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RATIO AND STOCHASTIC ERGODIC THEOREMS 
FOR SUPERADDITIVE PROCESSES 

HUMPHREY FONG 

1 . Introduction. Let (X, s$, m) be a o--finite measure space and let T be 
a positive linear operator on L\ = Li(X, <$/, m). T is called Markovian if 

(1.1) J Tfdm = Jfdm, / £ U 

T is called sub-Markovian if 

(1.2) j\Tf\dm ûf\f\dm, f 6 U 

All sets and functions are assumed measurable ; all relations and statements are 
assumed to hold modulo sets of measure zero. 

For a sequence of L\+ functions (f0, / i , /2, . . .)» l e t 

*n = /o + jfi + • •. + /»-i, « e l ; ô = 0. 
(fn) is called a super additive sequence or process, and (sn) a super additive sum 
relative to a positive linear operator T on L\ if 

(1.3) r*5w g <>„+* - s*, &, w ^ 0, 

and 

(1.4) 7 = supn (1/») J sndm < oo . 

(sn) is said to be extended super additive if (1.3) holds. A sequence of non-negative 
functions (pt) is called T-admissible ii Tpt ^ pi+i for i ^ 0. As pointed out in 
[1], the sequence of partial sums (So - 1 Pi) °f a n admissible sequence (pi) is 
extended superadditive. Superadditive sequences relative to a sub-Markovian 
operator have been studied by Akcoglu and Sucheston in [1], in which the 
theory of subadditive processes of J. F. C. Kingman for invertible measure-
preserving transformations is generalized to the operator-theoretic setting of 
sub-Markovian operators. 

Following the terminology of [1], an Li+-function ô is called an exact dominant 
of a superadditive sequence (fn) if J ô dm = y and 

(1.5) Z r 1 T*b ^sny n = 1, 2, . . . . 

It is proved in [1] that if T is Markovian, then a superadditive process admits 
at least one exact dominant. This result is a generalization of the Kingman 
decomposition for subadditive processes, and is used in [1] to derive ratio 
ergodic theorems for superadditive sums relative to a sub-Markovian operator. 
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In Section 2, we derive a ratio ergodic theorem for superadditive sums rela­
tive to an operator T satisfying the more general boundedness condition (B) : 

(B) s u p J K l / ^ E r ^ l l i < o o . 

The result generalizes the ratio ergodic theorem in [13] and extends the ratio 
ergodic theorem in [1]. 

We also study the 'stochastic convergence' of superadditive sums. Let 
B ÇZ X. We say that a sequence of functions (fn) converges stochastically on B 
if there exists a function / such that for each e > 0 and each A Ç B with 
m (A) < oo , we have 

\\mnm[A C\ {x: \fn(x) - f(x)\ è e}] = 0. 

'Stochastic convergence' is equivalent to 'convergence in measure' if 
m(B) < oo. It is well-known that for a sub-Markovian operator T on L\ and 
/ 6 Li, the averages (l/n)(f + Tf + . . . + Tn~lf) need not converge a.e. or 
in L\ (see [3]). However, the following theorem of U. Krengel [12] shows that 
stochastic convergence does hold : 

THEOREM A. If T is a linear contraction operator on L\{X,sé', m), then for 
every f £ Li, the averages ( 1 / « ) ( / + Tf + . . . + Tn~lf) converge stochastically 
on X. 

In Section 3, we show that Theorem A can be extended to superadditive 
sums, and also to the case when T is not necessarily sub-Markovian. 

Section 4 deals with continuous parameter superadditive processes. We show 
that most of the results for discrete parameter superadditive processes easily 
carry over to the continuous parameter case. 

2. A ratio ergodic theorem. In this section, we assume that T is a positive 
linear operator on Li(X,s/, m) satisfying condition (B). The 'Sucheston de­
composition' states that the space X decomposes into a 'remaining' part Y 
and a 'disappearing' part Z, with the properties that Z is 7^-closed and that 
there exists a function e G Lœ

+ such that e > 0 on Y and r* e = e ([13], 
also [6]). 

THEOREM 2.1. Assume condition (B). Let (sn) be superadditive and (sn') be 
extended superadditive relative to T. Then the ratios sn/sn

r converge a.e. on the 
set \sn' > 0 for somen} C\ Y. 

Proof. The operator V defined by the relation 

(2.1) Vf = e-T(f-lY/e), f £ Llt 

is a Markovian operator on L\{ Y) (see [13]). Since Z is T-closed, we have that 
for k è 0, 

(2.2) V*f=e-T«(f/e), / 6 L i ( 7 ) . 
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Set un = e-sn, un
r = e-sn'. (2.2) and (1.3) imply that for k, n ^ 0, 

(2.3) V*un = e-Tksn ^ e(sn+k - sk) = un+k - uk. 

It also follows from (1.4) that for n ^ 1, 

(l/n)-jundm ^ (\\e\\Jn)-j sndm ^ y\\e\\œ < co. 

