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Global existence of a weak solution for a
reaction–diffusion system in a porous
medium with membrane conditions and
mass control
Safimba Soma , Siaka Kambele, and Aboudramane Guiro
Abstract. In this paper, we prove the global exstence of weak solutions for a porous medium
dynamics of m species moving between two domains separated by a zero-thickness membrane.
On this membrane, Kedem–Katchalsky conditions are considered, and the study is characterized
by natural structural conditions applied to the nonlinear reactive terms. The global existence is
established under the assumption that these reactive terms are bounded in L1 . This problem has
already been analyzed in the linear diffusion case by Ciavolella and Perthame in Ciavolella and
Perthame (2021, Journal of Evolution Equations 21, 1513–1540). The present work constitutes an
extension for nonlinear diffusion, particularly of the porous medium type, in the form ∂tv i − Δvri

i =
R i , for an exponent r i < 2. The case r i ≥ 2 remains an open problem. This paper is an adaptation of
the ideas from Ciavolella and Perthame (2021, Journal of Evolution Equations 21, 1513–1540), with
new strategies to overcome the appearance of nonlinearity and degeneracy in the diffusion term.

1 Introduction

The study of diffusion in porous medium is of great importance in modeling transport
phenomena that are ubiquitous in fields such as hydrology, geology, biology, and
materials engineering. A particularly relevant phenomenon is osmosis, the process
by which a solvent or species diffuses through a semi-permeable membrane. The
modeling of such a process, generally governed by reaction–diffusion systems, often
integrates so-called Kedem–Katchalsky conditions [16]. For instance, in [10], the
authors studied such a model for linear diffusion.

In this paper, we consider a nonlinear reaction–diffusion model of the porous
medium type, incorporating a Kedem–Katchalsky condition, given by the following
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 1, . . . , m,
∂tv i − Δφ i(v i) = R i(v1 , . . . , vm) in QT ∶= (0, T) × Ω,
v i = 0 in ΣT ∶= (0, T) × (Γ1 ∪ Γ2),
∂ν1

1φ i(v i) = ∂ν1
2φ i(v i) = k i(2φ i(v i) − 1φ i(v i)) in ΣT ,Γ ∶= (0, T) × Γ,

v i(0, x) = v0, i(x) ≥ 0 in Ω,

(1.1)
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where
⧫ Ω is a bounded open spatial domain of Rd , d ≥ 2, and ∂Ω denotes its boundary

supposed smooth,
⧫ Ω1 and Ω2 are open and bounded spatial subdomains of Ω, with respective

boundaries ∂Ω1 and ∂Ω2 which are assumed to be sufficiently regular. And let us put

Ω = Ω1 ∪ Ω2 , Γ = ∂Ω1 ∩ ∂Ω2 , Γ1 = ∂Ω1/Γ, Γ2 = ∂Ω2/Γ,

⧫ We also denote by ν1 and ν2 the exterior normals to Ω1 and Ω2, respectively.
⧫ φ i(v i) = D ivr i

i , D i > 0, r i > 0, i = 1, . . . , m are continuous increasing functions
from [0,+∞) into [0,+∞) with φ i(0) = 0 and the nonlinearities R i are regular
functions satisfying the following two main properties:

∗ (P): the nonnegativity of the solutions is preserved for all time;
∗ (M): the total mass of the components is controlled at all times (sometimes even

exactly conserved). We will come back to this later for more details.
⧫ We designate the density of each species i (i = 1, . . . , m) by

v i =
⎧⎪⎪⎨⎪⎪⎩

1v i , if species i live in Ω1 ,
2v i , if species i live in Ω2

such as φ i(v i) =
⎧⎪⎪⎨⎪⎪⎩

φ i(1v i) ∶= 1 φ i(v i), if species i live in Ω1 ,
φ i(2v i) ∶= 2 φ i(v i), if species i live in Ω2 .

This choice is justified by the fact that each of the species i (i = 1, . . . , m) lives
only in one of the separate domains Ω1 or Ω2 and can move from one domain to
the other across the permeable transverse membrane Γ. There is a jump of species
v i , i = 1, . . . , m across the Γ membrane which we designate by

2v i − 1v i ∶= [[v i]].
To be more precise, for x ∈ Γ and for i = 1, . . . , m, the trace in the sense of Sobolev
allows us to pose

1v i(x) = lim
h→0−

v i(x + hν1(x)) and 2v i(x) = lim
h→0−

v i(x + hν2(x)).

In this paper, we analyze a nonlinear reaction–diffusion model of the porous medium
type with membrane conditions called Kedem–Katchalsky conditions [10]. Our main
goal is to prove the global existence in time of a weak solution for the system (1.1)
under an a priori estimate L1 with r i ∈ ((d − 2)+/d; 2), i = 1, . . . , m. We exploit here
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Global existence of a weak solution for a reaction–diffusion system 3

the “L1” framework offered by the properties (M) and (P), by the fact that just as in the
semilinear case, the operator v i ↦ ∂tv i − D ivr i

i has favorable compactness properties

in L1 when r i >
(d − 2)+

d
. Concerning the restriction r i < 2, we will detail its natural

appearance in the rest of the work, more precisely in the proof of Lemma 3.5. Recently,
Ciavolella and Perthame in [10] studied a similar model for linear diffusion (r i = 1).
The authors proved the global existence of weak solutions for L1 data, by adapting
to membrane conditions an L1 theory for reaction–diffusion systems initiated by M.
Pierre and his collaborators (see [3, 5, 19, 20, 28]).

We aim to extend the main results on this global existence of weak solutions from
the semilinear case [10] to the case where the φ i are nonlinear, particularly of the
porous medium type, i.e., φ i(v i) = D ivr i

i , r i ≥ 1, with Kedem–Katchalsky conditions.
Two principles are fundamental for this:

– the conservation of mass, which leads to the continuity of the density flux,
– the dissipation principle such that the L2-norm of the solution decreases over time.

From these properties, it follows that the density flux is proportional to the jump
[[v i]] across the membrane with a proportionality coefficient k i ≥ 0, i = 1, . . . , m,
representing the permeability constants of the membrane Γ for each species density
v i , i = 1, . . . , m.

Over the last two decades, the study of biological models with membrane boundary
problems describing diffusion phenomena has attracted many authors at various
scales (see [4, 6, 7, 9, 13, 21, 31, 34]).

The existence of bounded regular solutions on the interval (0,+∞) can be found in
several references, notably [8, 11, 14, 15, 17, 24–26, 30], as well as in many other articles
listed in the survey [28] or in the book [32]. However, it is well known that solutions
can blow up in L∞(Ω)-norm in finite time, as demonstrated in [29], where explicit
finite-time blowups in L∞(Ω)-norm are presented. Thus, even in the semilinear or
nonlinear case, it is necessary to deal with weak solutions to ensure global existence
in time.

Our paper is structured into three distinct sections, each making a specific con-
tribution to our research. Section 1 presents the context and issues of the study.
Section 2 is devoted to the presentation of our main result, preceded by a preliminary
phase which establishes the foundations and hypotheses necessary to prove the global
existence of a weak solution for equation (1.1). Section 3 demonstrates our main result
by means of an approximation model, applying crucial estimates, and proving the
existence of a weak solution in two steps: first an supersolution, then a subsolution.
This structure allows for a clear and logical presentation, providing a comprehensive
overview of our contribution to this area of research.

2 Preliminaries and main results

2.1 Preliminaries and notations

The purpose of this part is to introduce some notations and recall some basic
mathematical results. we denote by H1 the Hilbert space of functions defined by
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H1 = {u ∈ H1(Ω1) × H1(Ω2), u = 0 in Γ1 and Γ2} .

