
1) Introduction
Brain-machine interfaces (BMIs) have been defined as

devices that detect intent—typically intended movement—from
brain activity, and translate it into an output action, such as
control of a cursor on a screen or a robotic arm. There is no doubt
that the potential of BMI technology to augment normal motor
performance is vast, a fact which has attracted both attention and
funding from a variety of sources including United States
military.1-3 For clinicians in the neurosciences, however, BMI
technology could have the potential to assist in motor recovery
or maintenance. At present, several forms of BMI devices, in
varying stages of development, are being investigated and used
to treat conditions that cause severe motor impairments,
including amyotrophic lateral sclerosis (ALS), stroke, and spinal
cord injury.4-9 The preliminary experiences of several groups
with motor BMI applications in clinical settings have generated
justifiable enthusiasm about the promise of future BMI
applications. Such enthusiasm, however, is tempered by a
definite need for further advances in a number of specific aspects
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of BMI technology. Most of these advances relate to the
acquisition and long-term maintenance of high quality
recordings from the brain that faithfully represent intended
motor activity. Clinicians have a clear role to play not only in the
neurosurgical implantation of signal recording technologies, but
also in the interpretation of recorded data as it relates to motor
behaviour. Furthermore, clinicians will need to determine which
patient populations will benefit from implantation of these
devices and under what circumstances.

Several reviews and at least one book have provided detailed
descriptions of BMI technology and its potential
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applications.2,6,10-30 Here we provide a practical guide to BMIs
for clinicians in the neurosciences. We begin by briefly
summarizing the components of BMI systems. We then discuss
the various approaches to neural signal acquisition, followed by
a discussion of potential anatomic signal sources. Next, we
review the currently available clinical data, and attempt to
predict the clinical utility of BMIs in the near future. Finally, we
propose criteria for evaluating BMI designs in an effort to
prepare clinicians for the exciting and challenging developments
that lie ahead.

2) Fundamental Design of BMI Systems for Motor Control
Any BMI designed for motor control must include three

components: 1) acquiring a neural signal that can be consciously
controlled; 2) analyzing that signal to identify an intended motor
output; and 3) executing the intended action (Figure 1).6,17

Signal acquisition is the fundamental design-point in a BMI,
since the quality and content of acquired information affects all
downstream components. The nature of the acquired signal is
variable, running the gamut from minimally invasive scalp
electroencephalogram (EEG) data, to signals acquired through
invasive neurosurgical intervention, such as intraparenchymal
single neuron recordings or local field potentials. The next step
is signal analysis, a complex process of identifying the user’s
intent and translating it into machine commands. This typically
involves numerous mathematical techniques depending on the

type of input signal, such as bandpower analysis after Fourier
transform for an EEG signal or modeling single neuron firing
rates using cosine tuning in preferred directions.31-33 In the
output step, motor execution may range from the operation of a
simple open-close grasper to the control of a more complex
device like a multi-dimensional robotic arm. Some have even
imagined sophisticated systems like full-body mechanized
exoskeletons or the reanimation of paralyzed limbs with
functional electrical stimulation (FES).34-39 Of particular
relevance to neuroscience clinicians is the possibility that FES
may evolve sufficiently to enable natural, coordinated
movement, necessitating, for example, considerable
neurosurgical expertise to ensure the safe implantation of
integrated BMI/FES systems. In such a scenario, physicians with
expertise in physiatry and rehabilitation medicine will play a
central role in monitoring patients as they use FES to recover
from motor deficits.

In addition to the three fundamental components of a BMI
system listed above, some form of a feedback mechanism is also
essential. Often visual, feedback allows both the human and
machine to make continuous adjustments as the desired target is
approached. Feedback is also necessary for longer-term
adjustments, which may include both human and machine
adaptation. Neuroplasticity, which may range from individual
synaptic changes to modulation of high-level circuits, depends
upon such feedback and is known to occur after hours of
training.40-43 However, the underlying mechanisms for much of
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Figure 1: BMI schematic diagram showing the 3 major components: 1) signal acquisition; 2)
signal processing; and 3) output execution. (reproduced from Leuthardt et al., 2006)

https://doi.org/10.1017/S0317167100012622 Published online by Cambridge University Press

https://doi.org/10.1017/S0317167100012622


neurophysiology (including neuroplasticity) remain largely
unclear, underscoring just how remarkable it is that the human
brain can learn to take control of devices such as BMIs. Machine
learning algorithms can also use feedback to carry some of the
burden of adaptation, potentially permitting BMI control to
occur with reduced mental effort.44 Some have also imagined
generating feedback signals by recording sensory information
from cortex or peripheral nerves to facilitate more precise control
of BMI systems.45,46

3) Neural Signal Acquisition for BMIs
3.1) Noninvasive Signal Acquisition

Noninvasive signal acquisition employs technology that can
be used to measure brain activity without first requiring
neurosurgical implantation. Such technology is attractive as it
avoids the real and perceived risks associated with more invasive
forms of BMI, but is weakened by limitations related to signal
quality and portability.

