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1. Introduction

Let A and B be unital C∗-subalgebras of B(H). We denote by Rown(A) and Coln(A),
respectively, the spaces M1,n(A) and Mn,1(A) of row and column matrices over A, normed
as subspaces of Mn(A). We say that A norms (or is norming for) B if, for each n � 1
and for every X ∈ Mn(B),

‖X‖ = sup{‖RXC‖ : R ∈ Rown(A), C ∈ Coln(A), ‖R‖, ‖C‖ � 1}.

More generally, A is λ-norming for B, for some 0 < λ � 1, if

λ‖X‖ � sup{‖RXC‖ : R ∈ Rown(A), C ∈ Coln(A), ‖R‖, ‖C‖ � 1}.

Norming is, therefore, the same as 1-norming.
The concept of a norming C∗-subalgebra of a C∗-algebra was introduced in [11], where

the basic theory was developed and applications were given, particularly for cohomology
of von Neumann algebras and the bounded projection problem.

One of the main roles of norming concerns automatic complete boundedness of modular
linear and bilinear maps on von Neumann algebras [13,15]. To illustrate, let N ⊆ M ⊆
B(H) be an inclusion of von Neumann algebras. If N norms M, then every bounded
N -modular map ϕ : M → M is completely bounded. If, in addition, M is finite and
N has trivial relative commutant, then every bounded, N -modular bilinear map ϕ :
M×M → M is completely bounded. Modularity, we recall, means that ϕ(nm) = nϕ(m)
and ϕ(mn) = ϕ(m)n for linear maps and

nϕ(m1, m2) = ϕ(nm1, m2), ϕ(m1n, m2) = ϕ(m1, nm2), ϕ(m1, m2n) = ϕ(m1, m2)n

for bilinear maps, m, m1, m2 ∈ M, n ∈ N .
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In the case of a type II1 factor, the existence of a hyperfinite, norming subfactor with
trivial relative commutant would provide affirmative answers to the elusive problem of
the vanishing of the second cohomology group H2(M,M), as well as to the bounded
projection conjecture, namely that the existence of a bounded projection P : B(H) → M
implies injectivity for M.

The interest in norming subalgebras originates in [14], where it was proved that Cartan
subalgebras of type II1 factors are norming. In [11] additional classes of subalgebras were
proved to be norming. For example,

(i) type II1 factors are normed by any subfactor of finite index, and

(ii) a type II1 factor M norms M ⊗̄ B(H).

This paper continues the investigation along the lines initiated in [11]. We exploit the
role played by projections in norming subfactors and obtain several new results. We show
that type II1 factors with property Γ and separable predual contain hyperfinite, norming
subfactors with trivial relative commutant (Corollary 3.2) and present a characterization
of property Γ from the norming viewpoint (Proposition 3.3). By contrast, the class of free-
product factors provides examples of subfactors with trivial relative commutants which
fail to be norming (Proposition 4.1). The norming properties of projections are also used
in relation to free complements (Proposition 4.2). Property Γ factors are known to have
vanishing cohomology groups of any order [2] and the bounded projection conjecture
was also verified for these factors in [1]. Our Corollary 3.2, combined with Theorem 6.1
in [11], provides an alternate proof of the vanishing of the second cohomology group
(see [1] and [13] for different proofs).

We believe that the line of investigation adopted here sheds new light on the concept
of norming and establishes connections with other topics in operator algebras. On the
other hand, we hope that the geometry of projections may provide a useful approach,
via norming subfactors, to the second cohomology problem.

2. Norming and projections

In this section we present some properties equivalent to norming, but relying on projec-
tions. The next result is probably known, but we could not find a reference for it.

Lemma 2.1. In a type II1 factor M, the set of invertible elements is norm-dense.

Proof. Let x ∈ M be non-invertible with polar decomposition x = v|x|. Then v is
a partial isometry between two equivalent projections p and q in M, v∗v = p, vv∗ = q.
Since I−p and I−q are also equivalent, let w be a partial isometry such that w∗w = I−p,
ww∗ = I−q. If ε > 0 is arbitrary, then v+εw is invertible. It follows that (v+εw)(|x|+εI)
is invertible and close to x for ε close enough to 0. �

Lemma 2.2. Let M be a type II1 factor and let C = (x1, . . . , xn)T ∈ Coln(M),
‖C‖ = 1. For any ε > 0, there exists C ′ = (y1, . . . , yn)T ∈ Coln(M) such that ‖C ′‖ = 1,
‖C − C ′‖ < ε and

∑n
i=1 y∗

i yi is invertible.
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Proof. By Lemma 2.1, let y0 ∈ M be invertible and ‖x1 − y0‖ < δ. Then y∗
0y0 +∑n

i=2 x∗
i xi is invertible. Define

C ′ =
∥∥∥∥y∗

0y0 +
n∑

i=2

x∗
i xi

∥∥∥∥
−1/2

(y0, x2, . . . , xn)T = (y1, . . . , yn)T.

