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Abstract. In the study of plane curves, one of the problems is to classify the embedded topology
of plane curves in the complex projective plane that have a given fixed combinatorial type, where
the combinatorial type of a plane curve is data equivalent to the embedded topology in its tubular
neighborhood. A pair of plane curves with the same combinatorial type but distinct embedded
topology is called a Zariski pair. In this paper, we consider Zariski pairs consisting of conic-line
arrangements that arise from Poncelet’s closure theorem. We study unramified double covers of the
union of two conics that are induced by a 2m-sided Poncelet transverse. As an application, we show
the existence of families of Zariski pairs of degree 2m + 6 for m ≥ 2 that consist of reducible curves
having two conics and 2m + 2 lines as irreducible components.

1 Introduction

There is a very famous theorem in projective geometry known as Poncelet’s closure
theorem or Poncelet’s porism, first introduced in [15]. Let P2(= CP2) be the complex
projective plane and let C1 , C2 ⊂ P2 be smooth conics that intersect transversely.
Given a general point P1 ∈ C1, let L1 be a line passing through P1 and tangent to
C2. Then L1 intersects C1 at another point P2, and we can choose a line L2 passing
through P2 and tangent to C2. By repeating this process, we obtain a sequence
(P1 , L1), (P2 , L2), . . . of pairs of points Pi ∈ C1 and tangent lines L i ∈ C∗2 such that
Pi ∈ L i , where C∗2 is the dual curve of C2. Such a sequence is called a Poncelet transverse
originating at P1. Poncelet’s closure theorem can be stated as follows:

Theorem 1.1 [15] Let C1, C2 be as above. If there exists a point P ∈ C1 such that the
Poncelet transverse originating at P is periodic with period n, then for any Q ∈ C1, the
Poncelet transverse originating at Q ∈ C1 is also periodic with period n.
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2 S. Bannai et al.

A modern proof in terms of torsion points of elliptic curves was given by P. Griffiths
and J. Harris in [10]. We call a Poncelet transverse ⊓n with minimum period n an
n-sided Poncelet transverse and denote it by a sequence ⊓n ∶ (P1 , L1), . . . , (Pn , Ln) of
n pairs. Sometimes, we omit “n-sided Poncelet” and simply use “transverse” when it
is evident from the context that we are talking about an n-sided Poncelet transverse.
For a general choice of origin P1 ∈ C1, an n-sided Poncelet transverse will consist of
n distinct points P1 , . . . , Pn and n distinct lines L1 , . . . , Ln and can be viewed as an
n-gon with these points and lines as vertices and edges that is inscribed in C1 and
circumscribed about C2. Poncelet’s theorem also holds for special choices of origins,
where ⊓n will involve intersection points of C1 and C2 and/or bitangent lines of C1
and C2 and can be viewed as a degenerated n-gon having double edges. In this paper,
we consider curves arising from 2m-sided Poncelet transverses (m ≥ 2) and construct
a new infinite sequence of curves that are interesting with regard to their embedded
topology.

The embedded topology of an algebraic plane curve C ⊂ P2(= CP2), which is
defined over the field of complex numbers C, is the homeomorphism class of the pair
(P2 ,C) of topological spaces. One of the main objectives in this area of research is to
give a complete classification of the embedded topology of plane curves. It is known
that for two plane curves C1 ,C2 ⊂ P2, if (P2 ,C1) and (P2 ,C2) are homeomorphic
as pairs, then C1 and C2 have the same combinatorial type. Here, the combinatorial
type of plane curves is data consisting of the number of irreducible components, the
degrees and the topological types of singularities, and configuration of irreducible
components (see [5], [2] for details). However, the converse is not true because there
exist pairs of plane curves C1 ,C2 that have the same combinatorial type, but the
homeomorphism classes of (P2 ,C1) and (P2 ,C2) are distinct. The first example of
such pairs (C1 ,C2)was given by Zariski in [17], and the name Zariski pair was coined
by E. Artal in [1] (see [17], [1], [5] for precise definitions and details).

Remark 1.2 It is known that the combinatorial type of a plane curve is equivalent to
the embedded topology in its regular neighborhood (cf. [5]). Furthermore, the study
of Zariski pairs can be regarded as an algebraic analogue of the study of surface-knots.

Understanding what causes the differences in the embedded topology of Zariski
pairs should lead to a better understanding of the embedded topology of plane curves
in general and hence is important. Concerning Zariski pairs of reducible plane curves
with irreducible components of small degree, the following results are known. In
the case where Ci are line arrangements, it is known that Zariski pairs do not exist
for degCi ≤ 9 (see [13]). Also, it is known that there exists a Zariski pair of line
arrangements of degCi = 11 (see [4]). However, the case of degCi = 10 is open. In the
case of conic-line arrangements (i.e., reducible curves whose irreducible components
are lines and smooth conics), the existence of a Zariski pair of degree 7 consisting of
curves with two conics and three lines as irreducible components is known (see [16]).
Also, a Zariski pair of degree 6 consisting of curves with three conics as irreducible
components is known (see [14]). It would be interesting to find a Zariski pair of conic-
line arrangements of low degree consisting of curves with a single conic and additional
lines.
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Poncelet’s closure theorem and the embedded topology of conic-line arrangements 3