3.1.1) Scalp EEG
Decades of EEG experiments have shown that scalp

recordings can detect a number of distinct patterns of brain
activity that reflect some degree of volitional control.47 Due to
the distance and low-pass filtering property of the intervening
skull between brain and electrode, these recordings reflect gross
neural activity with about 3cm spatial discrimination and are
limited to the 0-35 Hz frequency range.17,48 The EEG signal is
believed to primarily reflect synchronous neural firing and/or an
accumulation of extra-cellular charge from prolonged activity or
inhibition.49-51 Certain patterns, including slow cortical
potentials, rolandic beta and mu rhythms (also known as
sensorimotor rhythms (SMRs), and the P300 wave, have been
used to train individuals to gain volitional control over
components in their environment, although not all patients are
successful in this process.52 This training requires significant
effort and time, and BMI systems based on scalp EEG recordings
have, to date, only achieved low to moderate levels of
performance, with the greatest advance being moderately
accurate control over a computer cursor.53 The EEG systems also
have a number of limitations in that they are highly vulnerable to
ambient electrical fields and contamination from muscular
electrical activity, which could impair BMI performance or, at
worst, cause gross malfunction.

3.1.2) Other forms of non-invasive signal acquistion
Other alternatives to scalp EEG have been explored in the

context of acquiring non-invasive neural signals to drive BMI
systems. Principally, these alternatives are based upon functional
brain imaging techniques, such as magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), near-infrared (NIR)
imaging, and functional transcranial Doppler (fTCD)
sonography.54 While MEG and fMRI do not offer the simplicity
and portability of electrical recording, their non-invasiveness
and ability to represent brain-wide neural activity make them
potentially attractive for stationary BMI applications like
computer cursor control. Positron emission tomography is
valuable only in a limited research environment, due to the need
for injection of a radioactive tracer. Functional transcranial
Doppler is a newer concept, detecting flow changes in
intracranial arteries, but is currently limited to only the largest of
vessels.54 However, near-infrared (NIR) optical imaging could
potentially provide portable and accurate non-invasive
recordings if certain technical challenges are resolved.55-57

Although the mechanism has yet to be fully understood, subtle
changes in neuronal membranes during firing cause a difference
in NIR attenuation, which could be detected using a non-
invasive apparatus.55 In any case, in the context of non-invasive
BMIs, it is critically important to also consider non-BMI
technologies like voice and movement-controlled assistive
devices, including those that detect eye movements, tongue
movements, or sip and puff actions. These options are simple
and low-cost, and, for many individuals, may provide for
sufficient control over their environment to render BMI
approaches unsuitable or impractical.

3.2) Invasive Signal Acquisition
Neural signals acquired from within the cranium have the

potential to more faithfully reproduce desired motor output at the
expense of some risk of injury to the brain. Several different
modalities of intracranial electrophysiological recordings have
been developed, such as electrocorticography (ECoG), single
unit recordings, and local field potentials (LFPs), which can be
viewed along an anatomical continuum ranging from extradural
techniques to intraparenchymal methods where the blood-brain
barrier is disrupted (Figure 2).
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Figure 2: Continuum of invasive recording modalities. ECoG=electrocorticography; LFPs=local field potentials
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3.2.1) Electrocorticography (ECoG)
Electrocorticography is the least invasive of the invasive

signal acquisition methods. Almost invariably, ECoG signals are
obtained by epidural or subdural electrode strips or grids
implanted through burr holes or craniotomy, although one report
described the use of conductive skull screws.58 These epidural or
subdural electrodes have been employed in humans for such
tasks as identification of seizure foci, treatment of chronic pain,
and functional mapping of the cortex.17,59-62 Subdural ECoG
electrodes are believed to be safer and longer lasting than those
placed directly in brain parenchyma.63 Further, one report found
epidural and subdural ECoG signals to be nearly equivalent,
suggesting that opening the dura may not be necessary.64 While
similar to EEG and generated by the same neuronal sources,
ECoG’s superior signal quality gives it comparatively five times
the amplitude, a wider bandwidth encompassing frequencies
from 0-200Hz, and better spatial resolution on the order of
nearly 1 mm.17 Perhaps the greatest advantage is the ability to
detect gamma frequency oscillations (>30 Hz), which are
believed to reflect synchronous firing in intracortical circuits
comprised of a small number of neurons confined to a few mm2

of cortex.60,65-68 Practical successes with ECoG in human BMI
research have included 3-dimensional control of a computer
cursor (two directions and a trigger) and differentiating between
four different speech phonemes.62,69,70 However, there has yet to
be a clinical trial of ECoG purely for BMI purposes, as current
studies have only been in patients with arrays placed for other
reasons. It also remains to be seen if ECoG provides a reliable
signal in the context of head motion, as the movement of the
brain relative to electrodes could reduce effectiveness,
particularly in patients with atrophy or pre-existing cortical
injury.

