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Abstract
The paper introduces a method for creating a categorical generalized linear model (GLM) based on infor-
mation extracted from a given black-box predictor. The procedure for creating the guided GLM is as
follows: For each covariate, including interactions, a covariate partition is created using partial depen-
dence functions calculated based on the given black-box predictor. In order to enhance the predictive
performance, an auto-calibration step is used to determine which parts of each covariate partition should
be kept, and which parts should be merged. Given the covariate and interaction partitions, a standard cat-
egorical GLM is fitted using a lasso penalty. The performance of the proposed method is illustrated using a
number of real insurance data sets where gradient boosting machine (GBM) models are used as black-box
reference models. From these examples, it is seen that the predictive performance of the guided GLMs is
very close to that of the corresponding reference GBMs. Further, in the examples, the guided GLMs have
few parameters, making the resulting models easy to interpret. In the numerical illustrations techniques
are used to, e.g., identify important interactions both locally and globally, which is essential when, e.g.,
constructing a tariff.

Keywords: feature extraction; black-box models; categorical GLM; regularisation; auto-calibration

1. Introduction
Generalized linear models (GLMs) or general additive models (GAMs) are the standard bench-
mark models used in most non-life insurance pricing, see e.g. (Ohlsson and Johansson, 2010, Ch.
2 and 5) and (Wuthrich & Merz 2023, Ch. 5). These types of models are well-studied, transpar-
ent, and, hence, easy to interpret, which is part of their popularity and widespread use in the
decision-making process. If one instead considers machine learning (ML) methods such as gra-
dient boosting machines (GBMs) and neural networks (NNs), see e.g. (Hastie et al. 2009, Ch.
10–11) for a general introduction, and e.g. Denuit et al. (2020) focusing on tree-based models and
(Wuthrich & Merz 2023, Ch. 7–12) focusing on NNs, which also discusses actuarial applications,
these type of methods tend to outperform GLMs and GAMs in terms of predictive accuracy. A
potential problem, however, is that the predictors obtained when using ML methods tend to be
hard to interpret. In this short note, we introduce a method for guided construction of a cate-
gorical GLM based on a given black-box predictor μ̂(x). From a practitioner’s perspective, this
is a very tractable approach, since categorical GLMs are well understood and are widely used for
non-life insurance pricing, see e.g. Ohlsson and Johansson (2010). This approach is similar to the
one introduced in Henckaerts et al. (2022), but our focus is not on maintaining fidelity w.r.t. the
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original predictor μ̂(x), but rather on finding an as good categorical GLM as possible. For more
on surrogate modeling, see e.g. Hinton et al. (2015); Henckaerts et al. (2022) and the references
therein.

The general setup is that we observe (Z, X,W) data, where Z is the response, e.g. number of
claims or claim cost, X is a d-dimensional covariate vector, and W is an exposure measure, e.g.
policy duration. It will be assumed that Z, given X and W belongs to an exponential dispersion
family (EDF), see e.g. (Jørgensen and Paes De Souza (1994), Ohlsson and Johansson, 2010, Ch. 2),
and (Wüthrich & Merz 2023, Ch. 2), which includes e.g. the Tweedie distribution. Further, it will
be assumed that the (conditional) mean and variance can be written on the form

E[Z | X,W]=Wμ(X) and Var(Z | X,W)=Wσ 2(X), (1)

for suitable functions μ(X) and σ 2(X), which is common in insurance pricing, see e.g. (Ohlsson
and Johansson 2010, Ch. 2). Hence, if we let Y := Z/W, based on Equation (1), it follows that

E[Y | X,W]= μ(X)=E[Y | X] and Var(Y | X,W)= 1
W

σ 2(X). (2)

When it comes to building a guided GLM based on an exogenous black-box predictor μ̂(x), the
exposition will focus onmost two-way interactions, but the generalization to higher-order interac-
tions is straightforward. Further, focus will be on log-linear models, as in Equation (3) below, but
the assumption of using a log-link function can also be relaxed, and the procedure using other link
functions is analogous to the one described below. The suggested procedure can be summarized as
follows: In a first step, start from a general d-dimensional covariate vector x := (x1, . . . , xd)′ ∈X,
X := X1 × · · · ×Xd, where xj ∈Xj, j= 1, . . . , d, and use a given mean predictor μ̂(x) to define
categorical versions of the original covariates, xj, and two-way interactions. This step uses partial
dependence (PD) functions, see e.g. Friedman and Popescu (2008), to construct categories, or,
equivalently, a partition of Xj. This is the same idea used in Henckaerts et al. (2022), but instead
of aiming for fidelity w.r.t. the original PD function, the number of categories, and the size of the
partition, is adjusted using an auto-calibration step, see e.g. Krüger and Ziegel (2021); Denuit et al.
(2021). In this way, focus is shifted from fidelity w.r.t. the initial predictor to accuracy of the new
predictor, since the auto-calibration step will remove categories that do not contribute to the final
predictor’s predictive performance. In a second step, once the categorical covariates have been
constructed, fit a standard categorical GLMwith a mean function from Equation (1) of the form