We have ‖C ′‖ = 1,
∑n

i=1 y∗
i yi is invertible, and, for small enough δ, ‖C − C ′‖ < ε. �

Proposition 2.3. Let N ⊆ M ⊆ B(H), where N is a type II1 factor, M is a C∗-
algebra, and fix n � 1, ε > 0 and X ∈ M⊗Mn. Then there exists a column C ∈ Coln(N )
such that ‖C‖ = 1 and ‖XC‖ > ‖X‖ − ε if and only if there exists a projection P ∈
N ⊗ Mn of trace 1/n such that ‖XP‖ > ‖X‖ − ε.

Proof. There is no loss of generality in assuming that ‖X‖ = 1. From Lemma 2.2,
we may also assume that the entries of C = (y1, . . . , yn)T are such that

∑n
i=1 y∗

i yi is
invertible. Choose a vector ξ ∈ H, ‖ξ‖ = 1, such that ‖XCξ‖ > 1 − ε and define a new
column C1 = C(

∑n
i=1 y∗

i yi)−1/2. Notice that the norm of η = (
∑n

i=1 y∗
i yi)1/2ξ is at most

one and that C∗
1C1 = I. Let D1 be the element of N ⊗Mn having the first column equal

to C1 and the remaining n − 1 columns having all entries 0. Then D∗
1D1 is a projection

of trace 1/n in N ⊗ Mn, so P = D1D
∗
1 is also a projection of trace 1/n. We have

(1 − ε)2 < ‖XCξ‖2 = ‖XC1η‖2 � ‖XC1‖2 = ‖XD1‖2

= ‖XD1D
∗
1X∗‖ = ‖XPX∗‖ = ‖XP‖2,

therefore ‖XP‖ > 1 − ε.
Conversely, suppose that ‖XP‖ > 1 − ε for some projection P ∈ N ⊗ Mn of trace

1/n. Since N ⊗ Mn is a factor, P is equivalent to I ⊗ e11, so choose a partial isometry
V ∈ N ⊗ Mn satisfying V ∗V = I ⊗ e11 and V V ∗ = P . We have

(1 − ε)2 < ‖XP‖2 = ‖XPX∗‖ = ‖XV V ∗X∗‖ = ‖XV ‖2

hence ‖XV ‖ > 1 − ε. But V ∗V = I ⊗ e11, so the last n − 1 columns of V must have
all entries 0. If C denotes the first column of V , then ‖XC‖ = ‖XV ‖ > 1 − ε, which
completes the proof. �

We are ready to state the main result of this section.

Theorem 2.4. Let N ⊆ M ⊆ B(H), where N is a type II1 factor and M is a
C∗-algebra. The following are equivalent.

(a) N norms M.

(b) For every n � 1, ε > 0, and every X ∈ M ⊗ Mn, there exists a projection Q ∈
N ⊗ Mn of trace 1/n such that ‖XQ‖ > ‖X‖ − ε.

If, in addition, M is a von Neumann algebra, then (a) and (b) are also equivalent to
the following.
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(c) For every n � 1, ε > 0, and every non-zero projection P ∈ M ⊗ Mn, there exists a
projection Q ∈ N ⊗ Mn of trace 1/n such that ‖PQ‖ > 1 − ε.

Proof. The equivalence of (a) and (b) follows from Proposition 2.3 combined with [11,
Theorem 2.4], and (c) is a particular case of (b). To prove (c) ⇒ (b), fix X ∈ M ⊗ Mn,
‖X‖ = 1 and ε > 0. Since X∗X is positive and of norm one, the spectral projection
χ[1−ε,1](X∗X) = P is non-zero and, by functional calculus, X∗X � (1 − ε)P . Choose
Q ∈ N ⊗ Mn of trace 1/n such that ‖PQ‖ >

√
1 − ε. Then

‖XQ‖2 = ‖QX∗XQ‖ � (1 − ε)‖QPQ‖ = (1 − ε)‖PQ‖2 > (1 − ε)2,

hence ‖XQ‖ > 1 − ε. �

Remark 2.5. If norming is replaced by λ-norming, for some 0 < λ < 1, then the
inequalities in (b) and (c) become ‖XQ‖ > λ‖X‖ − ε and ‖PQ‖ > λ − ε, respectively.

We conclude this section with a result which will be used in § 4.

