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Correspondences, von Neumann Algebras
and Holomorphic L2 Torsion
A. Carey, M. Farber and V. Mathai

Abstract. Given a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion
of holomorphic L2 torsion, which lies in the determinant line of the twisted L2 Dolbeault cohomology and
represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over
finite von Neumann algebras as developed in [CFM]. This specialises to the Ray-Singer-Quillen holomorphic
torsion in the finite dimensional case. We compute a metric variation formula for the holomorphic L2 torsion,
which shows that it is not in general independent of the choice of Hermitian metrics on the complex manifold
and on the holomorphic Hilbertian bundle, which are needed to define it. We therefore initiate the theory of
correspondences of determinant lines, that enables us to define a relative holomorphic L2 torsion for a pair
of flat Hilbertian bundles, which we prove is independent of the choice of Hermitian metrics on the complex
manifold and on the flat Hilbertian bundles.

0 Introduction

Ray and Singer (cf. [RS]) introduced the notion of holomorphic torsion of a holomorphic
bundle over a compact complex manifold. In [Q], Quillen viewed the holomorphic torsion
as an element in the real determinant line of the twisted Dolbeault cohomology, or equiva-
lently, as a metric in the dual of the determinant line of the twisted Dolbeault cohomology.
Since then there have been many generalisations in the finite dimensional case, particularly
by Bismut, Freed, Gillet and Soule, [BF], [BGS].

In this paper, we investigate generalisations of aspects of this previous work to the case
of infinite dimensional representations of the fundamental group. Our approach combines
features from [BFKM], where the equality of L2-analytic and L2-RF torsion was proved, and
from [CFM] where the notion of determinant line for certain infinite dimensional repre-
sentations of the fundamental group was defined. The latter approach has as a corollary,
a reformulation of the main theorem of [BFKM], placing it in its appropriate topological
setting. The study of holomorphic analogues of these initial results is the logical next step.

Our approach is to introduce the concepts of holomorphic Hilbertian bundles and of
connections compatible with the holomorphic structure. These bundles have fibres which
are von Neumann algebra modules. We are able to define the determinant line bundle of a
holomorphic Hilbertian bundle over a compact complex manifold, generalising the con-
struction of the determinant line of a finitely generated Hilbertian module that was devel-
oped in our earlier paper [CFM]. A nonzero element of the determinant line bundle can be
naturally viewed as a volume form on the Hilbertian bundle. This enables us to make sense
of the notions of volume form and determinant line bundle in this infinite dimensional
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and non-commutative situation. Given an isomorphism of the determinant line bundles
of holomorphic Hilbertian bundles, we introduce the concept of a correspondence between
the determinant lines of the twisted L2 Dolbeault cohomologies. This was previously stud-
ied in the finite dimensional situation in [F].

In this paper we restrict our attention to pairs consisting of manifolds and holomor-
phic vector bundles satisfying the so-called determinant or D-class property, whose real
analogue was studied in [BFKM], [CFM]. Here we define the holomorphic L2 torsion of
a holomorphic Hilbertian bundle; it reduces to the classical constructions in the finite di-
mensional situation. This new torsion invariant lives in the determinant line of the twisted
L2 Dolbeault cohomology. Some key results in our paper are a metric variation formula
for the holomorphic L2 torsion, and the definition of a correspondence between the de-
terminant lines of the twisted L2 Dolbeault cohomologies for a pair of flat holomorphic
Hilbertian bundles, and finally the definition of a metric independent relative holomor-
phic L2 torsion associated to a correspondence between determinant line bundles of flat
Hilbertian bundles. To prove that a correspondence between determinant line bundles of
flat Hilbertian bundles is well defined, we need to prove a generalised local index theorem
for almost Kähler manifolds, and as a consequence, we give an alternate proof of Bismut’s
local index theorem for almost Kähler manifolds [Bi], where we use instead the methods of
Donnelly [D] and Getzler [Ge].

This paper also lays some groundwork for studying the torsion of a family of operators
parametrised by a manifold. A fundamental difficulty in such a generalisation is the fact
that the ‘determinant class’ condition seems not to be stable under perturbations. However
in this paper we introduce some examples of families where this stability can be proved,
suggesting that the holomorphic setting is one where a certain ‘rigidity’ of the determinant
class condition occurs.

The paper is organized as follows. In the first section, we recall some preliminary ma-
terial on Hilbertian modules over finite von Neumann algebras, the canonical trace on the
commutant of a finitely generated Hilbertian module, the Fuglede-Kadison determinant
on Hilbertian modules and the construction of determinant lines for finitely generated
Hilbertian modules. Details of the material in this section can be found in [CFM]. In Sec-
tion 2, we define Hilbertian bundles and connections on these. The definition of a connec-
tion is tricky in the infinite dimensional context, and we use some fundamental theorems
in von Neumann algebras to make sense of our definition. Then we define holomorphic
Hilbertian bundles and connections compatible with the holomorphic structure as well as
Cauchy-Riemann operators on these. In Section 3, we study the properties of the zeta func-
tion associated to holomorphic Hilbertian bundles of D-class. In Section 4, we define the
holomorphic L2 torsion as an element in the determinant line of reduced L2 Dolbeault co-
homology. Here we also prove metric variation formulae and we deduce that holomorphic
L2 torsion does depend on the choices of Hermitian metrics on the compact complex man-
ifold and on the holomorphic Hilbertian bundle. However, in Sections 5 and 6, we give
situations when a relative version of the holomorphic L2 torsion is indeed independent of
the choice of metric. In Section 5, we are able to deduce the following theorem (Theo-
rem 5.3 in the text) from the variation formula: let E and F be two flat Hilbert bundles of
D-class over a compact Hermitian manifold X. Then one can define a relative holomorphic
L2 torsion

ρ
p
E,F ∈ det

(
H p,∗(X,E)

)
⊗ det

(
H p,∗(X,F)

)−1
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which is independent of the choice of Hermitian metric on X. In Section 6, we define
the notion of the determinant line bundle of a Hilbertian bundle and also of correspon-
dences between determinant lines. The proof that a correspondence is well defined, uses
techniques of Bismut [Bi], Donnelly [D] and Getzler [Ge] in their proof of the local index
theorem in different situations. Using the notion of a correspondence of determinant line
bundles, we prove one of the main theorems in our paper (Theorem 6.9 in the text), which
can be briefly stated as follows: let E and F be two flat Hilbertian bundles of D-class over
a compact almost Kähler manifold X and ϕ : det(E) → det(F) be an isomorphism of the
corresponding determinant line bundles. Then one can define a relative holomorphic L2

torsion

ρp
ϕ ∈ det

(
H p,∗(X,E)

)
⊗ det

(
H p,∗(X,F)

)−1
.

Using the correspondence defined by the isomorphism ϕ, we show that the relative holo-
morphic L2 torsion ρp

ϕ is independent of the choices of Hermitian metrics on E and F and
the choice of almost Kähler metric on X which are needed to define it. Recall that an al-
most Kähler manifold is a Hermitian manifold whose “Kähler” 2-form ω is not necessarily
closed, but satisfies the weaker condition ∂̄∂ω = 0. A result of Gauduchon (cf. [Gau])
asserts that every compact complex surface is almost Kähler, whereas there are many ex-
amples of complex surfaces which are not Kähler. In Section 7, we give some examples
of calculation of the holomorphic L2 torsion for locally symmetric spaces and Riemann
surfaces. We also give an example of a family of operators (parametrised by projective rep-
resentations of the fundamental group of a Riemann surface) for which the holomorphic
torsion may be calculated.

1 Preliminaries

This section contains some preliminary material from [CFM].

1.1 Hilbertian Modules over von Neumann Algebras

Throughout the paper A will denote a finite von Neumann algebra with a fixed finite,
normal, and faithful trace τ : A → C. The involution in A will be denoted ∗ while �2(A)
denotes the completion of A in the norm derived from the inner product τ (a∗b), a, b ∈ A.
A Hilbert module over A is a Hilbert space M together with a continuous left A-module
structure such that there exists an isometric A-linear embedding of M into �2(A)⊗H, for
some Hilbert space H. (Note that this embedding is not part of the structure.) A Hilbert
module M is finitely generated if it admits an imbedding as above with finite dimensional
H. To introduce the notion of determinant line requires us to forget the scalar product on
H but keep the topology and the A-action.

Definition 1.1 A Hilbertian module is a topological vector space M with continuous left
A-action such that there exists a scalar product 〈 , 〉 on M which generates the topology
of M and such that M together with 〈 , 〉 and with the A-action is a Hilbert module. Any
scalar product 〈 , 〉 on M with the above properties will be called admissible.
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1.2 Remarks and Further Definitions

The choice of any other admissible scalar product 〈 , 〉1 gives an isomorphic Hilbert mod-
ule. In fact there exists an operator A : M → M such that

〈v,w〉1 = 〈Av,w〉(1)

for any v,w ∈ M. The operator A must be a self-adjoint, positive linear homeomorphism
(since the scalar products 〈 , 〉 and 〈 , 〉1 define the same topology), which commutes with
the A-action. A finitely generated Hilbertian module is one for which the corresponding
Hilbert module is finitely generated. Finally, a morphism of Hilbertian modules is a con-
tinuous linear map f : M → N , commuting with the A-action. Note that the kernel of any
morphism f is again a Hilbertian module as is the closure of the image cl

(
im( f )

)
.

1.3 The Canonical Trace on the Commutant

Any choice of an admissible scalar product 〈 , 〉 on M, defines obviously a ∗-operator on
B (by assigning to an operator its adjoint) and turns B into a von Neumann algebra. If we
choose another admissible scalar product 〈 , 〉1 on M then the new involution will be given
by

f �→ A−1 f ∗A for f ∈ B,(2)

where A ∈ B satisfies 〈v,w〉1 = 〈Av,w〉 for v,w ∈ M. The trace on the commutant may
now be defined as in [Dix] and here will be denoted Trτ . It is finite, normal, and faithful.
If M and N are two finitely generated modules over A, then the canonical traces Trτ on
B(M), B(N) and on B(M ⊕ N) are compatible in the following sense:

Trτ

(
A B
C D

)
= Trτ (A) + Trτ (D),(3)

for all A ∈ B(M), D ∈ B(N) and any morphisms B : M → N , and C : N → M.
Note that the von Neumann dimension of a Hilbertian submodule N of M is defined as
dimτ (M) = Trτ (PN ) where PN is the orthogonal projection onto N .

1.4 Fuglede-Kadison Determinant for Hilbertian Modules

Let GL(M) denote the group of all invertible elements of the algebra B(M) equipped with
the norm topology. With this topology it is a Banach Lie group whose Lie algebra may be
identified with the commutant B(M). The canonical trace Trτ on the commutant B(M)
is a homomorphism of the Lie algebra B(M) into C and by standard theorems, it defines
a group homomorphism of the universal covering group of GL(M) into C. This approach
leads to following construction of the Fuglede-Kadison determinant, compare [HS].

Theorem 1.2 There exists a function Detτ : GL(M) → R>0 (called the Fuglede-Kadison
determinant) whose key properties are:
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(i) Detτ is a group homomorphism and is continuous if GL(M) is supplied with the norm
topology;

(ii) If At for t ∈ [0, 1] is a continuous piecewise smooth path in GL(M) then

log

[
Detτ (A1)

Detτ (A0)

]
=

∫ 1

0
	Trτ [A−1

t A ′t ] dt.(4)

Here 	 denotes the real part and A ′t denotes the derivative of At with respect to t.
Let M and N be two finitely generated modules over A, and A ∈ GL(M) and B ∈ GL(N)
two automorphisms, and γ : N → M be a homomorphism. Then the map given by the
matrix (

A γ
0 B

)

belongs to GL(M ⊕ N) and

Detτ

(
A γ
0 B

)
= Detτ (A) · Detτ (B).(5)

Given an operator A ∈ GL(M), there is a continuous piecewise smooth path At ∈
GL(M) with t ∈ [0, 1] such that A0 = I and A1 = A (it is well known that the group
GL(M) is pathwise connected, cf. [Dix]). Then from (4) we have the formula:

log Detτ (A) =

∫ 1

0
	Trτ [A−1

t A ′t ] dt.(6)

This integral does not depend on the choice of the path. As an example consider the fol-
lowing situation. Suppose that a self-adjoint operator A ∈ GL(M) has spectral resolution

A =

∫ ∞
0

λ dEλ(7)

where dEλ is the spectral measure. Then we can choose the path

At = t(A− I) + I, t ∈ [0, 1]

joining A with I inside GL(M). Applying (6) we obtain

log Detτ (A) =

∫ ∞
0

lnλ dφλ(8)

where φλ = Trτ Eλ is the spectral density function.
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1.5 Operators of Determinant Class

Following [BFKM] and [CFM] we extend the previous ideas to a wider class of operators.
An operator A as in (7) is said to be D-class (D for determinant) if

∫ ∞
0

lnλ dφλ > −∞.(9)

A scalar product 〈v,w〉 = 〈Av,w〉1 is said to be D-admissible if A is D-class and 〈 , 〉1 is any
admissible scalar product. The Fuglede-Kadison determinant extends to such operators via
the formula:

Detτ (A) = exp
[∫ ∞

0
lnλ dφλ

]
.(10)

1.6 Determinant Line of a Hilbertian Module

For a Hilbertian module M we defined in [CFM] the determinant line det(M) as a real
vector space generated by symbols 〈 , 〉, one for any admissible scalar product on M, subject
to the following relations: for any pair 〈 , 〉1 and 〈 , 〉2 of admissible scalar products on M
we require

〈 , 〉2 =
√

Detτ (A)
−1
· 〈 , 〉1,(11)

where A ∈ GL(M)∩B(M) is such that 〈v,w〉2 = 〈Av,w〉1 for all v,w ∈ M. It is not difficult
to see that det(M) is one-dimensional generated by the symbol 〈 , 〉 of any admissible scalar
product on M. Note also, that the real line has the canonical orientation, since the transition
coefficient

√
Detτ (A) is always positive. Thus we may speak of positive and negative ele-

ments of det(M). We think of elements of det(M) as “volume forms” on M. If M is trivial
module, M = 0, then we set det(M) = R, by definition.