μ(x; β) := exp

⎧⎨
⎩β0 +

d∑
j=1

κ∑
k=1

β
(k)
j 1{xj∈B(k)

j } +
d∑

j=1

∑
j<l

κ∑
k=1

β
(k)
j,l 1{(xj,xl)∈B(k)

j,l }

⎫⎬
⎭ , (3)

where ∪κ
k=1B

(k)• =:X•, and where the βs are regression coefficients taking values in R.
Further, EDFs can be parametrized such that σ 2(X) from (1) can be expressed according to
σ 2(X)= φV(μ(X)), where φ is the so-called dispersion parameter, and V is the so-called variance
function, see e.g. (Ohlsson and Johansson 2010, Ch. 2). Using this parametrization together with
the moment Assumptions (1), gives us that the β-coefficients from Equation (3) can be estimated
using the deviance loss function

D(y; β , λ) :=
n∑

i=1
wid(yi,μ(xi; β)), (4)

where the wis refer to contract exposures, e.g. policy duration, d(y,μ) is the unit deviance
function of an EDF, see e.g. (Ohlsson and Johansson 2010, Ch. 2) and (Wüthrich and Merz 2023,
Ch. 2), and where μ(xi, β) is from Equation (3).
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The remainder of this short note is structured as follows: In Section 2, basic results on PD func-
tions are provided. Section 2.1 discusses implications and interpretations of using PD functions,
followed by Section 2.2, which describes how PD functions can be used to partition the covariate
space, both marginally and w.r.t. interaction effects, in this way creating categorical covariates.
This section also describes how a marginal auto-calibration procedure can be used to remove
possibly redundant categories. Section 3 discusses various implementational considerations and
describes a full estimation procedure, which is summarized in Algorithm 1. The paper ends with
numerical illustrations based on Poisson models applied to real insurance data, see Section 4,
followed by concluding remarks in Section 5.

2. Partial dependence functions
The PD function w.r.t. a, potentially exogenously given, (mean) functionμ(x), x′ = (x1, . . . , xd)′ ∈
X, and the covariates xA,A⊂ {1, . . . , d}, is given by:

PD(xA) :=
∫

μ(xA, xAC)dP(xAC), (5)

where AC = {1, . . . , d} \A, see e.g. Friedman and Popescu (2008). Note that Equation (5) can be
rephrased according to

PD(xA)=E[μ(xA, XAC)], (6)
which illustrates that PD(xA) quantifies the expected effect of XA = xA, when breaking all poten-
tial dependence between XA and XAC , see Friedman and Popescu (2008). In particular, note that
if μ(x) := E[Y | X = x], the PD function w.r.t.A is related to the expected effect ofA on Y , when
adjusting for potential association between XA and XAC , see Zhao and Hastie (2021). Henceforth,
all references to μ will, unless stated explicitly, treat μ as a conditional expected value of Y .

Remark 1.

(a) The PD function (6) w.r.t. a potentially exogenously given μ is expressed in terms of an
unconditional expectation w.r.t. XAC . This is qualitatively different to

μ(xA) := E[μ(XA, XAC) | XA = xA], (7)
which relies on the distribution of XAC | XA.
Further, note that the PD function aims at isolating the effect of XA, when adjusting

for potential association with the remaining covariates. This is not the case for Equation
(7), where effects in xA could be an artifact of a strong association with (a subset of the
covariates in) XAC .
Another related alternative is to use accumulated local effects (ALEs), see Apley and Zhu

(2020), which is closely connected to (7) but makes use of a local approximation, and, hence
suffers from similar problems as Equation (7). See also the discussion about PDs and ALEs
in Henckaerts et al. (2022).

(b) If the ambition is to construct a black-box guided (categorical) GLM model, it could be an
alternative to apply the black-box model directly to subsets of covariates, i.e.

μ(xA) := E[Y | XA = xA],
but recall Remark 1(a). Also, note that this will likely become computationally intensive,
and the sub-models based on μ(xA) are models that would not have been used in practice,
and the models are in general not consistent with the original full model μ(x).

(c) In practice, when using PD functions a potentially exogenous predictor μ can be eval-
uated without having access to the conditional distribution of XAC | XA, as opposed to
Equation (7).
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2.1 Implications of partial dependence functions
From Section 2, we know that the PD function describes the expected effect that a covariate, or
a subset of covariates, has on Y , when adjusting for the possible dependence between covariates,
recall Remark 1(a). Further, since the PD functionsmeasure the influence of (subsets of) covariates
deduced from μ(x), i.e. not on the link-function transformed scale, the use of PD functions is not
expected to identify marginal or interaction effects in the standard sense. In order to illustrate this,
consider the following log-linear additive model:

μ(x) := exp

⎧⎨
⎩β0 +

d∑
k=1

fk(xk)+
d∑

k=1

∑
j<k

fj,k(xj, xk)

