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RATIO AND STOCHASTIC ERGODIC THEOREMS
FOR SUPERADDITIVE PROCESSES

HUMPHREY FONG

1. Introduction. Let (X, %7, m) be a o-finite measure space and let T be
a positive linear operator on L, = Li(X, &/, m). T is called Markovian if

(1.1) [ Tfdm = [ fdm, f€ L.
T is called sub-Markovian if
(1.2) [ITfldm <[|fldm, f¢€ L.

All sets and functions are assumed measurable; all relations and statements are
assumed to hold modulo sets of measure zero.
For a sequence of L;* functions (fo, f1, f2, - - .), let

Ss=fo+ A+ ...+ fam, nZ1; 50=0.

(fn) is called a superadditive sequence or process, and (s,) a superadditive sum
relative to a positive linear operator 7" on L, if

(1.3) T*s, = Sppx — Sxy ky,m 20,
and
(1.4) v = sup, (l/n)fsn dm < 0.

(s,) 1s said to be extended superadditive if (1.3) holds. A sequence of non-negative
functions (p;) is called T-admaissible if Tp; =< p;y1for 7 = 0. As pointed out in
[1], the sequence of partial sums (32! p;) of an admissible sequence (p;) is
extended superadditive. Superadditive sequences relative to a sub-Markovian
operator have been studied by Akcoglu and Sucheston in [1], in which the
theory of subadditive processes of J. F. C. Kingman for invertible measure-
preserving transformations is generalized to the operator-theoretic setting of
sub-Markovian operators.

Following the terminology of [1], an L,*-function ¢ is called an exact dominant
of a superadditive sequence (f,) if f ddm = vy and

(15) YriTi62s, n=12....

It is proved in [1] that if 7"is Markovian, then a superadditive process admits

at least one exact dominant. This result is a generalization of the Kingman

decomposition for subadditive processes, and is used in [1] to derive ratio

ergodic theorems for superadditive sums relative to a sub-Markovian operator.
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In Section 2, we derive a ratio ergodic theorem for superadditive sums rela-
tive to an operator I satisfying the more general boundedness condition (B):

(B)  sup, [|(1/n) 2357 Tl < 0.

The result generalizes the ratio ergodic theorem in [13] and extends the ratio
ergodic theorem in [1].

We also study the ‘stochastic convergence’ of superadditive sums. Let
B C X. We say that a sequence of functions (f,) converges stochastically on B
if there exists a function f such that for each ¢ > 0 and each 4 C B with
m(A) < oo, we have

lim, m[4 N {x: |[f.(x) — fx)] = ¢] = 0.

‘Stochastic convergence’ is equivalent to ‘convergence in measure’ if
m(B) < co. It is well-known that for a sub-Markovian operator 7" on L; and
f € L, the averages (1/n)(f + Tf + ... 4+ T™f) need not converge a.e. or
in L (see [3]). However, the following theorem of U. Krengel [12] shows that
stochastic convergence does hold:

THEOREM A. If T is a linear contraction operator on L(X, o/, m), then for
every f € Li, the averages (1/n)(f + Tf + ... + T"Yf) converge stochastically
on X.

In Section 3, we show that Theorem A can be extended to superadditive
sums, and also to the case when 7 is not necessarily sub-Markovian.

Section 4 deals with continuous parameter superadditive processes. We show
that most of the results for discrete parameter superadditive processes easily
carry over to the continuous parameter case.

2. A ratio ergodic theorem. In this section, we assume that 7" is a positive
linear operator on L;(X, .o/, m) satisfying condition (B). The ‘Sucheston de-
composition’ states that the space X decomposes into a ‘remaining’ part ¥V
and a ‘disappearing’ part Z, with the properties that Z is 7’-closed and that
there exists a function e € L_* such thate > O on Y and 7% ¢ = ¢ ([13],
also [6]).

THEOREM 2.1. Assume condition (B). Let (s,) be superadditive and (s,’) be
extended superadditive relative to 1'. Then the ratios s,/s, converge a.e. on the
set{s, >0 forsomen} M Y.

Proof. The operator V defined by the relation
(2.1) Vi=eT(f1y/e), f€ Ly,

is a Markovian operator on L;(¥) (see [13]). Since Z is T-closed, we have that
for £ = 0,

(2.2) V* =e-T*f/e), f€ Li(Y).
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Set u, = e-s,, ) = e-s,’. (2.2) and (1.3) imply that for k, n = 0,
2.3) Vku, = e-T*s, < e(Sppx — St) = Uiz — Up
It also follows from (1.4) that for n = 1,

(/n)-f updm = (|lellw/n)[ spdm = v-|le]l, < 0.