Hence (un) is superadditive relative to the Markovian operator V. Similarly 
(Uj/) is extended superadditive relative to V. By Theorem 3.3 of [1], the ratios 
ujujl converge a.e. on the set {un' > 0 for some n) = {sn

r > 0 for some n\ 
C\ Y. The conclusion of the theorem follows since (un/un

r) = (sn/sn
r) on the 

set {sn' > 0 for some n] C\ Y. 

Remark. It is known that if there is a function g £ Lx+ such that {J^ Flg = 
oo } r\ Z 9^ 0, then the ratios S o - 1 Pf/YX~l T*g need not converge a.e. on Z 
for/ G Li (see [8], [7]). The trivial example T = 0 (in this case, X = Z) shows 
that in general the ratios sn/sn

f of Theorem 2.1 need not converge on the set 
\sn

r > 0 for some n) C\ Z even if Y^ Tlg < oo a.e. for every g £ Li+. 

3. Stochastic convergence. We consider in this section the stochastic 
convergence of the sequence sn/n. The definition of 'stochastic convergence' is 
given in Section 1. 

We first recall some known facts about sub-Markovian operators : For a 
sub-Markovian operator T, the space X decomposes into the conservative part C 
and the dissipative part D such that for a n y / £ L\+, X^ Tf = oo or 0 on C, 
and X£ T*f < oo on D. 

THEOREM 3.1. If T is Markovian, and (sn) is superadditive, then sn/n con­
verges stochastically on X. 

Proof. By Theorems 2.1 and 3.1 of [1], the sequence (sn) has an exact domi­
nant ô such that 

(3.1) \imnsn/ZVTiô = 1 a-e-

on C H E, where £ = {J2V Tlb > 0 for some n). On C C\ E, the stochastic 
convergence of sw/?z follows from Theorem A and (3.1) since 

sjn = (sJZV T^-iZV T'ô/n); 

on D H E, 0 g 5n/w ^ Zo""1 r ^ A * which tends to 0 a.e. on D; on £ c , 
sjn = 0. 

THEOREM 3.2. If T is sub-Markovian, (sn) superadditive, and if on D, sn = 
23o-1 Tlb for some 8 d Li+, then sn/n converges stochastically on X. 

Proof. Since T(lc-sn) S lc(Psn) ^ IcCVwt ~ %), the sequence (lC'Sn) is 
superadditive relative to the conservative (hence Markovian) operator Tc = 
l c n c . By Theorem 3.1, sjn converges stochastically on C. By assumption, 
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sJn = HV1 Tlh/n on D. Thus sn/n also converges stochastically on D by 
Theorem A. 

We next relax the norm condition on T. For an operator T satisfying condi­
tion (B), X = Y + Z is the 'Sucheston decomposition' discussed at the 
beginning of Section 2. 

THEOREM 3.3. Assume condition (B), and let (sn) be super additive. Then sn/n 
converges stochastically on Y. 

Proof. Let the sequence (un) = (e • sn) and the operator V be as in the proof 
of Theorem 2.1. Thus (un) is superadditive relative to the operator V, which is 
Markovian on L\(Y). It follows from Theorem 3.1 that ujn converges sto­
chastically on X. Since {e > 0} = Y and ujn = e-sjn for n ^ 1, sjn con­
verges stochastically on Y. 

Example. The following example shows that sn/n need not converge sto­
chastically on Z even if sn is additive, i.e., sn = X)o-1 ^ 7 f° r s o m e / 6 ^i+> 
w = 1. 

Let X = {0, 1, 2, . . .} and let m be counting measure on X.Thus L\ = l\. 
Let A = {n = 1 : 22* ^ » < 22i+l for some i ^ 0}. For f = ( / ( j ) ) € *i, 
define 

( E < € A / ( Ï ) , i = o 

r/O") = <o , 7 = 1 
(/(i - i) , j > i. 

It follows that for w = 1, 

0 , 1 £ j = » 
/ ( j - ») , j > n. 

Thus 

ll^/ll i = Zi-h.-i€A |/(*)| + Ei>»l/C/ - n)\ = 211/Hx. 

Hence | | r n | | ^ 2 for » ^ 1, F = {1, 2, . . .}, and Z = {0}. Let / = l m . 
Then 

(l/22*+1) £ î 7 ( 0 ) = 4 ô H ^ ^ f , 

and 

(1/22*) f ) 77(0) = ( 2 2 * - l ) / 3 ( 2 2 f c ) - ^ i 
rc=*0 

Hence (1/w) 2Zo—1 ^ 7 does n o t converge pointwise or stochastically on the 
s e t Z = {0}. 
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4. Continuous parameter. In this section, we deal with continuous param­
eter superadditive processes. We first state several lemmas which are simple 
consequences of the results in [1]. 

Let C and D be respectively the conservative and dissipative parts of a 
sub-Markovian operator T on L±. 

LEMMA 4.1. Let T be Markovian, and let (sn) be superadditive with exact 
dominant ô. Then for any fixed integer k, 

a.e. onC C\ E, whereE = (Zo - 1 T*ô > 0 for somen}. 

Proof. For fixed k and large n, 

(4.1) W E T T'ô = ( W E T * - 1 T% • (23+*-» T'Ô/ZV T'5) on E. 

