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Abstract

We study the local convergence of critical Galton–Watson trees under various condition-
ings. We give a sufficient condition, which serves to cover all previous known results,
for the convergence in distribution of a conditioned Galton–Watson tree to Kesten’s tree.
We also propose a new proof to give the limit in distribution of a critical Galton–Watson
tree, with finite support, conditioned on having a large width.
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1. Introduction

In [6], Kesten proved that a critical or subcritical Galton–Watson (GW) tree conditioned on
reaching at least height h converges in distribution (for the local topology on trees) as h goes
to infinity toward the so-called sized-biased tree (that we call here Kesten’s tree and whose
distribution is described in Section 2.3). Since then, several different conditionings have been
studied, in particular conditioning on extinction after a large time, on large total population
size, and on a large number of leaves. In [2], Abraham and Delmas provided a criterion for
local convergence of finite random trees to Kesten’s tree, then gave short and elementary proofs
of essentially all previous related results and some new ones. Later [1] proved that a critical
Galton–Watson tree conditioned on having a large number of marked vertices converges in
distribution to Kesten’s tree and applied this result to give the limit in distribution of a critical
Galton–Watson tree conditioned on having a large number of protected nodes.

Let L(t) be the width of the tree t. Note that this functional L is clearly monotone in the
sense of [5]; therefore, using [5, Theorem 2.1], we immediately get that a critical GW tree τ

conditioned on {L(τ ) > n} converges in distribution toward Kesten’s tree as n goes to infinity.
In this paper, we propose another proof by somewhat generalizing this monotonicity property.
Notice that the functional L does not satisfy additivity in [2]. Considering the conditioning
event {L(τ ) = n} was partially solved in [5].

Let p = (p(0), p(1), . . . ) be a probability distribution on the set of nonnegative integers.
We say that p has finite support if the set {n ∈N, p(n) > 0} is finite; p is called nonsingular if
p(0) + p(1) < 1. For any nonsingular and critical distribution p with finite support, [5] provides
a positive answer to this question; more precisely, proving that a critical GW tree τ conditioned
on {L(τ ) = n} converges in distribution toward Kesten’s tree as n goes to infinity.
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The main objective of this paper is to provide another proof. On the technical level, our
proofs are extremely short and elementary, thanks in particular to the convenient framework
in [2].

The paper is then organized as follows: In Section 2, we recall briefly the framework we
use for discrete trees and define the Galton–Watson tree τ and Kesten’s tree τ ∗ associated with
offspring distribution p. In Section 3, we state and prove our general result on local convergence
of conditioned critical and subcritical Galton–Watson trees and we apply it to the conditioning
on large width, in the critical case, in Corollary 3.6, which is one of the main objectives of this
paper.

In Section 4, we study the conditioning on large width of a critical Galton–Watson tree with
finite support, where we give an elementary and short proof. Finally, we generalize this result
by considering a type of conditioning which has never been treated before.

2. Technical background on GW trees

2.1. The set of discrete trees

We denote by N= {0, 1, 2, . . .} the set of nonnegative integers and by N
∗ = {1, 2, . . .}

the set of positive integers. We recall Neveu’s formalism [7] for ordered rooted trees. Let
U = ⋃

n≥0 (N∗)n be the set of finite sequences of positive integers with the convention (N∗)0 =
{∅}. For u ∈ U , its length or generation |u| ∈N is defined by u ∈ (N∗)|u|. If u and v are two
sequences of U , we denote by uv the concatenation of the two sequences, with the convention
that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is An(u) = {v ∈ U ; there exists
w ∈ U such that u = vw}. The most recent common ancestor of a subset s of U , denoted by R(s),
is the unique element u of ∩u∈sAn(u) with maximal length |u|. For two distinct elements u and
v of U , we denote by u < v the lexicographic order on U , i.e. u < v if u ∈ An(v) and u �= v, or if
u = wiu′ and v = wjv′ for some i, j ∈N

∗ with i < j. We write u ≤ v if u = v or u < v.
A tree t is a subset of U that satisfies:

• ∅ ∈ t;

• if u ∈ t, then An(u) ⊂ t;

• for every u ∈ t, there exists ku(t) ∈N such that, for every i ∈N
∗, ui ∈ t if and only if

1 ≤ i ≤ ku(t).

The vertex ∅ is called the root of t. The integer ku(t) represents the number of offspring of
the vertex u ∈ t, and we call it the outdegree of the node u in the tree t. The maximal outdegree
M(t) of a tree t is defined by M(t) = sup{ku(t), u ∈ t}. The set of children of a vertex u ∈ t is
given by Cu(t) = {ui; 1 ≤ i ≤ ku(t)}. By convention, we set ku(t) = −1 if u �∈ t.