Now, we explain our main result. Note that in the following, we work over the
field of complex numbers C. Let C1, C2 be smooth conics intersecting transversely
that admit a 2m-sided Poncelet transverse. Let L1 , . . . , L2m be distinct lines forming a
nondegenerated 2m-sided Poncelet transverse ⊓2m ∶ (P1 , L1), . . . , (P2m , L2m), where
L1 , . . . , L2m are tangent lines of C2 and the points P1 = L2m ∩ L1 and Pi = L i−1 ∩ L i (2 ≤
i ≤ 2m) lie on C1. Let P2m ∶= ∑2m

i=1 L i be the union of the lines and let T1 , T2 , T3 , T4 be
the four bitangent lines of C1 and C2. The curves that we are interested in are reducible
curves of the form

Ci j ∶= C1 + C2 +P2m + Ti + Tj ({i , j} ⊂ {1, 2, 3, 4})
having two conics and 2m + 2 lines as irreducible components. We consider the
double covers of P

2 branched along the 2m + 2 lines P2m + Ti + Tj and see how
C1 + C2 behaves under these double covers. Namely, we calculate the splitting types
of C1 + C2 with respect to these double covers. (See Section 2 and [6] for details on
splitting types.) This will be done by studying the invertible sheaves F of order 2 on
C1 + C2, or equivalently, torsion points of order 2 of the Jacobian J(C1 + C2) of the
singular curve C1 + C2. As an application of these calculations, we obtain the following
theorem.

Theorem 1.3 Under the above notation, it is possible to choose labels of T1 , . . . , T4
so that the pair (Ci j ,Ck l) is a Zariski pair if {i , j} = {1, 2} or {3, 4} and {k, l} /=
{1, 2}, {3, 4}.

We note that in the above setting, C1 , C2 admits two degenerated 2m-sided
Poncelet transverses each having two bitangent lines as edges. The differences of the
curves Ci j and Ck l in the theorem are whether the two bitangent lines lie in the same
degenerated Poncelet transverse or not. Although the curves that are proven to be
Zariski pairs in Theorem 1.3 are conic-line arrangements of degCi j ≥ 10, we believe
that our method of systematically constructing Zariski pairs from Poncelet trans-
verses is in itself interesting and worth sharing. We hope this topological viewpoint is
new and will add to the already rich literature on curves related to Poncelet’s closure
theorem.

Similar studies relating torsion elements of the Jacobian J(C) and the embedded
topology of reducible curves having C as an irreducible component have been done
in [8], [2], [3] when C is a smooth curve. This paper can be considered as a variation
of these works in the case where C is reducible and singular.

This paper is organized as follows: In Section 2, we review the definition of
splitting types and state the proposition that is used in distinguishing the embedded
topology. In Section 3, we give a discussion on unramified double covers of conic-line
arrangements, especially in the case of two transversal conics. In Section 4, we study
n-sided Poncelet transverses and double covers related to them. Finally, in Section 5,
we give the proof of our main result, Theorem 1.3.

2 Splitting types

In this section, we review the notion of splitting types of plane algebraic curves with
respect to a double cover, which will be used to distinguish the embedded topology
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4 S. Bannai et al.

of the curves that we are interested in. We refer the reader to [6] for details. Let
πB ∶ S′ → P

2 be a double cover branched along a curve B ⊂ P2 of even degree and let
C ⊂ P2 be an irreducible plane curve. The preimage π−1

B (C) can be either reducible
or irreducible, depending on the relation between C and the branch locus B. In the
former case where π−1

B (C) is reducible, π−1
B (C)will have two irreducible components

since π−1
B is a double cover. In this case, we say that C is a splitting curve with respect to

πB or B. Let C1 , C2 be splitting curves with respect to B and let π−1
B (C i) = C+i + C−i ,

(i = 1, 2). The relation between the components C±1 , C±2 reflects how the curves
B, C1 , C2 are “intertwined” in P

2 and hence gives information about the embedded
topology of the reducible curve C = B + C1 + C2. The information can be formulated
as follows:

Definition 2.1 Let B, C1 , C2 be as above. For integers m1 ≤ m2, we say that the
triple (C1 , C2;B) has splitting type (m1 , m2), if C+1 ⋅ C+2 = m1 and C+1 ⋅ C−2 = m2 for
a suitable choice of labels.

The splitting types can be used to distinguish the embedded topology of reducible
plane curves by the following proposition.

Proposition 2.2 [6, Proposition 2.5] Let B1, B2 be plane curves of degree 2d and let
C i1 , C i2 be splitting curves with respect to Bi , (i = 1, 2). Suppose that C i1 ∩ C i2 ∩Bi =
∅, C i1 and C i2 intersect transversely and that (C11 , C12;B1) and (C21 , C22;B2) have
distinct spitting types. Then a homeomorphism h ∶ P2 → P

2 such that h(B1) = B2 and
{h(C11), h(C12)} = {C21 , C22} does not exist.

Remark 2.3 It is known that Definition 2.1 and Proposition 2.2 can be modified to
a more general version (see [7]), but the above version is enough for our purposes.

Later, we will calculate the splitting types of pairs of conics C1 , C2 with respect to
various double covers in order to prove our main theorem.