Hence (u,) is superadditive relative to the Markovian operator V. Similarly
(u,") is extended superadditive relative to V. By Theorem 3.3 of [1], the ratios
u,/u, converge a.e. on the set {u,” > 0 for some n} = {s,” > 0 for some n}
M Y. The conclusion of the theorem follows since (u,/u,’) = (s,/s,’) on the
set {s,/” > 0 for somen} M Y.

Remark. It is known that if there is a function g € Li* such that {35 T =
o} M Z # @, then the ratios > =1 T''f/>"»~! Tg need not converge a.e. on Z
for f € L, (see [8], [7]). The trivial example 7" = 0 (in this case, X = Z) shows
that in general the ratios s,/s,” of Theorem 2.1 need not converge on the set
{s,’ > Oforsomen} M Zevenif 3.7 T < co a.e. foreveryg € Li+.

3. Stochastic convergence. We consider in this section the stochastic
convergence of the sequence s,/%n. The definition of ‘stochastic convergence’ is
given in Section 1.

We first recall some known facts about sub-Markovian operators: For a
sub-Markovian operator 7, the space X decomposes into the conservative part C
and the dissipative part D such that forany f € Li+, >3 Tf =00 or 0on C,
and >3 T''f <o onD.

TueoreM 3.1. If T is Markovian, and (s,) is superadditive, then s,/n con-
verges stochastically on X.

Proof. By Theorems 2.1 and 3.1 of [1], the sequence (s,) has an exact domi-
nant § such that

(3.1) lim,s,/>*'T%W =1 ae.

onC M E,where E = {31 77% >0 forsomen}.On C N E, the stochastic
convergence of s,/# follows from Theorem A and (3.1) since

o/ = (5,/ 2257 T78)- (X4 1T'6/m);
on D NE, 0 £s,/n £ >%17%/n which tends to 0 a.e. on D; on E°,
s,/n = 0.
THEOREM 3.2. If T s sub-Markovian, (s,) superadditive, and if on D, s, =
2n=L T'%5 for some & € Li+, then s,/n converges stochastically on X.

Proof. Since T'(1¢+s,) = 1¢(Ts,) = 1¢(Sppx — Si), the sequence (1¢-s,) is
superadditive relative to the conservative (hence Markovian) operator T¢
1¢71¢. By Theorem 3.1, s,/# converges stochastically on C. By assumption,
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So/m = 201 T%/n on D. Thus s,/n also converges stochastically on D by
Theorem A.

We next relax the norm condition on 7. For an operator 7 satisfying condi-
tion (B), X = Y 4 Z is the ‘Sucheston decomposition’ discussed at the
beginning of Section 2.

THEOREM 3.3. Assume condition (B), and let (s,) be superadditive. Then s,/n
converges stochastically on Y.

Proof. Let the sequence (#,) = (e-s,) and the operator V be as in the proof
of Theorem 2.1. Thus (u,) is superadditive relative to the operator I/, which is
Markovian on L;(Y). It follows from Theorem 3.1 that u,/n converges sto-
chastically on X. Since {¢ > 0} = Y and u,/n = e-s,/n for n = 1, s,/n con-
verges stochastically on Y.

Example. The following example shows that s,/7# need not converge sto-
chastically on Z even if s, is additive, i.e., s, = > ' T for some f € L;*,

n=1.

Let X = {0, 1, 2, ...} and let m be counting measure on X. Thus L; = /.
Let 4 ={n=1: 22 <5 < 224! for some 2= 0}. For f = (f(j)) €L,
define

ZiEAf(i): 7=0
Tf(j) = 40 , j=1
fG—-1, j>1

It follows that for n = 1,

{Ziﬂ—lm f@, 7=0
Tmf(5) = <0 , 1 =j=<n
fG—mn) , J>n.
Thus

T*lli = X etnatea [f@)] + Xsn [fG — n)| = 2/Iflls

Hence [|[T"| £ 2forn =1, YV =1{1,2,...}, and Z = {0}. Let f = 14.
Then

22k+1_1 2k+2
2%t _q

(1/22k+1) n; T7f(0) =’3—(?k+1) — 3,

and

22k_1

(1/2%) X T70) = @~ 1)/3@™) — &

Hence (1/7) >-*' Tf does not converge pointwise or stochastically on the
set Z = {0}.
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4. Continuous parameter. In this section, we deal with continuous param-
eter superadditive processes. We first state several lemmas which are simple
consequences of the results in [1].

Let C and D be respectively the conservative and dissipative parts of a
sub-Markovian operator 7" on L;.

LEMMA 4.1. Let T be Markovian, and let (s,) be superadditive with exact
dominant 6. Then for any fixed integer k,

lim, S,40/2 21 T8 = 1
ae.on C N E where E = {31 T% >0 for somen}.
Proof. For fixed k and large #,
(40)  5un/ T3 796 = (s,00/ T3040 T40) - (SpH1 T4/ 574 %) on E.

