̄A\XA is the support of a
Cartier divisor Y0,A. There exists an integer n > 0 such that aA is the restriction of a section
in H0(X̄A,Ω

i
X̄A/k0

(nY0,A)). Set X̄ := X̄A ⊗A k and Y := (n + 1)Y0,A ⊗A k; we claim that Y is

a modulus for a. Take S ∈ Sm, (ϕ : C̄ → X̄ × S) and f ∈ G(C̄, γ∗ϕY ) as above. Then there
exist a B ∈ I containing A and SB ∈ SmB (ϕB : C̄B → X̄B ×B SB) as in (2.1) (only that the
cartesian product is over B) and fB ∈ G(C̄B, γ

∗
ϕB
YB), which give S, ϕ, f when pulled back over

k. It suffices to show that

(ϕB∗ divC̄B
(fB))∗(aB) = 0 in H0(SB,Ω

i
SB/k0

).

Notice that this is not exactly the same situation as in the first case since X̄B is not proper over
k0. Nevertheless, the same argument as above reduces us to prove the vanishing of (A.3) with
S, C̄, f, k replaced by SB, C̄B, fB, k0, which follows from the first case. 2
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Appendix B. De Rham–Witt differentials

In this section, k is a perfect field of characteristic p > 0 and we denote by qpSm the category
of smooth and quasi-projective k-schemes.

B.1 De Rham–Witt complex
For a k-scheme X, we denote by WnΩ·X the de Rham–Witt complex of Bloch–Deligne–Illusie

of length n; see [Ill79]. We denote by WnΩj
X the degree-j part. Recall that WnΩ0

X = WnOX
is the sheaf of Witt vectors of length n on X and W1Ωj

X = Ωj
X . Also recall that the de

Rham–Witt complex comes with morphisms of sheaves of abelian groups R : Wn+1Ωj
X →

WnΩj
X (the restriction), F : Wn+1Ωj

X → WnΩj
X (the Frobenius), V : WnΩj

X → Wn+1Ωj
X (the

Verschiebung) and d : WnΩj
X →WnΩj+1

X (the differential) satisfying various relations (see [Ill79,
I, Proposition 2.18]).

B.2 Correspondence action
If we restrict to the category qpSm, then we have analogues of the pullback map §A.1, the
pushforward §A.2 and the cycle map §A.3 for Hodge–Witt cohomology (i.e. in §§A.1–A.3 replace
Ω·−/k by WnΩ·− and in §§A.2 and A.3 restrict to qpSm). The construction of the cycle map and

the pushforward uses essentially the results from [Eke84]. For the cycle map and the pushforward
for proper maps, this is carried out in [Gro85, II]; for the pushforward with projective supports
and the compatibilities, see [CR12, §§ 2 and 3].

Let X,Y ∈ qpSm be connected and Z ⊂ X × Y a closed integral subscheme which is
projective over X. Set r := dimZ−dimX. We define the action of Z on Hodge–Witt cohomology

Z∗ : H i+r(Y,WnΩj+r
Y )→ H i(X,WnΩj

X) for all i, j > 0

as in §A.4 to be the composition

H i+r(Y,WnΩj+r
Y )

p∗Y−→ H i+r(X × Y,WnΩj+r
X×Y )

∪cl(Z)−−−−→ H i+dY
Z (X × Y,WnΩj+dY

X×Y )
pX∗−−→ H i(X,WnΩj

X).

If f : X→ Y is a morphism and Z := Γf ⊂X×Y is its graph, then Z∗ = f∗; if f is also projective
and Zt ⊂ Y ×X denotes the transpose of Z, then (Zt)∗ = f∗: see [CR12, Proposition 3.4.7].

Theorem B.2.1. The correspondence action from §B.2 above induces the structure of a presheaf
with transfers on the presheaf

qpSm 3 X 7→ H i(X,WnΩj
X) ∈ (Wn(k)-modules)

for all i, j > 0. Furthermore, the correspondence action is compatible with the maps R,F, V, d
from §B.1 in the obvious sense.