3 Line bundles of order two and unramified double covers of conic-
line arrangements with simple nodes

In this section, we briefly recall the theory of double covers. We will especially
consider the case of conic-line arrangements with simple nodes for later use. We refer
the reader to [11, Section 2, Section 3] for details and arguments in a more general
setting.

First, we consider topological (unramified) double covers. Let C = C1 + ⋅ ⋅ ⋅ + Ck be
a conic-line arrangement with simple nodes (i.e., each irreducible component C i of
C is either a line or a smooth conic, and all intersection points are ordinary double
points). Let φ ∶ C′ → C be a topological double cover of C. Then, since C i ≅ P1 and
is simply connected, φ−1(C i) splits into two disjoint sets C±i ⊂ C′. We fix a labeling
C±i for the meantime. Let Q ∈ Sing(C), and let C i , C j be the irreducible components
intersecting at Q. Then C+i will intersect with either C+j or C−j over Q. We say that C′
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Poncelet’s closure theorem and the embedded topology of conic-line arrangements 5

is glued by + over Q if C+i intersects C+j and is glued by − over Q if C+i intersects C−j .
We summarize this data in the form of a map defined as below.

Definition 3.1 A gluing data of order two onC is a mapκ ∶ Sing(C) → {+,−}. If there
is no confusion, we simply call it a gluing data. The gluing data κφ of a topological
double cover φ ∶ C′ → C is a gluing data on C defined by κφ(Q) = + if C′ is glued by +
over Q and κφ(Q) = − if C′ is glued by − over Q.

If we reverse the labeling of C±i of π−1(C i), then all of the signs for Q ∈ Sing(C) ∩
C i will be reversed. Namely, for a gluing data κ ∶ Sing(C) → {+,−} and each
i = 1, . . . , k, a new gluing data κi is obtained by

κi(Q) ∶= {
−κ(Q) if Q ∈ C i ,
κ(Q) otherwise(3.1)

for each Q ∈ Sing(C). We say that two gluing data κ and κ′ are equivalent, and write
κ ∼ κ′, if κ′ can be constructed from κ by a finite number of the above operations. In
this way, we have a map from the set of topological double covers φ ∶ C′ → C to the
set of equivalence classes of gluing data κφ on C.

Lemma 3.2 Let C = C1 + ⋅ ⋅ ⋅ + Ck be a conic-line arrangement with simple nodes. The
following map Ψ from the set of homeomorphism classes of topological double covers of
C to the set of equivalence classes of gluing data on C is well-defined and one-to-one:

Ψ ∶ {φ ∶ a topological double cover of C}/ ≅ → {κ ∶ a gluing data on C}/ ∼

∈ ∈

[φ] ↦ [κφ]
,

where κφ is the gluing data of the topological double cover φ of C. In particular, any
continuous deformation φt ∶ C′t → C (t ∈ Δ) of topological double covers ofC is constant,
where Δ ⊂ C is a small neighborhood of the origin.

Proof Suppose that h ∶ C′ → C′′ is a homeomorphism over C of topological double
covers φ′ ∶ C′ → C and φ′′ ∶ C′′ → C. Put φ′−1(C i) = C′+i + C′−i and φ′′−1(C i) = C′′i

+ +
C′′i
−. Note that h satisfies h(φ′−1(C i)) = φ′′−1(C i), but there may be 1 ≤ i ≤ k such

that h(C′+i ) = C′′i
− depending on how the components are labeled by ±. Since h is a

homeomorphism, κφ′′ can be obtained from κφ′ by applying the operations (3.1) to
κφ′ for 1 ≤ i ≤ k with h(C′+i ) = C′′i

−, which corresponds to exchanging C′+i and C′−i .
Hence, the gluing data κφ′′ is equivalent to κφ′ , and the map Ψ is well-defined.

Letκ ∶ Sing(C) → {+,−} be a gluing data onC. For each i = 1, . . . , k, let C+i ⊔ C−i be
the disjoint union of two copies C±i of C i , and let φ i ∶ C+i ⊔ C−i → C i be the projection,
which is the topological double cover of C i . We construct a topological space C′κ by
gluing C±i ∩ φ−1

i (Q) to C±j ∩ φ−1
j (Q) if κ(Q) = +, and to C∓j ∩ φ−1

j (Q) if κ(Q) = −,
for each 1 ≤ i < j ≤ k and Q ∈ C i ∩ C j . Then the topological double covers φ i induce
a topological double cover φκ ∶ C′κ → C. Since the operation (3.1) corresponds to
replacing C+i and C−i , the map [κ] ↦ [φκ] is well-defined, and is the inverse map
of Ψ. Hence, Ψ is one-to-one.
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Let φt ∶ C′t → C (t ∈ Δ) be a continuous deformation of topological double covers,
and let Φ ∶ C′ → Δ × C be the continuous family of the topological double covers
φt , where C

