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RATIO AND STOCHASTIC ERGODIC THEOREMS 
FOR SUPERADDITIVE PROCESSES 

HUMPHREY FONG 

1 . Introduction. Let (X, s$, m) be a o--finite measure space and let T be 
a positive linear operator on L\ = Li(X, <$/, m). T is called Markovian if 

(1.1) J Tfdm = Jfdm, / £ U 

T is called sub-Markovian if 

(1.2) j\Tf\dm ûf\f\dm, f 6 U 

All sets and functions are assumed measurable ; all relations and statements are 
assumed to hold modulo sets of measure zero. 

For a sequence of L\+ functions (f0, / i , /2, . . .)» l e t 

*n = /o + jfi + • •. + /»-i, « e l ; ô = 0. 
(fn) is called a super additive sequence or process, and (sn) a super additive sum 
relative to a positive linear operator T on L\ if 

(1.3) r*5w g <>„+* - s*, &, w ^ 0, 

and 

(1.4) 7 = supn (1/») J sndm < oo . 

(sn) is said to be extended super additive if (1.3) holds. A sequence of non-negative 
functions (pt) is called T-admissible ii Tpt ^ pi+i for i ^ 0. As pointed out in 
[1], the sequence of partial sums (So - 1 Pi) °f a n admissible sequence (pi) is 
extended superadditive. Superadditive sequences relative to a sub-Markovian 
operator have been studied by Akcoglu and Sucheston in [1], in which the 
theory of subadditive processes of J. F. C. Kingman for invertible measure-
preserving transformations is generalized to the operator-theoretic setting of 
sub-Markovian operators. 

Following the terminology of [1], an Li+-function ô is called an exact dominant 
of a superadditive sequence (fn) if J ô dm = y and 

(1.5) Z r 1 T*b ^sny n = 1, 2, . . . . 

It is proved in [1] that if T is Markovian, then a superadditive process admits 
at least one exact dominant. This result is a generalization of the Kingman 
decomposition for subadditive processes, and is used in [1] to derive ratio 
ergodic theorems for superadditive sums relative to a sub-Markovian operator. 
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In Section 2, we derive a ratio ergodic theorem for superadditive sums rela
tive to an operator T satisfying the more general boundedness condition (B) : 

(B) s u p J K l / ^ E r ^ l l i < o o . 

The result generalizes the ratio ergodic theorem in [13] and extends the ratio 
ergodic theorem in [1]. 

We also study the 'stochastic convergence' of superadditive sums. Let 
B ÇZ X. We say that a sequence of functions (fn) converges stochastically on B 
if there exists a function / such that for each e > 0 and each A Ç B with 
m (A) < oo , we have 

\\mnm[A C\ {x: \fn(x) - f(x)\ è e}] = 0. 

'Stochastic convergence' is equivalent to 'convergence in measure' if 
m(B) < oo. It is well-known that for a sub-Markovian operator T on L\ and 
/ 6 Li, the averages (l/n)(f + Tf + . . . + Tn~lf) need not converge a.e. or 
in L\ (see [3]). However, the following theorem of U. Krengel [12] shows that 
stochastic convergence does hold : 

THEOREM A. If T is a linear contraction operator on L\{X,sé', m), then for 
every f £ Li, the averages ( 1 / « ) ( / + Tf + . . . + Tn~lf) converge stochastically 
on X. 

In Section 3, we show that Theorem A can be extended to superadditive 
sums, and also to the case when T is not necessarily sub-Markovian. 

Section 4 deals with continuous parameter superadditive processes. We show 
that most of the results for discrete parameter superadditive processes easily 
carry over to the continuous parameter case. 

2. A ratio ergodic theorem. In this section, we assume that T is a positive 
linear operator on Li(X,s/, m) satisfying condition (B). The 'Sucheston de
composition' states that the space X decomposes into a 'remaining' part Y 
and a 'disappearing' part Z, with the properties that Z is 7^-closed and that 
there exists a function e G Lœ

+ such that e > 0 on Y and r* e = e ([13], 
also [6]). 

