PROBLEMS FOR SOLUTION

P40. (Conjecture). If the edges of a convex polyhedron
form aTTc;ge" surrounding a sphere of unit radius, then these
edges have a total length of at least 94 3 (see Math. Rev. 20
(1959), Rev. 1950).

H.S. M. Coxeter

P41. Let P,, P,, P3, Py be any four points in the plane,
no three collinear. On PiP“_ 4 comstruct a square with centre
Q; so that the triangles Q,P,P; 4 all havethe same "orientation"
{(i=1,2,3,4; P5 = Pi)' Show that the segments QiQ3 and Q,0Q4
have the same lengths, and the lines containing them are
perpendicular.

W.A.J. Luxemburg

P42. Let q, =1+ Erx:i ¢(r) where ¢ denotes the Euler
totient function and let P be the n-th prime (p1 =2). Prove
that Pp =9y for n=1,2,3,4,5,6 but for no other values of n.

L. Moser

P43. Let G be a group generated by P and Q, and let
H be the cyclic subgroup generated by P. If P and Q satisfy
only the relations P2PQ = Q2 and Q?PQ"% = PK for some k,
then the index of H in G is 14.

N.S. Mendelsohn
SOLUTIONS

nf(n) + 1*

P7. Define f(n) by n , i.e., nf(n)ln! and
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(a) Prove that lim sup(f(n) log n/(n log log n)) =1.
(b) Prove that if p is the greatest prime factor of n, then
for almost all n,

© i
f(n) =Z .
(n) =2, _, [n/p]
(Almost all means all n excepting a sequence of density 0.)

P. Erdos
Solution by the proposer.
(a) I shall prove that for infinitely many n

(i) f(n) > (4 - € }(n log log n)/log n,
and for all n > n_(¢)

(ii) f(n) < (1 + € ){n log log n)/log n.
2
Put n! =Trp5npap. ap=[n/p]+ [n/p7]+ ...
Clearly ap < n/(p - 1). Thus, if qﬁq[ |n we have
(1) f(n) < minqln n/(q - 1)Bq.

Hence, if f(n) > (1 + ¢)n(log log n)/log n, we have from (1) that
for every qln,

(2) 1< B, < (logm)/(1+ e)(q - 1) log log n.

Now (2) implies that all prime factors of n are less than or
equal to 1 + (log n)/(1 + ¢) log log n. Hence, from (2),

(logn)/(q - 1)}{1 + €)log log n
n -<-Trq<1 + (logn)/(41 + e)log logn
or
logn
log n
< 1 -
— {1 +¢€)loglogn zq <1+ (log n)/(1 + €)log log n( cg al/(q - 1)
< log n.
1 +¢
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To prove (i), let t be large and put

_ - Bq
ﬁq-huq-1m xn-Tgﬁtq :

Then

1 = 1 =t log t + O(t).
(3) ogm ztgqﬁq og q og | (t)
Clearly
(4) f(m) =min a /B > min a (q - 1)/t

q<t q gq= g<t gq
where qaCIHml.
Now
2 m log m

= e D> - .

(5) N [m/q] + [m/q"] + e e

Thus, from (3), (4), and (5),

. m logm\)q -1
£ > -
(6) {m) _m:.nqst (q_ i Tog 2) t
>—?— - 2 log m.

Now (3) implies, by simple calculation, that
(7) t =(1 + o(1)){log m)/log log m
and (6) and (7) imply that (1) holds for m.

(b} Let P(n) be the largest prime factor of n. We show
that for almost all n

(8) fn) ==, [n/p 1.
Of course K
Z[n/p, ']
P {n) .
(n) I 'n. .

Thus, for all n, f(n) < Ek[n/p(n)k ]. Now we show that for

every ¢ > 0 and x > x(e), (8) holds for all but ex integers < x.
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Let A = A(e) be large. If qa|n, a>1, qa> A, then n is
divisible by a square > A . To see this, observe that if
is even nothing has to be proved; and if 2 is odd, then a > 2

1 (a - 1)/a.>_ A2/3.

and qa B > A it follows that the number of

- a P
integers < x with p |n, @> 1, p > A is less than

/3

= 3n/k2 < n/A1 < en/2

k>A2/

for A > A(e). Thus we may restrict our attention to the integers

n for which pa]n, a > 1 implies pa < A. The number of

: @y @ (a), o
integers n=p, P, --- p(n) (p1 < p2< ... < p(n) < A) in this

A
class is clearly less than 2° < ex/2 for sufficiently large x
(since pc;i < A and we have < A choices for the p?i). For the
- - i
integers which do not belong to any of these classes (8) holds.