⎫⎬
⎭ , (8)

where the f s are, e.g., basis functions. Hence, if we letA= {j}, and introduce x\j := xAC , it follows
that the PD based on Equation (8) w.r.t. xj reduces to

PD(xj)= exp{fj(xj)} exp{β0}
∫

exp

⎧⎨
⎩

∑
k�=j

fk(xk)+
d∑

k=1

∑
j<k

fj,k(xj, xk)

⎫⎬
⎭ dP(x\j)

= exp{fj(xj)}ν\j(xj). (9)

That is, the PD function provides a marginalized effect of xj on Y deduced from μ(x), but it is in
general not the same as exp{fj(xj)}. This, however, is expected, since based on Equation (8), it is
clear that the component fj(xj) does not have the meaning of a unique marginal effect of xj on Y ,
due to the presence of the fj,ks. Thus, changes in the PD function w.r.t. xj are related to changes
in the jth dimension of μ(x), when adjusting for possible dependence between Xj and X\{j}, see
Remark 1(a). Further, note that as discussed in the introduction, for our purposes the PD function
is only used to construct covariate partitions. Thus, whether the absolute level of a marginal effect
is correct or not, is of considerably less importance. We will come back to this discussion when
describing how to construct covariate partitions in Section 2.2, see also Remark 2(a) below.

Further, note that if fj,k( · )= 0 for all j, k, it follows that

PD(xj)∝ exp{fj(xj)}. (10)

In this situation, exp{fj(xj)} truly corresponds to the expected direct effect of xj on Y , and this is,
up to scaling, captured by the PD function. However, as pointed out above, this identifiability is
not vital for our purposes.

Similarly, if we instead consider bivariate PD functions and consider A= {j, k}, with x\{j,k} :=
xAC , analogous calculations to those for the univariate PD functions yield

PD(xj, xk)= exp{fj(xj)+ fk(xk)+ fj,k(xj, xk)}ν\{j,k}(xj, xk). (11)

This illustrates how the bivariate PD function describes the expected joint effect of xj and xk on Y
deduced from μ(x), which, as expected, is different from identifying exp{fj,k(xj, xk)}.

Similar relations hold for other link functions than the log-link, but in this short note, focus
will be on the log-link function.

Before ending this discussion, one can note that for the log-link it is possible to introduce
an alternative identification. In order to see this, consider the situation where μ(x) is given by
Equation (8) with only two covariates, x1, x2, and (for ease of notation) no intercept. Based on
Equation (9), introduce gj(xi), j= 1, 2, such that

exp{gj(xj)} := exp{fj(xj)}ν\j(xj),
and introduce g1,2(x1, x2) such that

exp{g1(x1)+ g2(x2)+ g1,2(x1, x2)} := μ(x),
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i.e.

exp{g1,2(x1, x2)} := exp{f1,2(x1, x2)}
ν\1(x1)ν\2(x2)

.

Thus, by construction, it then holds that

PD(xj)= exp{gj(xj)}, j= 1, 2,

together with that

PD(x1, x2)
PD(x1)PD(x2)

= exp{g1,2(x1, x2)},

which provides us with identifiability w.r.t. alternative factor effects given by g1(x1), g2(x2), and
g1,2(x1, x2).

From the above discussion of PD functions, it is clear that these may serve as a way to identify
the sensitivity of a covariate, or set of covariates, with respect to μ(x). This is precisely how the
PD functions will be used for covariate engineering purposes in Sections 2.2 and 3.

2.2 Covariate engineering, PD functions, andmarginal auto-calibration
As discussed when introducing the expectation representation of the PD function in Equation
(6), see also Remark 1(a), the PD function of XA aims at isolating the expected effect of XA,
when adjusting for potential influence from XAC . This suggests to use of PD functions for covari-
ate engineering w.r.t. individual covariates, which allows us to partition the covariate space and,
ultimately, construct a data-driven categorical GLM. That is, if PD(xj) ∈ B, we can construct the
corresponding covariate set on the original covariate scale according to:

xj ∈B := {x∗
j ∈Xj : PD(x∗

j ) ∈ B}.
This allows us to use the PD function to partition Xj, based on where Xj is similar in terms of PD
function values, which can be generalized to tuples of covariates.