THEOREM 2.1. Assume condition (B). Let (sn) be superadditive and (sn') be 
extended superadditive relative to T. Then the ratios sn/sn

r converge a.e. on the 
set \sn' > 0 for somen} C\ Y. 

Proof. The operator V defined by the relation 

(2.1) Vf = e-T(f-lY/e), f £ Llt 

is a Markovian operator on L\{ Y) (see [13]). Since Z is T-closed, we have that 
for k è 0, 

(2.2) V*f=e-T«(f/e), / 6 L i ( 7 ) . 
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Set un = e-sn, un
r = e-sn'. (2.2) and (1.3) imply that for k, n ^ 0, 

(2.3) V*un = e-Tksn ^ e(sn+k - sk) = un+k - uk. 

It also follows from (1.4) that for n ^ 1, 

(l/n)-jundm ^ (\\e\\Jn)-j sndm ^ y\\e\\œ < co. 

Hence (un) is superadditive relative to the Markovian operator V. Similarly 
(Uj/) is extended superadditive relative to V. By Theorem 3.3 of [1], the ratios 
ujujl converge a.e. on the set {un' > 0 for some n) = {sn

r > 0 for some n\ 
C\ Y. The conclusion of the theorem follows since (un/un

r) = (sn/sn
r) on the 

set {sn' > 0 for some n] C\ Y. 

Remark. It is known that if there is a function g £ Lx+ such that {J^ Flg = 
oo } r\ Z 9^ 0, then the ratios S o - 1 Pf/YX~l T*g need not converge a.e. on Z 
for/ G Li (see [8], [7]). The trivial example T = 0 (in this case, X = Z) shows 
that in general the ratios sn/sn

f of Theorem 2.1 need not converge on the set 
\sn

r > 0 for some n) C\ Z even if Y^ Tlg < oo a.e. for every g £ Li+. 

3. Stochastic convergence. We consider in this section the stochastic 
convergence of the sequence sn/n. The definition of 'stochastic convergence' is 
given in Section 1. 

We first recall some known facts about sub-Markovian operators : For a 
sub-Markovian operator T, the space X decomposes into the conservative part C 
and the dissipative part D such that for a n y / £ L\+, X^ Tf = oo or 0 on C, 
and X£ T*f < oo on D. 

THEOREM 3.1. If T is Markovian, and (sn) is superadditive, then sn/n con
verges stochastically on X. 

Proof. By Theorems 2.1 and 3.1 of [1], the sequence (sn) has an exact domi
nant ô such that 

(3.1) \imnsn/ZVTiô = 1 a-e-

on C H E, where £ = {J2V Tlb > 0 for some n). On C C\ E, the stochastic 
convergence of sw/?z follows from Theorem A and (3.1) since 

sjn = (sJZV T^-iZV T'ô/n); 

on D H E, 0 g 5n/w ^ Zo""1 r ^ A * which tends to 0 a.e. on D; on £ c , 
sjn = 0. 

THEOREM 3.2. If T is sub-Markovian, (sn) superadditive, and if on D, sn = 
23o-1 Tlb for some 8 d Li+, then sn/n converges stochastically on X. 

Proof. Since T(lc-sn) S lc(Psn) ^ IcCVwt ~ %), the sequence (lC'Sn) is 
superadditive relative to the conservative (hence Markovian) operator Tc = 
l c n c . By Theorem 3.1, sjn converges stochastically on C. By assumption, 
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sJn = HV1 Tlh/n on D. Thus sn/n also converges stochastically on D by 
Theorem A. 

We next relax the norm condition on T. For an operator T satisfying condi
tion (B), X = Y + Z is the 'Sucheston decomposition' discussed at the 
beginning of Section 2. 