A vertex u ∈ t is called a leaf if ku(t) = 0. We denote by L0(t) the set of leaves of t. A vertex
u ∈ t is called a protected node if Cu(t) �= ∅ and Cu(t)

⋂L0(t) = ∅, i.e. u is not a leaf and none
of its children are leaves.

For a tree t, we denote by Zn(t) = Card({u ∈ t, |u| = n}) the size of the nth generation of t,
and the height of t is defined by H(t) = sup{|u|, u ∈ t} and can be infinite. We define the width
L(t) of t as L(t) = supk≥0 Zk(t).

We denote by T the set of trees, by T0 = {t ∈T; Card(t) < +∞} the subset of finite trees,
and by T1 = {t ∈T; limn→+∞ |M({u ∈ t; |u| = n})| = +∞} the subset of trees with a unique
infinite spine.
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For h ∈N, the restriction function rh from T to T is defined by rh(t) = {u ∈ t, |u| ≤ h}. We
endow the set T with the ultrametric distance

d(t, t′) = 2− sup{h∈N,rh(t)=rh(t′)}.

A sequence (tn, n ∈N) of trees converges to a tree t with respect to the distance d if and only
if, for every h ∈N, rh(tn) = rh(t) for n large enough.

Let (Tn, n ∈N) and T be T-valued random variables. We denote by dist(T) the distribu-
tion of the random variable T , and write limn→+∞ dist(Tn) = dist(T) for the convergence in
distribution of the sequence (Tn, n ∈N) to T .

If t, t′ ∈T and x ∈L0(t) we denote by t �x t′ = {u ∈ t} ∪ {xv; v ∈ t′} the tree obtained by
grafting the tree t′ on the leaf x of the tree t. For every t ∈T and every x ∈L0(t), we shall
consider the set of trees obtained by grafting a tree on the leaf x of t: T(t, x) = {t �x t′; t′ ∈T}.

For convergence in distribution in the set T0 ∪T1, we recall the following key characteri-
zation in [3].

Lemma 1. Let (Tn)n∈N and T be random trees taking values in the set T0 ∪T1. Then the
sequence (Tn)n∈N converges in distribution to T if and only if:

(i) for every finite tree t ∈T0, limn→+∞ P(Tn = t) = P(T = t);

(ii) for every finite tree t ∈T0 and every leaf x of t,

lim inf
n→+∞ P(Tn ∈T(t, x)) ≥ P(T ∈T(t, x)).

2.2. Galton–Watson trees

Let p = (p(n), n ∈N) be a probability distribution on N. We assume that

p(0) > 0, p(0) + p(1) < 1, μ :=
+∞∑

n=0

np(n) < +∞. (1)

A T-valued random variable τ is a GW tree with offspring distribution p if the distribution
of k∅(τ ) is p and it enjoys the branching property: for n ∈N

∗, conditionally on {k∅(τ ) = n}, the
subtrees (S1(τ ), . . . , Sn(τ )) are independent and distributed as the original tree τ .

The GW tree and the offspring distribution are called critical (resp. subcritical, supercritical)
if μ = 1 (resp. μ < 1, μ > 1). In the critical and subcritical cases, we have that, almost surely
(a.s.), τ belongs to T0.

2.3. Kesten’s tree

Let p be an offspring distribution satisfying (1) with μ ≤ 1 (i.e. the associated GW process
is critical or subcritical). We denote by p∗ = (p∗(n) = np(n)/μ, n ∈N) the corresponding size-
biased distribution.

We define an infinite random tree τ ∗ (the size-biased tree that we call Kesten’s tree in this
paper) whose distribution is described in the following:

There exists a unique infinite sequence (vk, k ∈N
∗) of positive integers such that, for every

h ∈N, v1 · · · vh ∈ τ ∗, with the convention that v1 · · · vh = ∅ if h = 0. The joint distribution of
(vk, k ∈N

∗) and τ ∗ is determined recursively as follows. For each h ∈N, conditionally given
(v1, . . . , vh) and {u ∈ τ ∗; |u| ≤ h} the tree τ ∗ up to level h, we have:
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• The number of children (ku(τ ∗), u ∈ τ ∗, |u| = h) are independent and distributed
according to p if u �= v1 · · · vh and according to p∗ if u = v1 . . . vh.

• Given {u ∈ τ ∗; |u| ≤ h + 1} and (v1, . . . , vh), the integer vh+1 is uniformly distributed on
the set of integers {1, . . . , kv1···vh(τ ∗)}.