We endow it with the norm

∥u∥H1 = (∥u∥2
H1(Ω1) + ∥u∥2

H1(Ω2))
1
2 .

We designate (⋅, ⋅) as the inner product in H1 and ⟨⋅, ⋅⟩ denote the duality bracket of
H1 with its dual space (H1)⋆.

2.2 Assumptions

For further work in this paper, we formulate the following hypotheses:
For i = 1, . . . , m, we assume that

k1 = ⋅ ⋅ ⋅ = km = k, φ i(v i) = D ivr i
i , (d − 2)+

d
< r i < 2.(2.1)

For i = 1, . . . , m, R i ∶ QT × [0,+∞)m → R be such as

Regularity ∶
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R i is measurable,
∀T > 0, R i(⋅, ⋅, 0) ∈ L1(QT),
∃K ∶ [0,+∞) → [0,+∞) nondecreasing such that:

∣R i(x , t, v) − R i(x , t, ṽ)∣ ≤ K(M)
m
∑
j=1
∣v j − ṽ j ∣

for all M > 0 for all v , ṽ ∈ (0, M)m and a.e. (x , t) ∈ QT .

(2.2)

We assume that the nonlinearities R i satisfy the properties:

Quasi-positivity:

(P):
⎧⎪⎪⎨⎪⎪⎩

R i(t, x , v1 , . . . , v i−1 , 0, v i+1 , . . . , vm) ≥ 0
for all v = (v1 , . . . , vm) ∈ [0,+∞)m a.e. (t, x) ∈ QT .

(2.3)

Control of mass:

(M):
⎧⎪⎪⎪⎨⎪⎪⎪⎩

there exists (ξ1 , . . . , ξm) ∈ (0,+∞)m such as

∀v = (v1 , ⋅, vm) ∈ [0,+∞)m , for a.e. (t, x) ∈ QT ,
m
∑
j=1

ξ jR j(x , t, v) ≤ 0.(2.4)

Sub-quadratic growth:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀i = 1, . . . , m,∀v = (v1 , ⋅, vm) ∈ [0,+∞)m ,

∣R i(v)∣ ≤ C (1 +
m
∑
j=1

vr i+1
j ) .

(2.5)

Remark 1 Note that all our given results extend immediately if (M) is replaced by

(M’)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀ v = (v1 , . . . , vm) ∈ [0,+∞)m , for a.e. (x , t) ∈ QT ,
m
∑
j=1

R j(x , t, v) ≤ C
m
∑
j=1

v j + h(x , t),

for some C > 0 h ∈ L1
l oc([0,+∞); L2(Ω)+).

(2.6)
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The properties (P) and (M) or (M’) exist naturally in applications. In fact, evo-
lutionary reaction–diffusion systems are mathematical models for evolutionary phe-
nomena undergoing both spatial diffusion and (bio)chemical reactions. In these mod-
els, the unknown functions are generally densities, concentrations, and temperatures,
so their nonnegativity is required. In addition, it is often necessary to control the total
mass, sometimes even the preservation of the total mass is naturally guaranteed by
the model. Interest in these models has grown recently, particularly for applications in
biology, ecology, and population dynamics. We refer to [29] for examples of reaction–
diffusion systems with properties (P) and (M) or (M’).

We now present the notion of solution and also the main result that is the subject
of our mathematical analysis in this paper.

2.3 Main result

We define our space of test functions as

WT = {(1Ψ,2 Ψ) ∈ C∞([0, T] × Ω1) × C∞([0, T] × Ω2), Ψ ≥ 0,
Ψ(⋅, T) = 0, Ψ = 0 in ΣT ,∇1Ψ.ν1 = ∇2Ψ.ν1 = k i(2Ψ − 1Ψ) in [0, T] × Γ} ,

where Ψ =
⎧⎪⎪⎨⎪⎪⎩

1Ψ, in Ω1 ,
2Ψ, in Ω2

. We now introduce the notion of weak solution of

problem (1.1) and also the existence and regularity result of this solution.

Definition 1 Given v0, i ∈ L1(Ω) ∩ (H1)⋆ , v0, i ≥ 0, i = 1, . . . , m, a global weak solu-
tion of system (1.1) is a nonnegative function v = (v1 , . . . , vm) such that for all T >
0 and i = 1, . . . , m, v i ∈ C([0, T], L1(Ω)), φ i(v i) ∈ L1(0, T , W 1,1), R i(v) ∈ L1(QT),
and

−∫
Ω

v i(⋅, 0)Ψ(⋅, 0)dx − ∫
T

0
∫

Ω
v i ∂t Ψ + φ i(v i).ΔΨdxdt = ∫

T

0
∫

Ω
R i(v)Ψdxdt

(2.7)

for all Ψ ∈ WT .

Theorem 1 Assume that (2.1)–(2.3) and (2.6) hold and k i = k, i = 1, . . . , m. Assume
that L1-estimate (3.6) holds. Then, for all v0 = (v0,1 , . . . , v0,n), such as v0 ∈ (L1(Ω) ∩
(H1)⋆)m , v0 ≥ 0, the system (1.1) has a nonnegative global weak solution in the sense of
Definition 1.

3 Proof of the existence result

3.1 The approximate reaction–diffusion system

In this subsection, we introduce an approximation of the system (1.1).
We first approximate the initial data and the reaction terms as follows:

vn
0, i ∶= inf {v0, i , n} and Rn

i ∶=
R i

1 + 1
n ∑1≤ j≤m ∣R j ∣

.(3.1)
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For each fixed n, vn
0, i(x) ∈ L∞(Ω), i = 1, . . . , m, and converges to v i ,0 in L1(Ω) ∩

(H1)⋆. We consider the following regularised system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 1, . . . , m,
for all T > 0, vn

i ∈ L∞(QT)+ , φi(vn
i ) ∈ L2(0, T ; H1(Ω)),

∂tvn
i − Δφi(vn

i ) = Rn
i (vn

1 , . . . , vn
m) in QT ∶= (0, T) × Ω,

vn
i = 0 in ΣT ∶= (0, T) × (Γ1 ∪ Γ2),

∂ν1
1φi(vn

i ) = ∂ν1
2φi(vn

i ) = ki(2φi(vn
i ) − 1φi(vn

i )) in ΣT ,Γ ∶= (0, T) × Γ,
vn

i (0, x) = vn
0, i(x) ≥ 0 in Ω,

(3.2)

where the approximate nonlinearities Rn
i are essentially “truncations” of the R i ’s. More

precisely, we will assume that Rn
i is locally Lipschitz continuous and satisfies (2.2) with

K(⋅) independent of n, and (2.3)–(2.5) with h independent of n, and is in L∞(QT ×
R

m). Moreover, thanks to our choice, we have ∥Rn
i ∥L∞ ≤ n for each fixed n. Therefore,

the approximate system (3.2) has a nonnegative bounded global solution (see, e.g., [20,
Lemma 2.3] and [18] or [35] for more details). Let us denote

εn
M ∶= max

1≤i≤n
sup

v∈[0,M]m
∣Rn

i (v) − R i(v)∣,(3.3)

where v = (v1 , . . . , vm). Then, we check that

εn
M ≤ CM m

n
and εn

M #→ 0 in L1(QT) and a.e. in QT as n → +∞.(3.4)

For i = 1, . . . , m, vn
0, i(x) ∈ L∞(Ω) and converges to v i ,0 in L1(Ω) ∩ (H1)⋆.