Given two finitely generated Hilbertian modules M and N over A, with admissible scalar
products 〈 , 〉M and 〈 , 〉N respectively, we may obviously define the scalar product 〈 , 〉M⊕
〈 , 〉N on the direct sum. This defines the isomorphism

det(M)⊗ det(N)→ det(M ⊕ N).(12)

By property (5) of the Fuglede-Kadison determinant it is easy to show that this homomor-
phism does not depend on the choice of the metrics 〈 , 〉M and 〈 , 〉N and preserves the ori-
entations. Note that, any isomorphism f : M → N between finitely generated Hilbertian
modules induces canonically an orientation preserving isomorphism of the determinant
lines f ∗ : det(M) → det(N). Indeed, if 〈 , 〉M is an admissible scalar product on M then
set

f ∗(〈 , 〉M) = 〈 , 〉N ,(13)

where 〈 , 〉N is the scalar product on N given by 〈v,w〉N = 〈 f−1(v), f−1(w)〉M for v,w ∈ N .
This definition does not depend on the choice of the scalar product 〈 , 〉M on M: if we
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have a different admissible scalar product 〈 , 〉 ′M on M, where 〈v,w〉 ′M = 〈A(v),w〉M with
A ∈ GL(M) then the induced scalar product on N will be

〈v,w〉 ′N = 〈( f−1A f )v,w〉N

and our statement follows from property (5) of the Fuglede-Kadison determinant. Finally
we note the functorial property: if f : M → N and g : N → L are two isomorphisms
between finitely generated Hilbertian modules then (g ◦ f )∗ = g∗ ◦ f ∗.

Proposition 1.3 If f : M → M is an automorphism of a finitely generated Hilbertian mod-
ule M, f ∈ GL(M), then the induced homomorphism f ∗ : det(M)→ det(M) coincides with
the multiplication by Detτ ( f ) ∈ R>0. Furthermore any exact sequence

0 −→ M ′ α
−→ M

β
−→ M ′′ −→ 0

of finitely generated Hilbertian modules determines canonically an isomorphism

det(M ′)⊗ det(M ′ ′)→ det(M),

which preserves the orientation of the determinant lines.

1.7 Extension to D-Admissible Scalar Products

Any D-admissible scalar product determines a non-zero element of the determinant line
det(M) namely Detτ (A)−1/2〈 , 〉1. A D-admissible isomorphism f : M → N is one for
which the inner product 〈v,w〉M = 〈 f (v), f (w)〉N on M is D-admissible for some and
hence any admissible inner product on N . Proposition 1.3 extends to D-admissible iso-
morphisms and to the obvious notion of D-admissible exact sequence.

2 Holomorphic Hilbertian A-Bundles Bundles and A-Linear Connections

In this section, we define Hilbertian A-bundles and A-linear connections on these. The
definition of (A-linear) connection is tricky in the infinite dimensional case, if one wants
to be able to horizontally lift curves. We use some fundamental theorems in von Neumann
algebras to make sense of our definition. We also define holomorphic Hilbertian A-bundles
bundles and holomorphic A-linear connections on these.

2.1 Hilbertian A-Bundles

A Hilbertian A-bundle with fibre M over X is given by the following data.

(1) p : E→ X a smooth bundle of topological vector spaces, possibly infinite dimensional,
such that each fibre p−1(x), x ∈ X is a separable Hilbertian space (cf. [Lang]).

(2) There is a smooth fibrewise action A×E→ E which endows each fibre p−1(x), x ∈ X
with a Hilbertian A-module structure, such that for all x ∈ X, p−1(x) is isomorphic
to M as Hilbertian A-modules.
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(3) There is a local trivializing cover of p : E→ X which intertwines the A-actions. More
precisely, there is an open cover {Uα} of X such that for each α, there is a smooth
isomorphism

τα : p−1(Uα)→ Uα ×M

which intertwines the A-actions on p−1(Uα) ⊂ E and on Uα × M, and such that
pr1 ◦ τα = p, where pr1 : Uα ×M → Uα denotes the projection onto the first factor.
The restriction of τα

τα : p−1(x)→ {x} ×M

is the isomorphism of Hilbertian A-modules ∀x ∈ Uα, as given in (2).

Remark 2.1 If {Uα} is a trivializing open cover of p : E→ X, then the isomorphisms

τβ ◦ τ
−1
α : (Uα ∩Uβ)×M → (Uα ∩Uβ)×M

are of the form τβ ◦ τ−1
α = (id, gαβ) where gαβ : Uα ∩Uβ → GL(M) are smooth maps and

are called the transition functions of p : E→ X, and they satisfy the cocycle identity

gαβgβγgγα = 1 ∀α, β, γ.

Now suppose that {Uα}α is an open cover of X, and on each intersection Uα ∩Uβ , we are
given smooth maps

gαβ : Uα ∩Uβ → GL(M)

satisfying gαβgβγgγα = 1 on Uα ∩ Uβ ∩ Uγ and gαα = 1 on Uα, then one can construct
a Hilbertian A-bundle p : E → X via the clutching construction viz, consider the disjoint
union Ẽ =

⋃
α(Uα ×M) with the product topology, and define the equivalence relation∼

on Ẽ by (x, v) ∼ (y,w) for (x, v) ∈ Uα × M and (y,w) ∈ Uβ × M if and only if x = y
and w = gαβ(x)v. Then the quotient Ẽ/∼ = E → X is easily checked to be a Hilbertian
A-bundle over X.

Remark 2.2 This definition generalizes and is compatible with Breuer’s definition of
Hilbert A-bundles (cf. [B], [BFKM]) and also with Lang’s definition [Lang], where the ac-
tion of the von Neumann algebra is not considered. Actually Breuer [B] considers von Neu-
mann algebras A which are not necessarily finite.

Example 2.3 (a) It follows from Breuer’s work [B] that there are many examples of
Hilbertian A-bundles, even in the case of simply connected manifolds. For example, on
the 2-sphere S2, the isomorphism classes of Hilbertian A-bundles with fibre �2(A), are in
1–1 correspondence with homotopy classes of maps from S1 to GL

(
�2(A)

)
. If A is a type

II1 factor, then by a result of Araki, Smith and Smith [ASS], it follows that the isomorphism
classes of Hilbertian A-bundle over S2 is isomorphic to R (considered as a discrete group).

(b) Let E→ X be a Hilbertian A-bundle over X. ThenΛ jT∗CX⊗E is also a Hilbertian A-
bundle over X, whereΛ jT∗CX denotes the j-th exterior power of the complexified cotangent
bundle of X. This can be seen as follows. Let

gαβ : Uα ∩Uβ → GL(M)
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denote the transition functions of the Hilbertian A-bundle E with fibre M, and

g ′αβ : Uα ∩Uβ → GL(r,C)

denote the transition functions of the C bundle Λ jT∗CX → X. Then

g ′′αβ : Uα ∩Uβ → GL(Cr ⊗M)

denotes the transition functions of the Hilbertian A-bundleΛ jT∗CX⊗E with fibre Cr⊗M.

2.2 Sections of Hilbertian A-Bundles

A section of a Hilbertian A-bundle p : E → X is a smooth map s : X → E such that p ◦ s
is the identity map on X. Let {Uα}α be a local trivialization of p : E → X. Then a smooth
section s is given on Uα by a smooth map sα : Uα → M. On Uα ∩Uβ one has the relation
sα = gαβsβ .

2.3 A-Linear Connections on Hilbertian A-Bundles

An A-linear connection on a Hilbertian A-bundle p : E→ X is an A-morphism

∇ : Ω j(X,E)→ Ω j+1(X,E)

such that for any A ∈ Ω0
(
X, EndA(E)

)
and w ∈ Ω j(X,E), there is∇A ∈ Ω1

(
X, EndA(E)

)
such that

∇(Aw)− A(∇w) = (∇A)w.

HereΩ j(X,E) denotes the space of smooth sections of the Hilbertian A-bundleΛ jT∗CX⊗E,
and Ω1

(
X, EndA(E)

)
denotes the space of smooth sections of the Hilbertian A-bundle

T∗CX ⊗ EndA(E).

Remark 2.4 Let V be a vector field on X. Then

∇V A ∈ Ω0
(
X, EndA(E)

)
.

Proposition 2.5 Let∇,∇ ′ be two connections on the Hilbertian A-bundle p : E→ X with
fibre M. Then

∇−∇ ′ ∈ Ω1(X, EndA E).

Proof Let V be a vector field on X. Then δV = ∇V − ∇ ′V in C∞(X) linear, and hence by
[Lang] is defined pointwise. (δV )x is a derivation on the von Neumann algebra EndA(Ex).
Since (δV )x is everywhere defined, by Lemma 3, Part III, Chapter 9 of [Dix], (δV )x is
bounded. By Theorem 1, Part III, Chapter 9 of [Dix], there is an element Bx(V ) ∈
EndA(Ex) such that (δV )x = ad Bx(V ). That is, x→ ad Bx(V ) is smooth. The remainder of
the proof establishes that there is a smooth choice x→ ˜̃Bx(V ) such that ad ˜̃Bx(V ) = (δV )x.
We first discuss the local problem.
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Let U be an open subset of X and M be a Hilbertian A-module. Consider the trivial
bundle U ×M → U over U . By Dixmier’s result cited above, there is a map

x→ ad Bx(V ) x ∈ U

where Bx(V ) ∈ EndA(M) for all x ∈ U , such that

ad Bx(V ) = (∇V −∇
′
V )x

since ∇,∇ ′ are connections and V is smooth, we deduce that x → ad Bx(V ) is smooth.
However, it isn’t a priori clear that one can choose x → Bx(V ) to be smooth, as Bx(V )
is only defined modulo the centre of the von Neumann algebra EndA(M) = B(M). To
complete the proof we need the next result.

Lemma 2.6 Let A be a von Neumann algebra with centre Z. Then there is a smooth section
s : A/Z → A to the natural projection p : A→ A/Z.

Proof Let Z ⊂ A ⊂ B
(
�2(A)

)
, then since Z is a type I von Neumann algebra and hence

injective, there exists a projection of norm 1, P : B
(
�2(A)

)
→ Z [HT]. Then A ∩ ker P is a

complementary subspace to Z and one defines a section to the projection p : A→ A/Z.

s : A/Z → A as s([v]) = (1− P)v.

Then s is smooth since it is linear.
More explicitly, given a subgroup G of the unitaries in the commutant of Z, U (Z ′),

which is amenable and whose span is ultra weakly dense in Z ′, one can use the invariant
mean on G to average over the closure of the orbit {uxu∗ : u ∈ G} and thus obtain a map
P so that P(x) is this average for each x and hence commutes with every u ∈ Z ′. That is,
P(x) is in Z ′ ′ = Z. Such projections are called Schwartz projections, according to Kadison
(cf. [Ph]).

Returning now to the proof of Proposition 2.5, we define the smooth map B̃(V ) by

B̃(V ) = s ◦ ad B(V ),

where s : EndA(M)/Z → EndA(M) is the section as in Lemma 2.6 (with EndA(M) re-
placing A). Then clearly

∇V = ∇
′
V = ad B̃(V ),

where x→ B̃x(V ) is smooth. This solves the problem locally.
Let E→ X be a Hilbertian bundle with fibre M, and {Uα} be a trivialization of E→ X.

We have seen that on Uα, there is a smooth section

x→ B̃α,x(V ) for x ∈ Uα

on E|Uα∩Uβ
, we can compare the 2 sections obtained, x → B̃α,x(V ) − B̃β,x(V ) ∈ Z,

since ad B̃α,x(V ) = ad B̃β,x(V ). Therefore we can define λαβ(x) = B̃α,x(V ) − B̃β,x(V )
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i.e. λαβ : Uα ∩ Uβ → Z is a Cech 1-cocycle with values in the sheaf of smooth Z valued
functions. As Z is contractable, lemme 22 of [DD] applies and so the first cohomology with
values in the sheaf of smooth Z valued functions is trivial. Therefore λαβ is a coboundary
i.e. there are smooth maps

ϕα : Uα → Z

such that λαβ = ϕβ − ϕα. Then {x → B̃α,x(V ) + ϕα,x(V )}α is a global section, since on
Uα ∩Uβ , one has

B̃α,x(V ) + ϕα,x(V ) = B̃β,x(V ) + ϕβ,x(V ),

i.e. one gets a smooth section

X → EndA(E), x→ ˜̃Bx(V )

where ˜̃Bx(V ) = B̃α,x(V ) + ϕα,x(V ) for x ∈ Uα. It follows that ˜̃B ∈ Ω1
(
X, EndA(E)

)
.