Corollary 2.6. Let

N = N0 ⊆ N1 ⊆ · · · ⊆ Nn ⊆ · · · ⊆ B(H)

be an increasing sequence of type II1 factors such that [Ni+1 : Ni] < ∞ for all i � 0 and
let M = (

⋃
n�1 Nn)′′. Then for every x ∈ M and every ε, δ > 0, there exists a projection

q ∈ N of trace τ(q) < δ such that ‖xq‖ > ‖x‖ − ε.

Proof. Assume first that the sequence is stationary, that is, [M : N ] < ∞. If k > 1/δ

is a positive integer and e ∈ N is a projection of trace τ(e) = 1/k, then N and M are
isomorphic to eN e ⊗ Mk and eMe ⊗ Mk, respectively. Since [eMe : eN e] < ∞, eN e

norms eMe [11, 3.3]. The conclusion follows from Theorem 2.4 (b).
To finish the proof, let En denote the unique faithful, normal, trace-preserving con-

ditional expectation of M onto Nn. Since x = limn→∞ En(x) ultraweakly, we have
‖En(x)‖ > ‖x‖ − ε/2 for some n � 1. By applying the first part of the proof, there
is a projection q ∈ N of trace τ(q) < δ such that ‖En(x)q‖ > ‖En(x)‖ − ε/2 > ‖x‖ − ε.
Then ‖xq‖ � ‖En(xq)‖ = ‖En(x)q‖ > ‖x‖ − ε. �

3. Factors with property Γ

A type II1 factor M has property Γ [10] if, for every x1, . . . , xn ∈ M and ε > 0, there
exists a unitary u ∈ M of trace τ(u) = 0, such that

‖uxi − xiu‖2 < ε, 1 � i � n.

Property Γ is equivalent to an asymptotic commutativity property involving projec-
tions [5], a stronger version of which was proved in [2].

If M has property Γ and separable predual, then there exists a hyperfinite subfactor
R ⊆ M with trivial relative commutant such that, given x1, . . . , xk ∈ M, n ∈ N, and
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ε > 0, there exist mutually orthogonal projections p1, . . . , pn ∈ R, each of trace 1/n,
such that

‖pixj − xjpi‖2 < ε, 1 � i � n, 1 � j � k.

Proposition 3.1. Let M be a type II1 factor with property Γ and separable predual.
With the notation above, R is norming for C∗(M,M′).

Proof. Fix X = (Xi,j) ∈ C∗(M,M′) ⊗ Mn, 1 � i, j � n. We may clearly assume
that each Xi,j is a finite sum of terms of the form mm′ for some m ∈ M and m′ ∈ M′,
and denote by S the set of all the operators m and m′ appearing in the expressions
of Xi,j , 1 � i, j � n. For every k � 1, there exist mutually orthogonal projections
p
(k)
1 , . . . , p

(k)
n ∈ R,

∑n
i=1 p

(k)
i = I, τ(p(k)

i ) = 1/n, such that

‖p
(k)
i y − yp

(k)
i ‖2 < 1/k

for all y ∈ S ∩ M and 1 � i � n. This shows that, for every y ∈ S ∩ M and i 
= j,

lim
k→∞

‖p
(k)
i yp

(k)
j ‖2 = 0

and, consequently,

lim
k→∞

∥∥∥∥
n∑

i=1

p
(k)
i yp

(k)
i − y

∥∥∥∥
2

= 0.

It follows that, if e
(k)
i = p

(k)
i ⊗ In ∈ R ⊗ Mn and ξ and η are fixed, but arbitrary,

vectors in H ⊕ · · · ⊕ H, then

lim
k→∞

〈( n∑
i=1

e
(k)
i Xe

(k)
i − X

)
ξ, η

〉
= 0.

Ultraweak lower semicontinuity of the norm implies that, for fixed ε > 0, there exists
k � 1 such that

∥∥∥∥
n∑

i=1

e
(k)
i Xe

(k)
i

∥∥∥∥ > ‖X‖ − ε,

therefore

max
1�i�n

‖e
(k)
i Xe

(k)
i ‖ > ‖X‖ − ε,

hence

‖Xe
(k)
i0

‖ � ‖e
(k)
i0

Xe
(k)
i0

‖ > ‖X‖ − ε

for some i0. Since e
(k)
i0

has trace 1/n, R is norming for C∗(M,M′) by Theorem 2.4 (b). �

Corollary 3.2. If M has property Γ and separable predual, then it contains a hyper-
finite norming subfactor with trivial relative commutant.
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It was proved in [11] that a separably acting C∗-algebra A ⊆ B(H) has a cyclic vector
if and only if it norms B(H). (We must point out that [11, 2.7] actually requires A to be
only locally cyclic, but in separable Hilbert spaces the two notions are equivalent [9,11].)