THEOREM 3.3. Assume condition (B), and let (sn) be super additive. Then sn/n 
converges stochastically on Y. 

Proof. Let the sequence (un) = (e • sn) and the operator V be as in the proof 
of Theorem 2.1. Thus (un) is superadditive relative to the operator V, which is 
Markovian on L\(Y). It follows from Theorem 3.1 that ujn converges sto
chastically on X. Since {e > 0} = Y and ujn = e-sjn for n ^ 1, sjn con
verges stochastically on Y. 

Example. The following example shows that sn/n need not converge sto
chastically on Z even if sn is additive, i.e., sn = X)o-1 ^ 7 f° r s o m e / 6 ^i+> 
w = 1. 

Let X = {0, 1, 2, . . .} and let m be counting measure on X.Thus L\ = l\. 
Let A = {n = 1 : 22* ^ » < 22i+l for some i ^ 0}. For f = ( / ( j ) ) € *i, 
define 

( E < € A / ( Ï ) , i = o 

r/O") = <o , 7 = 1 
(/(i - i) , j > i. 

It follows that for w = 1, 

0 , 1 £ j = » 
/ ( j - ») , j > n. 

Thus 

ll^/ll i = Zi-h.-i€A |/(*)| + Ei>»l/C/ - n)\ = 211/Hx. 

Hence | | r n | | ^ 2 for » ^ 1, F = {1, 2, . . .}, and Z = {0}. Let / = l m . 
Then 

(l/22*+1) £ î 7 ( 0 ) = 4 ô H ^ ^ f , 

and 

(1/22*) f ) 77(0) = ( 2 2 * - l ) / 3 ( 2 2 f c ) - ^ i 
rc=*0 

Hence (1/w) 2Zo—1 ^ 7 does n o t converge pointwise or stochastically on the 
s e t Z = {0}. 

https://doi.org/10.4153/CJM-1979-048-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-048-2


SUPERADDITIVE PROCESSES 445 

4. Continuous parameter. In this section, we deal with continuous param
eter superadditive processes. We first state several lemmas which are simple 
consequences of the results in [1]. 

Let C and D be respectively the conservative and dissipative parts of a 
sub-Markovian operator T on L±. 

LEMMA 4.1. Let T be Markovian, and let (sn) be superadditive with exact 
dominant ô. Then for any fixed integer k, 

a.e. onC C\ E, whereE = (Zo - 1 T*ô > 0 for somen}. 

Proof. For fixed k and large n, 

(4.1) W E T T'ô = ( W E T * - 1 T% • (23+*-» T'Ô/ZV T'5) on E. 

The conclusion of the lemma follows since sn+k/Y^+k~l Tlb converges to 1 
a.e. on C r\E according to Theorem 3.1 in [1], and Zo4""-1 T'ô/ZV Tlô 
converges to 1 a.e. on £ by a lemma of Chacon and Ornstein [3]. 

LEMMA 4.2. Let T be sub-Markovian, and let (sn), (sn
r) be superadditive. Then 

for any fixed integer k, 

limn sn+k/sn' = limn sjsn' 

a.e. on C C\ E, where E = {sn
f > 0 for some n). If either (a) T is Markovian, 

or (b) sn = Zo_ 1 T*ô on D C\E for some 8 £ Li+, then the conclusion also 
holds on D C\ E. 

Proof. Let ô' be the exact dominant of (sn
r) relative to the conservative 

operator Tc = lc- T- lc on C. For fixed k, 

(4.2) sn+k/sn' = {sn+k/sn+k') • (s^'/ZV TV) • ( E r 1 TV/s*') 

on the set C C\ E. By Theorem 3.2 of [1], lim„ sn/sn
f exists on C C\ E. By 

Lemma 4.1, the ratios sn+k /^n~l Tiô/ and V / X o - 1 T*ô' converge to 1 a.e. on 
C P\ E. Thus the first assertion of the lemma follows. 