Let ∇ be a connection on p : E → X and let {Uα}α be a trivialization of p : E → X.
Since E|Uα

∼= Uα×M, one sees that the differential d is a connection on p : E|Uα
→ Uα. By

Proposition 2.5,∇− d ∈ Ω1(Uα, EndA M) i.e. ∇ = d + Bα where Bα ∈ Ω1(Uα, EndA M).
On Uα ∩Uβ , one easily derives the relation

Bβ = g−1
αβ Bαgαβ + g−1

αβ dgαβ.(14)

So a connection can also be thought of as a collection {d + Bα}α where Bα ∈
Ω1(Uα, EndA M) and satisfying the relation (14) on the intersection.

2.4 Parallel Sections and Horizontal Lifts of Curves

Let ∇ be a connection on p : E → X. Let p : E → X be a Hilbertian A-bundle and
I = [0, 1] be the unit interval. Let γ : I → X be a curve. Let ξ : I → E be a curve such that
p0ξ = γ. Then ξ is called a lift of γ. ξ is said to be a horizontal lift of γ if it is parallel along
γ, that is, if it satisfies the following equation,

∇γ̇(t)ξ(t) = 0 ∀t ∈ I

where dot denotes the derivative with respect to t . In a local trivialization Uα, the equation
looks as,

ξ̇(t) + Bα
(
γ̇(t)
)
ξ(t) = 0 ∀t ∈ I(15)

where∇ = d+Bα on Uα as before. Since Bα
(
γ̇(t)
)

is bounded, we use a theorem of ordinary
differential equations for Banach space valued functions (see Proposition 1.1, Chapter IV
in [Lang]) to see that there is a unique solution to equation (15) with initial condition
ξ(0) = v ∈ M. It follows that a connection enables one to lift curves horizontally. This
enables one to define a “horizontal” subbundle H of TE, which is a complement to the
“vertical” subbundle p∗E ⊂ TE. This is how [Lang] discusses connections on infinite
dimensional vector bundles. Conversely, given a choice of “horizontal” subbundle H of
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TE, one can define a “covariant derivative” (that is, a connection) as follows. By hypothesis
TE = H ⊕ p∗E. Let pr2 : TE→ p∗E denote projection to the 2nd factor and κ : TE → E

be the composition p ◦pr2 where p : p∗E→ E. Let V be a vector field on X. Define∇V s =
κ
(
Ds(V )

)
where s : X → E is a smooth section, and Ds is its differential. Then ∇ locally

has the form {d + Bα} on a trivialization {Uα} of p : E→ X, where Bα ∈ Ω1(Uα, EndA M)
(see [Lang, Chapter IV, Section 3]) and it satisfies relation (14). Therefore ∇ defines a
connection on p : E→ X in the sense of Section 2.3.

2.5 Holomorphic Hilbertian A-Bundles

A Hilbertian A-bundle p : E → X with fibre M, is said to be a holomorphic Hilbertian
A-bundle if the transition functions of p : E→ X,

gαβ : Uα ∩Uβ → GL(M)

are holomorphic maps. We call {Uα}α a holomorphic trivialization of p : E→ X.

Remark 2.7 GL(M) is an open subset of a Banach space, and so it is a complex manifold
(of infinite dimension).

2.6 Examples of Holomorphic Hilbertian A-Bundles

(a) By using the clutching construction again, we see that holomorphic Hilbertian A-
bundles over S2 correspond to holomorphic maps

g : Aε → GL(M)

where Aε = {z ∈ C : 1 − ε < |z| < 1 + ε} is an annulus, for some small ε > 0. Therefore
by Example 2.3, there are many examples of holomorphic Hilbertian A-bundles over S2.

(b) Let p : E → X be a flat Hilbertian A-bundle over X, i.e. M is a finitely generated
(π −A) bimodule, where ϕ : π → GL(M) is the left action of π on M. Then

E = (M × X̃)/∼ → X

where (v, x) ∼ (ϕ(g)v, g.x) for g ∈ π, v ∈ M and x ∈ X̃. Let

gαβ : Uα ∩Uβ → π

denote the transition functions of the universal cover X̃, which is a principal π bundle over
X. Here {Uα}α forms an open cover of X. Since π is a discrete group and gαβ is smooth, it
follows that gαβ is locally constant, and therefore holomorphic. The transition functions of
E are ϕ(gαβ), which again are locally constant, and therefore holomorphic.

(c) Let E → X be a holomorphic C-vector bundle over X and E → X a flat Hilbertian
A-bundle over X. Let

gαβ : Uα ∩Uβ → GL(r,C)
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denote the holomorphic transition functions where {Uα}α form an open cover of X. Let

g ′αβ : Uα ∩Uβ → GL(M)

denote the transition functions of the flat Hilbertian A-bundle E → X. Since E → X is
flat, g ′αβ are locally constant and thus holomorphic (by the previous example). Consider
the new bundle whose transition functions are given by

g ′ ′αβ ≡ gαβ ⊗ g ′αβ : Uα ∩Uβ → GL(Cr ⊗M).

Since the g ′ ′αβ are holomorphic, so is the new bundle which is the tensor product bundle,
and which is denoted by

E ⊗C E→ X.

We have shown that it is a holomorphic Hilbertian A-bundle over X, with fibre Cr ⊗M.

2.7 Holomorphic Sections of Holomorphic Hilbertian A-Bundles

Let p : E → X be a holomorphic Hilbertian A-bundle. A section a : X → E is said to be
a holomorphic section if in a holomorphic local trivialization, {Uα}α, the expression for s
in Uα,

sα : Uα → M

is a holomorphic map. Note that M is a Banach space, and therefore a complex manifold.
On Uα ∩Uβ , one has the relation

sα = gαβsβ

which is holomorphic, since gαβ is holomorphic.

2.8 A-Linear Cauchy-Riemann Operators

Let p : E → X be a holomorphic Hilbertian A-bundle over X. With respect to the decom-
position

T∗CX = T∗X ⊗R C = (T1,0X)∗ ⊕ (T0,1X)∗,(16)

the space of smooth differential j-forms on X with values in E decomposes as a direct sum
of spaces of smooth differential (p, q)-forms on X with values in E, where p + q = j. This
space, which is an A module, will be denoted by Ωp,q(X,E).

Then there is a unique operator

∂̄ : Ωp,q(X,E)→ Ωp,q+1(X,E)

which in any holomorphic trivialization of p : E→ X, is equal to

∂̄ =
n∑

i=1

e(dz̄i)
∂

∂z̄i

where e(dz̄i) denotes exterior multiplication by the 1-form dz̄i and n = dimC X. Note that
∂̄2 = 0.
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2.9 Holomorphic A-Linear Connections

Let ∇ : Ωp(X,E) → Ωp+1(X,E) be an A-linear connection on a holomorphic Hilbertian
A-bundle p : E→ X. Then with respect to (16), there is a decomposition

∇ = ∇ ′ +∇ ′ ′.

Here
∇ ′ : Ωp,q(X,E)→ Ωp+1,q(X,E)

is an A-morphism such that for A ∈ Ω0(X, EndA E) and w ∈ Ω j(X,E),

∇ ′(Aw)− A(∇ ′w) = (∇ ′A)w

where∇ ′A ∈ Ω1,0(X, EndA E) is the (1, 0) component of∇A, while

∇ ′ ′ : Ωp,q(X,E)→ Ωp,q+1(X,E)

is an A-morphism such that

∇ ′ ′(Aw)− A(∇ ′ ′w) = (∇ ′ ′A)w

where∇ ′ ′A ∈ Ω0,1(X, EndA E) is the (0, 1) component of∇A.
An A-linear connection∇ on a holomorphic Hilbertian A-bundle p : E→ X is said to

be a holomorphic A-linear connection if (∇ ′ ′)2 = 0.
Since every holomorphic Hilbertian A-bundle has a A-linear Cauchy-Riemann opera-

tor, it follows that it also has a holomorphic A-linear connection.

2.10 Examples of Holomorphic A-Linear Connections

(a) Let E → X be a flat Hilbertian A-bundle. Then E has a canonical flat A-linear con-
nection∇ given by the de Rham exterior derivative, where we identify the space of smooth
differential j-forms on X with values in E, denoted Ω j(X,E), as π-invariant differential
forms in M ⊗C Ω

j(X̃). Here M ⊗C Ω
j(X̃) has the diagonal action. (See [CFM] for more

details). Since the de Rham differential d = ∂̄+∂, it is a canonical flat holomorphic A-linear
connection.

(b) Let E → X be a holomorphic C-vector bundle over X, and E → X a flat Hilbertian
A-bundle over X. Then we have seen that E ⊗C E → X is a holomorphic Hilbertian A-
bundle over X, with fibre Cr ⊗ M. Let ∇̃ be a holomorphic connection on E → X, and

let ˜̃∇ be the canonical flat A-linear connection on E → X. Then ∇ = ∇̃ ⊗ 1 + 1 ⊗ ˜̃∇ is
easily checked to yield a holomorphic A-linear connection on the holomorphic Hilbertian
A-bundle E ⊗C E→ X.

3 Zeta Functions and D-Class Bundles

We now have most of the notation and preliminary results we need to generalize the clas-
sical construction of the holomorphic torsion of D. B. Ray and I. M. Singer [RS] to the
infinite dimensional case. This section generalizes [BFKM] and [CFM] for the notion of a
D-class holomorphic Hilbertian bundle and the definition of zeta-functions for complexes
of such bundles.
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3.1 Hermitian Metrics, Hilbert A Bundles, L2 Scalar Products and the Canonical Holomor-
phic (Hermitian) A-Linear Connection

A Hermitian metric h on a Hilbertian A-bundle p : E→ X is a smooth family of admissible
scalar products on the fibers. Any Hermitian metric on p : E→ X defines a wedge product

∧ : Ωp,q(X,E)⊗ Ωr,s(X,E)→ Ωp+r,q+s(X)

similar to the finite dimensional case.
Let p : E → X be a holomorphic Hilbertian A-bundle and h be a Hermitian metric on

E. The Hermitian metric on p : E → X determines a canonical holomorphic A-linear con-
nection on E as follows. Let∇ be a holomorphic A-linear connection on E which preserves
the Hermitian metric E, that is,

dh(ξ, η) = h(∇ξ, η) + h(ξ,∇η)

where ξ and η are smooth sections of E. Equating forms of the same type, one has

∂h(ξ, η) = h(∇ ′ξ, η) + h(ξ,∇ ′ ′η)

and
∂̄h(ξ, η) = h(∇ ′ ′ξ, η) + h(ξ,∇ ′η).

Since ∇ ′ ′ = ∂̄, we see that a choice of Hermitian metric determines a holomorphic A-
linear connection, which is called the canonical holomorphic A-linear connection.

The Hermitian metric on p : E→ X together with a Hermitian metric on X determines
a scalar product on Ωp,q(X,E) in the standard way; namely, using the Hodge star operator

∗ : Ωp,q(X,E)→ Ωn−q,n−p(X,E)

one sets

(ω, ω ′) =

∫
X
ω ∧ ∗ω̄ ′.

With this scalar product Ωi(X,E) becomes a pre-Hilbert space. Define the space of L2

differential p, q-forms on X with coefficients in E, denoted Ωp,q
(2) (X,E), to be the Hilbert

space completion of Ωp,q(X,E). We will tend to ignore the scalar product on Ωp,q
(2) (X,E)

and view it as an infinite Hilbertian A module.

3.2 Reduced L2 Dolbeault Cohomology

Given a holomorphic Hilbertian A bundle p : E→ X together with a Hermitian metric on
E, one defines the reduced L2 Dolbeault cohomology with coefficients in E as the quotient

H p,q(X,E) =
ker∇ ′ ′/Ωp,q

(2) (X,E)

cl
(

im∇ ′′/Ωp,q−1(X,E)
) ,

where the Cauchy-Riemann operator ∇ ′ ′ is associated to the canonical A-linear connec-
tion ∇ on E. ∇ ′ ′ on E extends to an unbounded, densely defined operator Ωp,q

(2) (X,E) →

Ω
p,q+1
(2) (X,E). Then H p,q(X,E) is naturally defined as a Hilbertian module over A. It can

also be considered as the cohomology of X with coefficients in a locally constant sheaf,
determined by E.
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3.3 Hodge Decomposition

The Laplacian �p,q acting on L2 E-valued (p, q)-forms on X is defined to be

�p,q = ∇
′ ′∇ ′ ′

∗
+∇ ′ ′

∗
∇ ′ ′ : Ωp,q

(2) (X,E)→ Ωp,q
(2) (X,E)

where ∇ ′ ′∗ denotes the formal adjoint of ∇ ′ ′ with respect to the L2 scalar product on
Ω

p,q
(2) (X,E). Note that by definition, the Laplacian is a formally self-adjoint operator which

is densely defined. We also denote by �p,q the self adjoint extension of the Laplacian.
Let Hp,q(X,E) denote the closed subspace of L2 harmonic p, q-forms with coefficients

in E, that is, the kernel of �p,q. Note that Hp,q(X,E) is a Hilbertian A-module. By elliptic
regularity (cf. [BFKM, Section 2]), one sees that Hp,q(X,E) ⊂ Ωp,q(X,E), that is, every
L2 harmonic (p, q)-form with coefficients in E is smooth. Standard arguments then show
that one has the following Hodge decomposition (cf. [D]; [BFKM, Section 4] and also [GS,
Section 3])

Ω
p,q
(2) (X,E) = Hp,q(X,E)⊕ cl

(
im∇ ′ ′/Ωp,q−1(X,E)

)
⊕ cl
(
im∇ ′ ′

∗
/Ωp,q+1(X,E)

)
.