3.2.2) Single Unit, Multi-Unit, and Neuronal Ensemble
Recordings

The spiking activity of individual neurons produces 100-300
μv signals that can be recorded by intraparenchymal electrodes
where the recording surface is within about 100 μm.23 Such
recordings are termed ‘single-units’ for individual neurons, or
‘multi-units’ for the superimposed spiking activity of several
neurons. Electrodes used to acquire single or multi-unit
recordings are typically inserted using stereotactic—and usually
frame-based—neurosurgical techniques.

Pioneering experiments by Fetz and Schmidt showed
monkeys could gain fine control via operant conditioning over
the firing rates of individual M1 neurons.32,40 This principle led
to the development of glass cone electrodes coated with
neurotrophic factors that Kennedy and Bakay implanted in five
paralyzed humans, obtaining recordings over several years that
have been used to control several simple devices.4,42,71 However,
only minimal data from these experiments has been published,
and the methods have not been widely pursued by other research
groups.

At the same time, tremendous progress has been made in the
area of neuronal ensemble recordings, which are simultaneous
recordings of many neurons over multiple channels. Neuronal
ensembles represent the logical evolution of single and multi-
unit recordings, and have favourable properties that lend
themselves to BMI systems. Georgopoulos demonstrated that

many M1 neurons have a preferred direction for movement in
which they fire maximally, and subsequent breakthroughs by
other groups showed that an ensemble comprised of a modest
number of neurons could accurately predict the 2D or 3D
direction of movement.32,43,72,73 Subsequently, specialized
recording arrays have been developed with up to 100 microwire
or silicone probes that penetrate the cortex and record on
multiple channels.23,74 Several groups have demonstrated that
animals with these implanted arrays can achieve continuous 3D
control over robotic devices, including Nicolelis’ group that
decoded detailed kinematic information in real-time while
recording from over 300 neurons.20,27,75-78 Schwartz’s group
released a video showing monkeys casually feeding themselves
via a 4D robotic arm (3D movement plus a gripper), while able
to chew and look around, controlled by more than 100 single unit
recordings.79 In 2006, human trials began with Donoghue’s
group implanting four paralyzed individuals with 96-electrode
‘Braingate’ arrays, who subsequently gained up to 3D control
over a number of devices.15,80 However, in spite of the
accomplishments made using ensemble recordings, numerous
technical challenges remain. Of primary concern is the gliotic
tissue response that encapsulates electrodes and degrades the
quality of recordings, consistently rendering them unusable in
months or a few years.80-84 Also, the signals are highly variable
from day to day due to micromotion and are susceptible to sharp
head movements, often making it difficult to know if the same
neurons are being recorded.45 Efforts have been made to
accommodate this motion with microelectromechanical systems
(MEMS) that can move electrodes on the micrometer (μm) scale
and track target neurons.85 Other difficulties are insulation
breakdown, amplifying the electrical signals while minimizing
noise, relaying the signals out of the skull wirelessly, and
powering the system without generating excess heat.6,86-88 These
obstacles must be overcome to allow chronic durable recordings
that can be reliably and effectively used within a BMI system.

3.2.3) Local Field Potentials
Local Field Potentials (LFPs) are also recorded from intra-

parenchymal microelectrodes, being most often used in
scenarios where individual action potentials cannot be
identified.23,89,90 These recordings have been studied in humans
in several clinical settings, such as in the context of using depth
electrodes for identifying epileptic foci or during deep brain
stimulation (DBS) electrode placement.90 Historically, LFPs
have been relatively overlooked in favour of neuronal spiking
activity, possibly due to the difficulty in interpreting LFPs.91

This trend is rapidly changing, however, as recent advances have
shown that local field potentials are precise measures of neural
activity, sometimes more robust than data generated by single
units.92-96 The current view is that the LFP signal reflects
synaptic potentials averaged across a local region of about
250μm.97 Thus, the activity of small numbers of neurons is
captured, including both the average activity level and
oscillations due to synchronous firing. Oscillations tend to be
primarily in the gamma range, suggesting that LFP and ECoG
recordings overlap in their detection of neural activity, but with
LFPs able to accurately record the high-gamma (100-400 Hz)
range.62,94,98 Recent work in fact suggests that high-gamma LFP
recordings may yield even more movement information.96
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Interestingly, Kellis et al demonstrated that it is also possible to
capture an LFP signal less invasively from the pial surface, with
better spatial resolution than is possible with subdural ECoG
grids.99

3.3) Anatomic Target Regions for Neural Signals in BMIs
The complexity of motor planning and execution in the brain

naturally implies existence of a number of candidate brain
regions from which data can be acquired to drive a BMI system.
Choosing between these anatomic locales, and—as we have
already seen—using the appropriate recording modality to
characterize the neural activity in each, is critically important in
the design of any BMI. Several regions of interest relevant to
BMIs are listed in Table 1.

