RATIO AND STOCHASTIC ERGODIC THEOREMS FOR SUPERADDITIVE PROCESSES

HUMPHREY FONG

1. Introduction. Let (X, \mathscr{A}, m) be a σ -finite measure space and let T be a positive linear operator on $L_1 = L_1(X, \mathscr{A}, m)$. T is called Markovian if

(1.1)
$$\int Tf dm = \int f dm, f \in L_1.$$

T is called *sub-Markovian* if

(1.2) $\int |Tf| dm \leq \int |f| dm, f \in L_1.$

All sets and functions are assumed measurable; all relations and statements are assumed to hold modulo sets of measure zero.

For a sequence of L_1^+ functions (f_0, f_1, f_2, \ldots) , let

$$s_n = f_0 + f_1 + \ldots + f_{n-1}, \quad n \ge 1; \quad s_0 = 0.$$

 (f_n) is called a superadditive sequence or process, and (s_n) a superadditive sum relative to a positive linear operator T on L_1 if

$$(1.3) \quad T^k s_n \leq s_{n+k} - s_k, \quad k, n \geq 0,$$

and

(1.4)
$$\gamma = \sup_n (1/n) \int s_n dm < \infty$$
.

 (s_n) is said to be extended superadditive if (1.3) holds. A sequence of non-negative functions (p_i) is called *T*-admissible if $Tp_i \leq p_{i+1}$ for $i \geq 0$. As pointed out in [1], the sequence of partial sums $(\sum_{i=1}^{n-1} p_i)$ of an admissible sequence (p_i) is extended superadditive. Superadditive sequences relative to a sub-Markovian operator have been studied by Akcoglu and Sucheston in [1], in which the theory of subadditive processes of J. F. C. Kingman for invertible measure-preserving transformations is generalized to the operator-theoretic setting of sub-Markovian operators.

Following the terminology of [1], an L_1^+ -function δ is called an *exact dominant* of a superadditive sequence (f_n) if $\int \delta dm = \gamma$ and

(1.5)
$$\sum_{0}^{n-1} T^i \delta \geq s_n, \quad n = 1, 2, \ldots$$

It is proved in [1] that if T is Markovian, then a superadditive process admits at least one exact dominant. This result is a generalization of the Kingman decomposition for subadditive processes, and is used in [1] to derive ratio ergodic theorems for superadditive sums relative to a sub-Markovian operator.

Received January 6, 1978.

HUMPHREY FONG

In Section 2, we derive a ratio ergodic theorem for superadditive sums relative to an operator T satisfying the more general boundedness condition (B):

(B)
$$\sup_{n} ||(1/n) \sum_{0}^{n-1} T^{i}||_{1} < \infty$$
.

The result generalizes the ratio ergodic theorem in [13] and extends the ratio ergodic theorem in [1].

We also study the 'stochastic convergence' of superadditive sums. Let $B \subseteq X$. We say that a sequence of functions (f_n) converges stochastically on B if there exists a function f such that for each $\epsilon > 0$ and each $A \subseteq B$ with $m(A) < \infty$, we have

$$\lim_n m[A \cap \{x \colon |f_n(x) - f(x)| \ge \epsilon\}] = 0.$$

'Stochastic convergence' is equivalent to 'convergence in measure' if $m(B) < \infty$. It is well-known that for a sub-Markovian operator T on L_1 and $f \in L_1$, the averages $(1/n)(f + Tf + \ldots + T^{n-1}f)$ need not converge a.e. or in L_1 (see [3]). However, the following theorem of U. Krengel [12] shows that stochastic convergence does hold:

THEOREM A. If T is a linear contraction operator on $L_1(X, \mathscr{A}, m)$, then for every $f \in L_1$, the averages $(1/n)(f + Tf + \ldots + T^{n-1}f)$ converge stochastically on X.

In Section 3, we show that Theorem A can be extended to superadditive sums, and also to the case when T is not necessarily sub-Markovian.

Section 4 deals with continuous parameter superadditive processes. We show that most of the results for discrete parameter superadditive processes easily carry over to the continuous parameter case.