Therefore it follows that the natural map Hp,q(X,E) → H p,q(X,E) is an isomorphism
Hilbertian A-modules. The corresponding L2 Betti numbers are denoted by

bp,q(X,E) = dimτ

(
H p,q(X,E)

)
.

Definition 3.1 Let �p,q =
∫∞

0 λ dEp,q(λ) denote the spectral decomposition of the
Laplacian. The spectral density function is defined to be Np,q(λ) = Trτ

(
Ep,q(λ)

)
and the

theta function is defined to be θp,q(t) =
∫∞

0 e−tλ dNp,q(λ) = Trτ (e−t�p,q ) − bp,q(X,E).

Here we use the well known fact that the projection Ep,q(λ) and the heat operator e−t�p,q

have smooth Schwartz kernels which are smooth sections of a bundle over X×X with fiber
the commutant of M, cf. [BFKM], [GS], [Lu]. The symbol Trτ denotes application of the
canonical trace on the commutant to the restriction of the kernels to the diagonal followed
by integration over the manifold X. This is a trace; it vanishes on commutators of smooth-
ing operators. See also [M], [L] and [GS] for the case of the flat holomorphic Hilbertian
bundle defined by the regular representation of the fundamental group.

Definition 3.2 A holomorphic Hilbertian A-bundle E → X together with a choice of
Hermitian metric h on E, is said to be D-class if

∫ 1

0
log(λ) dNp,q(λ) > −∞

or equivalently ∫ ∞
1

t−1θp,q(t) dt <∞

for all p, q = 0, . . . , n.
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Note that the D-class property of a holomorphic Hilbertian A bundle does not depend on
the choice of metrics g on X and h on E.

For most of the paper, we make the assumption that the holomorphic Hilbertian A-
bundle E → X is D-class. It is easy to write down examples of flat bundles on the circle
that are not of D-class, as these are determined by the value of the associated representation
at the identity. By taking Cartesian products, we obtain such examples on tori of any di-
mension. Closed Kähler hyperbolic manifolds (discussed further in Section 7) and closed
Kähler manifolds with residually amenable fundamental group [Lu], [DM], [Cl], [Sc] are
of D-class for the flat holomorphic Hilbertian bundle defined by the regular representation
of the fundamental group. In fact, in the case of Kähler hyperbolic manifolds, Gromov [G]
proves that there are spectral gaps for the Laplacian in all degrees. It follows that there are
non-flat holomorphic Hilbertian bundles that are of D-class on such manifolds.

Under the D-class assumption, we will next define and study the zeta function of the
Laplacian �p,q acting on E valued L2 differential forms on X.

Definition 3.3 For λ > 0 the zeta function of the Laplacian �p,q is defined on the half-
plane 	(s) > n as

ζp,q(s, λ,E) =
1

Γ(s)

∫ ∞
0

ts−1e−λtθp,q(t) dt.(17)

Lemma 3.4 ζp,q(s, λ,E) is a holomorphic function in the half-plane 	(s) > n (where n =
dimC X) and has a meromorphic continuation to C with no pole at s = 0. If we assume that the
holomorphic Hilbertian A-bundle E → X is D-class then limλ→0 ζ

′
p,q(0, λ,E) exists (where

the prime denotes differentiation with respect to s)

Proof There is an asymptotic expansion as t → 0+ of the trace of the heat kernel
Trτ (e−t�p,q ) (cf. [BFKM] and [R, Chapter 13]),

Trτ (e−t�p,q ) ∼ t−n
∞∑
i=0

t ici,p,q.(18)

In particular, Trτ (e−t�p,q ) ≤ Ct−n for 0 < t ≤ 1. From this we deduce that ζp,q(s, λ,E)
is well defined on the half-plane 	(s) > n and it is holomorphic there. The meromorphic
continuation of ζp,q(s, λ,E) to the half-plane 	(s) > n− N is obtained by considering the
first N terms of the small time asymptotic expansion (18) of Trτ (e−t�p,q ),

ζp,q(s, λ,E) = −
1

Γ(s)

∞∑
j=0

bp,q(X,E)(−λ) j

(s + j) j!
+

1

Γ(s)

[ ∑
0≤i+ j≤N

(−λ) j ci,p,q

(s + i + j − n) j!
+ RN (s, λ)

]

+
1

Γ(s)

∫ ∞
1

ts−1θp,q(t)e−tλ dt

(19)

where RN(s, λ) is holomorphic in the half plane 	(s) > n−N with a meromorphic exten-
sion to a neighbourhood of s = 0. Since the Gamma function has a simple pole at s = 0,
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we observe that the meromorphic continuation of ζp,q(s, λ,E) has no pole at s = 0. The
last part of the lemma now follows cf. [BFKM].

Let ζ ′p,q(0, 0,E) = limλ→0 ζ
′
p,q(0, λ,E). The following corollary is clear from (19).

Corollary 3.5 One has

ζp,q(0, 0,E) = −bp,q(X,E) + cn,p,q

where cn,p,q is the n-th coefficient in the small time asymptotic expansion of the theta function,
cf. (18).

4 Holomorphic L2-Torsion

In this section, we define and study the generalization of Ray-Singer holomorphic torsion
to the case of holomorphic Hilbertian A-bundles. For the rest of the section, we make the
assumption that the holomorphic Hilbertian A-bundle E→ X is D-class. Given a Hermitian
manifold X and a metric on a holomorphic Hilbertian A-bundle E over X with fibre a
Hilbertian A module M, the holomorphic L2 torsion ρp

E defined in this section is a positive
element of the determinant line

det
(
H p,∗(X,E)

)
.

We also prove a variational formula for the holomorphic L2 torsion.

4.1 The Construction of Holomorphic L2 Torsion

Let (X, g) be a compact, connected Hermitian manifold of complex dimension n with π =
π1(X). Let E→ X be a holomorphic Hilbertian A-bundle over X with fibre M and let h be
a Hermitian metric on E. We assume that E is of D-class.

As before, let H p,q(X,E) denote the L2 cohomology groups of X with coefficients in E.
Then we know that H p,q(X,E) is a Hilbertian A-module. If Hp,q(X,E) denotes the space
of L2 harmonic p, q-forms with coefficients in E, then it is a Hilbert A-module with the
admissible scalar product induced from Ωp,q

(2) (X,E). By the Hodge theorem, the natural
map

Hp,q(X,E)→ H p,q(X,E)

is an isomorphism of Hilbertian A-modules. Thus, we may identify these modules via
this isomorphism, or equivalently, we may say that this isomorphism defines an admissible
scalar product on the reduced L2 cohomology H p,q(X,E). These admissible scalar products
on H p,q(X,E) for all p, q, determine elements of the determinant lines det

(
H p,q(X,E)

)
and

thus, their product in

det
(
H p,∗(X,E)

)
=

n∏
q=0

det
(
H p,q(X,E)

)(−1)q

is defined. This last element we will denote ρ ′p(g, h); the notation emphasizing the depen-
dence on the metrics g and h.
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Using the results of the previous section, we introduce the graded zeta function

ζ p(s, λ,E) =
n∑

q=0

(−1)qqζp,q(s, λ,E).

It is a meromorphic function with no pole at s = 0. Note also that this zeta-function
depends on the choice of the trace τ and on the metrics g and h.

Definition 4.1 Define the holomorphic L2 torsion to be the element of the determinant
line

ρ
p
E(g, h) ∈ det

(
H p,∗(X,E)

)
, ρ

p
E(g, h) = e

1
2 ζ

p ′(0,0,E) · ρ ′p(g, h),

where ζ p ′ denotes the derivative with respect to s. Thus, the holomorphic L2 torsion is a
volume form on the reduced L2 Dolbeault cohomology.

Remark 4.2 1. In the case when A = C, we arrive at the classical definition of the Ray-
Singer-Quillen metric on the determinant of the Dolbeault cohomology.

2. We will prove later in this section a metric variation formula for the holomorphic
L2 torsion as defined in Definition 4.1. Using this, we prove that a relative version of the
holomorphic L2 torsion is independent of the choice of Hermitian metric.

3. Assuming that the reduced L2 Dolbeault cohomology H p,∗(X,E) vanishes, we can
identify canonically the determinant line det

(
H p,∗(X,E)

)
with R, and so the torsion ρp

E in
this case is just a number.

4.2 Metric Variation Formulae

Suppose that a holomorphic Hilbertian A-bundle E→ X of D-class is given. This property
does not depend on the choice of the metrics. Consider a smooth 1-parameter family of
metrics gu on X and hu on E, where u varies in an interval (−ε, ε). Let ( , )u denote the L2

scalar product onΩp,∗
(2) (X,E) determined by gu and hu. This family determines an invertible,

positive, self-adjoint bundle map Au : E→ E which is uniquely determined by the relation

(ω, ω ′)u = (Auω, ω
′)0

for ω, ω ′ ∈ Ωp,∗
(2) (X,E); it depends smoothly on u.

Let∇ be the canonical A-linear connection on E. Define the operator

Du = ∇
′ ′ +∇ ′ ′

∗
u : Ωp,∗

(2) (X,E)→ Ωp,∗
(2) (X,E)

where∇ ′ ′∗u denotes the formal adjoint of∇ ′ ′ with respect to the L2 scalar product ( , )u on
Ω

p,∗
(2) (X,E). Then ∇ ′ ′∗u = A−1

u ∇
′ ′∗

0 Au acting on Ωp,∗
(2) (X,E). Denote Zu = A−1

u Ȧu, where
the dot means the derivative with respect to u.

As in Section 4.1, let ζ p
u (s, λ,E) denote the graded zeta function with respect to the

metrics gu, hu. The scalar product ( , )u induces a scalar product on the space of harmonic
forms H

p,∗
u (X,E), and via the canonical isomorphism H

p,∗
u (X,E)→ H p,∗(X,E), it induces

an admissible scalar product on the reduced L2 cohomology H p,∗(X,E). Let ρ ′(u) denote
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the class in det
(
H p,∗(X,E)

)
of this scalar product. Then the holomorphic L2 torsion with

respect to the metrics gu, hu is given, as in Definition 4.1, by

ρ
p
E(u) = e

1
2 ζ

p ′
u (0,0,E)ρ ′p(u) ∈ det

(
H p,∗(X,E)

)
,

where ζ p ′ means the derivative with respect to s.

Theorem 4.3 Let E→ X be a holomorphic Hilbert bundle of D-class. Then in the notation
above, u �→ ρ

p
E(u) is a smooth map and one has

∂

∂u
ρ

p
E(u) = cp

E(u)ρp
E(u),

where cp
E(u) ∈ R (cf. (24)) is a local term.

The proof of this theorem will follow from two propositions which we will prove in this
section.

Let Pp(u) denote the orthogonal projection from Ωp,∗
(2) (X,E) onto ker D2

u and Trs
τ (·) de-

note the graded trace, that is the alternating sum of the von Neumann traces Trτ on oper-
ators on Ωp,∗

(2) (X,E) having smooth Schwartz kernels.

Proposition 4.4 Let E → X be a holomorphic Hilbert bundle of D-class. Then in the nota-
tion above, one has

∂

∂u
ζ p ′

u(0, 0,E) = Trs
τ

(
ZuPp(u)

)
− 2cp

E(u)

where cp
E(u) ∈ R (cf. (24)) is a local term.

Proof We consider the function

F(u, λ, s) =
n∑

q=0

(−1)qq

∫ ∞
0

ts−1e−tλ Trτ
(
e−t�p,q(u) − Pp,q(u)

)
dt

which is defined on the half-plane 	(s) > n and is holomorphic there. As in (18), one has
for each u, the small time asymptotic expansion of the heat kernel,

Trτ (e−t�p,q(u)) ∼
∞∑

k=0

ck,p,q(u)t−n+k.(20)

Using (20), we see that F(u, λ, s) has a meromorphic continuation to C with no pole at s =
0. This assertion is analogous to that in Lemma 2.8, and is proved by an easy modification
of that proof.

If we know that u→ F(u, λ, s) is a smooth function then

∂

∂u
ζ p ′

u(0, 0,E) = lim
λ→0

∂

∂s

(
1

Γ(s)

∂

∂u
F(u, λ, s)

)∣∣∣∣
s=0
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by the D-class assumption. Hence:

∂

∂u
ζ p ′

u(0, 0,E) = lim
λ→0

∂

∂u
F(u, λ, s)|s=0.