To see this put

“n=] Ilr_l)1 Pc.vi, P?iHn' P?i < A for @ > L. p A

i (n) ~
f(n) l

b aj

If @ =1, then p, (n)lnl (for pi1 [nt).
% h Sca
ai> 1, then because P, < < p(n), we have

Z[n/pilj > a, E[n/p(n)k]

a;f(n)
so that P, | |n!, and we are done.

P8. Let F be a field of characteristic 2; let F¥ be its
multiplicative group and let F2 be the subfield of the squares
of F. Assume F% # F. Show (i) F, F2 and F*/FZ* have the
same cardinal number; (ii) there exist two fields F° and F®
such that F®CF C FO, (F°)2 = FO, (F®)2 = F® and such that
every field G with G = G2 and containing F (contained in F)
contains a field isomorphic to F© (is contained in F%).

P. Scherk.
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Solution by the proposer. Let F={0o,8,...} be a'field
of characteristic 2; thus a =-a. Put Fe = {az [32 ...}. Then
.(1) ‘ a - az
is a mapping of F onto F2. Since a? =52 implies a =B, this
mapping is 1-4. It maps products onto products and due to

(a+B)2 =a’ + p?

also sums on sums. Thus F2 is a subfield of F and (1) is an
isomorphism of F onto F2. In particular F and F? have the
same cardinal number. Hence F = F2 if F is finite. (However
there are transcendental extensions F of finite fields of
characteristic 2 such that F # FZ.)

For any F let F* denote the multiplicative group of the
elements # 0 of F. Suppose now F2 # F. Thus F2¥ will be a
proper subgroup of F*. Choose any 6€¢F, 6 ¢ F2. Then
(2) a—~5+a®
will map F* into itself. If 6§ + @2 and 6 + 52 lie in the same
coset of F2* then & + a2 =y2(6 + B2) for some y. If y#1,
then

2 2
5=2 +yB (a+yﬁ 2
1+y2 1+y :

Thus 4y =1, o = B2 and a = B. Hence (2) maps different elements
of F¥* into different cosets. In particular, the cardinal number
of F*/F2* is not smaller than that of F*. Hence they are equal.

Iterating the construction of F2, we obtain a sequence of
subspaces

2 4 n .
(3) FOF°DF 5... oF" ﬂsz.

[Being the intersection of fields, F% certamly is a field. ]

Let a € F°. Thus o ¢ F2® for all n> 0. Hence there is
a B¢ F2" ! such that a=p_2. Let n<m. Thenp_ 2= By l=a
and both B, and B, lie in F2* "1 The solution of £2 =

being unique in 2 1, we have B, =B, =B, say. Thus pern' 1
for all n,i.e.peF®. We have a = ﬁz. Hence the restriction of (1)

to F® becomes an automorphism, and (F°°)2 = F®,
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Obviously, two elements a and B of F* lie in the same
coset of F2¥ if and only if ¢ and B2 lie in the same coset of
F4* in F2*. Thus (1) induces an isomorphism of F*/F2* onto
F2*/F4*. More generally, all the factor groups
(F2P - 1y%/(F2P)* will be isomorphic. Hence the fields (3) must
be mutually distinct if F # F2.

If H is a subfield of F, H? will be a subfield of F2, H2"
will be one of F2" and H® C F®. In particular H = H2 implies
H = H® C F%.

We can also proceed in the opposite direction by adjoining
to the field F the square roots of all of its elements. This

! 1,
leads to a new field F2 D F satisfying (Fz) = F. We then can

-n
define FZ by induction. The field

satisfies

1
2
FcRcFc... c F° = (F%)~.

20 21
If F is a subfield of G, then F cG for all n and
F° CGO°. In particular G = G® implies F° C GO = G.

P13. Angular measure in a Minkowski plane is sometimes
defined proportional to the area of the corresponding sector of
the unit circle U, sometimes proportional to the arc length of
U. Determine all Minkowski metrics where the two measures
are proportional.

H. Helfenstein.

Solution by the proposer. Let r =f(¢) be the polar equation
of U in an associated Euclidean metric. If we assurne continuous
differentiability of f(¢) (the proof can be modified to avoid this)
and denote by y the angle between the radius vector and the
tangent of U we arrive at the following identity in 6

2 2, 3
8 [f(d)+f (4)]°de _, /6 2

where k is the factor of proportionality. Differentiating with
respect to 8 and replacing f'(8) by £(6)cot ¢ we obtain
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kf(6)f(6 + y)sin y =+ 1, which is the conjugate diameter condition
for Radon curves. Hence the desired Minkowski metrics are
those with symmetric perpendicularity.
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