2. A ratio ergodic theorem. In this section, we assume that T is a positive linear operator on $L_1(X, \mathscr{A}, m)$ satisfying condition (B). The 'Sucheston decomposition' states that the space X decomposes into a 'remaining' part Y and a 'disappearing' part Z, with the properties that Z is T-closed and that there exists a function $e \in L_{\infty}^+$ such that e > 0 on Y and $T^* e = e$ ([13], also [6]).

THEOREM 2.1. Assume condition (B). Let (s_n) be superadditive and (s_n') be extended superadditive relative to T. Then the ratios s_n/s_n' converge a.e. on the set $\{s_n' > 0 \text{ for some } n\} \cap Y$.

Proof. The operator V defined by the relation

(2.1)
$$Vf = e \cdot T(f \cdot \mathbf{1}_Y/e), f \in L_1,$$

is a Markovian operator on $L_1(Y)$ (see [13]). Since Z is T-closed, we have that for $k \ge 0$,

(2.2)
$$V^{k}f = e \cdot T^{k}(f/e), f \in L_{1}(Y).$$

Set $u_n = e \cdot s_n$, $u'_n = e \cdot s'_n$. (2.2) and (1.3) imply that for $k, n \ge 0$,

(2.3)
$$V^k u_n = e \cdot T^k s_n \leq e(s_{n+k} - s_k) = u_{n+k} - u_k.$$

It also follows from (1.4) that for $n \ge 1$,

$$(1/n) \cdot \int u_n dm \leq (||e||_{\infty}/n) \cdot \int s_n dm \leq \gamma \cdot ||e||_{\infty} < \infty$$

Hence (u_n) is superadditive relative to the Markovian operator V. Similarly (u_n') is extended superadditive relative to V. By Theorem 3.3 of [1], the ratios u_n/u_n' converge a.e. on the set $\{u_n' > 0 \text{ for some } n\} = \{s_n' > 0 \text{ for some } n\} \cap Y$. The conclusion of the theorem follows since $(u_n/u_n') = (s_n/s_n')$ on the set $\{s_n' > 0 \text{ for some } n\} \cap Y$.

Remark. It is known that if there is a function $g \in L_1^+$ such that $\{\sum_{0}^{\infty} T^i g = \infty\} \cap Z \neq \emptyset$, then the ratios $\sum_{0}^{n-1} T^i f / \sum_{0}^{n-1} T^i g$ need not converge a.e. on Z for $f \in L_1$ (see [8], [7]). The trivial example $T \equiv 0$ (in this case, X = Z) shows that in general the ratios s_n/s_n' of Theorem 2.1 need not converge on the set $\{s_n' > 0 \text{ for some } n\} \cap Z$ even if $\sum_{0}^{\infty} T^i g < \infty$ a.e. for every $g \in L_1^+$.

3. Stochastic convergence. We consider in this section the stochastic convergence of the sequence s_n/n . The definition of 'stochastic convergence' is given in Section 1.

We first recall some known facts about sub-Markovian operators: For a sub-Markovian operator T, the space X decomposes into the *conservative part* C and the *dissipative part* D such that for any $f \in L_1^+$, $\sum_{0}^{\infty} T^i f = \infty$ or 0 on C, and $\sum_{0}^{\infty} T^i f < \infty$ on D.

THEOREM 3.1. If T is Markovian, and (s_n) is superadditive, then s_n/n converges stochastically on X.

Proof. By Theorems 2.1 and 3.1 of [1], the sequence (s_n) has an exact dominant δ such that

(3.1) $\lim_{n \to \infty} s_n / \sum_{0}^{n-1} T^i \delta = 1$ a.e.

on $C \cap E$, where $E = \{\sum_{0}^{n-1} T^i \delta > 0 \text{ for some } n\}$. On $C \cap E$, the stochastic convergence of s_n/n follows from Theorem A and (3.1) since

 $s_n/n = (s_n/\sum_{0}^{n-1} T^i \delta) \cdot (\sum_{0}^{n-1} T^i \delta/n);$

on $D \cap E$, $0 \leq s_n/n \leq \sum_{0}^{n-1} T^i \delta/n$ which tends to 0 a.e. on D; on E^c , $s_n/n = 0$.