Observing that Trτ
(
Pp,q(u)

)
= bp,q(X,E) is independent of u we see that u → F(u, s)

is smooth provided we can show that u → Trτ (e−t�p,q(u)) is a smooth function. By an
application of Duhamel’s principle, one has

1

u ′ − u

(
Trτ
(
(e−

t
2 �p,q(u ′) − e−

t
2 �p,q(u))e−

t
2 �p,q(u)

))

= −

∫ t
2

0
Trτ
(

e−s�p,q(u ′) 1

u ′ − u

(
�p,q(u ′)−�p,q(u)

)
e−

t
2 �p,q(u)e−( t

2−s)�p,q(u)
)

ds.

(21)

Since
∥∥∥( 1

u ′−u

(
�p,q(u ′)−�p,q(u)

)
− �̇p,q(u)

)
e−

t
2 �p,q(u)

∥∥∥ is O(u ′ − u) as u ′ → u, one sees

that the limit as u ′ → u of (21) exists and

Trτ

(( ∂
∂u

e−
t
2 �p,q(u)

)
e−

t
2 �p,q(u)

)
= −

∫ t
2

0
Trτ
(
e−s�p,q(u)�̇p,q(u)e−

t
2 �p,q(u)e−( t

2−s)�p,q(u)
)

ds

= −
t

2
Trτ
(
�̇p,q(u)e−t�p,q(u)

)
.

Therefore u → Trτ (e−t�p,q(u)) is a smooth function (and hence so is u → F(u, s)) and by
the semigroup property of the heat kernel, one has

∂

∂u
Trτ
(
e−t�p,q(u) − Pp,q(u)

)
=

∂

∂u
Trτ (e−t�p,q(u))

= 2 Trτ

(( ∂
∂u

e−
t
2 �p,q(u)

)
e−

t
2 �p,q(u)

)

= −tTrτ (�̇p,q(u)e−t�p,q(u)).

A calculation similar to [RS, p. 152] yields

�̇p,q(u) = −Zu∇
′ ′∗

u∇
′ ′ +∇ ′ ′

∗
uZu∇

′ ′ −∇ ′ ′Zu∇
′′∗

u +∇ ′ ′∇ ′ ′
∗
uZu.

Since ∇ ′ ′�p,q(u) = �p,q+1(u)∇ ′ ′ and ∇ ′ ′∗u�p,q(u) = �p,q−1(u)∇ ′ ′∗u and using the fact
that Trτ is a trace, one has

Trτ (�̇p,q(u)e−t�p,q(u)) = Trτ (Zu∇
′ ′∇ ′ ′

∗
ue−t�p,q(u))− Trτ (Zu∇

′ ′∗
u∇
′ ′e−t�p,q−1(u))

+ Trτ (Zu∇
′ ′∇ ′ ′

∗
ue−t�p,q+1(u))− Trτ (Zu∇

′ ′∗
u∇
′ ′

ue−t�p,q(u)).

https://doi.org/10.4153/CJM-2000-030-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-030-7


716 A. Carey, M. Farber and V. Mathai

So one sees that

∂

∂u

n∑
q=0

(−1)qq Trτ
(
e−t�p,q(u) − Pp,q(u)

)
= −t

n∑
q=0

(−1)qq Trτ
(
�̇p,q(u)e−t�p,q(u)

)

= −t
n∑

q=0

(−1)qq Trτ
(
Zu�p,q(u)e−t�p,q(u)

)

= t
∂

∂t

n∑
q=0

(−1)q Trτ (Zue−t�p,q(u)).

Using this, one sees that for 	(s) > n,

∂

∂u
F(u, λ, s) =

n∑
q=0

(−1)q

∫ ∞
0

tse−tλ ∂

∂t
Trτ (Zu

(
e−t�p,q(u) − Pp,q(u)

)
dt.(22)

Since Zu is a bounded endomorphism, by a straightforward generalization of Lemma 1.7.7
in [Gi], there is a small time asymptotic expansion

Trτ (Zue−t�p,q(u)) ∼
∞∑

k=0

mk,p,q(u)t−n+k.(23)

In particular, one has
|Trτ (Zue−t�p,q(u))| ≤ ct−n

for all 0 < t ≤ 1. If 	(s) > n, we can integrate the right-hand side of (22) by parts to get

n∑
q=0

(−1)q+1

∫ ∞
0

(sts−1 − λts)e−tλ Trτ
(

Zu

(
e−t�p,q(u) − Pp,q(u)

))
dt.

By splitting the integral into two parts, one from 0 to 1 and the other from 1 to ∞ and
using (23) on the first integral together with the observations above, one gets the following
explicit expression for the meromorphic continuation of ∂

∂u F(u, s) to the half-plane	(s) >
n− N

∂

∂u
F(u, s) =

n∑
q=0

(−1)q Trτ
(
ZuPp,q(u)

) 1

λs

∫ λ

0
(sts−1 − ts)e−t dt

+
n∑

q=0

(−1)q+1
∑

0≤k+r≤N

(−λ)rmk,p,q(u)

r!

( s

s− n + k + r
−

λ

s− n + k + r + 1

)

+ RN (u, λ, s)

where RN (u, λ, s) is holomorphic in a neighbourhood of zero. At s = 0 we have

RN (u, λ, 0) =

∫ ∞
1

Trτ
(

Zu

(
e−t�p,q(u) − Pp,q(u)

))
e−tλ dt.
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Thus we have

∂

∂u
ζ ′

p
u(0, λ,E) =

∂

∂u
F(u, 0)

=
n∑

q=0

(−1)q+1

(∑
k+r=n

(−λ)r

r!
(1− λ)mk,p,q(u)− Trτ

(
ZuPp,q(u)

))

+ RN (u, λ, 0).

Hence

ζ p ′
u(0, 0,E) =

n∑
q=0

(−1)q Trτ
(
ZuPp,q(u)

)
− 2cp

E(u)

where

cp
E(u) =

1

2

n∑
q=0

(−1)qmn,p,q(u).(24)

This completes the proof of the proposition.

The 1-parameter family of scalar products on Ωp,∗
(2) (X,E) which are induced by the 1-

parameter family of metrics on X and E→ X, defines an inclusion isomorphism of Hilber-
tian modules

Iu : Hp,∗
u (X,E)→ H p,∗(X,E).

Here H
p,q
u (X,E) denotes the kernel of �p,q(u). There is an induced isomorphism of deter-

minant lines cf. (13) and the discussion in the paragraph above it.

I∗u : det
(

H p,∗(X,E)
)
→ det

(
Hp,∗

u (X,E)
)
.

We first identify H p,∗(X,E) with H
p,∗
0 (X,E). Then Iu defines a 1-parameter family of ad-

missible scalar products on H p,∗(X,E), which we can write explicitly as follows:

〈η, η ′〉u =
(
P(u)η, P(u)η ′

)
u
=
(
AuP(u)η, P(u)η ′

)
0

where η, η ′ are harmonic forms in H
p,∗
0 (X,E). The relation between these scalar products

in the determinant line det
(
H p,∗(X,E)

)
is given as in Proposition 1.3 and (11), by

〈 , 〉u =
n∏

q=0

Detτ ′
(
Pp,q(u)†AuPp,q(u)

) (−1)q+1

2 〈 , 〉0.(25)

where Pp,q(u)† denotes the adjoint of Pp,q(u) with respect to the fixed admissible scalar
product 〈 , 〉0 and Trτ ′(·) is the trace on H p,q(X,E). Using the fact that H p,q(X,E) is
isomorphic to a submodule of a free Hilbertian module as is H

p,q
u (X,E), it follows that

Trτ ′(·) is equal to Trτ
(
Pp,q(u) · Pp,q(u)

)
. We begin with the following:
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Proposition 4.5 Let E→ X be a holomorphic Hilbert bundle of D-class. Then the function
u→ Pp,q(u) is smooth and in the notation of Section 4.2 and Theorem 4.3, one has

∂

∂u
ρ ′p(u) = −

1

2
Trs

τ

(
ZuPp(u)

)
ρ ′p(u).

Proof We will first prove that u → Pp,q(u) is a smooth function. First consider the Hodge
decomposition in the u-metric in the context,

Ω
p,q
(2) (X,E) = Hp,q

u (X,E)⊕ cl(im∇ ′ ′)⊕ cl(im∇ ′ ′
∗
u)

and let π denote the projection onto cl(im∇ ′ ′), which does not depend on the u-metric.
Let h ∈ H

p,q
0 (X,E) be harmonic in the u = 0 metric. We will arrive at a formula for

hu ≡ Pp,q(u)h, from which which the differentiability of u → Pp,q(u) will be clear. Now
define ru by the equation

hu = h + ru.

Since hu is harmonic in the u-metric, one has ∇ ′ ′∗u(hu) = 0. By the formula for ∇ ′ ′∗u in
4.4, one sees that ∇ ′ ′∗0 Au(h + ru) = 0. Since ∇ ′ ′∗0 is injective on cl(im∇ ′′), one has that
π
(
Au(h + ru)

)
= 0. Since Bu ≡ π Auπ : cl(im∇ ′ ′) → cl(im∇ ′ ′) is an isomorphism, one

sees that ru = −B−1
u πAu(h) and therefore

hu = h− B−1
u πAu(h).

Since u → Au is smooth, it follows that u → Bu is smooth and by the formula above, one
concludes that u→ Pp,q(u) is also smooth.

Observe that
Pp,q(u)2 = Pp,q(u).

Differentiating with respect to u, one has

Ṗp,q(u) = Pp,q(u)Ṗp,q(u) + Ṗp,q(u)Pp,q(u).

Therefore
Pp,q(u)Ṗp,q(u)Pp,q(u) = 0.

Therefore

Trτ
(
Ṗp,q(u)

)
= 2Trτ

(
Pp,q(u)Ṗp,q(u)

)
= 2Trτ

(
Pp,q(u)Ṗp,q(u)Pp,q(u)

)
= 0.

A similar argument shows that the projection P†p,q(u) also satisfies

Trτ
(
Ṗ†p,q(u)

)
= 0.
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By definition, ρ ′p(u) = 〈 , 〉u ∈ det
(
H p,∗(X,E)

)
, and therefore by differentiating the

relation (25), one has

∂

∂u
ρ ′p(u) = −

1

2
Trs

τ ′

(
C−1

u
∂

∂u
Cu

)
ρ ′p(u)

where Cu ≡ Pp(u)†AuPp(u) and Trs
τ ′(·) denotes the graded von Neumann trace on

H p,•(X,E). Therefore one sees that

∂

∂u
ρ ′p(u) = −

1

2
Trs

τ ′

(
ZuPp(u) + Pp(u)Ṗp(u) + P†p(u)Ṗ†p(u)

)
ρ ′p(u)

= −
1

2
Trs

τ ′

(
ZuPp(u)

)
ρ ′p(u) = −

1

2
Trs

τ

(
ZuPp(u)

)
ρ ′p(u).

Proof of Theorem 4.3 By Proposition 4.5, one calculates

∂

∂u
ρ

p
E(u) =

1

2
e

1
2 ζ

p ′
u (0,0,E) ∂

∂u
ζ p ′

u(0, 0,E)ρ ′p(u) + e
1
2 ζ

p ′
u (0,0,E) ∂

∂u
ρ ′p(u)

=
1

2

[ ∂
∂u
ζ p ′

u(0, 0,E)− Trs
τ

(
ZuPp(u)

)]
e

1
2 ζ

p ′
u (0,0,E)ρ ′p(u)

=
1

2

[ ∂
∂u
ζ p ′

u(0, 0,E)− Trs
τ

(
ZuPp(u)

)]
ρ

p
E(u).

Therefore by Proposition 4.4, one has

∂

∂u
ρ

p
E(u) = cp

E(u)ρp
E(u)

where cp
E(u) ∈ R is as in (24). This completes the proof of the theorem.

5 Flat Hilbert A-Bundles and Relative Holomorphic L2 Torsion

In this section, we define the relative holomorphic L2 torsion with respect to a pair of flat
Hilbert (unitary) A-bundles E and F, and we prove that it is independent of the choice of
Hermitian metric on the complex manifold. Thus it can be viewed as an invariant volume
form on the reduced L2 cohomology H p,∗(X,E)⊕H p,∗(X,F) ′. In Section 6, we will prove
the relative holomorphic L2 torsion with respect to a pair of flat Hibertian A-bundles E and
F, is independent of the choice of almost Kähler metric on an almost Kähler manifold and
on the choice of Hermitian metrics on E and F.

5.1 Relative Holomorphic L2 Torsion

It follows from Theorem 4.3 that the holomorphic L2 torsion is not independent of the
choice of metrics on the complex manifold and on the flat Hilbertian bundle. Therefore
in order to obtain an invariant, we now consider the relative holomorphic L2 torsion for
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a pair of unitary flat Hilbertian bundles over a complex manifold. In the next section,
we will study the relative holomorphic L2 torsion for an arbitrary pair of flat Hilbertian
bundles over a complex manifold.

A distance function r on a manifold X is a map r : X × X → R such that

(1) Its square r2(x, y) is smooth on X × X.
(2) r(x, x) = 0 and r(x, y) > 0 if x �= y.