In order to construct a partition based on PD functions, consider a sequence of b(k)j s such that

−∞ ≤ b(0)j < b(1)j < . . . < b(κ−1)
j < b(κ)j ≤ +∞, (12)

and set B(k)j := (b(k−1)
j , b(k)j ], i.e. ∪κ

k=1B
(k)
j =R. The corresponding partition of Xj, denoted

�j := (B(k)
j )κk=1, is defined in terms of the parts

B
(k)
j := {x∗

j ∈Xj : PD(x∗
j ) ∈ B(k)j }, k= 1, . . . , κ . (13)

That is, the pre-image of the PD function w.r.t. B(k)j defines the corresponding covariate set B(k)
j

such that ∪κ
k=1B

(k)
j =Xj. Thus, without having specified how to obtain a partition of the real line

according to Equation (12), including both the size of the partition, κ , and the location of split
points, the b(k)j s, it is clear that given such a partition the procedure outlined above can be used to
construct a categorical GLM in agreement with Equation (3). Further, since the aim is to construct
a categorical GLM with good predictive accuracy in terms of mean predictions, it is reasonable to
only keep the parts in the partition�j that actually impacts the response. In particular, note that

μ
(k)
j := E[Y | Xj ∈B

(k)
j ], k= 1, . . . , κ , (14)
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which allows us to introduce the following piece-wise constant mean predictor

μj(Xj) :=
κ∑

k=1

μ
(k)
j 1{Xj∈B(k)

j }, μ
(k)
j ∈R. (15)

In addition, note that if we assume that the μ
(k)
j s is unique, which typically is the case, it holds

that
{Xj(ω) ∈B

(k)
j } = {μj(Xj)(ω)= μ

(k)
j }, (16)

together with
μj(Xj)=E[Y | μj(Xj)], (17)

where Equation (17) precisely corresponds to that μj(Xj) is auto-calibrated (AC), see Krüger and
Ziegel (2021); Denuit et al. (2021). A consequence of this is that, given the information contained
in μj(Xj), the predictor cannot be improved upon, and the predictor is both locally and globally
unbiased. In particular, if we let μ̃j(Xj) be a version of μj(Xj) where a number of categories have
been merged, i.e. the σ -algebra generated by μ̃j(Xj) is coarser than the one generated by μj(Xj), it
holds that both E[Y | μj(Xj)] and E[Y | μ̃j(Xj)] are AC predictors, and E[Y | μj(Xj)] outperforms
E[Y | μ̃j(Xj)] in terms of predictive performance, see Theorem 3.1 and Proposition 3.1 in Krüger
and Ziegel (2021). This, however, is a theoretical result, assuming access to an infinite amount
of data. In practice, the μ

(k)
j s are estimated using data and we only want to keep the μ

(k)
j s that

generalize well to unseen data. That is, those μ
(k)
j s that do not generalize are merged, and from

Equation (16), we know that merging of μ
(k)
j s is equivalent to merging the corresponding parts in

the covariate partition. Consequently, in order to find the most parsimonious covariate partition
based on data, we will, in Section 3, introduce a procedure that combines Equation (17) with an
out-of-sample loss minimization using cross-validation (CV). We refer to this as a marginal AC
step.

This procedure is analogously defined for tuples of covariates, and a precise implementation is
described in Section 3.

Remark 2.

(a) If we consider a numerical covariate, the idea of using a PD function to construct a covariate
partition is only relevant when the PD function is not strictly monotone, since otherwise we
could just as well partition the covariate directly based on, e.g., quantile values. Note that
this comment applies to the procedure used in Henckaerts et al. (2022) as well, and it applies
if we would change from using PD functions to using, e.g., ALEs or other covariate effect
measures. If the PD function would be monotone, but not strictly monotone, then the PD
function of the underlying black-box predictor implies a coarsening of the covariate space.

Further, from the above construction, it is clear that the PD function is only used to
construct covariate partitions. That is, the actual impact on the response, here measured in
terms of PD functions values, is of lesser importance, as long as the PD function changes
when the covariate values change. Consequently, it is the sensitivity of the measure being
used, here PD functions, that matters, not the level. The same comment, of course, applies
if we use e.g. ALEs; for more on ALEs and PD functions, see Apley and Zhu (2020) and
Henckaerts et al. 2022). Also, recall Remark 1(a) above.

(b) The output of (17) in the AC step is not a new PD function, but a conditional expected
value. Still, the partitioning will be based on similarity in terms of PD function values, but
those parts in the partition that do not affect the response will be removed. If one instead
favor models with as high fidelity w.r.t. the original black-box predictor, i.e. a so-called sur-
rogate model, see e.g. Henckaerts et al. (2022), the AC step is problematic for, e.g., ordered
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categories, since the merging of categories does not respect ordering. The corresponding
step in the algorithm of Henckaerts et al. (2022), see their Algorithm 1, merges categories
only based on fidelity to the original PD function, see their Equation (2). Also note that for
numerical and ordinal covariates the procedure in Henckaerts et al. (2022) only merges PD
function values that have adjacent covariate values.

3. Constructing a guided categorical GLM
The aim of the present note is to introduce a method of constructing a classical categorical GLM
that is guided by a given black-box predictor. The main step is to define covariate partitions that
define categorical versions of the initial covariates and interactions. Since the aim is to construct
categorical covariates, the method will be applied to all initial covariates that are non-categorical.

The first step in creating a guided GLM is to calculate the PD function values from the external
black-box predictor μ̂(x). This needs to be done for each covariate dimension, and for all covariate
tuples. We will start by focusing on single covariates, noting that tuples are handled analogously.