THEOREM 3.2. If T is sub-Markovian, (s_n) superadditive, and if on D, $s_n = \sum_{0}^{n-1} T^i \delta$ for some $\delta \in L_1^+$, then s_n/n converges stochastically on X.

Proof. Since $T(1_c \cdot s_n) \leq 1_c(Ts_n) \leq 1_c(s_{n+k} - s_k)$, the sequence $(1_c \cdot s_n)$ is superadditive relative to the conservative (hence Markovian) operator $T_c = 1_c T1_c$. By Theorem 3.1, s_n/n converges stochastically on C. By assumption,

HUMPHREY FONG

 $s_n/n = \sum_{0}^{n-1} T^i \delta/n$ on D. Thus s_n/n also converges stochastically on D by Theorem A.

We next relax the norm condition on T. For an operator T satisfying condition (B), X = Y + Z is the 'Sucheston decomposition' discussed at the beginning of Section 2.

THEOREM 3.3. Assume condition (B), and let (s_n) be superadditive. Then s_n/n converges stochastically on Y.

Proof. Let the sequence $(u_n) = (e \cdot s_n)$ and the operator V be as in the proof of Theorem 2.1. Thus (u_n) is superadditive relative to the operator V, which is Markovian on $L_1(Y)$. It follows from Theorem 3.1 that u_n/n converges stochastically on X. Since $\{e > 0\} = Y$ and $u_n/n = e \cdot s_n/n$ for $n \ge 1$, s_n/n converges stochastically on Y.

Example. The following example shows that s_n/n need not converge stochastically on Z even if s_n is additive, i.e., $s_n = \sum_{0}^{n-1} T^i f$ for some $f \in L_1^+$, $n \ge 1$.

Let $X = \{0, 1, 2, \ldots\}$ and let *m* be counting measure on *X*. Thus $L_1 = l_1$. Let $A = \{n \ge 1 : 2^{2^i} \le n < 2^{2^{i+1}} \text{ for some } i \ge 0\}$. For $f = (f(j)) \in l_1$, define

$$Tf(j) = \begin{cases} \sum_{i \in A} f(i), & j = 0\\ 0, & j = 1\\ f(j-1), & j > 1. \end{cases}$$

It follows that for $n \geq 1$,

$$T^{n}f(j) = \begin{cases} \sum_{i+n-1 \in A} f(i), & j = 0\\ 0, & , & 1 \leq j \leq n\\ f(j-n), & , & j > n. \end{cases}$$

Thus

$$||T^n f||_1 \leq \sum_{i+n-1 \in A} |f(i)| + \sum_{j>n} |f(j-n)| \leq 2||f||_1.$$

Hence $||T^n|| \le 2$ for $n \ge 1$, $Y = \{1, 2, ...\}$, and $Z = \{0\}$. Let $f = 1_{\{1\}}$. Then

$$(1/2^{2k+1}) \sum_{n=0}^{2^{2k+1}-1} T^n f(0) = \frac{2^{2k+2}-1}{3(2^{2k+1})} \to \frac{2}{3},$$

and

$$(1/2^{2k}) \sum_{n=0}^{2^{2k}-1} T^n f(0) = (2^{2k}-1)/3(2^{2k}) \to \frac{1}{3}.$$

Hence $(1/n) \sum_{0}^{n-1} T^{i}f$ does not converge pointwise or stochastically on the set $Z = \{0\}$.

4. Continuous parameter. In this section, we deal with continuous parameter superadditive processes. We first state several lemmas which are simple consequences of the results in [1].

Let C and D be respectively the conservative and dissipative parts of a sub-Markovian operator T on L_1 .

LEMMA 4.1. Let T be Markovian, and let (s_n) be superadditive with exact dominant δ . Then for any fixed integer k,

 $\lim_{n} s_{n+k} / \sum_{0}^{n-1} T^{i} \delta = 1$

a.e. on $C \cap E$, where $E = \{\sum_{i=1}^{n-1} T^i \delta > 0 \text{ for some } n\}$.

Proof. For fixed *k* and large *n*,

(4.1) $s_{n+k} / \sum_{0}^{n-1} T^i \delta = (s_{n+k} / \sum_{0}^{n+k-1} T^i \delta) \cdot (\sum_{0}^{n+k-1} T^i \delta / \sum_{0}^{n-1} T^i \delta)$ on *E*.