(3) ∂2

∂xi∂x j
r2(x, y)|x=y = gi j(x)

Condition (3) says essentially that r(x, y) coincides with the geodesic distance from x
to y, whenever x and y are close. One can easily construct such a function using local
coordinates and a partition of unity. Let

k(t, x, y) = c1t−ne−c2
r2(x,y)

t , t > 0

and c1, c2 are some positive constants. Then one has the following basic theorem about the
fundamental solution of the heat equation,

Proposition 5.1 The heat kernel e−t�E
p,q (x, y) is a smooth, symmetric double form on X and

has the property

∇ ′ ′xe−t�E
p,q (x, y) = ∇ ′ ′

∗
y e−t�E

p,q (x, y).(26)

It satisfies the bounds

|De−t�E
p,q (x, y)| ≤ c3t−

1
2 k(t, x, y)(27)

for D = ∇ ′ ′ or ∇ ′′∗, x, y close to each other and 0 < t ≤ 1. Finally, there is a small time
asymptotic expansion

e−t�E
p,q (x, x) ∼

∞∑
j=0

t−n+ jC j,p,q(x)(28)

as t → 0, where C j,p,q is a smooth double form on X, for all j.

Proof The result is local, and in a local normal coordinate neighborhood of a point x ∈ X,
where the bundle E is also trivialized, one can proceed exactly as in [RS1, Proposition 5.3]
(cf. [R], [BFKM]).

5.2

By Theorem 4.3, we see that the holomorphic L2 torsion is not necessarily independent
of the choice of Hermitian metrics on X and E → X. We will now study the case when
the flat Hilbertian A-bundle E → X with fiber M is defined by a unitary representation
π → BA(M), that is, M is a unitary Hilbertian (A− π) bimodule. That is,

E ≡ (M × X̃)/∼ → X
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where (v, x) ∼ (vg−1, gx) for all g ∈ π, x ∈ X̃ and v ∈ M. The unitary representation
defines a flat Hermitian metric h on E→ X. We call such a bundle a flat Hilbert bundle, or
sometimes a unitary flat Hilbertian bundle. Then by definition (cf. Definition 4.1), one has

ρ
p
E(g, h) ∈ det

(
H p,∗(X,E)

)
.

Let F → X be another flat Hilbert A bundle with fibre N , such that dimτ (M) =
dimτ (N). Let �E

p,q(u) and �F
p,q(u) denote the Laplacians in the metric gu, acting on

Ω
p,q
(2) (X,E) and Ωp,q

(2) (X,F) respectively. We first prove the following Proposition.

Proposition 5.2 Let E and F be a pair of flat Hilbert bundles over X, as above. Then there
are positive constants C1,C such that

∣∣∣Trτ
(

Zu exp
(
−t�E

p,q(u)
))
− Trτ

(
Zu exp

(
−t�F

p,q(u)
))∣∣∣ ≤ C1e−

C
t

for all 0 < t ≤ 1.

Proof Let x ∈ X and assume that the ball Uδ = {y ∈ X : r2(x, y) < δ} is simply
connected, where r is a distance function on X which coincides with the geodesic distance
on Uδ. Since the Laplacian is a local operator, it follows that �E

p,q acting on Ωp,q
(2) (X,E)

over Uδ coincides with �F
p,q acting on Ωp,q

(2) (X,F) over Uδ . By Duhamel’s Principle and by
applying Green’s theorem, one has for x, y ∈ Uδ , one has

e−t�E
p,q(u)(x, y)− e−t�F

p,q(u)(x, y) =

∫ t

0

∫
r2(x,z)=δ

[e−(t−s)�F
p,q(u)(z, y) ∧ ∗∇ ′ ′

∗
e−s�E

p,q(u)(x, z)

−∇ ′ ′
∗

e−s�E
p,q(u)(x, z) ∧ ∗e−(t−s)�F

p,q(u)(z, y)

− e−s�E
p,q(u)(x, z) ∧ ∗∇ ′ ′

∗
e−(t−s)�F

p,q(u)(z, y)

+∇ ′ ′
∗
e−(t−s)�F

p,q(u)(z, y) ∧ ∗e−s�E
p,q(u)(x, z)].

Using the basic estimate (27) for heat kernels, one has

|Trτ (Zue−t�E
p,q(u))− Trτ (Zue−t�F

p,q(u))| ≤ c1t−
1
2 e−

c2δ
t ≤ C1e−

C
t

for all 0 < t ≤ 1.

Theorem 5.3 In the notation of Remark 4.2, if E and F are a pair of flat Hilbert bundles
over X which are of D-class, then the relative holomorphic L2 torsion

ρ
p
E,F = ρ

p
E ⊗ (ρp

F)−1 ∈ det
(

H p,∗(X,E)
)
⊗ det

(
H p,∗(X,F)

)−1

is independent of the choice of Hermitian metric on X which is needed to define it.
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Proof Let u→ gu be a smooth family of Hermitian metrics on X and �E
p,q(u) and �F

p,q(u)
denote the Laplacians on E and F respectively, as before.

By Proposition 5.2, one has∣∣∣Trτ
(

Zu exp
(
−t�E

p,q(u)
))
− Trτ

(
Zu exp

(
−t�F

p,q(u)
))∣∣∣ ≤ C1e−

C
t

as t → 0. That is, Trs
τ

(
Zu exp

(
−t�E

p,q(u)
))

and Trs
τ

(
Zu exp

(
−t�F

p,q(u)
))

have the same

asymptotic expansion as t → 0. In particular, one has in the notation of Theorem 4.3,

cE(u) = cF(u).

Then the relative holomorphic L2 torsion

ρ
p
E,F ∈ det H p,∗(X,E)⊗

(
det H p,∗(X,F)

)−1

ρ
p
E,F(u) = ρp

E(u)⊗
(
ρ

p
F(u)
)−1

satisfies

∂

∂u
ρ

p
E,F(u) =

( ∂
∂u
ρ

p
E(u)
)
⊗
(
ρ

p
F(u)
)−1
− ρp

E(u)⊗
∂

∂u
ρ

p
F(u) · ρp

F(u)−2

=
(

cE(u)− cF(u)
)
ρ

p
E,F(u)

= 0

using Theorem 4.3 and the discussion above. This proves the theorem.

6 Determinant Line Bundles, Correspondences and Relative Holomorphic
L2 Torsion

In this section, we introduce the notion of determinant line bundles of Hilbertian A-
bundles over compact manifolds. A main result in this section is Theorem 6.6, which
says that the holomorphic L2 torsion associated to a flat Hilbertian bundle over a com-
pact almost Kähler manifold, depends only on the class of the Hermitian metric in the
determinant line bundle of the flat Hilbertian bundle. This enables us to show that a corre-
spondence of determinant line bundles is well defined on almost Kähler manifolds. Finally,
using such a correspondence of determinant line bundles, we prove in Theorem 6.9 that
the relative holomorphic L2 torsion is independent of the choices of almost Kähler metrics
on the complex manifold and Hermitian metrics on the pair of flat Hilbertian bundles over
the complex manifold.

Lemma 6.1 The subgroup SL(M) = Det−1
τ (1) of GL(M) is connected.

Proof Let U (M) denote the subgroup of all unitary elements in GL(M). Recall the stan-
dard retraction of GL(M) onto U (M), which is given by

Ts : GL(M)→ GL(M)

A→ |A|s
A

|A|
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where T0 : GL(M) → U (M) is onto and T1 = identity. Clearly U (M) ⊂ SL(M) and the
retraction Ts above restricts to be a retraction of SL(M) onto U (M). By the results of [ASS],
it follows that SL(M) is connected.

Let E → X be a Hilbertian A-bundle over X and GL(E) denote the space of complex
A-linear automorphisms of E which induce the identity map on X, that is, GL(E) is the
gauge group of E. The Fuglede-Kadison determinant, cf. Theorem 1.2.

Detτ : GL(M)→ R+

extends to a homomorphism

Detτ : GL(E)→ C∞(X,R+)

where C∞(X,R+) denotes the space of smooth positive functions on X. This extension has
all the properties listed in Theorem 1.2. Using the long exact sequence in homotopy and
the lemma above, one has

Corollary 6.2 Let E → X be a Hilbertian A-bundle over X (recall that X is assumed to be
connected). Then the subgroup SL(E) = Det−1

τ (1) of GL(E) is connected.

6.1 Determinant Line Bundles

Let E→ X be a Hilbertian A-bundle over X. Then we can define a natural determinant line
bundle of E as follows:

Let Herm(E) denote the space of all Hermitian metrics on E. Clearly Herm(E) is a
convex set and GL(E) acts on Herm(E) by

GL(E)×Herm(E)→ Herm(E)

(a, h)→ āt ha.

That is, (a.h)x(v,w) = hx(av, aw) for all v,w ∈ Ex.
The action of GL(E) on Herm(E) is transitive, that is, one can identify Herm(E) with

the quotient
GL(E)

/
U (E, h0) where U (E, h0)

is the subgroup of GL(E) which leaves h0 ∈ Herm(E) invariant, that is, U (E, h0) is the
unitary transformations with respect to h0.

For a Hilbertian bundle E over X, we define det(E) to be the real vector space generated
by the symbols h, one for each Hermitian metric on E, subject to the following relations:
for any pair h1, h2 of Hermitian metrics on E, we write the following relation

h2 =
√

Detτ (A)
−1

h1

where A ∈ GL(E) is positive, self-adjoint and satisfies

h2(v,w) = h1(Av,w)

https://doi.org/10.4153/CJM-2000-030-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-030-7


724 A. Carey, M. Farber and V. Mathai

for all v,w ∈ Ex.
Assume that we have three different Hermitian metrics h1, h2 and h3 on E.
Suppose that

h2(v,w) = h1(Av,w) and h3(v,w) = h2(Bv,w)

for all v,w ∈ Ex and A,B ∈ GL(E). Then h3(v,w) = h1(ABv,w)a and we have the following
relations in det(E),

h2 =
√

Detτ (A)
−1

h1

h3 =
√

Detτ (B)
−1

h2

h3 =
√

Detτ (AB)
−1

h1.

The third relation follows from the first two, from which it follows that det(E) is a line
bundle over X.

To summarize, det(E) is a real line bundle over X, which has nowhere zero sections h,
where h is any Hermitian metric on E. It has a canonical orientation, since the transition

functions
√

Detτ (A)
−1

are always positive.
Non zero elements of det(E) should be viewed as volume forms on E.
For flat Hilbertian A bundles, the determinant line bundle can be described in the fol-

lowing alternate way.
Then E = M ×ρ X̃, where ρ : π → GL(M) is a representation. The associated determi-

nant line bundle is defined as

det E = det(M)×Detτ (ρ) X̃.

Here Detτ (ρ) : π → R+ is a representation which is defined as

Detτ (ρ)(γ) = Detτ
(
ρ(γ)
)

for γ ∈ π. Then det(E) has the property that

det(E)x = det(Ex) ∀x ∈ X.

Clearly det(E) coincides with the construction given in the beginning of Section 6.1, and
det(E) is a flat real line bundle over X.

6.2 Almost Kähler Manifolds

A Hermitian manifold (X, g) is said to be almost Kähler if the Kähler 2-form ω is not nec-
essarily closed, but instead satisfies the weaker condition ∂̄∂ω = 0. Gauduchon (cf. [Gau])
proved that every complex manifold of real dimension less than or equal to 4, is almost
Kähler.
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Let ∇B denote the holomorphic Hermitian connection on TX with the torsion tensor
TB and curvature tensor RB. Define the smooth 3-form B by

B(U ,V,W ) =
(
TB(U ,V ),W

)
for all U ,V,W ∈ TX. Let ω denote the Kähler 2-form on X. Then one has

B = i(∂ − ∂̄)ω.

Since X is almost Kähler, it follows that B is closed and therefore the following curvature
identity holds (

RB(U ,V )W,Z
)
=
(
R−B(Z,W )V,U

)
for all U ,V,W,Z ∈ TX, where R−B denotes the curvature of the holomorphic Hermitian
connection ∇−B on TX with the torsion tensor T−B = −TB cf. [Bi]. The Dolbeault
operator

√
2(∇ ′ ′ + ∇ ′ ′∗) is a Dirac type operator. More precisely, let Λ = (det T ′ ′0X)

1
2

and S denote the bundle of spinors on X, then as Z2 graded bundles on X, one has

Λp,∗T∗X ⊗ E = S⊗ Λ⊗ Λp,0T∗X ⊗ E.

Let∇L denote the Levi-Civita connection on X and DL the Dirac operator with respect to
this connection. Then using the connection∇B on Λ and Λp,0T∗X, the Dirac operator DL

extends as an operator

DL : Γ(X, S+ ⊗ Λ⊗ Λp,0T∗X ⊗ E)→ Γ(X, S− ⊗ Λ⊗ Λp,0T∗X ⊗ E)

and one has the formula

√
2(∇ ′ ′ +∇ ′ ′∗) = DL −

1

4
c(B) = DL +

1

2

n∑
i=1

c
(
S(ei)ei

)

where c(B) denotes Clifford multiplication by the 3-form B and S = ∇B−∇L is a 1-form on
X with values in skew-Hermitian endomorphisms of TX. We now work in a local normal
coordinate ball, where we trivialize the bundles using parallel transport along geodesics.