3.2 The key estimate

Lemma 3.1 Assume that, for 1 ≤ i ≤ m, v i ,0 ∈ L1(Ω) ∩ (H1)⋆ and h ∈
L1

l oc([0,+∞); L2(Ω)) under the assumption (2.6). Then, for all nonnegative regular
functions v i solution of (3.2) with k i = k, i = 1, . . . , m, there exists C(T) > 0 such that

∥vn
i ∥Lri+1(QT) ≤ C(T) (1 + ∥vn

i ,0∥(H1)⋆) .(3.5)

Moreover, with the assumption (2.5), the Rn
i (vn) are uniformly bounded in L1(QT),

more precisely, for all T > 0, there exists a constant C′ > 0 independent of n such that

∥Rn
i (vn)∥L1(QT) ≤ C′ .(3.6)

Proof By summing the m equations of the regularized system (3.2) and then using
(2.6) of Remark 1, we obtain

∂t (
m
∑
i=1

vn
i ) − Δ(

m
∑
i=1

φ i(vn
i )) ≤ C

m
∑
i=1

vn
i + h.(3.7)

By multiplying this inequality by e−Ct , and observing that
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e−Ct
m
∑
i=1

vn
i = ∂t (e−Ct

m
∑
i=1

vn
i ) + C

m
∑
i=1

vn
i , we obtain

∂t (e−Ct
m
∑
i=1

vn
i ) − Δ(e−Ct

m
∑
i=1

φ i(vn
i )) ≤ e−Ct h ≤ h.(3.8)

By integrating from 0 to t, we obtain

e−Ct
m
∑
i=1

vn
i − Δ(∫

t

0
e−Cs

m
∑
i=1

φ i(vn
i (s, ⋅)ds) ≤

m
∑
i=1

vn
i ,0 + ∫

t

0
h(s, ⋅)ds.(3.9)

Let us set Û(t) = e−Ct
m
∑
i=1

vn
i (t, ⋅) and V̂(t) = ∫

t

0
e−Cs

m
∑
i=1

φ i(vn
i (s, ⋅)ds, then we

obtain the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û − ΔV̂ ≤ Û0 + ∫
t

0
h(s, ⋅)ds, in QT ,

V̂ = 0, in ΣT ,
∂ν1

1V̂ = ∂ν1
2V̂ = k (2V̂ −1 V̂) , in ΣT ,Γ ,

V̂(0, x) = 0, in Ω,

(3.10)

multiplying the inequation of (3.10) by ∂tV̂ ≥ 0, then integrating over QT , we get

∫
QT

(∂tV̂)Û − ∫
QT

(∂tV̂)ΔV̂ ≤ ∫
QT

(∂tV̂) [Û0 + ∫
t

0
h(s, ⋅)ds] ,(3.11)

where Û0 ∶= Û(0) =
m
∑
i=1

vn
i ,0. Integrating by parts and majorating the right-hand side,

we get

∫
QT

(∂t V̂)Û + ∫
QT

∇(∂t V̂)∇V̂ − ∫
T

0
∫

∂Ω
∂ν V̂ ∂t V̂ ≤ ∫

QT
(∂t V̂) [Û0 + ∫

T

0
h(s, ⋅)ds] .

(3.12)

Now, we can see that

∫
T

0
∫

∂Ω
∂νV̂ ∂tV̂ = ∫

T

0
∫

Γ
∂ν1

1V̂ ∂t
1V̂ + ∫

T

0
∫

Γ
∂ν2

2V̂ ∂t
2V̂

= −∫
T

0
∫

Γ
k([[V̂]])∂t([[V̂]])

= − k
2 ∫

T

0

d
dt ∫Γ

([[V̂]])2

= − k
2 ∫

Γ
([[V̂(T)]])2 ,
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since V̂(0) = 0. So, from (3.12), it follows that

∫
QT

(∂t V̂)Û + 1
2 ∫

T

0

d
dt ∫Ω

∣∇V̂ ∣2 + k
2 ∫

Γ
([[V̂(T)]])2 ≤∫

Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T),

∫
QT

(∂t V̂)Û + 1
2 ∫

Ω
∣∇V̂(T)∣2 + k

2 ∫
Γ
([[V̂(T)]])2 ≤∫

Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T).

Therefore,

∫
QT

(∂tV̂)Û ≤ ∫
Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T).(3.13)

Furthermore, the second term of the right-hand side of the above inequality is
bounded for all T > 0. To see this, we introduce, thanks to the Lax–Milgram theorem,
the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W ∈ H1 , W ≥ 0,

−ΔW = Û0 + ∫
T

0
h(s, ⋅)ds, in QT ,

W = 0, in ΣT ,
∂ν1

1Ŵ = ∂ν1
2Ŵ = k (2Ŵ −1 Ŵ) , in ΣT ,Γ ,

W(0, x) = W0(x) ≥ 0 in Ω.

(3.14)

Consider the inequality from (3.10) at time t = T . Multiplying by W and using the
growth of the integral, we integrate over Ω to obtain

∫
Ω

Û(T)W − ∫
Ω

ΔV̂(T)W ≤ ∫
Ω

Û0W + ∫
Ω

W ∫
T

0
h(s, ⋅)ds ∶= −∫

Ω
WΔW .

(3.15)

Using two integrations by parts on the second term of the left-hand side, and exploiting
equation (3.14), we observe that

∫
Ω

ΔV̂(T)W = ∫
Ω

V(T)ΔW ∶= −∫
Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T),(3.16)

and with an integration by parts on the right-hand side term, we have

−∫
Ω

WΔW = (∫
Γ

k[[W]]2 + ∫
Ω
∣∇W ∣2) .(3.17)

Taking W as the test function in the weak formulation of (3.14), it follows that

(∫
Γ

k[[W]]2 + ∫
Ω
∣∇W ∣2) ∶= ∫

Ω
(Û0 + ∫

T

0
h(s, ⋅)ds)W

≤ ∥W∥2
H1 (∥Û0∥2

(H1)⋆ + ∥∫
T

0
h(s, ⋅)ds∥

2

L2(Ω)
)

≤ ∥W∥2
H1 (

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆ + ∥∫

T

0
h(s, ⋅)ds∥

2

L2(Ω)
)
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Global existence of a weak solution for a reaction–diffusion system 9

≤ max{1, ∥∫
T

0
h(s, ⋅)ds∥

2

L2(Ω)
}∥W∥2

H1 (1 +
m
∑
i=1

∥vn
i ,0∥2
(H1)⋆)

≤ C (1 +
m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) ,(3.18)

where C = max{1, ∥∫
T

0 h(s, ⋅)ds∥
2

L2(Ω)
}∥W∥2

H1 . From (3.15)–(3.18), we obtain

∫
Ω

Û(T)W + ∫
Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T) ≤ C (1 +

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) .

Thanks to the positivity of W and vn
i , it follows that

∫
Ω
[Û0 + ∫

T

0
h(s, ⋅)ds] V̂(T) ≤ C (1 +

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) .(3.19)

From (3.13) and (3.19), it comes that

∫
QT

(∂tV̂)Û ≤ C (1 +
m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) ,

which can be rewritten as

∫
QT

m
∑
i=1

vn
i (t, ⋅)

m
∑
i=1

φ i(vn
i (t, ⋅)) ≤ e2CT C (1 +

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) .

Finally, from (3.1) and the fact that φ i(v i) = D ivr i
i , it follows that

min
i
{D i}

m
∑
i=1

∫
QT

∣vn
i ∣r i+1 ≤ e2CT C (1 +

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) ≤ e2CT C

m
∑
i=1

(1 + ∥vn
i ,0∥2
(H1)⋆) .

