
PROBLEMS FOR SOLUTION 

P40. (Conjecture). If the edges of a convex polyhedron 
form a "cage" surrounding a sphere of unit radius, then these 
edges have a total length of at l eas t 9</T ( s e e Math. Rev. 20 
(1959), Rev. 1950). 

H. S. M. Coxeter 

P 4 1 . Let P . , P?> P 3 , P4 be any four points in the plane, 
no three co l l inear . On P P ; + 4 construct a square with centre 
0^ so that the t r iang les Q ^ i P i ^ ± a ^ have the same "orientation" 
(i = 1 , 2 , 3 , 4 ; ^ 5 = ^4)- Show that the segments 0 ^ 3 and Q2O4 
have the same lengths , and the l ines containing them are 
perpendicular. 

W . A . J - Luxemburg 

P42 . Let q n = 1 + £ r = i <f>(r) where $ denotes the Euler 
totient function and let p be the n-th pr ime (p, = 2 ) . Prove 
that p = q for n = 1 , 2 , 3, 4 , 5, 6 but for no other v a l u e s of n. 

L. M o s e r 

P 4 3 . Let G be a group generated by P and Q, and let 
H be the cyc l ic subgroup generated by P. If P and Q satisfy 
only the re lat ions P 2 P Q = Q 2 and Q 2 P Q " 4 = P k for some k, 
then the index of H in G i s 14. 

N. S. Mendelsohn 

SOLUTIONS 

P7. Define f(n) by n f { n ) | | n l , i . e . , n f ( n ) | n ! and n f ( n ) + d jn! 
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(a) Prove that lim sup(f(n) log n/(n log log n)) = 1. 
(b) Prove that if p is the greatest prime factor of n, then 

for almost all n, 

£{n) = E.°° [n/p1]. 
1 = 1 

(Almost all means all n excepting a sequence of density 0. ) 

P. Erdôs 

Solution by the proposer. 
(a) I shall prove that for infinitely many n 

(i) f(n) > (1 - e ){n log log n)/log n, 
and for all n > nQ(e) 

(ii) f(n) < (1 + € )(n log log n)/log n. 

Put n! =TT p a p , a = [n/p] + [n/p2] + . . 
p < n p 

2, 
I 

Clearly a < n/(p » 1). Thus, if q q | |n we have 

(1) f(n) < min , n/(q - l)p . 
q|n q 

Hence, if f(n) > (1 + e)n(log log n)/log n, we have from (1) that 
for every q| n, 

(2) 1 < p < (log n)/(l + c)(q - 1) log log n. 

Now (2) implies that all prime factors of n are less than or 
equal to 1 + (log n)/(l + e) log log n. Hence, from (2), 

n < j r (logn)/(q » 1)(1 + e)log log n 
— q< 1 + (log n)/(l + e)log log nq 

or 

log n 
log n . . . 

- (1 + e)log log n q< 1 + (log n)/(l + e)loglogn ° g q , / ( q " 1 } 

< l o ë n 

1 + £ * 
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To prove (i), let t be large and put 

(3 =[t /(q- 1)], m = TT q V 

Then 

(3) log m = 2 (3 log q =t log t + O(t). 

Clearly 

(4) f(m) =min a /p > min or (q - l ) / t 
q < t q q - q < t q 

whe re q *1 [ | m! . 

Now 

(5) a = [m/q] + [m/q 2 ] + . . . > - ^ ~ » ]^LE± . 
q — q - 1 log Z 

Thus, from (3), (4), and (5), 

(6) f ( m ) > x n i n f - ^ - r . i 2 £ L S ) i L ^ ! 
- q < t \q - 1 log 2 / t 

> — ~ Z log m. 

Now (3) implies , by simple calculation, that 

(7) t = (1 + o(l))(log m)/ log log m 

and (6) and (7) imply that (1) holds for m. 

(b) L*et p/n) be the larges t pr ime factor of n. We show 
that for almost all n 

(8) f ( n ) = Z k [ n / p ( n )
k ] . 

Of course , 
S [n /p k] 

P(n) 11*-

Thus, for all n, f(n) < Z [n/p^n jk ]. Now we show that for 

every e > 0 and x > x(e), (8) holds for all but ex integers < x. 
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a I ex 
Let A = A(e ) be large. If q | n, a > 1, q > A, then n is 

divisible by a square > A ' . To see this, observe that if a 
is even nothing has to be proved; and if ex is odd, then a >_ 2 

a - 1 (a - l)/a 2/3 
and q > A > A . It follows that the number of 

ex j a 
i n t e g e r s < x with p | n , a > 1, p > A i s l e s s than 

2 1/3 

k > A ^ / 3 

for A > A(e). Thus we m a y r e s t r i c t o u r a t ten t ion to the i n t e g e r s 
ex. ex 

n for which p jn, a > 1 i m p l i e s p < A. The n u m b e r of 

i n t e g e r s n = P i p£ . . . p (p1 < P2 < • • • < P (n ) < A) in this 

A 
class is clearly less than 2 < EX/2 for sufficiently large x 

(since p.1 < A and we have < A choices for the p.1). For the 
l — — i 

integers which do not belong to any of these classes (8) holds. 

To see this put 

n = 71 / , p*1, p*1! In, p*1 < A for ex, > 1, p, > A. 
i = l l l i — i ( n ) 

ffn\ a:f(n) 
If a. =1, then p. V ' I n ! (for p . I In ! ) , 

i l i 
ai If a. > 1, then because p. < A < p. . 

l î — (n), we have 

Stn/p.k] > ex S[n/p *] 
i l in ; 

û f ^ n ) 
so that p. I |n! , and we are done. 