′ ∶= {(t, P′) ∣ t ∈ Δ, P′ ∈ C′t} and Φ(t, P′) ∶= (t, φt(P′)). Then Φ is a
topological double cover of Δ × C. Since Δ × C i is simply connected for each irre-
ducible component C i ⊂ C, the preimage Φ−1(Δ × C i) consists of two connected
components C ±i . For each Q ∈ Sing(C), the preimage Φ−1(Δ × {Q}) also consists of
two components Δ±Q . For each t ∈ Δ, we define a gluing data κt ∶ Sing(C) → {+,−} by,
for each Q ∈ C i ∩ C j (i ≠ j), κt(Q) = + if Δ+Q ⊂ C +i ∩ C +j , and κt(Q) = − otherwise.
This κt coincides with the gluing data κφ t of φt for any t ∈ Δ. Since κt is constant
under t, all topological double covers φt are homeomorphic. ∎

Next, we consider the relation between unramified double covers of C and invert-
ible sheaves of order 2 on C following [11]. Let C be a reduced curve and let F be
an invertible sheaf of order 2 on C (i.e., F ⊗ F ≅ OC, where OC is the structure sheaf
of, and, by abuse of terminology, the structure sheaf is considered as order 2 C). Let
pF ∶ LF → C be the line bundle corresponding to F and let t ∈ �(LF , p∗FF) be the
tautological section. Then, since we have assumed that F ⊗ F ≅ OC, the zero divisor
of t2 − 1 in LF gives an unramified double cover ϖF ∶ C′F → C of C. Note that the
construction is algebraic, but since it is unramified, ϖF is also a topological double
cover. It is known that this relation induces a one-to-one correspondence between
isomorphism classes of invertible sheaves F of order 2, and isomorphism classes
of unramified double covers ϖF ∶ C′F → C of C. In the case where C is a conic-line
arrangement with simple nodes, the relation between invertible sheaves of order 2 and
unramified double covers can be described using the gluing data as follows: Let F be
an invertible sheaf of order 2 on C. Then, since the components of C are isomorphic
to P

1 and Pic(P1) is torsion free, the restrictions F∣C i are isomorphic to the trivial
sheaf OC i . Given a node Q ∈ C i ∩ C j , the line bundle F and its transition functions
give the data of gluing of the trivial sheaves F∣C i and F∣C j over Q which is given by
multiplication with 1 or −1, since F is of order 2. Conversely, an invertible sheaf of
order 2 can be constructed by assigning this gluing data ±1 of the trivial sheaves at
each node Q. In this way, we can associate a gluing data κF to F. Again, changing the
signs of the gluing data at every node in an irreducible component C i will result in an
isomorphic sheaf. Hence, we have the following Lemma:

Lemma 3.3 Let C = C1 +⋯+ Ck be a conic-line arrangement with simple nodes.
Then, there is a one-to-one correspondence between the set of invertible sheaves F of
order 2 on C and the set of equivalence classes of gluing data on C. Furthermore, this
correspondence is compatible with the correspondence between the unramified double
cover ϖF ∶ C′F → C of C associated to F and its gluing data. Namely, if κF is the gluing
data of F and κϖF

is the gluing data of ϖF ∶ C′F → C, then κF ∼ κϖF
.

Proof The first part follows from the discussion stated before the lemma. See also
[11, Section 2b]. For the second part, let F be an invertible sheaf of order 2 and
let C′F → C be the associated unramified double cover. The preimage of C i in C′F
consists of disjoint copies C+i and C−i of C i corresponding to the decomposition
t2

i − 1 = (t i − 1)(t i + 1), where t i is the tautological section of p∗(F∣C i ). The gluing
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data of F at a node Q ∈ C i ∩ C j tells us how the tautological sections t i , t j are related
and in turn how C±i and C±j intersect as curves in LF . If the sheaves F∣C i and F∣C j are
glued by multiplication by 1 over Q, then t i = t j over Q and C+i intersects C+j over Q.
If they are glued by −1, then t i = −t j over Q and C+i intersects C−j over Q. Hence, the
gluing data κF of F as a sheaf and the gluing data κϖF

of the topological unramified
double cover ϖF ∶ C′F → C associated to F coincide. ∎

Furthermore, given two invertible sheaves F1 ,F2 that are each of order 2, the
product F1 ⊗ F2 is again of order 2. The gluing data of F1 ⊗ F2 is given by simply
taking the products of the gluing data of F1 and F2 at each Q ∈ Sing(C), as the
transition functions of F1 ⊗ F2 are given by products of the transition function of
F1 and F2. The gluing data of the unramified double cover associated to F1 ⊗ F2 can
also be obtained likewise.

Understanding and calculating the structure of the unramified double covers
through this gluing data is useful and will be used in the proof of the main theorem.
Also, in some cases where C ⊂ P2, and the unramified double cover of C is induced by
a (possibly ramified) double cover of P2, the structure of the former can be deduced
from the latter as follows: Let π ∶ S′ → P

2 be a double cover branched along a plane
curve B ⊂ P2 of degree 2d, and let F ∈ �(P2 ,OP2(2d)) be a defining polynomial of
B. Assume that there is an effective divisor D on the curve C such that B∣C = 2D and
Supp D ∩ SingC = ∅ (i.e., C intersects with B at smooth points of C with even mul-
tiplicities). Put L ∶= OP2(d), and let pL ∶ LL → P