To date, the majority of invasive recordings have focused on
the primary motor cortex (M1).27 Individual M1 neurons have
been shown to fire in relation to a number of different movement
parameters, including direction, velocity, acceleration, and
force.21,27,32,73,100,101 Nearby neurons, within about 200μm, tend
to encode the same parameter suggesting that there may be no
additional benefit to recording on a smaller scale.101 Further,
some debate continues over the question of whether M1
ultimately encodes the motor activity of individual muscles or,
instead, more complex overall movements.28,100,102 Recent
tractography work in macaques showed that M1 neurons making
direct synapses with spinal motoneurons were entirely confined
to the caudal M1 buried in the central sulcus.103 Accordingly,
researchers who have placed recording electrode arrays have
found that M1 neurons primarily encode kinematics rather than
muscles, since recording arrays are almost invariably placed on
the precentral gyrus.104-106 Most designers of BMI systems have
typically based their systems on neural information thought to
encode for overall kinematic intent, but it is conceivable that
complex output devices like exoskeletons could be controlled in

many dimensions if intended outputs to individual effector
muscles could be simultaneously harnessed.

Several other brain regions involved in movement have also
been considered. High-level planning areas such as the posterior
parietal cortex (PPC) and the prefrontal cortex (PFC) have the
advantage that they appear to encode abstract movement goals in
advance of the actual movement.107-111 Andersen’s group at
Caltech has termed BMIs using these signals “cognitive-based”
and demonstrated that they require small numbers of neurons
and can predict movement goals in less time than it takes to
decode kinematic information.72,89,107,109,110 The PFC may be
particularly advantageous because it responds readily to
conscious control, which could help mediate the magnitude and
duration of machine-generated movements.112 Movement
preparation areas such as the premotor (PM) cortex and
supplementary motor area (SMA) have also been extensively
studied and have similarly been found to have favourable
properties.78,89,113-118 The ventral PM cortex (PMv) is highly
active in spatially-guided movement whereas the dorsal region
(PMd) appears to be involved in arbitrary rule-based
movement.78,89,114-117 The SMA may be useful due to its
association with the planning of movements, particularly those
that are internal or memory-guided.113,118,119 The rostral SMA
shows early activation whereas the caudal SMA is more active
during movement itself and is highly correlated with movement
kinematics.118,120

It has been widely established that the basal ganglia are
critical to motor preparation and execution.121,122 Invasive
recordings in humans during DBS electrode placement have
shown that both the subthalamic nucleus (STN) and the
ventrolateral (VL) thalamic nucleus are active before and during
different movement types.121-123 One group has investigated
these targets in DBS patients with a focus on the execution phase
of movement, obtaining 32-electrode recordings with a
specialized microwire array.124 This work demonstrated that both
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Stage Anatomical Target Function

Movement 

execution

Motor cortex (M1) Precentral gyrus Controls motor output; cells fire in relation to velocity, 

direction, acceleration, and force 

Central sulcus (motor 

bank)

Output area of M1

Motor thalamus Monitor of motor output receiving projections from layer V 

M1 cells, basal ganglia, and cerebellum

Basal ganglia Subthalamic nucleus 

(STN)

Somatotopically organized, active throughout movement, 

firing rates related to force; also involved in movement 

preparation

Movement 

preparation

Premotor cortex 

(PM)

Ventral (PMv) Spatially guided movement

Dorsal (PMd) Arbitrary rule-based movement

Supplementary 

Motor Area (SMA)

Pre-SMA 

(rostral SMA)

Movement planning

SMA proper 

(caudal SMA)

Movement kinematics, active during execution

Movement 

planning

Posterior parietal 

cortex (PPC)

Integration of visual and sensory information, transformation 

into common reference frame for motor planning

Prefrontal cortex 

(PFC)

Goal-directed behaviour and spatial processing,

consciously control

Table 1: Summary of common anatomical targets for BMIs
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the STN and VL nucleus are highly active during gripping, and
small numbers of neurons could accurately predict grip force.
These results provide proof of concept that subcortical
recordings are feasible and that they should also merit
consideration as potential BMI signals, with the caveat that
electrode insertion trauma must be minimized to avoid
inadvertent lesioning effects.