If (a) holds, then 

(4.3) 0 £sn £ Zo"1 T'ô S £ " T'ô < oo 

a.e. on D C\ E where ô is the exact dominant of (sn). (4.3) is also valid if (b) 
holds. In either case, lim sn exists and is finite a.e. on D C\ E. Hence on 
D C\ E, lim sn+k/sn' = lim sjlim sn'. 

LEMMA 4.3. Let T be sub-Markovian, (sn) superadditive, (sn') extended super
additive. Then for any fixed integer k, 

limn sn+k/sn' = limn 

a.e. on C C\ E', where Ef = {sn
f > 0 for some n). The conclusion holds also 
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on D C\ E' if either (a) T is Markovian, or (b) sn = So""1 ^ for some 

ô G U+onD r\E'. 

Proof. Let E = {sn > 0 for some n\. For fixed k and large n, we have 

(A rx / , _ j(sn+k/sn) • (s»/V) on £ H £ ' , 
(4.5) W s . - | Q o n £ f l n E,^ 

By Lemma 4.2, lim sn+k/sn = 1 a.e. on E C\ C, and also on E C\ D if either 
(a) or (6) holds. According to Theorem 3.3 of [1], lim sn/sn' exists and is finite 
on E' C\ C, and also on E' C\D if either (a) or (b) holds. The conclusion of 
the lemma now follows from (4.5). 

Let {St : t ^ 0} be a family of L\+ functions such that Ss ^ St for 0 ^ 
s ^ t. {St : / ^ 0} is said to be super additive (resp. extended super additive) 
relative to a positive linear operator T on Li if for some a > 0, the sequence 
{5na : n ^ 0} is superadditive (resp. extended superadditive). We may and 
do assume that a = 1 ; otherwise we consider instead the process Ut = Sta, 
t ^ 0. 

THEOREM 4.4. Let T be sub-Markovian, {St : t ^ 0} superadditive, {S/ : 
/ ^ 0} extended superadditive. Then 

lim u>œ St/S/ = l i m , ^ Sn/Sn ' 

a.e. on the set C P\ E', where E' = {5/ > 0 for some t > 0}. 77ze conclusion 
holds also on D C\E! if T is Markovian. 

Proof. For n ^ t < w + 1, 

(4.6) S „ A W ^ 5, /S, ' ^ 5,+ i /5n ' 

on the set E''. By Lemma 4.3, the ratios Sn/Sn+i, Sn+i/Sn' and Sn/Sn
r all have 

the same limit on C C\ E', and also on D C\ E' \l T is Markovian. Thus the 
theorem follows from (4.6). 

We next prove a continuous parameter analogue of Theorem 2.1. For an 
operator T satisfying the boundedness condition (B), X = Y + Z is the 
'Sucheston decomposition' discussed in Section 2. 

THEOREM 4.5. Let T be a positive linear operator satisfying condition (B). 
Let {St : t ^ 0} be superadditive and {S/ : t ^ Oj extended superadditive. 
Then the ratios St/S/ converge to a finite limit a.e. on the set Y C\ {S/ > 0 
for some t > 0}. 

Proof. The proof is analogous to the proof of Theorem 2.1, except that here 
we apply Theorem 4.4 above instead of Theorem 3.3 of [1]. 

The last two theorems are continuous parameter analogues of Theorems 3.2 
and 3.3. Their proofs follow immediately from Theorems 3.2 and 3.3 and the 
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obvious inequality 

(4.7) SJ{n + 1) S St/t ^ Sn+1/n. 

THEOREM 4.6. / / T is sub-Markovian, {St} super additive, and if on the dis-
sipative part D, Sn = X^_1 Tl8 for some 8 £ £i+ , n ^ 1, then the ratios St/t 
converge stochastically on X. 

THEOREM 4.7. Assume condition (B), and let {St} be super additive. Then the 
ratios St/t converge stochastically on Y. 
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