2 be the line bundle corresponding
to L, where LL ∶= Spec S(L−1) is the spectrum of the symmetric algebra S(L−1) of
L−1. Let t ∈ �(LL , p∗LL) be the tautological section. Then S′ can be regarded as the
subvariety of LL defined by t2 − F = 0, and π = pL∣S′ . Since Supp D is contained in
the smooth part of C, D corresponds to a Cartier divisor on C, and there is a section
sD ∈ �(C,OC(D)) defining D and satisfying s2

D = F∣C. Put F ∶= L∣C ⊗OC(−D) and
let pF ∶ LF → C be the line bundle corresponding to F. Note that F is of order 2, and
t∣C
sD

can be regarded as a section of �(LF , p∗FF). We say that the unramified double
cover ϖ ∶ C′F → C given by

( t∣C
sD
)

2

− 1 = 0

in LF and ϖ ∶= pF ∣C′ is induced by π. The morphismF → L∣C given by multiplication
of sD induces the morphism LF → LL∣C over C, which is given by multiplication of
the value of sD to each fiber coordinate of LF . This morphism induces C′F → π−1(C),
which is isomorphic over C ∖ Supp D. Hence, we can deduce the structure of C′F by
studying π−1(C). In the above cases, explicit calculations of transition functions may
be avoided when calculating the gluing data, which we see in the following example.

Example 3.4 Let C1 , C2 ⊂ P2 be smooth conics intersecting transversely, T1, T2, T3,
T4 be the four bitangent lines to C1, C2, and Pi k = Ti ∩ Ck be the tangent points.
Since Ti + Tj has degree 2 and (Ti + Tj)∣C = 2(Pi1 + Pi2 + Pj1 + Pj2), the ramified
double cover π i j ∶ S′i j → P

2 of P
2 branched along Ti + Tj induces an unramified

double cover ϖ i j ∶ C′i j → C of C = C1 + C2 as explained above by taking B = Ti + Tj
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and D = Pi1 + Pi2 + Pj1 + Pj2. Note again that the covers ϖ i j and π i j ∣π−1
i j (C)

of C are
isomorphic outside the points {Pi1 , Pi2 , Pj1 , Pj2}. Now let S i j → S′i j be the canonical
resolution of π i j . Then S i j ≅ Σ2, where Σ2 is the Hirzebruch surface of degree 2, and
we have the following diagram:

S′i j ←���� S i j ≅ Σ2

π i j
����

����
P

2 ←����
σ i j

P̂2 ,

where σi j is the blow-up at the intersection point Ti ∩ Tj . The pencil of lines through
the intersection point induces the ruling of Σ2. It can be readily checked that
the preimages C±1 , C±2 of C1 , C2 in S i j are all linearly equivalent to 2F + Δ0, since
C+i + C−i ∼ 4F + 2Δ0 and C±i ⋅ Δ0 = 0, where F is the divisor class of fibers and Δ0
is the unique negative section with Δ2

0 = −2. Hence, C+1 ⋅ C+2 = C+1 ⋅ C−2 = 2 and the
splitting type of (C1 , C2;B) is (2, 2) since C±i ⋅ Δ0 = 0. Also, since ϖ i j and π i j ∣π−1

i j (C)

are isomorphic outside Pi k , this implies that the gluing data of ϖ i j ∶ C′i j → C and
Fi j ∶= OP2(1)∣C ⊗OC(−Pi1 − Pi2 − Pj1 − Pj2) is (+,+,−,−) for a suitable choice of
labels on the nodes C1 ∩ C2. Note again that changing all of the signs in the gluing
data gives isomorphic covers/sheaves, so the data (+,+,−,−) and (−,−,+,+) give
equivalent covers/sheaves. Let Q1 , Q2 , Q3 , Q4 be the nodes of C1 + C2 and suppose
that the gluing data of F12 is (+,+,−,−) for (Q1 , Q2 , Q3 , Q4) in this order. Since
F12 ⊗ F13 ≅ F23 and all of these sheaves have two “+”s and two “−”s in the gluing data
and are nontrivial, we can assume that F12 ,F13 ,F23 are all distinct and the gluing
data of F13 is (+,−,+,−) and the gluing data of F23 is (−,+,+,−), after changing
the labels of Q3 , Q4 if necessary. By the same argument, each triple Fi j ,F jk ,Fi k ,
{i , j, k} ⊂ {1, 2, 3, 4} gives all three possible distinct invertible sheaves with two “+”s
and two “−”s in the gluing data. Moreover,Fi j /≅ Fi k if j /= k. Furthermore, this implies
that Fi j ≅ Fk l for {i , j, k, l} = {1, 2, 3, 4}, as Fk l cannot be isomorphic to Fi k or F jk
and must be isomorphic to the remaining Fi j in the triple Fi j ,F jk ,Fi k .

Remark 3.5 In Example 3.4, OC(2Pi1 + 2Pi2) ≅ L∣C ≅ ωC, where ωC is the
dualizing sheaf of C. Hence, OC(Pi1 + Pi2) is a theta characteristic of C (see [11]).
Now, Fi j = L∣C ⊗OC(−Pi1 − Pi2 − Pj1 − Pj2) ≅ OC((Pi1 + Pi2) − (Pj1 + Pj2)) and is
nothing but the difference between the odd theta characteristics OC(Pi1 + Pi2) and
OC(Pj1 + Pj2).