This implies

∫
QT

∣vn
i ∣r i+1 ≤ C (1 + ∥vn

i ,0∥2
(H1)⋆) , where C = e2CT C

min
i
{D i}

.(3.20)

This proves (3.5).
Noting that ∣Rn

i ∣ ≤ ∣R i ∣, then from (2.5) and (3.20), we have

∫
QT

∣Rn
i (vn)∣ ≤ C [T ∣Ω∣ +

m
∑
i=1

∫
QT

∣vn
i ∣r i+1] ≤ C(T , Ω, C, m)(1 +

m
∑
i=1

∥vn
i ,0∥2
(H1)⋆) .

(3.21)

Hence, {Rn
i (vn)} is bounded in L1(QT). This proves (3.6) and completes the proof of

Lemma 3.1. ∎

Let us now recall the main compactness properties of the solutions of (1.1). We start
with the following compactness lemma (see [2, 3, 5]; for the compactness of the trace,
we use the continuity of the trace operator from W 1,1 into L1(∂Ω)). Let (w0 , F) ∈
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L1(Ω) × L1(QT). We consider w the solution of the problem in dimension d ≥ 2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tw − DΔwα = F in QT ∶= (0, T) × Ω,
w = 0 in ΣT ∶= (0, T) × (Γ1 ∪ Γ2),
∂ν1

1φ(w) = ∂ν1
2φ(w) = k i(2φ(w) − 1φ(w)) in ΣT ,Γ ∶= (0, T) × Γ,

w(0, x) = w0(x) ≥ 0 in Ω.

(3.22)

• The mapping (w0 , f ) ↦ w is compact from L1(Ω) × L1(QT) to L1(QT) for all α >
(d − 2)+

d
.

• The trace mapping (w0 , f ) ↦ w∣Γ ∈ L1 (Γ) is also compact.

Lemma 3.2 (see [22]) Let (w0 , F) ∈ L1(Ω) × L1(QT) and α > (d − 2)+
d

. We consider
w the solution of the problem (3.22) in dimension d ≥ 2. Then,

∫
QT

∣w∣αγ ≤ C for 0 < γ < 2 + αd
αd

,(3.23)

∫
QT

∣∇wα ∣β ≤ C for 0 < β < 1 + 1
1 + αd

.(3.24)

The constant C depends only on ∣QT ∣, ∥w0∥L1(Ω), ∥F∥L1(QT), γ, β, α and of dimension d.

Proof For a proof, see Lukari, for the case α > 1 and [23, Lemma 3.5] for the case
(d − 2)+

d
< α < 1. In these two references, the proof is given with zero initial data,

but with right-hand side a bounded measure. We may use the measure δt=0 ⊗w0dx
include the case of initial data w0. We may also use the results in [1, Theorem 2.9]. The
estimate in the nondegenerate case may be obtained in a similar way. ∎

In the rest of the demonstrations, we will need to use Vitali’s lemma, which we
recall below.

Lemma 3.3 (see [12, 33]) Let (E , μ) be a measured space such that μ(E) < +∞, let 1 ≤
p < +∞, and let { fn}n ⊂ Lp(E) such that fn → f a.e. If { f p

n}n is uniformly integrate
over E, then f ∈ Lp(E) and fn → f in Lp(E).

3.3 Existence of global weak supersolution

Thanks to Lemma 3.1, we know that the reaction term Rn is bounded in L1(QT). Thus,
we can assert the existence of a supersolution of the system (1.1) through the following
theorem.

Theorem 2 (Existence of a supersolution) Assume that the L1-estimate (3.6) holds for

the solution vn of (3.2) with (d − 2)+
d

< r i < 2. Assume that, for 1 ≤ i ≤ m, R i satisfy
(2.5). Let vn = (vn

1 , . . . , vn
m) be a nonnegative solution of approximate system (3.2). Let

us consider that k i = k, for i = 1, . . . , m. Then, up to a subsequence, vn converges in
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L1(QT) and a.e. in QT to a supersolution v = (v1 , . . . , vm) of system (1.1), which means
that for i = 1, . . . , m,

−∫
Ω

v i(⋅, 0)Ψ(⋅, 0)dx + ∫
T

0
∫

Ω
−v i ∂t Ψ +∇φ i(v i).∇Ψdxdt

+ k∫
T

0
∫

Γ
[[Ψ]][[φ i(v i)]] ≥ ∫

T

0
∫

Ω
R i(v)Ψdxdt(3.25)

for all Ψ ∈ WT .

Proof To prove this theorem, we will proceed in several steps. We start with
compactness results for the approximate solution vn using the following lemma. ∎
Lemma 3.4 Assume that the L1-estimate (3.6) holds for the solution vn of (3.2) with

r i >
(d − 2)+

d
. Then, up to a subsequence, and for all T > 0 and 1 ≤ i ≤ m, we have

• vn
i → v i in L1(QT) and a.e. in QT ,

• φ i(vn
i ) → φ i(v i) in Lγ(QT) and a.e. in QT for all γ ∈ [1, 1 + 2

r i d
),

• φ i(v i) ∈ Lβ(0, T ; W 1,β(Ω)) for all β ∈ [1, 1 + 1
1 + r i d

),

• Rn
i (vn) → R i(v) a.e. in QT and R i(v) ∈ L1(QT).

Proof Thanks to Lemma 3.1, {Rn
i (vn)} is bounded in L1(QT), and according to

Lemma 3.2, {vn
i } is relatively compact in L1(QT).Therefore, up to a subsequence,

vn
i → v i in L1(QT) and a.e. QT .(3.26)

Thanks to the choice of Rn
i (vn), and the a.e. convergence of {vn

i } (3.26), it follows that

Rn
i (vn) → R i(v) a.e. in QT .

By Fatou’s lemma, we have

∫
QT

∣R i(v)∣ ≤ lim inf
n→+∞ ∫

QT

∣Rn
i (vn)∣,

which implies

R i(v) ∈ L1(QT)m .

Thanks to the estimation (3.6), we can apply (3.23) of Lemma 3.2 to the ith equation
of (3.2). Then, it comes that {φ i(vn

i )}n is bounded in Lγ(QT) for all 1 ≤ γ < 1 + 2
r i d

and for all T > 0, i.e., there is a constant C > 0 such that

∫
QT

∣φ i(vn
i )∣γ ≤ C ,

which implies that (φ i(vn
i ))γ is bounded in L1(QT). By arbitrarity nature of γ in

[1, 1 + 2
r i d

), (φ i(vn
i ))

γ is even uniformly integrable. Since it also converges a.e. to

φ i(v i), by Vitali’s Lemma 3.3, the convergence holds strongly in Lγ(QT) to φ i(v i).
Next, according to the estimation (3.6), we can apply (3.24) of Lemma 3.2 to the

ith equation of (3.2). Then, it comes that {φ i(vn
i )}n is bounded in Lβ(0, T ; W 1,β(Ω))
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12 S. Soma, S. Kambele, and A. Guiro

for all 1 ≤ β < 1 + 1
1 + r i d

. These space being reflexive (for β > 1), it follows that φ i(v i)
also belongs to these same spaces. ∎

Since vn
i satisfies (3.2), then for all i = 1, . . . , m, we have

−∫
Ω

vn
i (⋅, 0)Ψ(⋅, 0)dx + ∫

T

0
∫

Ω
−vn

i ∂t Ψ +∇φ i(vn
i ).∇Ψdxdt

+ k∫
T

0
∫

Γ
[[Ψ]][[φ i(vn

i )]] = ∫
T

0
∫

Ω
Rn

i (vn
i )Ψdxdt(3.27)

for all Ψ ∈ WT .
Now, we want to take the limit as n →∞ in (3.27). But first, let us make the

following remark.