Though not a brain structure per se, the spinal cord may also
be a signal source, both at levels above and below a transection,
if reliable signals can be obtained. Above the transection,
recording may be done from descending motor tracts, harnessing
detailed movement instructions or locomotive commands.
However, recording from white-matter tracts is a substantial
challenge, as discrimination between signals carried on densely
packed axons exceeds the capabilities of current methods.
Proposed but as yet unproven techniques include electrical,
magnetic, and optical recordings.125,126 Below the transection,
recordings from dorsal root ganglia or dorsal horns could
provide invaluable feedback information for FES reanimation of
paralyzed muscles. Systems have been proposed that could
restore bipedal locomotion after spinal cord injury (SCI) using
electronic central pattern generators (CPGs) that perform
microstimulation of ventral horns, guided by appropriate sensory
feedback.127 Proof of this concept has been demonstrated in
animal models, restoring four-legged locomotion after complete
spinal cord transection using CPG circuitry that closely
replicates neuronal function, known as ‘neuromorphic’
technology.128

Ultimately, the creation of an optimally functional BMI may
require input signals from multiple anatomic sources. Some have
suggested a BMI system recording from thousands of individual
neurons across cortical, subcortical, and peripheral structures.21

Others contend that less invasive methods like ECoG can extract
sufficient information while monitoring a wider territory of
cortex.10 Regardless of recording modality, the selection of
suitable anatomic targets will depend on the ability to decode
precise function in each brain region.

4) Establishing Clinical Utility of BMIs
4.1) Patient Populations Likely to Benefit from BMIs

Patients with mild to moderate disabilities can be defined as
retaining complex motor function in at least some parts of the
body, such as hand movement or voice control. Such conditions
often include SCI, amputation, unilateral stroke, Parkinson
Disease (PD), or other movement disorders. While these
individuals are often profoundly affected by their deficits,
optimal treatment tends to focus on maximizing the use of intact
capabilities rather than trying to replace lost function.
Technologies such as voice and movement-based assistive
devices are likely to provide significant benefit for this group
with minimal risk and cost, as are other human-machine
interfaces that do not involve the central nervous system. For
example, electromyelogram-based prostheses in amputees can
take advantage of the fine control permitted by an intact motor
pathway.38,129 More aggressive approaches like implanted BMIs
will only be considered in the mild-moderately disabled
population when these technologies mature sufficiently to prove
they are safe, durable, and provide significant gains in function
over the alternatives. An exception to this may be tetraplegic

patients, who retain no significant motor function other than
voice and facial expression. Some in this population may place
sufficient value on regaining functions like hand and arm
movements or basic mobility to justify a neurosurgical
procedure.130

Patients with complete or near-complete motor deficits are
those who do not retain any complex motor functions like voice
or hand movements. Such individuals may be in a locked-in state
(LIS) where expressive communication is severely limited, but
they do retain rudimentary control of at least one muscle, or they
may lose all motor output and enter the completely locked-in
state (CLIS).131 Conditions that can cause this level of disability
include ALS, subcortical stroke, Guillain-Barre syndrome, rare
cases of parkinson’s disease, and advanced multiple sclerosis
(MS).131 While some of these conditions also involve cognitive
deficits, many of these patients retain significant cognitive
abilities and therefore have the potential to obtain substantial
benefit from a BMI. However, it is important to discuss non-
invasive options with these patients in a balanced and honest
manner, given the possibility that their desperate clinical
situation may push them to select more aggressive and
experimental treatment alternatives. From experience with EEG-
based BMIs, it is known that training LIS or CLIS patients is
often highly demanding, and so it is crucial to consider other
factors, such as the patient’s motivation, attitude, social
circumstances and caregiver support, that could influence the
eventual outcome with an implanted BMI.132 Ultimately, if the
patient’s goals involve regaining significant function and their
cognition is intact such that they can evaluate and accept the
risks associated with implantation, then these patients are well
suited to be candidates for an implanted BMI. In these cases, a
BMI with the absolutely lowest cognitive demand (see below) is
ideal, as the primary goal is to provide a novel output channel for
communication. This might take a form such as a single unit or
LFP-based BMI recording only from the hand area of M1, and
controlling a computer mouse with three DOFs (2D movement
plus click).

4.2) Current Status of Clinical BMIs
At present, clinical data regarding the use of BMIs in humans

is limited, due to the experimental status of many of these
devices. The earliest reports of human clinical trials have
primarily involved patients with ALS and other conditions
causing near-complete motor disability.