Remark 3.6 Since Fi j ≅ Fk l , we have Fi j ⊗ Fk l ≅ OC , which gives

OC (
4
∑
i=1
(Pi1 + Pi2)) ≅ OP2(2)∣C .

This implies Salmon’s theorem – namely, the eight points of tangency {P11 , . . . , P42}
lie on a conic. See [11, Theorem 3.3] for details. Also, another different proof can be
found in [12, Corollary 1.5].
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4 Unramified double covers of two conics induced by Poncelet
transverses

Let C1 , C2 be smooth conics intersecting transversely as before. In this section, we
consider the unramified double covers of C = C1 + C2 induced by n-sided Poncelet
transverses. We note that it is known that there exist C1 , C2 intersecting transversely
that admit an n-sided Poncelet transverse for any n ≥ 3 (see [9]).

4.1 Degenerated Poncelet transverses

First, we study degenerated n-sided Poncelet transverses. Let C1 , C2 be smooth
conics intersecting transversely with an n-sided Poncelet transverse ⊓n ∶ (P1 , L1), . . . ,
(Pn , Ln). If ⊓n is degenerated, there exists a pair (Pi , L i), (Pj , L j) (i /= j) such that
either Pi = Pj or L i = L j . We can assume i < j without loss of generality. Note that
(Pi , L i) /= (Pj , L j) by the minimality of the period n.
• Suppose Pi = Pj . If Pi ∈ C2, then there is only one unique line L passing through Pi

and tangent to C2. Then L i = L j , which contradicts the minimality of the period.
Hence, we can assume Pi /∈ C2 and that there exist two distinct tangent lines L′i ,
L′′i , of C2 passing through Pi . Since L i /= L j by the minimality of the period, we
have {L i , L j} = {L′i , L′′i }. This implies that (Pi , L i), (Pj , L j) are consecutive in the
sequence and are of the form (Pi , L i), (Pi , L i+1); this can only occur if L i is a tangent
line of C1 and hence a bitangent line to C1 + C2.

• Suppose L i = L j . Then since Pi and Pj lie on the same line, again we can assume
that (Pi , L i), (Pj , L j) are consecutive in the sequence and are of the form (Pi , L i),
(Pi+1 , L i). If Pi+1 /∈ C2, then there exist two distinct lines through Pi+1 tangent to
C2 and L i /= L i+1, which contradicts L i = L j . Hence, Pi+1 ∈ C2, and L i = L j is the
unique tangent line of C2 passing through Pi+1.

In both cases, the sequence is “reflected” at (Pi , L i), (Pi+1 , L i+1), and the points and
lines leading up to this position appear in reverse order leading away. In order to
be periodic, the sequence must be “reflected” once more to come back to (Pi , L i),
(Pi+1 , L i+1). A “reflection” only occurs in the above two cases; hence, if ⊓n is degen-
erated, then it must contain exactly two lines that are either a bitangent line or a
line tangent to C2 at a point of C1 ∩ C2. A bitangent line will appear in the whole
sequence only once, and the other lines will appear exactly twice. Therefore, we have
the following:
• If n = 2m, two cases can occur. In the first case, ⊓2m has two bitangent lines. The

set of vertices consists of m distinct points, and the set of edges consists of two
bitangents and m − 1 general lines. In this case, the transverse is of the form

(P1 , L1), . . . , (Pm , Lm), (Pm , Lm−1), (Pm−1 , Lm−2), . . . , (P1 , L0),

where L0 and Lm are the bitangent lines, under a suitable choice of labels (see
Figure 1 (a)). In the second case, ⊓2m has two lines each tangent to C2 at a point
of C1 ∩ C2. In this case, the set of vertices consists of m + 1 distinct points, and the
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Figure 1: Three types of degenerated n-sided Poncelet transverses.

set of edges consists of the two lines each tangent to C2 at a point of C1 ∩ C2 and
m − 2 general lines. In this case, the transverse is of the form

(P1 , L1), . . . , (Pm , Lm), (Pm+1 , Lm), (Pm , Lm−1), . . . , (P3 , L2), (P2 , L1),

where P1 , Pm+1 ∈ C1 ∩ C2 and L1 and Lm are the lines tangent to C2 at a point
of C1 ∩ C2, under a suitable choice of labels (see Figure 1 (b)). There exist two
degenerated 2m-sided transverses of each kind.

• If n = 2m + 1, ⊓2m+1 will have one bitangent line and one line tangent to C2 at a
point of C1 ∩ C2. The set of vertices consists of m + 1 distinct points, and the set of
edges consists of the bitangent line, the line tangent to C2 at a point in C1 ∩ C2, and
m − 1 general lines. The transverse is of the form

(P1 , L1), . . . , (Pm , Lm), (Pm+1 , Lm), (Pm , Lm−1) . . . , (P1 , L0),
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where L0 is the bitangent line, Pm+1 ∈ C1 ∩ C2, and Lm is the line tangent to C2 at
Pm+1, under a suitable choice of labels (see Figure 1 (c)). There exist four degenerated
2m + 1-sided transverses of this kind.