The conclusion of the lemma follows since s,/ 5! T*§ converges to 1
a.e. on C M E according to Theorem 3.1 in [1], and > »t*-1 Ti/3> n-1 T'%§
converges to 1 a.e. on E by a lemma of Chacon and Ornstein [3].

LemmaA 4.2. Let T be sub-Markovian, and let (s,), (s,') be superadditive. Then
for any fixed integer k,

lim, Sp4x/S," = lim, s,/s,’

a.e.on C M E, where E = {5, > 0 for some n}. If either (a) T is Markovian,
or (b) s, =2"'T% on D NE for some § € Li*, then the conclusion also
holds on D M E.

Proof. Let & be the exact dominant of (s,’) relative to the conservative
operator T'¢ = 1¢+T-1¢ on C. For fixed k&,

(42)  Supr/a’ = (S Swr) + (Sua’/ 2257 T187) - (2047 1707 /s4)

on the set C M E. By Theorem 3.2 of [1], lim, s,/s,’ exists on C M E. By
Lemma 4.1, the ratios s,.'/2_%! T’ and s,’/> %! T converge to 1 a.e. on
C M E. Thus the first assertion of the lemma follows.

If (a) holds, then

(43) 0 <5, SIHTH £ Y2T% <

a.e. on D M E where ¢ is the exact dominant of (s,). (4.3) is also valid if (b)
holds. In either case, lim s, exists and is finite a.e. on D M E. Hence on
D N E, lim s,,;/s, = lim s,/lim s,.

LemmaA 4.3. Let T be sub-Markovian, (s,) superadditive, (s,') extended super-
additive. Then for any fixed integer k,

lim, S,4x/s, = lim, s,/s,’

a.e. on C N\ E', where E' = {s,, > 0 for some n}. The conclusion holds also
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on D M E' if either (a) T is Markovian, or (b) s, = 2211 for some
€ LitonD NE.

Proof. Let E = {s, > 0 for some #}. For fixed k and large #, we have

r _ (Sn+k/sn) (Sn/Sn') on EN E'
43 slsi = 4 mENE,

By Lemma 4.2, lim s,.;/s, = 1 a.e. on E M C, and also on £ M D if either
(a) or (b) holds. According to Theorem 3.3 of [1], lim s,/s,” exists and is finite
on E' M C, and also on E' M D if either (a) or (b) holds. The conclusion of
the lemma now follows from (4.5).

~ Let {S,: t = 0} be a family of L;* functions such that S; < .S, for 0 <
s £t.{S,: t = 0} is said to be superadditive (resp. extended superadditive)
relative to a positive linear operator 7" on L; if for some a > 0, the sequence
{Sne : m = 0} is superadditive (resp. extended superadditive). We may and
do assume that « = 1; otherwise we consider instead the process U, = S,
t = 0.

TaeOREM 4.4. Let T be sub-Markovian, {S,: t = 0} superadditive, {S/ :
t =2 0} extended superadditive. Then

lim 1500 St/Sll = limn%oo Sn/Snl

a.e. on the set C M E', where E' = {S/ > 0 for some t > 0}. The conclusion
holds alsoon D M E' if 1" 1s Markovian.

Proof.Forn =t <un +1,
(4.6) S,,/Sn+1/ = St/Stl = Sn+l/Snl

on the set /. By Lemma 4.3, the ratios S,/S, 1, S,+1/S,’ and S,/S,” all have
the same limit on C M E’, and also on D M E’ if 7" is Markovian. Thus the
theorem follows from (4.6).

We next prove a continuous parameter analogue of Theorem 2.1. For an
operator 1" satisfying the boundedness condition (B), X = V 4 Z is the
‘Sucheston decomposition’ discussed in Section 2.

THEOREM 4.5. Let T be a positive linear operator satisfying condition (B).
Let {S,: t = 0} be superadditive and {S, : t = 0} extended superadditive.
Then the ratios S,/S, converge to a finite limit a.e. on the se¢ ¥ M {S,/ >0
for some ¢t > 0}.

Proof. The proof is analogous to the proof of Theorem 2.1, except that here
we apply Theorem 4.4 above instead of Theorem 3.3 of [1].

The last two theorems are continuous parameter analogues of Theorems 3.2
and 3.3. Their proofs follow immediately from Theorems 3.2 and 3.3 and the
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obvious inequality

A7) S,/ +1) €S/t < Spa/n

THEOREM 4.6. If T s sub-Markovian, {S,} superadditive, and if on the dis-
sipative part D, S, = > "1V TS for some § € Lit, n = 1, then the ratios S,/t
converge stochastically on X.

THEOREM 4.7. Assume condition (B), and let {S,} be superadditive. Then the
ratios S/t converge stochastically on Y.
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