The conclusion of the lemma follows since $s_{n+k}/\sum_{0}^{n+k-1} T^i \delta$ converges to 1 a.e. on $C \cap E$ according to Theorem 3.1 in [1], and $\sum_{0}^{n+k-1} T^i \delta / \sum_{0}^{n-1} T^i \delta$ converges to 1 a.e. on E by a lemma of Chacon and Ornstein [3].

LEMMA 4.2. Let T be sub-Markovian, and let (s_n) , (s_n') be superadditive. Then for any fixed integer k,

 $\lim_n s_{n+k}/s_n' = \lim_n s_n/s_n'$

a.e. on $C \cap E$, where $E = \{s_n' > 0 \text{ for some } n\}$. If either (a) T is Markovian, or (b) $s_n = \sum_{0}^{n-1} T^i \delta$ on $D \cap E$ for some $\delta \in L_1^+$, then the conclusion also holds on $D \cap E$.

Proof. Let δ' be the exact dominant of (s_n') relative to the conservative operator $T_c = \mathbf{1}_c \cdot T \cdot \mathbf{1}_c$ on C. For fixed k,

(4.2)
$$s_{n+k}/s_n' = (s_{n+k}/s_{n+k}') \cdot (s_{n+k}'/\sum_{0}^{n-1} T^i \delta') \cdot (\sum_{0}^{n-1} T^i \delta'/s_n')$$

on the set $C \cap E$. By Theorem 3.2 of [1], $\lim_n s_n/s_n'$ exists on $C \cap E$. By Lemma 4.1, the ratios $s_{n+k'}/\sum_{0}^{n-1} T^i \delta'$ and $s_n'/\sum_{0}^{n-1} T^i \delta'$ converge to 1 a.e. on $C \cap E$. Thus the first assertion of the lemma follows.

If (a) holds, then

(4.3) $0 \leq s_n \leq \sum_{0}^{n-1} T^i \delta \leq \sum_{0}^{\infty} T^i \delta < \infty$

a.e. on $D \cap E$ where δ is the exact dominant of (s_n) . (4.3) is also valid if (b) holds. In either case, $\lim s_n$ exists and is finite a.e. on $D \cap E$. Hence on $D \cap E$, $\lim s_{n+k}/s'_n = \lim s_n/\lim s'_n$.

LEMMA 4.3. Let T be sub-Markovian, (s_n) superadditive, (s_n') extended superadditive. Then for any fixed integer k,

 $\lim_{n} s_{n+k}/s_{n}' = \lim_{n} s_{n}/s_{n}'$

a.e. on $C \cap E'$, where $E' = \{s_n' > 0 \text{ for some } n\}$. The conclusion holds also

HUMPHREY FONG

on $D \cap E'$ if either (a) T is Markovian, or (b) $s_n = \sum_{0}^{n-1} T^i \delta$ for some $\delta \in L_1^+$ on $D \cap E'$.

Proof. Let $E = \{s_n > 0 \text{ for some } n\}$. For fixed k and large n, we have

(4.5)
$$s_{n+k}/s_n' = \begin{cases} (s_{n+k}/s_n) \cdot (s_n/s_n') & \text{on } E \cap E', \\ 0 & \text{on } E^{\circ} \cap E'. \end{cases}$$

By Lemma 4.2, $\lim s_{n+k}/s_n = 1$ a.e. on $E \cap C$, and also on $E \cap D$ if either (a) or (b) holds. According to Theorem 3.3 of [1], $\lim s_n/s_n'$ exists and is finite on $E' \cap C$, and also on $E' \cap D$ if either (a) or (b) holds. The conclusion of the lemma now follows from (4.5).

Let $\{S_t : t \ge 0\}$ be a family of L_1^+ functions such that $S_s \le S_t$ for $0 \le s \le t$. $\{S_t : t \ge 0\}$ is said to be *superadditive* (resp. *extended superadditive*) relative to a positive linear operator T on L_1 if for some $\alpha > 0$, the sequence $\{S_{n\alpha} : n \ge 0\}$ is superadditive (resp. extended superadditive). We may and do assume that $\alpha = 1$; otherwise we consider instead the process $U_t = S_{t\alpha}$, $t \ge 0$.