4.2 Deformation and degeneration of Poncelet transverses and line bundles of
order two

Let C1 , C2 be smooth conics intersecting transversely admitting a 2m-sided Poncelet
transverse⊓2m . In this subsection, we consider double covers ofP2 branched along the
lines of⊓2m and its relation with the induced unramified double covers ofC = C1 + C2.
We study the unramified double cover through a degeneration argument, where we
deform general 2m-sided Poncelet transverses to a degenerated transverse with two
bitangent lines. Note that we do not consider the other type of degeneration, as it will
not induce an unramified double cover of C.

Let ⊓2m ∶ (P1 , L1), . . . , (P2m , L2m) be a general nondegenerated Poncelet trans-
verse and let P2m ∶= ∑2m

i=1 L i . Let Q i = C2 ∩ L i be the tangent points of L i and C2
(i = 1, . . . , 2m). Let πP ∶ S′ → P

2 be the double cover branched alongP2m . Then, since
P2m has degree 2m and P2m ∣C = 2(∑2m

i=1 Pi +∑2m
j=1 Q j), πP induces an unramified

double cover ϖP ∶ C′P → C as in Section 3. The line bundle of order 2 on C defining
C′P is FP ∶= OP2(m)∣C ⊗OC(−∑2m

i=1 Pi −∑2m
j=1 Q j). We are interested in the structure

of this double cover C′P. By Theorem 1.1 (Poncelet’s closure theorem), when we
continuously move P1 on C1 to a point P′ that is a tangent point of a bitangent line of
C = C1 + C2, the 2m-sided Poncelet transverse originating at P1 continuously deforms
along with P1 to the degenerated Poncelet transverse originating at P′. Let P′1 = P′
and let

(P′1 , L′1), . . . , (P′m , L′m), (P′m , L′m−1), (P′m−1 , L′m−2), . . . , (P′1 , L′0)

be the degenerated transverse originating at P′1 , where L′0 and L′m are bitangent
lines of C = C1 + C2. Let Q′i = L′i ∩ C2 (i = 0, . . . , m) be the tangent points of L′i and
C2. The correspondence between the lines, vertices, and tangent points under the
degeneration are as follows:

Pi , P2m+1−i → P′i (i = 1, . . . , m),
L i , L2m−i → L′i (i = 1, . . . , m − 1), Lm → L′m , L2m → L′0

Q i , Q2m−i → Q′i (i = 1, . . . , m − 1), Qm → Q′m , Q2m → Q′0

Here, the points P1 , . . . , P2m and Q1 , . . . , Q2m are continuously deformed on the
smooth part of C, while preserving the condition that OP2(m)∣C ⊗OC(−∑2m

i=1 Pi −
∑2m

j=1 Q j) is of order 2. However, the set of invertible sheaves of order 2 of C is
isomorphic to (Z/2Z)⊕3 (see the discussions in Section 3 or [11, Section 3, 3a]) and is
finite and discrete. By Lemma 3.2, the gluing data of the induced unramified double
cover is constant under the deformation; hence, by Lemma 3.3, the gluing data of the
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Table 1: C1 + C2 and the degeneration of a 6-sided Poncelet transverse.

invertible sheaves of order 2 must also be constant under the deformation, and the
isomorphism classes of the sheaves FP must be constant. Hence, we have

OP2(m)∣C⊗OC

⎛
⎝
−

2m
∑
i=1

Pi −
2m
∑
j=1

Q j
⎞
⎠

≅ OP2(m)∣C ⊗OC

⎛
⎝
−

m
∑
i=1

2P′i −
m−1
∑
j=1

2Q′j − Q′0 − Q′m
⎞
⎠

.

Furthermore, since (L′1 +⋯+ L′m−1)∣C = P′1 +∑m−1
i=2 2P′i + P′m +∑m−1

j=1 2Q′j and
OP2(m − 1)∣C ≅ OC(P′1 +∑m−1

i=2 2P′i + P′m +∑m−1
j=1 2Q′j), we have

OP2(m)∣C⊗OC

⎛
⎝
−2

m
∑
i=1

P′i −
m−1
∑
j=1

2Q′j − Q′0 − Q′m
⎞
⎠

≅ OP2(1)∣C ⊗OC(−P′1 − P′m − Q′0 − Q′m).

The points P′1 , Q′0 are the tangent points of the bitangent line L′0, and the points P′m , Q′m
are the tangent points of the bitangent line L′m . Hence, we see that the structures
of FP and the associated unramified double cover ϖP ∶ C′P → C induced by πP are
identical to that of the double cover in Example 3.4 associated to the bitangent lines
L′0 + L′m . Summing up these arguments, we have the following Lemma, where ϖ i j is
the unramified double cover of C induced by the double cover of P2 branched along
Ti + Tj as defined in Example 3.4.

Lemma 4.1 Under the above settings and notation, let T1 , T2 , T3 , T4 be the bitangent
lines to C1 , C2 labeled so that the pairs T1 , T2 and T3 , T4 each lie in the same degenerated
2m-sided transverse. Then the unramified double covers ϖP, ϖ12, ϖ34 ofC = C1 + C2 are
all isomorphic.
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Remark 4.2 The isomorphism between ϖ12 and ϖ34 has already been observed in
Example 3.4, regardless of the existence of a 2m-sided Poncelet transverse.