4.2.1) ALS
The majority of BMI applications targeted to ALS patients

have utilized EEG as the signal source. In 1999 and 2003,
Birbaumer et al reported results of a spelling device used by nine
ALS patients and two with other conditions who were nearly
locked-in or completely locked-in.5 This system was based on
gaining volitional control of slow cortical potentials (SCPs) and
all seven patients who were not completely locked-in achieved
moderate accuracy (>75%), but their performance averaged only
one character per second and they required hundreds of short
training sessions. All four patients who were completely locked-
in were unable to gain control of the device, for reasons that are
unknown. Other EEG devices have also been tested clinically,
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including several trials using P300 event-related potentials
(ERPs). In 2006, Sellers and Donchin demonstrated that three
ALS patients could utilize a P300-based system with similar
results to able-bodied persons, although the subjects’ motor
disabilities were only moderate at the time of the trial.9
Subsequently, Nijboer et al showed that six of eight ALS patients
with moderate to severe deficits could gain control and produce
1-4 characters per minute with up to 92% accuracy.8 Other work
has focused on harnessing SMRs, including one trial
demonstrating that four severely disabled ALS patients could all
gain nearly 80% accuracy in a binary selection task.7 Overall, the
various EEG methodologies using SCPs, P300 ERPs, and SMRs
have all demonstrated roughly equivalent performance and
moderate utility as a communication channel for near locked-in
individuals, but in one direct comparison study in seven ALS
patients, SMRs appeared to have the distinct advantage of
reduced training time.131

Implanted BMIs have also been targeted to ALS, with early
trials showing some promising preliminary results. Among five
patients implanted with neurotrophic glass cone electrodes
within M1 or Broca’s area, two had ALS, while two others had
brainstem strokes and one had mitochondrial myopathy.4,42,71

Unfortunately, after gaining binary control with minimal
training, the first ALS patient died two months after implantation
due to her disease, while the second ALS patient only completed
two sessions of recordings.4 In the initial BrainGate trials for
tetraplegia performed by Donoghue’s group, one ALS patient
was recruited, along with two that had upper-SCI and one with a
brainstem stroke.133 All of these patients were able to gain near-
immediate mastery of several output devices, with a point-and-
click computer cursor being of particular value. However, the
results from the BrainGate pilot study are only one to two years
after implantation, and show a progressive decline in number of
viable signals recorded.6 It may be several years until longer-
term data surface; these data are likely to come from the
BrainGate2 trial which began the process of recruiting
approximately 15 tetraplegic patients in 2010.134

4.2.2) SCI, Brainstem Stroke
In non-progressive causes of tetraplegia, like SCI and

brainstem stroke, most patients retain cranial nerve function that
enables speech and facial movements. Thus, few attempts have
been made to apply EEG-based BMIs to this population. One
exception is a report from Pfurtscheller et al in 2003 that
described an incomplete tetraplegic patient (retaining left
shoulder extension) who regained hand-grasp control using
EEG-recorded SMRs.39 Although simplistic in design, this was
among the earliest human applications of FES to reanimate a
paralyzed limb, and served as an intriguing proof–of-concept.
Nevertheless, to date, EEG-based BMIs do not seem to provide
sufficient performance to benefit tetraplegics with complete limb
paralysis.

In contrast, several patients with complete tetraplegia due to
SCI and brainstem stroke have been tested with implanted BMI
prototypes. The two patients with brainstem strokes that were
implanted with glass cone electrodes both achieved several years
of stable recordings, and one was able to control devices such as
a computer cursor and a ‘cyber hand’ while the other produced
seven different speech phonemes.4 Among the BrainGate

participants, 96-channel multielectrode recordings of the arm
area of M1 revealed that significant motor cortex function is
preserved for years after sustaining a complete SCI or brainstem
stroke.6,80 Further, the patients with these injuries could quickly
gain control over various output devices solely using motor
imagery, as they had not performed physical movements for
several years. However, for the tetraplegics enrolled in the
BrainGate trial, it may have been disappointing that they were
not able to match the results seen in animal trials and gain
masterful control over devices like 3D or 4D robotic arms. As
the technology matures, high performance BMI systems will
have to significantly outperform voice-controlled devices to be
useful in the tetraplegic population, as voice-controlled devices
like wheelchairs have already entered the commercial market.135

4.2.3) Unilateral Stroke
In contrast to the relatively small group of individuals

afflicted with near-complete paralysis, the staggering number of
people living with stroke-induced hemiparesis is an order of
magnitude greater.136 In particular, chronic hand plegia is a
common result, with no effective treatments currently
available.137 Few reports have discussed serious BMI efforts
targeted to this group, although one demonstrated that a simple
EEG-driven hand orthosis successfully restored hand grasp in
six of eight stroke patients with only modest training.138 A study
by Wisneski et al demonstrated that ipsilateral motor cortex
activity detected with ECoG could also be used to accurately
predict hand movements, although this work was performed in
able-bodied epilepsy patients.139 If ipsilateral motor signals can
be robustly decoded and differentiated from more potent
contralateral signals, the potential targets for BMI applications
will grow many-fold.18

5) Criteria for Evaluating BMIs
As implantable BMI technologies evolve and become

clinically available, it is imperative that clinicians are equipped
to evaluate and compare these products with standard
alternatives. To this end, a risk-benefit analysis of implanted
BMIs should include the following criteria: safety, performance,
durability, ease-of-use, cost, and individual suitability (Table 2).