Remark 2 So far we only have the a.e. convergence of Rn
i (vn

i ) to R i(v i). As a result,
we are unable to go to the limit in (3.27) in order to obtain the weak formulation in
the sense of Definition 1. To do this, we need to show that the convergence of Rn

i (vn)
to R i(v) occurs in the sense of the distributions. Herein lies the main difficulty of the
proof. Indeed, Rn

i (vn) is bounded in L1(QT). Consequently, it converges in the sense
of measures to R i(v) + μ, where μ is a bounded measure. The challenge is to prove
that this measure is equal to zero. For this, we use the truncation method, as in [27],
to prove that the limit v is first a supersolution in the sense of (3.25). And later we prove
that v is a subsolution in order to obtain the weak formulation desired in Definition 1.

3.4 Truncation method

Here, the main idea is that if vn
i is a weak solution of (3.2), then the regular approxi-

mation of the truncation function Tb(v i) (with Tb defined below (3.28) and v i being
the limit of vn

i as n → +∞) constitutes a supersolution of (1.1). To demonstrate this,
we let n → +∞ in the inequality satisfied by an appropriate approximation of Tb(vn

i )
(specifically (3.45) in Lemma 3.7).

In the semilinear case, the method consisted of writing, for each index i, the
inequality satisfied by Tb(vn

i + η∑ j≠i vn
j ) with η > 0, then letting n → +∞ for fixed

η and b, then η → 0, and finally b → +∞ (see [10, 27]).
Here, the ideas remain the same but need to be adapted to nonlinear diffusions.

Therefore, to prepare the proof of existence of supersolution, let us introduce the
truncating functions Tb ∶ [0,+∞) → [0,+∞) of class C3 which satisfy the following
for all b ≥ 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tb(σ) = σ if σ ∈ [0, b − 1],
Tb(σ) ≤ b, for all σ ≥ 0.
T ′b(σ) = 0 if σ ≥ b,
0 ≤ T ′b(σ) ≤ 1 and − 1 ≤ T ′′b (σ) ≤ 0 for all σ ≥ 0.

(3.28)
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For example, we may choose Tb as

Tb(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ , if σ ∈ [0, b − 1],
(σ − b + 1)4

2
− (σ − b + 1)3 + σ , if σ ∈ [b − 1, b],

b − 1
2

, if σ ∈]b,+∞).

(3.29)

Next, for all i = 1, . . . , m, and for all (n, η, b) ∈ N⋆ × (0, 1) × [1,+∞), we introduce

An
i ,η ,b = ∂t [Tb(vn

i )T ′b(ηV n
i )] − ∇. [T ′b(vn

i )T ′b(ηV n
i )∇φ i(vn

i )] ,(3.30)

where Tb(vn
i ) is such that ∣vn

i ∣ = min
j
{∣v j∣} and V n

i = ∑
j≠i

vn
j , j ∈ {1, . . . , m}.

Note that the operator An
i ,η ,b → ∂tvn

i −∇.(∇φ i(vn
i )) = ∂tvn

i − Δφ i(vn
i ) as η → 1

and b → +∞.
Using a computation, we can prove that

An
i ,η ,b = T ′b(vn

i )Tb(ηV n
i )Rn

i (vn) + An
i + Bn

i ,(3.31)

where

An
i = −∇φ i(vn

i ).∇[T ′b(vn
i )T ′b(ηV n

i )] and
Bn

i = ηTb(vn
i )T ′′b (ηV n

i )∂tV n
i = ηTb(vn

i )T ′′b (ηV n
i )∑

j≠i
(Δφ j(vn

j ) + Rn
j (vn)) .

By multiplying An
i ,η ,b by Ψ ∈ WT and then integrating over QT , we obtain

∫
QT

An
i ,η ,b Ψ = ∫

QT

T ′b(vn
i )Tb(ηV n

i )Rn
i (vn)Ψ + ∫

QT

An
i Ψ + ∫

QT

Bn
i Ψ.(3.32)

Now we are going to bound the last two terms of (3.32). To arrive at this, we need the
following lemma.

Lemma 3.5 Let F ∈ L1 (QT)+ , w0 ∈ L1(Ω)+. Then w the solution of (3.22) satisfies
the following: there exists C = C (∫QT

F , ∫Ω w0) such that, for all nondecreasing θ ∶
(0,+∞) → (0,+∞) of class C1 and with θ (0+) = 0,

∫[θ(w)≤b]
∣∇θ(w)∣∣∇φ(w)∣ = ∫[θ(w)≤b]

∇θ(w)∇φ(w) ≤ Cb.(3.33)

In particular,

∫[φ(w)≤b]
∣∇φ(w)∣2 ≤ Cb,∫[w≤b]

∣∇w∣2 ≤ Cb2−r i(3.34)

with r i < 2.

Remark 3 The main restriction r i < 2 discussed in the introduction appears in the
above statement. The proof of Theorem 1 requires to control the L2-norm of ∇vn

i on
the level sets [vn

i ≤ b]. This L2-norm is not bounded if r i ≥ 2 because of the degeneracy
around the points where vn

i = 0. It is, however, valid for the large values of vn
i . But this

does not seem to be sufficient for the proof.
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Proof of Lemma 3.5 As usual, we make the computations for regular enough
solutions and they are preserved by approximation for all semigroup solutions.

Multiplying the equation ∂tw − Δφ(w) = F by Tb+1(θ(w)). We obtain

∂twTb+1(θ(w)) − Δφ(w)Tb+1(θ(w)) = FTb+1(θ(w)).(3.35)

Let us set jb(w) = ∫
w

0
Tb+1(θ(s))ds, then Jb(0) = 0 and ∂t Jb(w) =

∂twTb+1(θ(w)). Integrating (3.35) over QT , we obtain

∫
Ω

Jb(w)(T) + k∫
T

0
∫

Γ
[[Tb+1(θ(w))]][[φ(w)]] + ∫

QT

T ′b+1(θ(w))∇θ(w)∇φ(w)

= ∫
QT

Tb+1(θ(w))F + ∫
Ω

Jb (w0) .

Exploiting the increase in Tb+1, θ and φ, we find that [[Tb+1(θ(w))]][[φ(w)]] ≥ 0.
Since Tb+1 ≤ b + 1, we have 0 ≤ Jb(r) ≤ (b + 1)r for all r ≥ 0 so that

∫[θ(w)≤b]
∣∇θ(w)∣∣∇φ(w)∣ ≤ (b + 1) (∫

QT

F + ∫
Ω

w0) ≤ C(b).

Choosing θ ∶= φ gives the first estimate of (3.34). If r i < 2 in the expression of φ
(2.1), we choose θ(w) ∶= w2−r i to obtain

d i (2 − r i) r i ∫[w(2−ri )≤b]
∣∇w∣2 ≤ C1b,

and by substituting b for b2−r i , we get

∫[w≤b]
∣∇w∣2 ≤ Cb2−r i ,

which gives the second estimate of (3.34). ∎

Thanks to the results of the previous lemma (Lemma 3.5), we are able to state the
following results.