5 Proof of Main Theorem

In this section, we prove Theorem 1.3. Let C1 , C2 be smooth conics intersecting
transversely that admit a 2m-sided Poncelet transverse. Let T1 , T2 , T3 , T4 be bitangent
lines of C = C1 + C2 labeled so that the pairs T1, T2 and T3, T4 each lie in the same
degenerated 2m-sided transverse. Let, ⊓2m ∶ (P1 , L1), . . . , (P2m , L2m) be a nondegen-
erated transverse, P2m ∶= ∑2m

i=1 L i and let

Ci j ∶= C1 + C2 +P2m + Ti + Tj ({i , j} ⊂ {1, 2, 3, 4})

as in the Introduction.

Lemma 5.1 The combinatorial types Comb(Ci j) of Ci j are the same for all {i , j} ⊂
{1, 2, 3, 4} and any choice of nondegenerated transverse ⊓2m .

Proof Let ⊓2m ∶ (P1 , L1), . . . , (P2m , L2m) be a nondegenerated transverse. Since
all of the lines L1 , . . . , L2m and T1 , T2 , T3 , T4 are tangent lines of C2, no three are
concurrent. A line L i and a bitangent Tj cannot intersect on C1, as we have assumed
that L i lies in a nondegenerated transverse and Tj lies in a degenerated transverse.
They cannot intersect on C2 as well because they are distinct tangent lines of C2.
Hence, the combinatoral types are the same. ∎

Let Bi j ∶= P2m + Ti + Tj ({i , j} ⊂ {1, 2, 3, 4}) and let πBi j ∶ S′ → P
2 be the dou-

ble cover of P2 branched along Bi j .

Lemma 5.2 Under the labeling above, the splitting type of (C1 , C2;Bi j) is (0, 4) if
{i , j} = {1, 2} or {3, 4} and is (2, 2) otherwise.

Proof Since Bi j can be viewed as a sum of P2m and (Ti + Tj), by the discussions
in Section 3, the cover πBi j induces an unramified double cover of C = C1 + C2,
whose structure is given by the product of the covers ϖP of Section 4.2 and ϖ i j of
Example 3.4. Then since ϖP, ϖ12, ϖ34 are isomorphic by Lemma 4.1, Bi j induces the
trivial unramified double cover if {i , j} = {1, 2} or {3, 4}, and otherwise induces a
nontrivial unramified double cover with gluing data (+,+,−,−) for a suitable choice
of labels of the nodes. ∎

Now, Lemma 5.1 and 5.2 together with Proposition 2.2 give the proof of Theo-
rem 1.3.

Example 5.3 We give explicit equations of conics C1 and C2 admitting a 4-sided
Poncelet transverse, and also an example of a Zariski pair of degree 10 arising from
the conics. We use (x ∶ y ∶ z) as a system of homogeneous coordinates of P2. Let C1
and C2 be two conics defined by the following equations:
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C1 ∶ 4x2 − y2 − z2 = 0,
C2 ∶ x2 − yz = 0.

The bitangent lines of C1 + C2 are given as follows:

T1 ∶ (−
√
−1 +
√

3) x − y − ( 1
2
−
√
−3
2
) z = 0,

T2 ∶ (−
√
−1 −
√

3) x − y − ( 1
2
+
√
−3
2
) z = 0,

T3 ∶ (
√
−1 −
√

3) x − y − ( 1
2
−
√
−3
2
) z = 0,

T4 ∶ (
√
−1 +
√

3) x − y − ( 1
2
+
√
−3
2
) z = 0.

The tangent point of C1 and T1 is P′1 ∶= (
√
−1 +
√

3 ∶ 2 + 2
√
−3 ∶ 4). Let L′1 be the

line defined by 2
√
−1x − y + z = 0, which passes through P′1 and is tangent to C2. The

intersection point of L′1 and C1 is P′2 = (
√
−1 −
√

3 ∶ 2 − 2
√
−3 ∶ 4), which coincides

with the intersection point of T2 and C1. Now it is evident that the following sequence
is a degenerated 4-sided Poncelet transverse:

(P′1 , T1), (P′1 , L′1), (P′2 , T2), (P′2 , L′1).

Hence, we have a 4-sided Poncelet transverse originating from any pair (P1 , L0)
of a point P1 ∈ C1 and a tangent line L0 of C2 passing through P1 by Poncelet’s
closure theorem. Note that since T1 and T2 lie in a degenerated transverse, T3 and
T4 must also lie on the other degenerated transverse. By the above argument, if
(i , j) ∈ {(1, 2), (3, 4)} and (k, l) ∉ {(1, 2), (3, 4)}, then the following pair of plane
curves is a Zariski pair for the square P4 of any nondegenerated 4-sided Poncelet
transverse:

(C1 + C2 +P4 + Ti + Tj , C1 + C2 +P4 + Tk + Tl).

For example, the following L0 , . . . , L3 form a square P4 of a nondegenerated 4-sided
Poncelet transverse:

L0 ∶ z = 0, L1 ∶ 2x − y − z = 0,
L2 ∶ y = 0, L3 ∶ 2x + y + z = 0.
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