Proof. This is actually a special case of [CR12, Theorem 3.4.6] only that there the statement is
proved in the limit, i.e. for the presheaf X 7→ H i(X,WΩi

X). The proof on the finite level goes
through except for one place in the proof of [CR12, Theorem 3.4.3] (which is used in the proof of
[CR12, Theorem 3.4.6]), where a pro-argument is used. There the situation is the following: we

are given closed immersions between smooth schemes D′ ↪→ D
i−→ Y with c := codim(D′, D) and

1 = codim(D,Y ). Then it is shown that the pushforwardi∗ : Hc
D′(D,WΩc

D)→ Hc+1
D′ (Y,WΩc+1

Y )

is injective on its Frobenius invariant submodule Hc
D′(D,WΩc

D)F . Replace this with the following
argument: by [CSS83, 1.4, Lemma 2], we have a short exact sequence on Dét

0→WnΩc
D,log →WnΩc

D
1−F−−→WnΩc

D/dV
n−1Ωc−1

D → 0.
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We get a short exact sequence

Hc−1
D′ (D,WnΩc

D/dV
n−1Ωc−1

D )→ Hc
D′(D,WnΩc

D,log)→ Hc
D′(D,WnΩc

D)F → 0, (B.1)

where the group on the right is defined as the kernel of 1−F on Hc
D′ . By [Ill79, I, Corollary 3.9]

(and with the notation from there), we have a short exact sequence of sheaves of abelian groups

0→ Ωc
D

BnΩc
D

V n−1

−−−→ WnΩc
D

dV n−1Ωc−1
D

R−→Wn−1Ωc
D → 0.

The two outer sheaves are Cohen–Macaulay by [Ill79, I, Corollary 3.9] and hence so is the sheaf
in the middle. In particular, the cohomology group on the left of (B.1) vanishes. Thus,

Hc
D′(D,WnΩc

D)F = Hc
D′(D,WnΩc

D,log) ∼= Z/pnZ,

where the second isomorphism is the composition of [Gro85, II, Theorem 3.5.8] and [Gro85,
(3.5.19)], and similarly

Hc+1
D′ (Y,WnΩc+1

Y )F = Hc+1
D′ (Y,WnΩc+1

Y,log) ∼= Z/pnZ.

Via these identifications, i∗ sends 1 ∈ Z/pnZ to itself and hence

i∗ : Hc
D′(D,WnΩj

D)F ↪→ Hc+1
D′ (Y,WnΩc+1

D )

is injective. Now the rest of the proof of [CR12, Theorem 3.4.3] and of [CR12, Theorem 3.4.6]
goes through. Notice that the compatibility of the correspondence action with R,F, V, d requires
Ekedahl’s notion of a Witt-dualizing system; see [Eke84, CR12]. 2

Theorem B.2.2. The presheaf

Sm 3 X 7→ H0(X,WnΩi
X) ∈ (Wn(k)-modules)

has the structure of a presheaf with transfers and has reciprocity, for all i > 0 and n > 1.

Proof. Since WnΩi
(−) is a Zariski sheaf and has transfers on smooth and quasi-affine schemes by

Theorem B.2.1, we can glue the transfers to obtain WnΩi
(−) ∈ PST. We prove that WnΩi

(−)

has reciprocity. Let X ∈ Sm be quasi-affine and a ∈ H0(X,WnΩi
X) a section. Choose a

compactification X ↪→ X̄ as in the proof of Theorem A.6.2 with X̄\X the support of the Cartier
divisor Y0; we can assume that X̄ is projective. Denote by WnOX̄(Y0) the invertible WnOX̄ -
module whose isomorphism class in H1(X̄,WnO×X̄) is the image of the class of OX̄(Y0) in H1(X̄,

O×
X̄

) under the map induced by the Teichmüller lift [−] : H1(X̄,O×
X̄

)→ H1(X̄,WnO×X̄). More

precisely, if t is a local coordinate of Y0 on some open U ⊂ X̄, then WnOX̄(Y0)|U = Wn(OU )·1/[t].
In particular,