Lemma 3.6 There exist δ > 0, C ≥ 0 independent of n and η such that, for all i =
1, . . . , m and for all Ψ ∈ WT ,

∫
QT

ΨAn
i ≥ −ηδ CD(Ψ)(3.36)

and

∫
QT

ΨBn
i ≥ −ηδ CD(Ψ),(3.37)

where D(Ψ) = ∥Ψ∥L∞(QT) + ∥∇Ψ∥L∞(QT).
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Proof We have

∫
QT

ΨAn
i = −∫

QT

Ψ∇φi (vn
i )∇[T′b (vn

i )T′b (ηV n
i )]

= −∫
QT

Ψ∇φi (vn
i ) . [T′′b (vn

i )T′b (ηV n
i )∇vn

i + ηT′b (vn
i )T′′b (ηV n

i )∇V n
i ]

= −∫
QT

Ψφ′i (vn
i )T′′b (vn

i )T′b (ηV n
i ) ∣∇vn

i ∣2 − η∫
QT

ΨT′b (vn
i )T′′b (ηV n

i )∇φi (vn
i ) .∇V n

i

≥ −η∫
QT

ΨT′b (vn
i )T′′b (ηV n

i )∇φi (vn
i ) .∇V n

i ,

the last inequality is obtained thanks to the positivity of φ′i , Ψ and conditions on
Tb in (3.28). We can see that apart from {(x , t) ∈ QT , vn

i ≤ b ηV n
i ≤ b}, T ′b (vn

i )T ′b
(ηV n

i ) = 0.
To simplify notation, let us write [vn

i ≤ b] ∩ [ηV n
i ≤ b] instead of

{(x , t) ∈ QT , vn
i ≤ b ηV n

i ≤ b}. From this observation, it follows that

∫
QT

∣ΨT′b (vn
i )T′′b (ηV n

i )∇φi (vn
i )∇V n

i ∣ ∶= ∫
[vn

i ≤b]∩[ηV n
i ≤b]
∣ΨT′b (vn

i )T′′b (ηV n
i )∇φi (vn

i )∇V n
i ∣ .

By the Schwarz inequality and conditions on Tb in (3.28), there exists a constant C
depending on b, and we have the following result:

∫
QT

∣ΨT ′b (vn
i )T ′′b (ηV n

i )∇φ i (vn
i )∇V n

i ∣

≤ C∥Ψ∥L∞(QT) (∫[vn
i ≤b]∩[ηV n

i ≤b]
∣∇φ i (vn

i )∣ 2)
1/2

(∫[vn
i ≤b]∩[ηV n

i ≤b]
∣∇V n

i ∣ 2)
1/2

≤ C∥Ψ∥L∞(QT) (∫[vn
i ≤b]

∣∇φ i (vn
i )∣ 2)

1/2

(∫[ηV n
i ≤b]

∣∇V n
i ∣ 2)

1/2

≤ C∥Ψ∥L∞(QT) (∫[φ i(vn
i )≤φ i(b)]

∣∇φ i (vn
i )∣ 2)

1/2

(∫[V n
i ≤

b
η ]
∣∇V n

i ∣ 2)
1/2

.

By Lemma 3.5, we obtain

∫
QT

∣ΨT ′b (vn
i )T ′′b (ηV n

i )∇φ i (vn
i )∇V n

i ∣ ≤ C∥Ψ∥L∞(QT)
√

φ i(b)[b/η]1−r i/2

≤ C∥Ψ∥L∞(QT)
√

φ i(b)[b/η]1−M/2;

M ∶= max{1, max
i

r i}

≤ C∥Ψ∥L∞(QT)b
1+ (ri−M)

2 η
M
2 −1

≤ C(b)D(Ψ)η
M
2 −1 ,

where C(b) = b and D(Ψ) = ∥Ψ∥L∞(QT) + ∥∇Ψ∥L∞(QT). This implies

η∫
QT

ΨT ′b (vn
i )T ′′b (ηV n

i )∇φ i (vn
i )∇V n

i ≤ C(b)D(Ψ)η
M
2 .

Therefore,

∫
QT

ΨAn
i ≥ −CD(Ψ)ηδ(3.38)
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for some C = C(b) and δ = M/2, hence the result (3.36) of Lemma 3.6. To prove the
second estimate of Lemma 3.6, we will proceed in several steps. We have

∫
QT

ΨBn
i = ∑

j≠i
(η∫

QT

ΨTb(vn
i )T′′b (ηV n

i )Δφ j(vn
j ) + η∫

QT

ΨTb(vn
i )T′′b (ηV n

i )Rn
j (vn)) .

Let us put In = η∫
QT

ΨTb(vn
i )T ′′b (ηV n

i )Δφ j(vn
j ) and Jn = η∫

QT

ΨTb(vn
i )

T ′′b (ηV n
i )Rn

j (vn).
• Let us bound Jn . We have:
using the fact that −1 ≤ T ′′b (σ) ≤ 0, 0 ≤ Tb(σ) ≤ b for all σ ≥ 0, and the bound L1 on
Rn

i , we obtain

Jn ≥ −ηC(b)∥Ψ∥L∞(QT) .(3.39)

• Let us bound In . We have:

In = η∫
QT

ΨTb (vn
i )T ′′b (ηV n

i )Δφ j (vn
j )

= −η∫
T

0
∫

Γ
k[[ΨTb(vn

i )T ′′b (ηV n
i )]][[φ j(vn

j )]]

− η∫
QT

∇(ΨTb(vn
i )T ′′b (ηV n

i )) .∇φ j(vn
j )

= −Kn − I1,n − I2,n − I3,n ,

where

Kn = η∫
T

0
∫

Γ
k[[ΨTb(vn

i )T ′′b (ηV n
i )]][[φ j(vn

j )]],

I1,n = η∫
QT

Tb (vn
i )T ′′b (ηV n

i )∇φ j (vn
j ) .∇Ψ,

I2,n = η∫
QT

ΨT ′b (vn
i )T ′′b (ηV n

i )∇φ j(vn
j ).∇vn

i ,

I3,n = η2 ∫
QT

ΨTb (vn
i )T ′′′b (ηV n

i )∇φ j(vn
j ).∇V n

i .

• Let us bound Kn .

∣Kn ∣ =η ∣∫
T

0
∫

Γ
k [2ΨTb(2vn

i )T ′′b (η2V n
i ) − 1ΨTb(1vn

i )T ′′b (η1V n
i )] [φ j(2vn

j ) − φ j(1vn
j )]∣

≤ 4bη∥Ψ∥L∞(QT) ∫[vn
i ≤b]∩Γ

∣vn
i ∣∣φ j(vn

j )∣

≤ 4bηD∥Ψ∥L∞(QT) ∫[vn
i ≤b]∩Γ

∣vn
j ∣r j+1

≤ C(b, T)η∥Ψ∥L∞(QT) .(3.40)

With D = max
j
{D j}, we have used Lemma 3.1.
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• Let us bound I1,n . By (3.24) (with β = 1) and Lemma 3.5, we obtain

∣I1,n ∣ ≤ bη∥∇Ψ∥L∞(QT) ∫QT

∣∇φ j (vn
j )∣ ≤ C(b)η∥∇Ψ∥L∞(QT) .(3.41)

• Let us bound I2,n .