Scale the metric on X by r−1 and let Ir denote the operator 2�p,∗ =
(√

2(∇ ′ ′ +∇ ′ ′∗)
)2

in
this scaled metric. In local normal coordinates, one has the following expression for Ir (cf.
[Bi])

Ir = −rgi j

(
∂i +

1

4
Γiabc(ea ∧ eb) + Ai +

1

2
√

r
c
(
Silα(el)e( fα)

)
+

1

4r
Siβγe( fβ ∧ fγ)

)

×

(
∂ j +

1

4
Γ jabc(ea ∧ eb) + A j +

1

2
√

r
S jlαc(el)e( fα) +

1

4r
S jβγe( fβ ∧ fγ)

)

+
1

4
rk−

1

2
rc(ei ∧ e j)Li j −

1

2
e( fα ∧ fβ)Lαβ −

√
rc(ei)e( fα ∧ Liα)

+ rgi jΓk
i j

(
∂k +

1

4
Γkabc(ea ∧ eb) + Ak +

1

2
√

r
Sklαc(el)e( fα) +

1

4r
Skβγe( fβ ∧ fγ)

)

https://doi.org/10.4153/CJM-2000-030-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-030-7


726 A. Carey, M. Farber and V. Mathai

where k denotes the scalar curvature of X.
Consider the heat equation on sections of S⊗ Λ⊗ Λp,0T∗X ⊗ E,

(∂t + Ir)g(x, t) = 0

g(x, 0) = g(x).

By parabolic theory, there is a fundamental solution e−tIr (x, y) which is smooth for t > 0.
We will consider the case when t = 1, e−Ir (x, y) and prove the existence of an asymptotic
expansion on the diagonal, as r → 0. A difficulty arises because of the singularities arising
in the coefficients of Ir , as r → 0.

Proposition 6.3 For some positive integer p ≥ n, one has the following asymptotic expan-
sion as r → 0,

e−Ir (x, x) ∼ r−p
∞∑
i=0

riEi(x, x)

where Ei are endomorphisms of S⊗ Λ⊗ Λp,0T∗X ⊗ E.

Proof Consider the operator

Jr = −rgi j
(
δi +

1

4
Γiabc(ea ∧ eb) + Ai

)
×
(
∂ j +

1

4
Γ jabc(ea ∧ eb) + A j

)

+ rgi jΓk
i j

(
∂k +

1

4
Γkabc(ea ∧ eb) + Ak

)
+

1

4
rk−

1

2
c(ei ∧ e j)Li j .

Since Jr has no singular terms as r → 0, it has a well known asymptotic expansion, as r → 0
with p = n.

We can construct exp(−Ir) as a perturbation of exp(− Jr), using Duhamel’s principle.
More precisely,

exp(−Ir) = exp(− Jr) +
∞∑

k=1

e− Jr ( Jr − Ir)e− Jr · · · e− Jr︸ ︷︷ ︸
k terms

.

Each coefficient in the difference Jr−Ir contains at least one term which is exterior multipli-
cation by fα. Therefore the infinite series on the right hand side collapses to a finite number
of terms. The proposition then follows from the asymptotic expansion for exp(− Jr)(x, x).

Let RB denote the curvature of the holomorphic Hermitian connection and RL denote
the curvature of the Levi-Civita connection. Let Â denote Â-invariant polynomial and ch
the Chern character invariant polynomial. Then

Â(R−B) ch
(
Tr(RL)

)
ch(Λp,0RL) ∈ Λ∗T∗X.

The goal is to prove the following decoupling result in the adiabatic limit. It resembles the
local index theorem for almost Kähler manifolds by Bismut [Bi] (he calls them non-Kähler
manifolds). However, we use instead the techniques of the proofs in [BGV], [Ge] and [D]
of the local index theorem for families. In particular, we borrow a local conjugation trick
due to Donnelly [D], which is adjusted to our situation.
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Theorem 6.4 (Adiabatic decoupling) Let (X, g) be an almost Kähler manifold. In the no-
tation above, one has the following decoupling result in the adiabatic limit

lim
r→0

Trs
τ

(
Zue−Ir (x, x)

)
= Trτ (Zu)(x)

[
Â(R−B) ch

(
Tr(RL)

)
ch(Λp,0RL)

]max

x
∈ Λ2nT∗x X

for all x ∈ X.

Proof We first consider the corresponding problem on R2n, using the exponential map.
Let Īr denote the operator on R2n, whose expressions agrees with the local coordinate ex-
pression for Ir near p, where p is identified with the origin in R2n.

Consider the heat equation on R2n,

(∂t + Īr)g(x, t) = 0

g(x, 0) = g(x).

Then one has

Proposition 6.5 There is a unique fundamental solution e−t Īr (x, y) which satisfies the decay
estimate

|e−t Īr (x, y)| ≤ c1t−ne−
c2|x−y|2

t

as t → 0, with similar estimates for the derivatives in x, y, t.

Proof The proof is standard, as in [D], [RS].

By Duhamel’s principle applied in a small enough normal coordinate neighborhood,
there is a positive constant c such that

e−Īr (0, 0) = e−Ir (x, x) + O(e−c/r) as r → 0.

Therefore

lim
r→0

Trs
τ

(
Zue−Ir (x, x)

)
= lim

r→0
Trs

τ

(
Zue−Īr (0, 0)

)
(29)

and it suffices to compute the right hand side of (29). This is done using Getzler’s scaling
idea [Ge], x → εx, t → ε2t ei → ε−1ei . Then Clifford multiplication scales as cε(·) =
e(·) + ε2i(·), where e(·) denotes exterior multiplication by the covector · and i(·) denotes
contraction by the dual vector.

Īε = −rgi j(εx)

(
∂i +

ε−1

4
Γiab(εx)cε(ea ∧ eb) + εAi(εx)

+
ε−1

2
√

r
cε
(
Silα(εx)ei

)
e( fα) +

ε−1

4r
Siβγ(εx)c( fβ ∧ fβ)

)

×

(
∂ j +

ε−1

4
Γ jab(εx)cε(ea ∧ eb) + εA j(εx)
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+
ε−1

2
√

r
cε
(
S jlα(εx)el

)
e( fα) +

ε−1

4r
S jβγ(εx)e( fβ ∧ fγ)

)

+ rgi j(εx)Γk
i j (εx)

(
ε∂k +

1

4
Γkab(εx)cε(ea ∧ eb) + ε2Ak(εx)

+
1

2
√

r
Sklα(εx)cε(ei)e( fα) +

1

4r
Skβγ(εx)e( fβ ∧ fγ)

)

+
ε2

4
rk(εx)−

r

2
cε(ei ∧ e j)Li j(εx)−

1

2
fα ∧ fβ ∧ Lαβ(εx)−

√
rcε(ei) fαLiα(εx).

The asymptotic expansion in r as in Propositions 6.3 and 6.5, for e−Īr (0, 0) yields an asymp-
totic expansion in ε for e−Īε(0, 0) and one has

lim
r→0

Trs
τ

(
Zue−Īr (0, 0)

)
= lim

ε→0
Trs

τ

(
Zue−Īε(0, 0)

)
.(30)

That is, if either limit exists, then both exist and are equal.
However, in the limit as ε → 0, there are singularities in the coefficients of S tensor in

the expression for Īε and one cannot immediately apply Getzler’s theorem. Therefore one
first makes the following local conjugation trick, as in Donnelly [D].

Define the expression

h(x, ε, r) = exp

(
ε−1

2
√

r
Silα(0)xiel ∧ fα +

ε−1

4r
Siβγ(0)xi fβ ∧ fγ

)
.

Note that h(x, ε, r) has polynomial growth in x, since its expression contains exterior mul-
tiplication. We claim that if the operator Īε is conjugated by h, then the resulting operator
is not singular as ε→ 0. More precisely,

Jε = hĪεh
−1

= rgi j(εx)

(
∂i +

ε−1

4
Γiab(εx)ea ∧ eb +

ε−1

2
√

r

(
Silα(εx)− Silα(0)

)
el ∧ fα

+
ε−1

4r

(
Siβγ(εx)− Siβγ(0)

)
fβ ∧ fγ −

1

4r
Silα(0)Sklβ(0)xk fα ∧ fβ

)

×

(
∂ j +

ε−1

4
Γ jab(εx)ea ∧ eb

+
ε−1

2
√

r

(
S jlα(εx)− Siβγ(0)

)
el ∧ fα +

ε−1

4r

(
S jβγ(εx)− S jβγ(0)

)
fβ ∧ fγ

−
1

4r
S jlα(0)Sklβ(0)xk fα ∧ fβ

)
−

1

2
rei ∧ e jLi j(εx)

−
1

2
fα ∧ fβLαβ(εx)−

√
rei ∧ fαLiα(εx) + R(x, ε).

(31)
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Here R(x, ε) denotes the terms which vanish as ε → 0, and which therefore do not con-
tribute to the limit. Clearly there are no singular terms in Jε as ε→ 0.

A fundamental solution for the heat equation for Jε can be obtained by conjugating the
one for Īε, that is

e−t Jε(x, y) = h(x, ε, r)e−t Īε(x, y)h−1(y, ε, r).

The right hand side satisfies the heat equation (∂t + Jε)g(x, t) = 0, g(x, 0) = δx. Since
h(0) = 1, one has ∀ε > 0,

Trs
τ

(
Zue−Īε(0, 0)

)
= Trs

τ

(
Zue− Jε(0, 0)

)
.(32)

Therefore it suffices to compute the limit as ε→ 0 of the right hand side of (32).
Using the following Taylor expansions in a normal coordinate neighborhood,

Γiab(εx) = −
1

2
Ri jab(0)εx j + R(x, ε2)

Silα(εx) = Silα(0) + Silα, j (0)εx j + R(x, ε2)

Siβγ(εx) = Siβγ(0) + Siβγ, j (0)εx j + R(x, ε2)

one sees that

J0 = lim
ε→0

Jε = −r
∑

i

(
∂i −

1

4
Bi jx j

)2
+ rL

where

Bi j =
1

2
Ri jab(0)ea ∧ eb −

2
√

r
Silα, j (0)el ∧ fα

−
1

r

(
Siβγ, j (0)− Silβ(0)S jlγ(0)

)
fβ ∧ fγ

and

L =
1

2
Li j(0)ei ∧ e j +

1
√

r
Liα(0)ei ∧ fα +

1

2r
Lαβ(0) fα ∧ fβ.

Using Mehler’s formula (cf. [Ge]), one can obtain an explicit fundamental solution
e−s J0 (x, y). First decompose B into its symmetric and skew symmetric parts, that is B =
C + D where C = 1

2 (B + Bt ) and D = 1
2 (B − Bt ), where B,C,D are matrices of 2-forms.

Then

e− J0 (x, 0) = (4πr)−n/2Â(rD)e
xt Cx

8 × exp

(
rL−

1

4r
xt
( rD/2

tanh(rD/2)

)
x

)
.

Now limε→0 e− Jε(0, 0) = e− J0 (0, 0). Therefore

lim
ε→0

Trs
τ

(
Zue− Jε(0, 0)

)
=
(2

i

)n/2
(4πr)−n/2 Trτ (Zu)(0)

[
Â(rD) ch(rL)

]max
.(33)

Here D = R−B(0) and L = Tr
(
RL(0)

)
+ Λp,0RL(0). Using (29), (30), (32) and (33), one

completes the proof of Theorem 6.4.
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Theorem 6.6 Let E be a flat Hilbertian bundle of D-class, over an almost Kähler manifold
(X, g) and let h, h ′ be Hermitian metrics on E such that h = h ′ in det(E). Then

ρ
p
E(g, h) = ρp

E(g, h ′) ∈ det
(
H p,∗(X,E)

)
.

Proof Since h = h ′ in det(E), there is a positive, self-adjoint bundle map A : E → E

satisfying
h(Av,w) = h ′(v,w) ∀v,w ∈ E and Detτ (A) = 1.

By Corollary 6.2, there is a smooth 1-parameter family of positive, self-adjoint bundle maps
u→ Au : E→ E joining A to the identity and satisfying

Detτ (Au) = 1.(34)

for all u ∈ (−ε, 1 + ε). Here A0 = I and A1 = A. Let u → hu be a smooth family of
Hermitian metrics on E defined by

h(Auv,w) = hu(v,w) ∀v,w ∈ E.

Then h0 = h, h1 = h ′ in E and h = hu in det(E) for all u ∈ (−ε, 1 + ε) by (72). Note that
by differentiating (34), one has

0 =
∂

∂u
Detτ (Au) = Trτ (Zu)(35)

where Zu = A−1
u Ȧu.

We wish to compute ∂
∂uρ

p
E(g, hu). By Theorem 4.3, one has

∂

∂u
ρ

p
E(g, hu) = cp

E(g, hu)ρp
E(g, hu).

By Theorem 6.4 and (35), one sees that

lim
t→0

Trs
τ (Zue−t�(u)) = 0.(36)

By the small time asymptotic expansion of the heat kernel, one has

lim
t→0

Trs
τ (Zue−t�(u)) =

n∑
q=0

(−1)qmn,p,q(u)

= cp
E(g, hu).

(37)

Therefore by (36) and (37), one has cp
E(g, hu) = 0, that is,

∂

∂u
ρ

p
E(g, hu) = 0.