Next, in order to construct the covariate partitions for each covariate dimension j, we need to
the decide on the number of parts in the partition, κ , together with the split points b(k)j .

In the present note, we suggest doing this using L2-regression trees and CV. To see why this is
reasonable, recall that an L2-regression tree can be represented as:

T(x) :=
κ∑

k=1

δk1{x∈Gk}, δk ∈R,

where ∪κ
k=1Gk =:X, see e.g. (Hastie et al. 2009, Ch. 9), which is of the same form as μj from

Equation (15):

μj(xj) :=
κ∑

k=1

μ
(k)
j 1{xj∈B(k)

j }.

Further, in this short note, we will use L2-regression trees estimated using square loss in a greedy
manner, using CV, see e.g. (Hastie et al. 2009, Ch. 7). That is, the empirical loss that will be
(greedily) minimized is given by:

μ̂j(xj) := argminT∈Tκ

n∑
i=1

wi(yi − T((xj)i))2, (18)

where (xj)i denotes the ith observation of the xjth covariate, where the wi weights have been
added in order to agree with the GLM assumptions from Equation (1), and where Tκ cor-
responds to the set of binary regression trees with at most κ terminal nodes. Consequently,
decreasing κ corresponds to merging covariate regions B(k)

j s, which is equivalent to coarsening
the covariate partition, since the tree-based partition is defined recursively using binary splits.
Moreover, note that due to Equation (13), the described tree-fitting procedure is equivalent to
fitting an L2-regression tree using PD(xj) as the single numerical covariate. As a consequence of
this, the definition of the resulting B(k)

j s will be implicitly defined in terms of the corresponding
PD-function.

Furthermore, due to the relation (16), it is possible to extract a categorical covariate version of
xj from the fitted predictor μ̂j(xj), which will take on at most κ covariate values.

Continuing, the motivation for using L2-trees instead of, e.g., a Tweedie loss is because all
Tweedie losses that are special cases of the Bregman deviance losses, see Denuit et al. (2021),
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result in the same mean predictor for a given part B(k)
j in the partition, see e.g. Lindholm and

Nazar (2024). In particular, note that the resulting μ̂js correspond to empirical means, regardless
of the Tweedie loss function used. For alternatives to using L2-regression trees to achieve auto-
calibration, see e.g. Denuit et al. (2021); Wüthrich and Ziegel (2023).

Consequently, by fitting L2-regression trees and using CV to decide on the optimal number
of terminal nodes κ∗, where 1≤ κ∗ ≤ κ , which defines the coarseness of the partition, com-
bines the search for suitable split points and a greedy coarsening of the covariate partition using
auto-calibration into a single step. This corresponds to Step A in Algorithm 1 describing the
construction of a guided categorical GLM.

If the procedure from Section 2.2 is applied to all covariates and interactions, the result-
ing number of categorical levels, and, hence, β coefficients to be estimated in Equation (3) can
become very large. This suggests that regularization techniques should be used when fitting the
final categorical GLM. One way of achieving this is to use L1-regularisation or so-called lasso-
regularisation, see e.g. (Hastie et al. 2015, Ch. 3). If we consider EDF models, this means that we,
given the B(k)• s, use the following penalized deviance loss function:

D(y; β , λ) :=
n∑
i=1

wid(yi,μ(xi; β))+ λ|β|, (19)

which is the loss from Equation (4), but where the L1-penalty term λ|β| has been added, where λ

is the penalty parameter. The λ-parameter is chosen using k-fold CV.
Moreover, if the covariate vector x is high-dimensional, it can be demanding already to evaluate

all two-way interactions fully. An alternative is here to consider only those two-way interactions
that are believed to have an impact on the final model. This can be achieved by using Friedman’s
H statistic, see Friedman and Popescu (2008):

Hj,k = Ê[(PD(Xj, Xk)− PD(Xj)− PD(Xk))2]
Ê[PD(Xj, Xk)2]

, (20)

where Ê[ · ] refers to the empirical expectation. That is, Equation (20) provides an estimate of the
amount of excess variation in PD(Xj, Xk) compared with PD(Xj)+ PD(Xk).

By combining all of the above, focusing on a categorical GLM with at most two-way interac-
tions, we arrive at Algorithm 1. Of course, if two-way interactions turn out to be insufficient, the
procedure can be extended analogously to consider higher-order interactions as well.

Remark 3.

(a) Note that there is a qualitative difference between using L2-trees, or other deviance-based
binary trees, and using L1-penalisation: Trees merge categories (parts in a partition),
whereas using an L1-penalty will remove categories, or, equivalently, merge removed
categories with a global intercept.

(b) In practice, it may be computationally costly to evaluate PD(xj) in all observed values
when xj is continuous. If this is the case one may, e.g., use a piece-wise constant step-
function approximation of PD(xj). This is what will be used in the numerical illustrations in
Section 4.