∣I2,n ∣ = η ∣∫
QT

ΨT ′b (vn
i )T ′′b (ηV n

i )∇φ j(vn
j ).∇vn

i ∣

= η ∣∫[ηV n
i ≤b]∩[vn

i ≤b]
ΨT ′b (vn

i )T ′′b (ηV n
i )∇φ j(vn

j ).∇vn
i ∣

≤ η∫[ηV n
i ≤b]∩[vn

i ≤b]
ΨT

′

b(vn
i )∣T

′′

b (ηV n
i )∣∣∇φ j(vn

j )∣∣∇vn
i .∣

By noticing that {ηV n
i ≤ b} ⊂ {ηvn

j ≤ b} and by Schwarz’s inequality, it follows that

∣I2,n ∣ ≤ η∫[ηvn
j ≤b]∩[vn

i ≤b]
ΨT

′

b(vn
i )∣T

′′

b (ηV n
i )∣∣∇φ j(vn

j )∣∣∇vn
i ∣

≤ η∥Ψ∥L∞(QT) (∫[ηvn
j ≤b]

∣∇φ j(vn
j )∣2)

1/2

(∫[vn
i ≤b]

∣∇vn
i ∣2)

1/2

≤ η∥Ψ∥L∞(QT) (∫[φ j(vn
j )≤φ j( b

η )]
∣∇φ j(vn

j )∣2)
1/2

(∫[vn
i ≤b]

∣∇vn
i ∣2)

1/2

≤ ηC∥Ψ∥L∞(QT)

?
@@Aφ j(

b
η
)b1− ri

2

≤ C(b, D)∥Ψ∥L∞(QT)η
1−

r j
2 ,(3.42)

with r j < 2, D = max
j
{D j} and C(b, D) = Cb1+(r j−r i)/2

√
D, i , j = 1, . . . , m, j ≠ i, and

we have used Lemma 3.5.

• Let us bound I3,n . Using again Schwarz’s inequality, Lemma 3.5, and [ηV n
i ≤ b] ⊂

[ηvn
j ≤ b], we obtain

∣I3,n ∣ ≤ η2 (∫[ηV n
i ≤b]

Ψ∣Tb(vn
i )∣∣T ′′′b (ηV n

i )∣∣∇φ j(vn
j )∣∣∇V n

i ∣)

≤ Cη2∥Ψ∥L∞(QT) [∫[ηvn
j ≤b]

∣∇φ j (vn
j )∣ 2]

1/2 ⎡⎢⎢⎢⎢⎣
∫[ηV n

i ≤b]
∣∇V n

i ∣ 2]
1/2

≤ Cη2∥Ψ∥L∞(QT) [∫[φ j(vn
j )≤φ j( b

η )]
∣∇φ j (vn

j )∣ 2]
1/2 ⎡⎢⎢⎢⎢⎣

∫[ηV n
i ≤b]

∣∇V n
i ∣ 2]

1/2

≤ Cη2∥Ψ∥L∞(QT)
√

φ j(b/η) [b
η
]

1−M/2
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≤ Cη2∥Ψ∥L∞(QT)
√

D [b
η
]

1+
r j−M

2

≤ C(b, D)∥Ψ∥L∞(QT)η
1+

M−r j
2

≤ C(b, D)∥Ψ∥L∞(QT)η,(3.43)

where C(b, D) = C
√

Db1+
r j−M

2 and M = max
j
{1, max

j
{r j}} , j = 1, . . . , m, j ≠ i .

From (3.40)–(3.43), we obtain

In ≥ C(b, T , D)ηδ D(Ψ),(3.44)

where δ = 1 − M
2 , and D(Ψ) = ∥Ψ∥L∞(QT) + ∥∇Ψ∥L∞(QT).

By (3.39) and (3.44), we obtain the estimation (3.37) of Lemma 3.6.
This proves Lemma 3.6. ∎

Now, thanks to Lemma 3.6, we have the following result.

Lemma 3.7 There exist δ > 0, C > 0 independent of n and η such that, for all i = 1, . . .,
m and for all Ψ ∈ WT ,

∫
QT

An
i ,η ,b Ψ ≥ ∫

QT

T ′b (vn
i )T ′b (ηV n

i )Rn
i (vn)Ψ − CD(Ψ)ηδ ,(3.45)

where An
i ,η ,b = ∂t (Tb (vn

i )T ′b (ηV n
i )) − ∇ ⋅ (T ′b (vn

i )T ′b (ηV n
i )∇φ i (vn

i )) , V n
i =

∑
j≠i

vn
j and D(Ψ) = ∥Ψ∥L∞(QT) + ∥∇Ψ∥L∞(QT).

Proof It is a direct consequence of formula (3.32) and of Lemmas 3.5 and 3.6 above.

We can choose δ = min{M
2

, 1 − M
2
}. ∎

Note also that

∫
QT

An
i ,n ,b Ψ = − ∫

Ω
Tb (vn

i0)T ′b (ηV n
i (0))Ψ(0) + k ∫

T

0
∫

Γ
[[ΨT ′b(vn

i )T ′b(ηV n
i )]][[φ i(vn

i )]]

+ ∫
QT

−Tb (vn
i )T ′b (ηV n

i ) ∂t Ψ + T ′b (vn
i )T ′b (ηV n

i )∇φ i (vn
i )∇Ψ.(3.46)

Our aim now is to pass to the limit between (3.45) and (3.46). We do it in the
following order: first n → +∞, then η → 0, finally b → +∞.

• We make n → +∞ along the subsequence introduced in Lemma 3.4 (η and b are
fixed). Since vn

i0 → v i0 in L1(Ω) and Tb , T ′b are Lipschitz continuous, it follows that

∫
Ω

Tb (vn
i0)T ′b (ηV n

i (0))Ψ(0) → ∫
Ω

Tb (v i0)T ′b (ηVi(0))Ψ(0),

and thanks to Lemmas 3.2 and 3.4, it follows that

∫
T

0
∫

Γ
[[ΨT ′b(vn

i )T ′b(ηV n
i )]][[φ i(vn

i )]] → ∫
T

0
∫

Γ
[[ΨT ′b(v i)T ′b(ηVi)]][[φ i(v i)]].

https://doi.org/10.4153/S0008414X24000737 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000737


Global existence of a weak solution for a reaction–diffusion system 19

Concerning the last integral in (3.46), since, for all j = 1, . . . , m, vn
j converges in

L1 (QT) and a.e. to v j , we have

Tb (vn
i )T ′b (ηV n

i ) → Tb (v i)T ′b (ηVi) in L1 (QT) ,

where we set Vi ∶= ∑
j≠i

v j . It also follows that

T ′b (ηV n
i ) → T ′b (ηVi) in L2 (QT) .

Next, T ′b (vn
i )∇φ (vn

i ) is bounded in L2 (QT) by (3.33) in Lemma 3.5. Therefore,

T ′b (vn
i )∇φ (vn

i ) → T ′b (v i)∇φ (v i) weakly in L2 (QT) .

Indeed, let us set Sb(r) ∶= ∫
r

0
T ′b(s)φ′i(s)ds, then∇Sb (vn

i ) = T ′b (vn
i )∇φ (vn

i ). Since
Sb (vn

i ) converges a.e. to Sb (v i) and is bounded, the convergence holds in the
sense of distributions. Therefore, the distribution limit of ∇Sb (vn

i ) is ∇Sb (v i) =
T ′b (v i)∇φ i (v i).

This ends the proof of the passing to the limit in (3.46).
Now we will go to the limit in the right-hand side of the inequality (3.45). Let us

put

Wn ∶= T ′b (vn
i )T ′b (ηV n

i )Rn
i (vn) , W ∶= T ′b (v i)T ′b (ηVi)R i(v)

and show that Wn converges to W in L1 (QT). Since Wn = 0 outside the set
[vn

i ≤ b] ∪ [V n
i ≤ b/η], if M ∶= max{b, b/η}, then, from the definition of εn

M in
(3.3), the regularity property (2.2), and the fact that ∣T ′b ∣ ≤ 1, we obtain

∣Wn ∣ ≤ ∣Rn
i (vn)∣ ≤ ∣R i(0)∣ + εn

M + K(M)∣∣vn(t, x)∣∣, where ∣∣r∣∣ ∶=
m
∑
i=1

∣r i ∣.