The conclusion of the lemma follows since sn+k/Y^+k~l Tlb converges to 1 
a.e. on C r\E according to Theorem 3.1 in [1], and Zo4""-1 T'ô/ZV Tlô 
converges to 1 a.e. on £ by a lemma of Chacon and Ornstein [3]. 

LEMMA 4.2. Let T be sub-Markovian, and let (sn), (sn
r) be superadditive. Then 

for any fixed integer k, 

limn sn+k/sn' = limn sjsn' 

a.e. on C C\ E, where E = {sn
f > 0 for some n). If either (a) T is Markovian, 

or (b) sn = Zo_ 1 T*ô on D C\E for some 8 £ Li+, then the conclusion also 
holds on D C\ E. 

Proof. Let ô' be the exact dominant of (sn
r) relative to the conservative 

operator Tc = lc- T- lc on C. For fixed k, 

(4.2) sn+k/sn' = {sn+k/sn+k') • (s^'/ZV TV) • ( E r 1 TV/s*') 

on the set C C\ E. By Theorem 3.2 of [1], lim„ sn/sn
f exists on C C\ E. By 

Lemma 4.1, the ratios sn+k /^n~l Tiô/ and V / X o - 1 T*ô' converge to 1 a.e. on 
C P\ E. Thus the first assertion of the lemma follows. 

If (a) holds, then 

(4.3) 0 £sn £ Zo"1 T'ô S £ " T'ô < oo 

a.e. on D C\ E where ô is the exact dominant of (sn). (4.3) is also valid if (b) 
holds. In either case, lim sn exists and is finite a.e. on D C\ E. Hence on 
D C\ E, lim sn+k/sn' = lim sjlim sn'. 

LEMMA 4.3. Let T be sub-Markovian, (sn) superadditive, (sn') extended super­
additive. Then for any fixed integer k, 

limn sn+k/sn' = limn 

a.e. on C C\ E', where Ef = {sn
f > 0 for some n). The conclusion holds also 
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on D C\ E' if either (a) T is Markovian, or (b) sn = So""1 ^ for some 

ô G U+onD r\E'. 

Proof. Let E = {sn > 0 for some n\. For fixed k and large n, we have 

(A rx / , _ j(sn+k/sn) • (s»/V) on £ H £ ' , 
(4.5) W s . - | Q o n £ f l n E,^ 

By Lemma 4.2, lim sn+k/sn = 1 a.e. on E C\ C, and also on E C\ D if either 
(a) or (6) holds. According to Theorem 3.3 of [1], lim sn/sn' exists and is finite 
on E' C\ C, and also on E' C\D if either (a) or (b) holds. The conclusion of 
the lemma now follows from (4.5). 

Let {St : t ^ 0} be a family of L\+ functions such that Ss ^ St for 0 ^ 
s ^ t. {St : / ^ 0} is said to be super additive (resp. extended super additive) 
relative to a positive linear operator T on Li if for some a > 0, the sequence 
{5na : n ^ 0} is superadditive (resp. extended superadditive). We may and 
do assume that a = 1 ; otherwise we consider instead the process Ut = Sta, 
t ^ 0. 

THEOREM 4.4. Let T be sub-Markovian, {St : t ^ 0} superadditive, {S/ : 
/ ^ 0} extended superadditive. Then 

lim u>œ St/S/ = l i m , ^ Sn/Sn ' 

a.e. on the set C P\ E', where E' = {5/ > 0 for some t > 0}. 77ze conclusion 
holds also on D C\E! if T is Markovian. 

Proof. For n ^ t < w + 1, 

(4.6) S „ A W ^ 5, /S, ' ^ 5,+ i /5n ' 

on the set E''. By Lemma 4.3, the ratios Sn/Sn+i, Sn+i/Sn' and Sn/Sn
r all have 

the same limit on C C\ E', and also on D C\ E' \l T is Markovian. Thus the 
theorem follows from (4.6). 

We next prove a continuous parameter analogue of Theorem 2.1. For an 
operator T satisfying the boundedness condition (B), X = Y + Z is the 
'Sucheston decomposition' discussed in Section 2. 

THEOREM 4.5. Let T be a positive linear operator satisfying condition (B). 
Let {St : t ^ 0} be superadditive and {S/ : t ^ Oj extended superadditive. 
Then the ratios St/S/ converge to a finite limit a.e. on the set Y C\ {S/ > 0 
for some t > 0}. 

Proof. The proof is analogous to the proof of Theorem 2.1, except that here 
we apply Theorem 4.4 above instead of Theorem 3.3 of [1]. 

The last two theorems are continuous parameter analogues of Theorems 3.2 
and 3.3. Their proofs follow immediately from Theorems 3.2 and 3.3 and the 
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obvious inequality 

(4.7) SJ{n + 1) S St/t ^ Sn+1/n. 

THEOREM 4.6. / / T is sub-Markovian, {St} super additive, and if on the dis-
sipative part D, Sn = X^_1 Tl8 for some 8 £ £i+ , n ^ 1, then the ratios St/t 
converge stochastically on X. 

THEOREM 4.7. Assume condition (B), and let {St} be super additive. Then the 
ratios St/t converge stochastically on Y. 
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