(c) The L1-penalty from Equation (19) has a single λ applied to all β-coefficients. An alternative
is to use a grouped penalty, see e.g. (Hastie et al. 2015, Ch. 4). That is, one could, e.g., use
one λ-penalty for individual covariates and one λ for interaction terms, see e.g. Henckaerts
et al. (2022).
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Algorithm 1 – Guided GLM

Input.

– Black-box mean function μ̂

– Observed i.i.d. training data (yi, xi,wi)ni=1
– κ denotes the maximal number of parts in a covariate partition
– γ denotes the number of interaction terms
– θtree denotes the hyperparameters for the regression trees

A. Marginal effects

For each non-categorical dimension j of x do
Initial marginal effect and auto-calibration: Fit L2-regression trees with hyperparameters θtree,
according to Equation (18), using PD(xj) based on μ̂(x) as the only covariate
Decide on the optimal number of terminal nodes κ∗, 1≤ κ∗ ≤ κ, using k-fold CV and let
μ̂j(xj) denote the resulting predictor
Output marginal partition: Extract covariate partition �j := (B(k)

j )κk=1 from μ̂j(xj)

B. Interaction effects

Calculate the Friedman H-statistic for all covariate pairs according to Equation (20)
For the covariate pairs (xj, xl) with the γ highest scores do
Initial pair-wise effect and auto-calibration: Fit L2-regression trees with hyperparameters θtree,
according to Equation (18), using PD(xj, xl) based on μ̂(x) as the only covariate
Decide on the optimal number of terminal nodes κ∗, 1≤ κ∗ ≤ κ, using k-fold CV and let
μ̂j,l(xj, xl) denote the resulting predictor
Output interaction partition: Extract covariate partition �j,l := (B(k)

j,l )
κ
k=1 from μ̂j,l(xj, xl)

C. Final model

Use all initial categorical covariates together with the marginal partitions �j, from A., and
the �j,l interaction partitions, from B. to define the structure of the categorical GLM given
by Equation (3). Estimate the β-coefficients from Equation (3) using the L1 penalized
deviance from Equation (19). The value of λ is obtained using k-fold CV.

4. Numerical illustrations
In the current section, we will construct guided categorical GLMs based on reference mod-
els that are GBMs, following the procedure described in Algorithm 1, using the freMTPL,
beMTPL, auspriv, and norauto data sets available in the R-package CASdataset, see Dutang
and Charpentier (2020). Only Poisson claim count models will be considered, i.e. the Poisson
deviance

DPois(y;μ) :=
n∑

i=1
wi

(
yi log (yi)− yi log (μi)− yi − μi

)
, (21)
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will be used for model estimation and prediction evaluation. Concerning data, for all data sets
analyzed 2/3 of the data have been used for in-sample training, and 1/3 for out-of-sample (hold
out) evaluation.

Further, all GBM models use a tree depth of two, 0.01 learning rate, and a bag fraction of
0.75 corresponding to the fraction of training data used for each tree iteration. The maximum
number of trees is set to 4 000 with the optimal number chosen via 5-fold CV and the remaining
hyperparameters are the default levels in the R-package GBM. Hence, hyperparameters for the GBM
modeling are the same as those used in Henckaerts et al. (2022), as described in Section 3.2.1. The
R-implementation used can be found at https://github.com/Johan246/Boosting-GLM.git

When implementing Algorithm 1 the number of interaction terms is set to 5 (γ ) and the maxi-
mum size of the partition is set to 30 (κ). Concerning the hyperparameters for the L2-trees (θtree),
the minimum number of observations per node is set to 10 and the cost penalty parameter is
set to 0.00001 in order to allow for very deep un-pruned trees, after which the optimal tree size,
including pruning, is determined using CV as implemented according to the rpart-package in R.

As commented on in Remark 3(2), the computational cost of calculating the PD function values
for all observed covariates becomes infeasible. Due to this, all numerical covariates’ PD-functions
are approximated as piece-wise constant step functions that only jump at κ values corresponding
to equidistant covariate percentile values.

Apart from the reference GBM model, the surrogate model from Henckaerts et al. (2022),
maidrr, will be used for comparison and the R package with the same name is used in all
numerical illustrations.

FromAlgorithm 1, it is clear that there is no ambition to replicate the PD functions of the initial
model, which here is a GBM.An example of PD functions for the differentmodels for the freMTPL
data is given in Fig. 1. From Fig. 1 it is also seen that the GBM’s PD functions are monotone
for the covariates “Vehicle age” and “Bonus Malus,” but not strictly monotone. If these would
have been strictly monotone, the covariates could have been adjusted directly using L2 trees, see
Remark 2(a); as we can see from the GBM’s PD function plot, there are multiple covariate values
having the same PD function value, which indicates that the GBM has introduced a coarsening of
the covariate space.Moreover, from Fig. 1 it is also seen that the number of categories in the guided
categorical GLM is reduced by using a final lasso (L1) step in Algorithm 1. Further, the number
of active parameters, i.e. non-zero β regression coefficients in Equation (3), in the final guided
categorical GLM are summarized in Table 1, and it can be noted that the number of parameters
tends to be very low.