Remark 1. Notice that, by construction, a.s. τ ∗ ∈T1. And, following Kesten [6], the random
tree τ ∗ can be viewed as the tree τ conditioned on nonextinction. Following [3], for t ∈T0 and
x ∈L0(t),

P(τ ∗ ∈T(t, x)) = P(τ = t)
μ|x|p(0)

= μ−|x|
P(τ ∈T(t, x)). (2)

In the particular case of a critical offspring distribution (μ = 1) we get, for all t ∈T0 and
x ∈L0(t), P(τ ∗ ∈T(t, x)) = P(τ ∈T(t, x)).

3. Main result

Let A be an integer-valued function defined on T which is finite on T0, and let n0 ∈N∪
{+∞} be given. We define, for all n ∈N

∗, the subset of trees An = {t ∈T; A(t) ∈ [n, n + n0)}.
Common values of n0 that will be considered are 1 and +∞.

The following theorem states a general result concerning the local convergence of criti-
cal and subcritical GW trees τ conditioned on An toward Kesten’s tree; its proof is in fact a
straighforward adaptation of the proof of [2, Theorem 3.1].

We denote by dist(τ | τ ∈An) the conditional law of τ given {τ ∈An}.
Theorem 1. Assume that (1) holds, μ ≤ 1, and that P(τ ∈An) > 0 for n large enough. Then,
if, for all t ∈T0 and x ∈L0(t),

lim inf
n→+∞

P(t �x τ ∈An)

P(τ ∈An)
≥ 1

μ|x| (3)

as n → +∞, we have dist(τ | τ ∈An) → dist(τ ∗).

Proof. Since μ ≤ 1, we have, a.s., τ ∈T0 and τ ∗ ∈T1. So we can use Lemma 1 to prove this
convergence.

We have, for every t ∈T0, x ∈L0(t), and t′ ∈T0,

P(τ = t �x t′) = P(τ = t)P(τ = t′)
p(0)

.

Let t ∈T0 and x ∈L0(t). For such n we get

P(τ ∈T(t, x) | τ ∈An) = 1

P(τ ∈An)

∑

t′∈T0

P(τ = t �x t′)1{t�xt′∈An}

= P(τ = t)
p(0)P(τ ∈An)

∑

t′∈T0

P(τ = t′)1{A(t�xt′)∈An}.

So, we obtain that

P(τ ∈T(t, x) | τ ∈An) = P(τ = t)
p(0)

P(t �x τ ∈An)

P(τ ∈An)
.
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Using (2), we deduce that

P(τ ∈T(t, x) | τ ∈An) = μ|x|
P(τ ∗ ∈T(t, x))

P(t �x τ ∈An)

P(τ ∈An)
.

Then, using (3), we deduce that

lim inf
n→+∞ P(τ ∈T(t, x) | τ ∈An) ≥ P(τ ∗ ∈T(t, x)). (4)

Furthermore, for all t ∈T0 and all n > A(t),

P(τ = t, τ ∈An) = P(τ = t, t ∈An) ≤ 1{t∈An} = 0,

and thus limn→+∞ P(τ = t | τ ∈An) = P(τ ∗ = t) = 0. Finally, by Lemma 1, we have proved
this result. �

We have several remarks related to Theorem 1.

Remark 2. Despite this proof being very similar to that of [2, Theorem 3.1], it is quite clear
that the condition therein is a particular case of our condition.

Remark 3. We apply Theorem 1 to the conditioning on the maximal outdegree. Let τ be a
critical Galton–Watson tree; we have, for every t ∈T0, x ∈L0(t),

P(M(t �x τ ) = n) = P(M(τ ) = n)

for n large enough. This yields a short and elementary proof of [4, Theorem 4.1]. In gen-
eral, assume that p is critical; A satisfies the identity property that, for all t ∈T0 and every
leaf x ∈L0(t), there exists n0 ∈N

∗ such that, for all t′ ∈T0 satisfying A(t �x t′) ≥ n0, A(t �x

t′) = A(t′); and assume that P(A(τ ) = n) > 0 for any n. Then, by Theorem 1, as n → +∞,
dist(τ | A(τ ) = n) → dist(τ ∗) and, as n → +∞, dist(τ | A(τ ) ≥ n) → dist(τ ∗).

Remark 4. Assume that p is critical. If A satisfies the monotonicity property that A(t �x t′) ≥
A(t′) for any t, t′ ∈T0 and x ∈L0(t), and if P(A(τ ) ≥ n) > 0 for any integer n (consider
n0 = +∞), then, using Theorem 1, as n → +∞, dist(τ | A(τ ) ≥ n) → dist(τ ∗), which provides
another short proof of [5, Theorem 2.1].