P8. Let F be a field of characteristic 2; let F* be its 
multiplicative group and let F 2 be the subfield of the squares 
of F. Assume F 2 t F. Show (i) F, F 2 and F*/F2* have the 
same cardinal number; (ii) there exist two fields F° and F00 

such that F^CF C F°, (F°)2 = F°, (F00)2 = F00 and such that 
every field G with G = G2 and containing F (contained in F) 
contains a field isomorphic to F° (is contained in F00). 

P. Scherk. 
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Solution by the proposer . Let F = { a, (3, . . . } be a field 
of charac ter i s t i c 2; thus a = - a . Put F 2 = { a 2 , p2, . . . j m Then 

(1) a - a 2 

i s a mapping of F onto F 2 . Since # 2 = p 2 i m p l i e s a = p, this 
mapping i s 1-1 . It m a p s products onto products and due to 

(a +p)2 = a2 + p2 

a l so sums on sunns. Thus F 2 i s a subfield of F and (1) i s an 
i s o m o r p h i s m of F onto F . In part icular F and F4 , have the 
same cardinal number. Hence F = F 2 if F i s f inite. (However 
there are transcendental ex tens ions F of finite f ie lds of 
charac ter i s t i c 2 such that F 4 F 2 . ) 

For any F le t F * denote the mult ip l icat ive group of the 
e l e m e n t s / 0 of F . Suppose now F 2 i F. Thus F 2 wi l l be a 
proper subgroup of F* . Choose any 6 c F , 6 4 F 2 . Then 

(2) a -+> 6 + a2 

wi l l map F* into itself . If 6 + cr2 and 6 + P 2 l i e in the same 
c o s e t of F 2 * , then 6 + a 2 = y 2 ( 6 + P2) for some v. If y 4 1, 
then 

6= V\P 2 = ( f ±^) 2
€ F 2 . 

1 + v 2 11 + v ' 

Thus Y = 1, a 2 = p 2 and a = p. Hence (2) m a p s different e l e m e n t s 
of F * into different c o s e t s . In part icu lar , the cardinal number 
of F*/Fï i s not s m a l l e r than that of F*. Hence they are equal. 

Iterating the construct ion of F 2 , we obtain a sequence of 
subspaces 

2 4 oo oo 2 n 

(3) F D F D F . D . . . D F = 0 F . 

[Being the in tersec t ion of f i e lds , F0 0 certa in ly i s a f ield. ] 

Let a € F°°. Thus or c F 2 n for al l n > 0. Hence there i s 

a p n c F 2 n ~ such that a = p n
2 . Let n < m . Then P m

2 = P n
2 = a 

and both p m and p n l i e in F 2 n " . The solution of £ 2 = a 

being unique in F 2 , we have P m = P n = P» say. Thus p € F2*1 ~ 

for al l n, i. e. p c F 0 0 . We have a = p . Hence the re s t r i c t i on of (1) 

to F0 0 b e c o m e s an automorphi sm, and (F00) = F 0 0 . 
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Obviously, two elements a and Ç> of F* lie in the same 
coset of F 2 ' if and only if or2 and p 2 lie in the same coset of 
F 4 in F 2 . Thus (1) induces an isomorphism of F* / F2 onto 
p 2 * / p 4 v . More generally, all the factor groups 
( p 2 n ~ 1 )* / (F2 n )* will be isomorphic. Hence the fields (3) must 
be mutually distinct if F 4 F 2 . 

If H is a sub field of F, H2 will be a subfield of F 2 , H 2 n 

will be one of F 2 n and H00 C F 0 0 . In par t icular H = H2 implies 
B^H^CZF00. 

We can also proceed in the opposite direction by adjoining 
to the field F the square roots of all of its elements. This 

i ±z 

leads to a new field F D F satisfying (F2) - F. We then can 
2~n 

define F by induction. The field 

satisfies 

^-n 
F ° = U " F 2 

n = l 
i l 2 

F <Z FT <Z FT C . . . C F ° = ( F ° ) . 

If F is a subfield of G, then F 2 C G 2 for all n and 

F ° C G°. In par t icular G = G2 implies F° C G° = G. 

P13. Angular measure in a Minkowski plane is sometimes 
defined proportional to the area of the corresponding sector of 
the unit c i rc le U, sometimes proportional to the a rc length of 
U. Determine all Minkowski me t r i c s where the two measu re s 
a re proportional. 

H. Helfenstein. 

Solution by the proposer . L»et r = f(4>) be the polar equation 
of U in an associated Euclidean met r i c . If we assume continuous 
differentiability of f(4>) (the proof can be modified to avoid this) 
and denote by \\t the angle between the radius vector and the 
tangent of U we a r r ive at the following identity in 9 

r2 ,xx , r» 2 / x W K / e [f W W Wfdct> s /e 2 
Jo f(4> + Ui) Jo K™ 9* 

where k is the factor of proportionality. Differentiating with 
respect to 8 and replacing ff (0 ) by f(6 )cot vp we obtain 
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kf(8)f(8 + ^ s * 1 1 4* = + 1> which is the conjugate diameter condition 
for Radon curves. Hence the desired Minkowski metrics are 
those with symmetric perpendicularity» 
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