Continuing, in order to compare the predictive performance of the guided categorical GLM
and the reference GBM, we calculate the out-of-sample relative difference in Poisson deviance,
DPois. The out-of-sample relative difference in Poisson deviance between the reference GBM
and candidate model μ̂� is defined according to:

DPois := DPois(y; μ̂�)−DPois(y; μ̂GBM)
DPois(y; μ̂GBM)

, (22)

where DPois(y;μ) is given by Equation (21). From Table 1, it is seen that the DPois values for
the different data sets are very small indicating that the guided categorical GLMs tend to track
the performance of the initial GBMs closely. One can also note that the guided categorical GLM
in fact outperforms the corresponding GBMs for the beMTPL and auspriv data sets, although
these results could, at least partly, be due to random fluctuations. It is also worth highlighting that
for both the auspriv and norauto data sets, a standard GLM without interactions outperforms
the GBM in terms of Poisson deviance slightly, which is in agreement with that the guided GLM
has a very low number of parameters. Further, in Table 1, the surrogate model from Henckaerts
et al. (2022) is included, denoted maidrr, which tends to be close to the guided GLM in terms of
Poisson deviances, although slightly worse, with a generally higher fidelity to the reference GBM,
as expected. Note, however, that these results are based on our own use of the maidrr R-package,
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Figure 1. Comparison of model factor effects (partial dependence-function plots) for the freMTPL data between initial gra-
dient boosting machine model (black lines), guided categorical generalized linear model including final lasso (L1) step (red
lines), and amodel including all levels found by the tree-calibration (blue lines).

which may be sub-optimally tuned, but the results obtained here seem close to the maidrr results
from Henckaerts et al. (2022), see Table 4, and their relative Poisson deviances are comparable to
those seen in Table 1 in this short note.

Moreover, the relative Poisson deviance values provide a summary of the overall out-of-sample
performance. In order to assess local performance of the mean predictors, we use concentration
curves, see Fig. 2, and for more concentration curves, we refer to e.g. Denuit et al. (2019). From
Fig. 2, it is seen that also the local performance of the mean predictors of the guided categorical
GLMs is comparable to the corresponding GBMs’ performance.

Concerning different covariates’ and interactions’ influence on the final predictor, recall that
the final predictor is a regularized categorical GLM, and can hence be fitted using the glmnet
package in R, and it is possible to use standard techniques such as variable importance plots (VIPs),
see e.g. Greenwell et al. (2020). For a categorical GLM, the variable importance for a single covari-
ate corresponds to the sum of the absolute values of the regression coefficients for its categories.
This is illustrated in Fig. 3 for the different CASdataset data analyzed above. From Fig. 3, it is
seen that there are a number of important categorical interaction terms for each model. This is
information that is valuable when, e.g., constructing a tariff.
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Table 1. Summary statistics for the different data sets, where DPois is defined in (22), and where fidelity
refers to the correlation between the gradient boosting machine predictor and the corresponding candidate
categorical generalized linear model (GLM) – the guided GLM or maidrr from Henckaerts et al. (2022). The
number of parameters refers to the guided GLM

DPois Fidelity

Data No. of parameters Guided GLM maidrr Guided GLM maidrr

norauto 15 0.11% 0.02% 100% 100%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

beMTPL 146 −0.29% 0.09% 88% 98%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

auspriv 16 −0.04% 2.53% 98% 93%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

freMTPL 127 0.58% 1.22% 89% 93%

Figure 2. Concentration curves for different CASDatasets data comparing the original gradient boosting machine models
(red lines) and the corresponding guided categorical generalized linear model (blue lines).

Further, VIPs provide a simple way to quantify global impact of covariates and interactions.
Due to the categorical GLM structure, it is, however, straightforward to assess local impact by
ranking the μ̂GLM∗(xi)s and inspect the contribution of individual covariates and interactions on
the prediction. This is illustrated in Fig. 4, which shows exp{β̂j} for specific covariate/interaction
values corresponding to the 25%, 50%, and 75% percentiles of the empirical predictor distribution
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Figure 3. Variable importance plots for the final guided generalized linearmodel with lasso based on different CASDatasets
data.

(μ̂(xi))i for different CASdataset data. Thus, from Fig. 4, we get a detailed picture of the impor-
tance of specific covariate/interaction values w.r.t. different risk percentiles. This is again valuable
information for, e.g., constructing a tariff, but also for identifying characteristics of high-risk
contracts.

Before ending this section, we briefly discuss surrogate aspects of the guided GLM. Table 1
shows the fidelity of the guided categorical GLM w.r.t. the original GBM model, where fidelity is
defined as the correlation between the initial GBMmean predictor and the corresponding guided
categorical GLM predictor. From this, it is seen that fidelity tends to be rather high for the data sets
being analyzed, with no fidelity of less than 88%. These numbers, however, tend to deviate consid-
erably for freMTPL and beMTPL compared to the surrogate model of Henckaerts et al. (2022), see
Table 5. This could, at least, partly be caused by the use of different seeds. It is, however, worth not-
ing that the guided categorical GLMs with the lowest fidelity, beMTPL and freMTPL, are the ones
that also differ the most compared with Henckaerts et al. (2022) w.r.t. predictive performance, in
favor of the current guided GLM. Still, as commented on above, the observed differences could, at
least partly, be due to not using the same seed.