THEOREM 4.4. Let T be sub-Markovian, $\{S_t : t \ge 0\}$ superadditive, $\{S_t' : t \ge 0\}$ extended superadditive. Then

 $\lim_{t\to\infty} S_t/S_t' = \lim_{n\to\infty} S_n/S_n'$

a.e. on the set $C \cap E'$, where $E' = \{S_t' > 0 \text{ for some } t > 0\}$. The conclusion holds also on $D \cap E'$ if T is Markovian.

Proof. For $n \leq t < n + 1$,

(4.6) $S_n/S_{n+1}' \leq S_t/S_t' \leq S_{n+1}/S_n'$

on the set E'. By Lemma 4.3, the ratios S_n/S_{n+1}' , S_{n+1}/S_n' and S_n/S_n' all have the same limit on $C \cap E'$, and also on $D \cap E'$ if T is Markovian. Thus the theorem follows from (4.6).

We next prove a continuous parameter analogue of Theorem 2.1. For an operator T satisfying the boundedness condition (B), X = Y + Z is the 'Sucheston decomposition' discussed in Section 2.

THEOREM 4.5. Let T be a positive linear operator satisfying condition (B). Let $\{S_t : t \ge 0\}$ be superadditive and $\{S'_t : t \ge 0\}$ extended superadditive. Then the ratios S_t/S'_t converge to a finite limit a.e. on the set $Y \cap \{S'_t > 0\}$ for some $t > 0\}$.

Proof. The proof is analogous to the proof of Theorem 2.1, except that here we apply Theorem 4.4 above instead of Theorem 3.3 of [1].

The last two theorems are continuous parameter analogues of Theorems 3.2 and 3.3. Their proofs follow immediately from Theorems 3.2 and 3.3 and the

446

obvious inequality

(4.7)
$$S_n/(n+1) \leq S_t/t \leq S_{n+1}/n.$$

THEOREM 4.6. If T is sub-Markovian, $\{S_t\}$ superadditive, and if on the dissipative part D, $S_n = \sum_{i=1}^{n-1} T^i \delta$ for some $\delta \in L_1^+$, $n \ge 1$, then the ratios S_t/t converge stochastically on X.

THEOREM 4.7. Assume condition (B), and let $\{S_t\}$ be superadditive. Then the ratios S_t/t converge stochastically on Y.

Acknowledgement. The author wishes to thank Professor Louis Sucheston for his helpful suggestions and comments.

References

- 1. M. A. Akcoglu and L. Sucheston, A ratio ergodic theorem for super-additive processes, preprint. For a résumé, see C. R. Acad. Sci., Paris, 285 (1977), 637-639.
- 2. R. V. Chacon, *Convergence of operator averages*, in Ergodic theory (Academic Press, New York, 1963, 89-120.
- 3. A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560-564.
- 4. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- 5. Y. Derriennic, Sur le theorem ergodique sous-additif, C. R. Acad. Sci., Paris, 281 (1975), 985–988.
- 6. Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Functional Anal. 13 (1973), 252-267.
- 7. H. Fong, On invariant functions for positive operators, Colloq. Math. 22 (1970), 75-84.
- A. Ionescu-Tulcea and M. Moretz, Ergodic properties of semi-Markovian operators on the Z-part, Z. Wahrscheinlichkeitstheorie verw. Geb. 13 (1969), 119-122.
- J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Statist. Soc. B 30 (1968), 499–510.
- 10. Subadditive ergodic theory, Ann. Prob. 1 (1973), 883–905.
- Subadditive processes, Ecole d'été des probabilités de Saint-Flour, Springer Verlag Lecture Notes in Mathematics, Vol. 539 (1976), 168–223.
- U. Krengel, On the global limit behaviour of Markov chains and of general nonsingular Markov processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 6 (1966), 302-316.
- L. Sucheston, On the ergodic theorem for positive operators, I, Z. Wahrscheinlichkeitstheorie verw. Geb. 8 (1967), 1-11.

Bowling Green State University, Bowling Green, Ohio