By assumption (see (3.4)), as n → +∞, εn
M tends to 0 in L1 (QT). Moreover, vn

converges in L1 (QT)m to v. Therefore, to prove the convergence of Wn in L1 (QT),
it is sufficient to prove that it converges a.e. We know that, for all j, vn

j → v j a.e. in QT .
Therefore, from the continuity of T ′b , it follows that

T ′b (vn
i )T ′b (ηV n

i ) → T ′b (v i)T ′b (ηVi) a.e. in QT .

It remains to check that

Rn
i (vn(t, x)) → R i(v(t, x)) a.e. in QT .(3.47)

Let D be the subset of QT such that, at the same time, vn(t, x) converges to
v(t, x) with ∥v(t, x)∥ < +∞ and εn

p(t, x) converges to 0 for all positive integer p as
n → +∞ along the subsequence introduced in Lemma 3.4. We know that QT/D is of
zero Lebesgue measure. Now let (t, x) ∈ D and let p > ∥v(t, x)∥. For n large enough,
∥vn(t, x)∥ < p and we may write for all i = 1, . . . , m (using the definition de εn

p (3.3)
and property (2.2)):

∣Rn
i (vn(t, x)) − R i(v(t, x))∣ ≤ εp(t, x) + ∣R i (vn(t, x)) − R i(v(t, x))∣

≤ εp(t, x) + K(p)∥vn(t, x) − v(t, x)∣∣.(3.48)
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The right-hand side of this inequality tends to 0 by definition of D.
According to the above analysis, we can pass to the limit as n → +∞ in (3.45) and

(3.46) and we obtain that

−∫
Ω

Tb (v i0)T ′b (ηVi(0))Ψ(0)+ k ∫
T

0
∫

Γ
[[ΨT ′b(v i)T ′b(ηVi)]][[φ i(v i)]]

+ ∫
QT
−Tb (v i)T ′b (ηVi) ∂t Ψ + T ′b (v i)T ′b (ηVi)∇φ i (v i)∇Ψ

≥ ∫
QT

T ′b (v i)T ′b (ηVi)R i(v)Ψ − CD(Ψ)ηδ .(3.49)

• Now we make η → 0 for b fixed in (3.49). Since Rn
i (vn) converges a.e. to R i(v)

(see (3.47) and is bounded in L1 (QT), Fatou’s lemma implies that R i(v) ∈ L1 (QT).
We can observe that T ′b(r) = χ[0,b−1](r). Therefore, by continuity of T ′b (recall that
Tb ∈ C3), when η → 0, T ′b (ηVi) → χ[0,b−1](0) ∶= 1 a.e. in QT and remains bounded
by 1, then by dominated convergence and thanks to the positivity of δ, we obtain

−∫
Ω

Tb (v i0)Ψ(0) + k ∫
T

0
∫

Γ
[[ΨT ′b(v i)]][[φ i(v i)]]

+ ∫
QT

−Tb (v i) ∂t Ψ + T ′b (v i)∇φ i (v i)∇Ψ ≥ ∫
QT

T ′b (v i)R i(v)Ψ.(3.50)

• Finally, we let b → +∞ in this inequality (3.50). Then Tb (v i) increases to v i and
T ′b (v i) increases to 1,∇φ i (v i) is at least in L1 (QT) (see (3.24) of Lemma 3.2 and
R i(v) ∈ L1 (QT). Therefore, we easily pass to the limit in (3.50) to obtain

−∫
Ω

v i0Ψ(0) + k ∫
T

0
∫

Γ
[[Ψ]][[φ i(v i)]] + ∫

QT
−v i ∂t Ψ +∇φ i (v i)∇Ψ ≥ ∫

QT
R i(v)Ψ.

(3.51)

And this ends the proof of Theorem 2.

3.5 Global existence of weak solution

In this section, we finalize the proof of Theorem 1. We use the approximate system
constructed earlier in Section 3.1. From Theorem 2, we already know that the limit
v is a supersolution. In order to conclude the proof of Theorem 1, it is necessary to
show that this supersolution is also a subsolution. To do this, we use the mass control
structure property (2.6).
Proof of Theorem 1 By Theorem 2, up to subsequence, the approximate solution vn

i
of the system (3.2) converges to a weak supersolution. We will show using the property
of the mass control structure (2.6) that the inverse inequality of (3.51) is satisfied for
the sum of its m expressions, i.e.,

−∫
Ω
[∑

i
v i0]Ψ(0) + k∫

T

0
∫

Γ
[∑

i
[[φ i(v i)]]] [[Ψ]]

+ ∫
QT

−[∑
i

v i] ∂t Ψ + [∑
i
∇φ i (v i)]∇Ψ ≤ ∫

QT

[∑
i

R i(v)]Ψ.(3.52)

This will imply that equality holds in each of the inequalities (3.51).
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First, we recall some convergence results obtained above in the previous subsection.
When n → +∞, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vn
i → v i in L1(QT) and a.e. in QT ,
∇φ i(vn

i ) ⇀ ∇φ i(v i) weakly in L2(QT),
vn

i ∣Γ → v i ∣Γ in L1(Γ).
(3.53)

Let us look again at the approximate system (3.2) and add up the m equations. We
then obtain that, for all Ψ ∈ WT ,

−∫
Ω
[∑

i
vn

i0]Ψ(0) + k ∫
T

0
∫

Γ
[∑

i
[[φ i(vn

i )]]] [[Ψ]]

+ ∫
QT

−[∑
i

vn
i ] ∂t Ψ + [∑

i
∇φ i (vn

i )]∇Ψ = ∫
QT

[∑
i

Rn
i (vn)]Ψ.(3.54)

For the right-hand side of (3.54), thanks to the hypothesis (2.6) on Rn
i , it follows that

C ∥vn∥ + h −∑
i

Rn
i (vn) ≥ 0.

By a.e. convergence of all function R i , i = 1, . . . , m (see 3.47), by L1(QT)-
convergence of vn and by Fatou’s lemma, we have

∫
QT

[C∥v∥ + h −∑
i

R i(v)]Ψ ≤ ∫
QT

(C∥v∥ + h)Ψ + lim inf
n→+∞ ∫

QT

−[∑
i

Rn
i (vn)]Ψ.

Therefore,

lim inf
n→∞ ∫

QT

[∑
i

Rn
i (vn)]Ψ ≤ ∫

QT

[∑
i

R i(v)]Ψ.

Thus, by passing to the limit in equation (3.54) and using the convergence results
(3.53), we arrive at the inequality (3.52). And, as explained above, this implies that
the equality holds in (3.51), i.e.,

−∫
Ω

v i0Ψ(0) + k ∫
T

0
∫

Γ
[[Ψ]][[φ i(v i)]] + ∫

QT

−v i ∂t Ψ +∇φ i (v i)∇Ψ = ∫
QT

R i(v)Ψ.

(3.55)

And finally, thanks to an integration from, we arrive at the following formulation:

−∫
Ω

v i0Ψ(0) − ∫
QT

v i ∂t Ψ + φ i (v i)ΔΨ = ∫
QT

R i(v)Ψ.(3.56) ∎
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