Remark 5. As a conclusion, Theorem 1 serves to cover all the situations encountered in [3]
(which are known as identity, additivity, and monotonicity), which allows us to give a simple
and short proof of [3, Theorems 2.2.1 and 2.2.4].

As direct application, we can recover several specific conditionings in the critical case:

• Conditioning on extinction after large time [2, 6], (A = H):

as n → +∞, dist(τ | H(τ ) ≥ n) → dist(τ ∗).

• Conditioning on the total population size, (A = Card):

As n → +∞, dist(τ | Card(τ ) ≥ n) → dist(τ ∗).

• Conditioning on the number of individuals having a given number of children:
Let A be a nonempty subset of N. For a tree t, we denote by LA(t) the total number of
nodes in the tree t with outdegree in A. Assume that

∑
k∈A p(k) > 0. Then, as n → +∞,

dist(τ |LA(τ ) ≥ n) → dist(τ ∗).
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• Conditioning on the number of protected nodes [1]:
Let A(t) be the number of protected nodes in the tree t. Then, as n → +∞,
dist(τ | A(τ ) ≥ n) → dist(τ ∗).

Notice that most of the applications only work in the critical case.
One of our original motivations for this result was the local convergence under conditioning

on large width, so now we apply Theorem 1 to this specific conditioning. Recall that the width
L(t) of a tree t is defined to be L(t) = supk≥0 Zk(t). Since p0 + p1 < 1, we have P(L(τ ) ≥ n) > 0
for any n. Then Theorem 1 immediately gives the local convergence of critical GW trees to
Kesten’s tree under the conditioning of large width.

Corollary 1. Assume that p is critical. Then, as n → +∞, dist(τ | L(τ ) ≥ n) → dist(τ ∗).

4. Conditioning on the largest generation, critical case

Theorem 2. Let τ be a critical GW tree with offspring distribution p satisfying (1) with finite
support, and let τ ∗ be a Kesten tree associated to p. Let τn be a random tree distributed accord-
ing to τ conditionally on {L(τ ) = n}. Then, as n → +∞, dist(τn) → dist(τ ∗), where the limit is
understood along the infinite subsequence {n ∈N : P(L(τ ) = n) > 0}.

Proof. We consider A(t) = L(t) with n0 = 1, i.e. An = {t ∈T; L(t) = n}. Since
p(0) + p(1) < 1, the set {n ∈N : P(L(τ ) = n) > 0} is infinite. Let t ∈T0, x ∈L0(t). We
consider K = sup{n ∈N, p(n) > 0} < +∞, the supremum of the support of p. We have, for all
|x| ≤ s ≤ H(t) and all n ≥ L(t) + KH(t)−|x| + 1,

Zs(t) +Zs−|x|(τ ) ≤ L(t) + Ks−|x| < n.

We deduce that L satisfies the property identity, i.e. L(t ∗x τ ) = n ⇔ L(τ ) = n for n large
enough. According to Theorem 1, we deduce the convergence and hence end the proof. �

We can generalize these results concerning the width in the following way: let A
be a nonempty subset of N such that

∑
k∈A p(k) > 0. For a tree t and s a nonnegative

integer, we write as L(s)
A (t) = {u ∈ t; |u| = s and ku(t) ∈A} the set of individuals, in gener-

ation s, whose number of children belongs to A, and L
(s)
A (t) as its cardinal. We consider

SA(t) = sups≥0 L
(s)
A (t).

In the case A= {0}, L(s)
A (t) represents the number of leaves in generation s of t, and SA(t)

the maximum number of leaves in the same generation. We can also have L
(s)
A (t) =Zs(t), and

so SA(t) = L(t) the largest generation by taking A=N.
Since p(0) + p(1) < 1 and

∑
k∈A p(k) > 0, the set {n ∈N : P(SA(τ ) = n) > 0} is infinite.

Since, for all t ∈T0, x ∈L0(t), and all |x| ≤ s ≤ H(t),

L
(s)
A (t) +L

(s−|x|)
A (τ ) ≤ L(t) + Ks−|x| < n

for n large enough, the same work as in the previous proof allows us to prove the following
theorem.

Theorem 3. Let τ be a critical GW tree with offspring distribution p satisfying (1) with
finite support and such that

∑
k∈A p(k) > 0. Let τ ∗ be a Kesten tree associated to p. Then,

as n → +∞, dist(τ | SA(τ ) = n) → dist(τ ∗), where the limit is understood along the infinite
subsequence {n ∈N : P(SA(τ ) = n) > 0} and dist(τ | SA(τ ) ≥ n) → dist(τ ∗).

Note that this type of conditioning has never been treated before.
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