Remark 6.7 Theorem 6.6 says that on an almost Kähler manifold (X, g), the holomorphic
L2 torsion ρ

p
E(g, h) depends only on the equivalence class of the Hermitian metric h in

det(E). We do not believe that the almost Kähler hypothesis in Theorem 6.6 is necessary.
However, we use the techniques of the proof of the local index theorem, and the situation
to date is that the local index theorem for the operator ∂̄ + ∂̄∗ has not yet been established
for a general Hermitian manifold.

https://doi.org/10.4153/CJM-2000-030-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-030-7


Correspondences, von Neumann Algebras and Holomorphic L2 Torsion 731

6.3

Let E and F be two flat Hilbertian bundles of D-class over an almost Kähler manifold (X, g)
and ϕ : det(E)→ det(F) be an isomorphism of the determinant line bundles. Then using
the theorem above, we will construct a canonical isomorphism between determinant lines

ϕ̂p : det H p,∗(X,E)→ det H p,∗(X,F)

ϕ̂p
(
λρ

p
E(g, h)

)
= λρ

p
F(g, h ′), λ ∈ R

where h and h ′ are Hermitian metrics on E and F respectively, such that ϕ(h) = h ′ in
det(F). Then ϕ̂ is called a correspondence between determinant line bundles. It is well
defined by Theorem 6.6 and Remark 6.7. We next state some obvious properties of corre-
spondences.

Proposition 6.8 Let E be a flat Hilbertian bundle of D-class over an almost Kähler manifold
(X, g) and ϕ : det(E)→ det(E) be the identity map. Then

ϕ̂p = identity .

Let E, F and G be flat Hilbertian bundles of D-class over an almost Kähler manifold (X, g)
and ϕ : det(E) → det(F), ψ : det(F) → det(G) be isomorphisms of the determinant line
bundles. Then the composition satisfies

ˆϕ ◦ ψ
p
= ϕ̂p ◦ ψ̂p.

We next prove one of the main results in the paper.

Theorem 6.9 Let E and F be two flat Hilbertian bundles of D-class over over an almost
Kähler manifold (X, g) and ϕ : det(E) → det(F) be an isomorphism of the corresponding
determinant line bundles. Consider smooth 1-parameter families of almost Kähler metrics gu

on X and Hermitian metrics h1,u on E, where u varies in an internal (−ε, ε). Choose a smooth
family of Hermitian metrics h2,u on F in such a way that ϕ(h1,u) = h2,u in det(F). Then the
relative holomorphic torsion

ρp
ϕ(u) = ρp

E(gu, h1,u)⊗ ρp
F(gu, h2,u)−1 ∈ det H p,∗(X,E)⊗ det H p,∗(X,F)−1

is a smooth function of u and satisfies ∂
∂uρϕ(u) = 0. That is, the relative holomorphic L2

torsion ρp
ϕ is independent of the choices of metrics on X, E and F which are needed to define it.

Proof From the data in the theorem, one can define a correspondence as in Section 6.3,

ϕ̂p : det
(
H p,∗(X,E)

)
→ det

(
H p,∗(X,F)

)
which is an isomorphism of determinant lines. It is defined as

ϕ̂p
(
λρ

p
E(gu, h1,u)

)
= λρ

p
F(gu, h2,u)(38)
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for λ ∈ R and u ∈ (−ε, ε). Therefore using Theorem 4.3 and (38) above, one has

∂

∂u
ϕ̂p
(
ρ

p
E(gu, h1,u)

)
= ϕ̂p

( ∂
∂u
ρ

p
E(gu, h1,u)

)

= cE(gu, h1,u)ϕ̂p
(
ρ

p
E(gu, h1,u)

)
= cE(gu, h1,u)ρp

F(gu, h2,u).

(39)

But by differentiating equation (38) above, one has

∂

∂u
ϕ̂
(
ρ

p
E(gu, h1,u)

)
=

∂

∂u
ρ

p
F(gu, h2,u)

= cF(gu, h2,u)ρp
F(gu, h2,u).

(40)

Equating (39) and (40), one has

cE(gu, h1,u) = cF(gu, h2,u).(41)

Then the relative holomorphic L2 torsion

ρp
ϕ ∈ det H p,∗(X,E)⊗

(
det H p,∗(X,F)

)−1

ρp
ϕ(u) = ρp

E(gu, h1,u)⊗
(
ρ

p
F(gu, h2,u)

)−1

satisfies

∂

∂u
ρp
ϕ(u) =

( ∂
∂u
ρ

p
E(gu, h1,u)

)
⊗
(
ρ

p
F(gu, h2,u)

)−1

− ρp
E(gu, h1,u)⊗

∂

∂u
ρ

p
F(gu, h2,u) · ρp

F(gu, h2,u)−2

= cE(gu, h1,u)ρp
ϕ(u)− cF(gu, h2,u)ρp

ϕ(u)

= 0

using Theorem 4.3 and (41) above. This proves the theorem.

7 Calculations

In this section, we calculate the holomorphic L2 torsion for Kähler locally symmetric spaces.
We do this within a wider framework which enables us, at the same time, to indicate an
extension to the situation where one deals with a family of operators.

We will restrict ourselves to the special case of the Hilbert
(
U(Γ)− Γ

)
-bimodule �2(Γ),

where Γ is a countable discrete group. Let E → X denote the associated flat Hilbert U(Γ)-
bundle over the compact complex manifold X. Then it is well known that the Hilbert U(Γ)-
complexes

(
Ω•,•(2) (X,E),∇ ′ ′

)
and
(
Ω•,•(2) (X̃), ∂̄

)
are canonically isomorphic, where Γ →

X̃ → X denotes the universal covering space of X with structure group Γ. We will denote
the ∂̄-Laplacian acting on Ωp,q

(2) (X̃) by �p,q.

https://doi.org/10.4153/CJM-2000-030-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-030-7


Correspondences, von Neumann Algebras and Holomorphic L2 Torsion 733

Firstly, we will discuss the D-class condition in this case. Let X be a Kähler hyperbolic
manifold. Recall that this means that X is a Kähler manifold with Kähler form ω, which has
the property that p∗(ω) = dη, where Γ → X̃ → X denotes the universal cover of X and
η is a bounded 1-form on X̃. Any Riemannian manifold of negative sectional curvature,
which also supports a Kähler metric, is a Kähler hyperbolic manifold. Note that the Kähler
metric is not assumed to be compatible with the Riemannian metric of negative sectional
curvature. Then Gromov [G] proved that on the universal cover of a Kähler hyperbolic
manifold, the Laplacian �p,q has a spectral gap at zero on all L2 differential forms. There-
fore it follows that the associated flat bundle E → X is of D-class. By a vanishing theorem
of Gromov [G] for the L2 Dolbeault cohomology of the universal cover, one has

H p,q
(2) (X̃) = 0

unless p + q = n, where n denotes the complex dimension of X.
Again following Gromov we can ‘twist’ the canonical connection d on

(
Ω•(2)(X̃), ∂̄

)
by

the one form iαη where α ∈ R. This means considering the new connection dα = d + iαη
which will be a holomorphic connection if we can choose η so that (dα

′ ′

)2 = 0. Of course
the corresponding Laplacian �α

p,q is no longer Γ invariant in general. However there is a

projective action of Γ on
(
Ω•,•(2) (X̃), ∂̄

)
under which �α

p,q is invariant.
As an example, let G be a connected semisimple Lie group, and K be a maximal compact

subgroup such that G/K carries an invariant complex structure, and let Γ be a torsion-free
uniform lattice in G. Then it is known that Γ \ G/K is a Kähler hyperbolic manifold (cf.
[BW]) and therefore the canonical flat Hilbert bundle E → X is of D-class. In this Kähler
metric, the Laplacian �p,q is G-invariant. If now we consider the twisted connection dα

we find that the projective action of Γ on
(
Ω•,•(2) (X̃), ∂̄

)
extends to a projective action of G.

Assume the twisted connection is holomorphic. Then �α
p,q is invariant under this projective

action of G so it follows that the theta function

θαp,q(t) = Cα
p,q(t) vol (Γ \ G/K)

is proportional to the volume of Γ \ G/K. Here Cα
p,q(t) depends only on α, t and on G

and K, but not on Γ. For small α the D-class condition is preserved and it follows that
the zeta function ζαp,q(s, λ,E) is also proportional to the volume of Γ \ G/K. Therefore the
holomorphic twisted L2 torsion is given by

ρ
p
E = eCα

pΓ\G/K)ρ ′p ∈ det
(
H p,n−p

(2) (G/K)
)(−1)n−p

where we have used the twisted version of the vanishing theorem of Gromov [G]. Here
Cα

p is a constant that depends only on α, G and K, but not on Γ. Using representation
theory, as for instance in [M], [L] and [Fr], it is possible to determine C p explicitly at least
for α = 0. This will be done elsewhere. Using the proportionality principle again, one
sees that the Euler characteristic of Γ \ G/K is proportional to its volume. By a theorem of
Gromov [G], the Euler characteristic of Γ\G/K is non-zero. Therefore we can also express
the holomorphic L2 torsion as

ρ
p
E = eC̃α

pχ(Γ\G/K)ρ ′p ∈ det
(
H p,n−p

(2) (G/K)
)(−1)n−p
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where χ(Γ \ G/K) denotes the Euler characteristic of Γ \ G/K, and C̃α
p is a constant that

depends only on α, G and K, but not on Γ. This discussion is summarized in the following
proposition.

Proposition 7.1 In the notation above, the holomorphic twisted L2 torsion of the semisimple
locally symmetric space Γ \G/K, which is assumed to carry an invariant complex structure, is
given, for α sufficiently small, by

ρ
p
E = eCα

pΓ\G/K)ρ ′p ∈ det
(
H p,n−p

(2) (G/K)
)(−1)n−p

.

Here Cα
p is a constant that depends only on α, G and K, but not on Γ. Equivalently, the

holomorphic twisted L2 torsion of Γ \ G/K is given as

ρ
p
E = eC̃αpχ(Γ\G/K)ρ ′p ∈ det

(
H p,n−p

(2) (G/K)
)(−1)n−p

where χ(Γ \ G/K) denotes the Euler characteristic of Γ \ G/K, and C̃α
p is a constant that

depends only on α, G and K, but not on Γ.

We will now compute the holomorphic twisted L2 torsion for a Riemann surface, which
is a special case of the proposition above, and we will show that the constants Cα

p and C̃α
p

are not zero at least for α small.
Let X be a closed Riemann surface of genus g, which is greater than 1, which can be

realised as a compact quotient complex hyperbolic space H of complex dimension 1, by the
torsion-free discrete group Γ. The volume from ω on H is the Kähler form required in the
analysis above and ω = ∂η where η ∈ Ω0,1

(2)(H) as may be verified by direct calculation.

Then the twisted connection dα is holomorphic for α ∈ R and (dα) ′ ′ = ∂̄ + iαη. It
is not difficult to see that, by Hodge theory for the complex

(
Ω0,•

(2) (X̃), ∂̄
)

the operator

�α
0,1 on the orthogonal complement of the L2 cohomology is isospectral to �α

0,0. Now we
see that in order to calculate the von Neumann determinant of the operator �α

0,1 we need
only calculate the von Neumann determinant of the twisted Laplacian ∆α

0 acting on L2

functions on the hyperbolic disk (these differ by a factor of 1
2 ). Recall that the von Neumann

determinant of the operator A is by definition e−ζ
′

A (0), where ζ ′A(s) denotes the zeta function
of the operator A.

Using the work of Comtet and Houston [CH], one can see that there is a gap in the
spectrum of ∆α

0 near zero so the D-class condition holds for all α. (In fact we believe
that this stability of the D-class condition is true in the holomorphic setting under much
more general conditions.) They also obtain the following expression for the meromorphic
continuation of the zeta function of ∆α

0 to the half-plane 	(s) < 1. With V denoting the
hyperbolic volume let

κ(r) =
V

4π2i

[
r

d

dr

(
logΓ

(1

2
+ ir − α

)
+ Γ
(1

2
+ ir + α

))
−V log r

]

where the principal branch of the logarithm is used. Then

−ζ ′0(0, 0,E, α) =
V

4π

(1

4
+ α2
)(

1− ln
(1

4
+ α2
))

+

∫
C

ln
(1

4
+ r2 + α2

)
κ(r) dr(42)
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where C is a contour in the complex plane passing from −∞ to∞ below the real axis and
such that it passes below the poles of the integrand (all of these lie on the imaginary axis).
Note that one can do better if α = 0 when, using [Ran],

ζ ′0(0, 0,E) = lim
s→0

(
ζ0(s, 0,E)− ζ0(0, 0,E)

)
Γ(s)

= (g − 1)π

∫ ∞
0

(1

4
+ r2
)

sech2(πr)

(
−1 + log

(1

4
+ r2
))

dr.

A numerical approximation for the last integral shows that ζ ′(0, 0,E) ∼
−0.677(g − 1). Hence for α small we know that twisted torsion is non-zero. We can
summarize the discussion in the following proposition.

Proposition 7.2 In the notation above, the holomorphic twisted L2 torsion of a compact
Riemann surface X = Γ \ H of genus g, is given by

ρ0,α
E = eCα

ρ ′0 ∈ det
(
H0,1

(2) (H)
)(−1)

.(43)

Here Cα = 1
2ζ
′
0(0, 0,E, α) is a constant that depends only on H and α, but not on Γ. When

α = 0, Cα is approximately−0.338, and in particular, it is not equal to zero for small α. Also,

ρ1,α
E = e−Cα

ρ ′1 ∈ det
(
H1,0

(2) (H)
)(−1)

.
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