A more detailed comparison of the original GBMs and the guided GLMs is provided by the
scatter plots in Fig. 5, which agree with the fidelity calculations. The analogous scatter plots
between the guided GLMs and the maidrr models look very similar to Fig. 5, but are slightly
wider, and are not included.
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Figure 4. Covariate contributions to the categorical generalized linear models (GLMs) mean predictor for different
CASDatasets. From left to right: covariate contributions corresponding to the 25%, 50%, and 75% percentile of the empir-
ical distribution of (μ̂(xi))i from the guided categorical GLM; each point corresponds to exp{β̂j} for the particular covariate
value/interaction term value. Note that interactions are represented without displaying a specific value on the y-axes.

5. Concluding remarks
In this short note, we introduce a simple procedure for constructing a categorical GLM making
use of implicit covariate engineering within a black-box model, see Algorithm 1. The resulting
model is referred to as a guided categorical GLM. The central part of the modeling aims at iden-
tifying how single covariates (and interactions) impact the response. This is here done using PD
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Figure 5. Scatter plots for different CASDatasets data on log-scale, comparing the original gradient boostingmachinemod-
els (y-axes) and the corresponding guided categorical generalized linearmodels (x-axes) predictions. Fidelity corresponds to
the correlation between the two predictors.

functions together with a marginal auto-calibration step in order to construct covariate partitions.
The rationale behind this procedure is as follows: The PD functions are used to assess the impact
of a covariate w.r.t. the initial black-box predictor and in this way generate candidate covariate
partitions. Given a partition, by using marginal auto-calibration, only the parts in the candidate
partition that have an impact on the response will remain, regardless of the underlying black-box
model. Consequently, as long as the PD functions are able to differentiate between covariate val-
ues, the actual level of the PD functions is not important, and the PD functions can be replaced
with any other meaningful covariate effect measures, such as ALEs. Further, note that if the PD
functions, or equivalent effect measures, are applied to numerical or ordinal covariates, and the
resulting function is strictly monotone, the suggested procedure could just as well be replaced
by binning the covariates based on, e.g., their quantile values, see Remark 2(a). Furthermore,
Algorithm 1 does not consider alternative partitionings of covariates that are categorical from the
start. This could of course be allowed for if wanted by including them in Step A. of Algorithm 1.
Relating to the previous points, an alternative to being guided by a black-box predictor μ̂(x) in the
construction of the GLM is to directly partition the covariate space based on quantile values and
apply L2 trees marginally. This is another example of a marginally auto-calibrated method that
could be worth investigating in its own right.
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The above procedure is closely related to the modeling approach introduced in Henckaerts
et al. (2022), where the main difference is that they aim for fidelity w.r.t. the (PD function) behav-
ior of the original black-box predictor. The guided categorical GLM, on the other hand, focuses
on predictive accuracy. Although the two approaches likely will be close if the PD functions are
strictly monotone, the numerical illustrations show situations where the guided categorical GLMs
reduction in fidelity coincides with an increase in predictive performance. This also connects to
the wider discussion on the use of auto-calibration and (complex) black-box predictors in non-life
insurance pricing, see e.g. Lindholm et al. (2023); Wüthrich and Ziegel (2023). In these refer-
ences, it is noted that a low signal-to-noise ratio, which is common in non-life insurance data,
may result in complex predictors that are spuriously smooth. In their examples, by applying the
auto-calibration techniques in Lindholm et al. (2023); Wüthrich and Ziegel (2023) to a complex
predictor, the resulting auto-calibrated predictor only has a few unique predictions; in the exam-
ples of around 100 unique predictions. This is still considerably less than the current guidedGLMs’
predictors that use up to 150 parameters, see Table 1 in Section 4 above. Consequently, if the num-
ber of parameters in the guided categorical GLM is not too large, it may be possible to construct
a new interpretable categorical GLM that is auto-calibrated by using the techniques from, e.g.,
Lindholm et al. (2023); Wüthrich and Merz (2023). On the other hand, the number of parameters
in Table 1 refers to the total number of parameters in the model, whereas the number of non-zero
regression coefficients for a specific contract will likely be considerably lower; recall Fig. 4 above.

Concerning estimation error and robustness, since the final model is a regularized categori-
cal GLM, one can use off-the-shelf confidence intervals for regression coefficients, given that the
produced partitions are treated as static. In practice, however, this will likely not be the case, and
the stability of the full method, including all steps of covariate engineering, should be taken into
consideration when assessing the variability in μ̂(x). This is outside of the scope of this short note.
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