WnΩi
X = lim−→

r

WnΩi
X̄(rY0),

where we set WnΩi
X̄

(rY0) := WnΩi
X̄
⊗WnOX̄

WnOX̄(rY0). Hence, we find an integer r > 1 such

that a is the restriction of a section in H0(X̄,WnΩi
X̄

(rY0)). By Corollary 2.1.7, it suffices to
prove that

Y := sY0 is a modulus for a for s > pn−1r + 1. (B.2)
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To this end, take S ∈ Sm and (ϕ : C̄ → X̄ × S) as in (2.1) and a function f ∈ G(C̄, γ∗ϕY ). By

[Ill79, I, Corollary 3.9], restriction to dense open subsets is injective on WnΩi
S . Thus, as in the

proof of Theorem A.6.2, we can assume that S, ϕ, f have the same properties as in the proof of

Theorem A.6.2 between (A.2) and (A.3); further, we can achieve that all schemes in question

are quasi-projective. Denote by b the pullback of a to C. By assumption, b extends to a section

of H0(C̄,WnΩi
C̄

(rγ∗ϕY0)). As in the proof of Theorem A.6.2, (A.5), we are reduced to showing

that ∑
j

njTrZj/S(b|Zj
) = 0 in H0(S,WnΩi

S), (B.3)

where we write divC̄(f) =
∑

j njZj and TrZj/S : H0(Zj ,WnΩi
Zj

) → H0(S,WnΩi
S) is the

pushforward along the finite map Zj → S. By the functoriality of the pushforward, the map
TrZj/S equals the composition (with D = |divC̄(f)| and ij : Zj ↪→ C the closed immersion)

H0(Zj ,WnΩi
Zj

)
ij∗−→ H1

D(C,WnΩi+1
C )→ H1(C̄,WnΩi+1

C̄
)
pϕ∗−−→ H0(S,WnΩi

S).

As in the proof of Theorem A.6.2, the following equality follows from [CR12, Proposition 2.4.1]

(see also [Gro85, II, 3.4]):

∑
j

nj ij∗(b|Zj
) = −δ

(
d[f ]

[f ]
b

)
in H1

D(C,WnΩi+1
C ),

where δ : H0(C\D,WnΩi+1
C ) → H1

D(C,WnΩi+1
C ) is the connecting homomorphism and [f ] ∈

Wn(k(C̄)) denotes the Teichmüller lift of f . Thus, it suffices to show that d[f ]/[f ]b extends to a

section of H0(C̄\D,WnΩi+1
C̄

) to conclude the vanishing of (B.3). To this end, it suffices to show

that d([f ])b is regular around any point of Y0. Let A be the local ring of C̄ at a point of Y0 and

t ∈ A an equation for Y0. Then we can write b = b0/[t]
r, for some b0 ∈ WnΩi

A, and f = 1 + tsg,

for some g ∈ A. By [Rül07, Lemma 3.4],

[f ] = [1] +

n−1∑
j=0

V j([t]sgj) in Wn(A) for some gj ∈Wn−j(A).

For j ∈ {0, . . . , n− 1} and h = gj , we have (using the standard identities for R,F, V, d)

d(V j([t]sh))b = d(V j([t]sh)b)− V j([t]sh) db

= dV j([t]shF j(b))− V j([t]sh)

(
db0
[t]r
− rb0

1

[t]r
d[t]

[t]

)
= dV j([t]s−p

jrhF j(b0))− V j([t]s−p
jrhF j(db0))

+V j([t]s−(pjr+1)hrF j(b0) d[t]).

This expression is regular by the choice of s and hence so is d([f ])b. This finishes the proof. 2

Remark B.3. One can remove the perfectness assumption on k in this section using the same

method as in §A.6.
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(4) 12 (1979), 501–661.

IR12 F. Ivorra and K. Rülling, K-groups of reciprocity functors, J. Algebraic Geom., to appear,
Preprint (2012), arXiv:1209.1217.

Kah91 B. Kahn, Foncteurs de Mackey à réciprocité, Preprint (1991), arXiv:1210.7577.

KS11 M. Kerz and S. Saito, Chow group of 0-cycles with modulus and higher dimensional class field
theory, Duke Math. J., to appear, Preprint (2011), arXiv:1304.4400.

MVW06 C. Mazza, V. Voevodsky and C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics
Monographs, vol. 2 (American Mathematical Society, Providence, RI, 2006); Clay Mathematics
Institute, Cambridge, MA.
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