A closer inspection of the proof of Proposition 2.7 in [11] shows that the key argument
is the norming of a certain rank-one projection, therefore the same proof makes the
following hold true:

A has a cyclic vector ⇐⇒ A norms B(H) ⇐⇒ A norms K(H).

Let H be a separable Hilbert space. The above remarks show that, at least from the
norming viewpoint, the existence of a cyclic vector for A (an otherwise desirable property)
has the potential to obscure other intrinsic properties of A. For this reason, in the next
result we must assume the absence of a cyclic vector. We are now in the position to prove
a characterization of property Γ .

Proposition 3.3. Let M ⊆ B(H) be a separably acting type II1 factor without a
cyclic vector. Then M has property Γ if and only if M is norming for C∗(M,M′).

Proof. One direction is a consequence of Proposition 3.1. Conversely, let M be norm-
ing for C∗(M,M′). To get a contradiction, suppose that M is non-Γ . Then C∗(M,M′)
contains a non-zero compact operator [3, 2.1] and, since it is weakly dense in B(H), it
contains all compact operators (see, for example, [4, I.10.4]). It follows that M norms
K(H), so it has a cyclic vector, which is a contradiction. �

Remark 3.4. In the particular case when M = R, the hyperfinite type II1 factor,
there is another way to see that R norms C∗(R,R′). By [7], C∗(R,R′) is isomorphic to
the spatial tensor product R ⊗min R′ and R is norming for R⊗̄ B(H) [11].

4. Free-product factors

Denote by Fn the free group on n generators and by L(Fn) the type II1 factor generated
by the left regular representation of Fn. The free products in this section are reduced
free products with respect to the trace. Recall from [12] that if M and N are type II1
factors, then M′ ∩ (M ∗ N ) = C.

It was proved in [11] that the maximal abelian subalgebras of M = L(F2) correspond-
ing to any one of the two generators are not λ-norming for M. In this section we present
examples of subfactors with trivial relative commutant which are not λ-norming.

Proposition 4.1. For any type II1 factor M, 0 < λ � 1, and n ∈ {1, 2, . . . } ∪ {∞},
M is not λ-norming for M ∗ L(Fn).

Proof. Since every L(Fn) contains L(F∞) as a subfactor, it suffices to assume n = ∞.
Dykema and Rădulescu [6, 1.1] proved that for any type II1 factors M and N , the factors

(M ⊗ Mn) ∗ (N ⊗ Mn) and (M ∗ N ∗ L(Fn2−1)) ⊗ Mn
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are isomorphic. In particular, (M ⊗ Mn) ∗ (L(F∞) ⊗ Mn) is isomorphic to

(M ∗ L(F∞) ∗ L(Fn2−1)) ⊗ Mn = (M ∗ L(F∞)) ⊗ Mn.

In other words, M⊗Mn has a free complement, denoted by A, relative to (M∗L(F∞))⊗
Mn. Consider projections P ∈ A and Q ∈ M ⊗ Mn both of trace 1/n. As a consequence
of [16, 3.6.7],

‖PQ‖ � 4
n

− 4
n2 <

4
n

.

For n large enough this contradicts the remark following Theorem 2.4, hence M is not
λ-norming for M ∗ L(Fn). �

An important problem in free probability is the existence of free complements: if A ⊆ B
is an inclusion of von Neumann algebras, does B contain a non-trivial projection free
with respect to A? For instance, if M and N are type II1 factors, then no projection
p ∈ M⊗̄ N , p 
= 0, I, is free with respect to M. To see this, suppose p was free with
respect to M and let A = {p}′′ denote the two-dimensional algebra generated by p. Then
M ∗ A = M ⊗̄ B for some non-trivial subalgebra B ⊆ N [8]. We have M′ ∩ (M∗A) = C

[12], while M′ ∩ (M ⊗̄ B) = B, which is a contradiction. We conclude with yet another
example of absence of free complements.

Proposition 4.2. Let

N = N0 ⊆ N1 ⊆ · · · ⊆ Nn ⊆ · · · ⊆ B(H)

be an increasing sequence of type II1 factors such that [Ni+1 : Ni] < ∞ for all i � 0 and
let M = (

⋃
n�1 Nn)′′. Then no projection p ∈ M, p 
= 0, I, is free with respect to N .

Proof. To reach a contradiction, suppose that p ∈ M is free with respect to N . By
Corollary 2.6, there are projections qn ∈ N of trace τ(qn) = 1/n such that ‖pqn‖ >

1 − 1/n. On the other hand, from [16, 3.6.7] we have, for τ(p) = t,

‖pqn‖ � t +
1
n

− 2t

n
+

2
n

√
t(1 − t)(n − 1) < t +

2√
n

.

Since t < 1, n large enough leads to a contradiction. �
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