Safety is of utmost concern when considering the elective
intracranial implantation of a novel device. Reasonable
estimates of surgical risk can be obtained from the established
neurosurgical literature. For example, it would be expected that
the risks associated with subdural ECoG implantation would
closely parallel the reported risks for subdural strip electrode
placement, and would include such complications as wound
infections (up to 2.5%), meningitis (up to 2.5%), and
osteomyelitis (up to 0.8%), as well as non-infectious
complications like cerebrospinal fluid leak, and subdural
hemorrhage.26,81,140,141 For devices implanted directly into the
parenchyma to obtain LFPs or single unit recordings, risks of
deep hemorrhage and accompanying permanent neurological
injury must be expected. Based on the DBS literature, the overall
risk of permanent injury in DBS electrode placement has been
reported as less than 1%.142 Unfortunately, the risks associated
with multielectrode microarray placement are not well-
characterized and appear to be dependent both on specific device
used and the method of placement.81

LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES

Volume 39, No. 1 – January 2012 17
https://doi.org/10.1017/S0317167100012622 Published online by Cambridge University Press

https://doi.org/10.1017/S0317167100012622


Other safety concerns include hazards like radiation, heat,
immunological responses, battery leaks, or mechanical damage
to neural tissue with sudden acceleration or deceleration. Many
of these issues are dependent on the specific device in use, and
must be rigorously characterized in animal models and early
human trials so that surgeons and patients can properly weigh
these risks. Unreliable performance leading to gross malfunction
is a particularly troubling concern, which may be more likely to
occur in EEG-based BMIs due to electrical noise or in single unit
systems with sudden head motion. Failsafe mechanisms are
essential so that BMI systems can be quickly shut down or reset
in emergency scenarios.

The quantification of performance in BMIs can be considered
in terms of several variables including degrees of freedom
(DOFs), bandwidth, accuracy, and delay. Degrees of freedom are
the number of independent variables or directions that can be
controlled simultaneously. For example, the shoulder has three
DOFs (flexion-extension, abduction-adduction, external-internal
rotation) whereas the elbow has only one DOF (flexion-
extension). The maximum number of DOFs possible in a BMI
depends on such issues as the signal quality, its correlation with
movement, the neural territory covered, and the number of

independent components extracted from the signal. As an
example, single unit recordings and LFPs have an advantage in
signal quality, but ECoG is able to cover wider cortical territory.
Bandwidth is the information transfer rate, usually measured in
bits per second (bits/s). In a system with only one DOF,
bandwidth might reflect the speed of control over an open-close
gripper. Accuracy reflects both the error rate of incorrect actions
and the rate of false positive actions in systems where a rest state
exists. Local field potential and single unit BMIs have
demonstrated highest accuracy thus far, but dedicated ECoG
BMI research could potentially negate this advantage.5,53,79,80,92-
95,143,144 Delay is the time lag between an intended action and its
actual execution. Most BMI systems show at least a moderate
delay due to the requisite computationally-intensive signal
analysis. Single units may have a minor advantage in this regard,
as the associated signal analysis may be more straightforward
than that needed in LFPs or ECoG. Overall, the highest
performing BMI systems seem likely to be based on single unit
or LFP recordings, although it is premature to conclude this with
any certainty.

Durability is the measure of how long BMI devices are likely
to last in real-life use. Intraparenchymal BMIs are at a major
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Signal Type Safety Performance Durability Ease-of-use Cost Individual Suitability

ECoG ! Moderately 

invasive

! Likely reliable

• DOF: 3

• Bandwidth: medium

• Territory: broad

• Accuracy: moderate

! Delay: moderate

Medium-high • Portable

• Parameters likely stable

• Operating systems not well 

established

• Cognitive demand: low

High • Need to accept surgical risk

LFPs ! Highly 

invasive

! Likely reliable

• DOF: 3

• Bandwidth: high

• Territory: narrow

• Accuracy: high

! Delay: moderate

Medium • Portable

• Parameters likely stable

• Operating systems not well 

established

• Cognitive demand: low

High • Desire for high performance

• Need to accept surgical risk

Single/multi-units ! Highly 

invasive

! Unreliable

• DOF: 4

• Bandwidth: high (6.5 bits/s)

• Territory: narrow

• Accuracy: high

! Delay: moderate (150ms)

Low • Portable

• Parameters unstable

• Operating systems fairly well 

established

• Cognitive demand: low

High • Desire for high performance

• Need to accept surgical risk

EEG ! Non-invasive

! Inaccurate and 

unreliable

• DOF: 3 (2+trigger)

• Bandwidth: low (0.5 bits/s)

• Territory: broad

• Accuracy: low-medium

! Delay: moderate-high

High • Portable

• Parameters somewhat unstable

• Well-developed operating systems

• Cognitive demand: high

Medium • Well-suited for low-performance 

tasks like communication

• Unsafe for wheelchair control

• Need to tolerate external apparatus

MEG ! Non-invasive

! Unreliable
• DOF: 2

• Bandwidth: low-medium

• Territory: broad

• Accuracy: unknown

! Delay: moderate-high

High • Unlikely to be portable

• Parameters unstable

• Operating systems not established

• Cognitive demand: likely high

High • Need to tolerate external apparatus

FMRI ! Non-invasive

! Likely reliable
• Performance: likely poor

• Territory: broad

• Accuracy: high

! Delay: high (1.3 s)

High • Non-portable

• Parameters likely stable

• Operating systems not established

• Cognitive demand: low

Very high • Need to tolerate external apparatus

Optical (NIR) ! Non-invasive

! Likely 

unreliable

• Performance: high (if fast 

signal detectable)

• Territory: broad

• Accuracy: unknown

! Delay: low (fast signal, slow 

signal has long delay)

Likely high • Portable

• Parameters likely stable

• Operating systems not established

• Cognitive demand: low

High • Need to tolerate external apparatus

Movement

(eye/

tongue/ EMG)

! Non-invasive 

(or minimal 

for EMG)

! Reliable

• DOF: likely 2 (depends on 

motor capabilities)

• Bandwidth: medium

• Accuracy: high

• Delay: low

High • Portable

• Parameters stable

• Operating systems established

• Cognitive demand: low-medium

Low • Requires some intact motor output

Alternatives

Voice ! Non-invasive

! Reliable

• DOF: many

• Bandwidth: medium

• Accuracy: medium-high

• Delay: medium-high

High • Portable

• Parameters stable

• Operating systems established

• Cognitive demand: low-medium

Low • Requires intact speech

Table 2: BMI comparison table
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disadvantage, as they occupy an environment where
microelectrodes are quickly encapsulated in gliotic sheaths.81-84

These electrodes have to record very low voltages and are highly
sensitive to impedance changes, with the robustness of single
unit recordings being more tenuous than LFPs. Furthermore, the
intraparenchymal recordings are least amenable to replacement
or repair, due to the risks associated with reoperation and
stereotactic reimplantation. Experience with ECoG in epilepsy
and chronic pain applications indicates that it would provide
more durable recordings over time.63

Ease-of-use is a term describing how easily a user interacts
with a system. The ease-of-use of a BMI can be described in
terms such as portability, stability of operating parameters, and
the cognitive demand required for use. The portability of any
implanted BMI is likely to be superior to a non-invasive BMI, as
these systems will have completely internalized wires and
batteries. However, the high power requirements of multi-
channel single unit recordings will require larger, more powerful
batteries that could be somewhat cumbersome or annoying.
Operating parameters are training dependent variables such as a
set of coefficients to map single unit firing rates to specific
movement directions. If these operating parameters become
inaccurate over time then they need to be reprogrammed with
new training data, possibly in a laboratory setting. Parameters for
single unit recordings are known to be unstable, which could
require regular clinic visits to maintain performance. Cognitive
demand is another important element to consider, as users may
stay connected to BMI devices for long or indefinite stretches of
time. The cognitive requirements are lowest in systems where
the output action matches the imagined thought pattern, like
imagining wrist movements to control a computer mouse.
Electroencephalogram systems are notoriously demanding and
often require long training periods to achieve mastery of control.
This is less likely to be an issue with BMIs based on single unit
recordings or LFPs with fine spatial resolution, but could be a
moderate issue for ECoG.10,52

Cost will become a significant issue as BMIs mature and
multiple alternatives become clinically available. All implanted
BMIs will obviously incur a significant up-front cost due to the
surgery and specialized hardware required. But it is likely that
there will be differences in the frequency and nature of clinical
follow-up required for patients with these systems.

Another factor in comparing BMI systems is the suitability to
certain individuals or groups, driven by their limitations and the
functions that are most important for them to regain. For
example, one study surveyed spinal cord injury (SCI) patients
and found that paraplegics rated sexual function as most
important, whereas tetraplegics rated hand and arm function as
their top priority.145 Patients who place higher value on regaining
more complex functions may choose higher performance BMI
systems, even if it means accepting additional surgical risk.
However, those that only desire a communication means may
find ECoG or a non-invasive EEG system quite adequate. In
patients that have acquired cognitive deficits, cognitive demand
is likely to be the most important selection factor, so an
implanted BMI that minimizes this effort could be ideal.

CONCLUSIONS
In the near future, the use of implanted BMIs will likely be

limited to the severely or completely disabled for whom small
functional improvements would translate into substantial
changes in quality of life. However, incremental improvements
in numerous areas of BMI technology are occurring, with the
promise of overcoming many current limitations, and a
subsequent explosion of clinical applications. The future of BMI
technology promises to be an exciting one. We are approaching
a time when patients with BMI devices will necessarily be
assessed and followed by neurologists, neurosurgeons, and other
clinical practitioners.
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