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Abstract

Consider a continuous-time Markov process with transition rates matrix Q in the state
space�∪ {0}. In the associated Fleming–Viot processN particles evolve independently
in � with transition rates matrix Q until one of them attempts to jump to state 0. At this
moment the particle jumps to one of the positions of the other particles, chosen uniformly
at random. When � is finite, we show that the empirical distribution of the particles at
a fixed time converges as N → ∞ to the distribution of a single particle at the same
time conditioned on not touching {0}. Furthermore, the empirical profile of the unique
invariant measure for the Fleming–Viot process with N particles converges as N → ∞
to the unique quasistationary distribution of the one-particle motion. A key element of
the approach is to show that the two-particle correlations are of order 1/N .
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1. Introduction

Let � be a finite or countable state space, whose elements are also called sites. Let
Q = (q(x, y), x, y ∈ � ∪ {0}) be the transition rates matrix of an irreducible continuous-
time Markov process on � ∪ {0}. The transition matrix for the process stopped on {0} is
Q̄(x, y) = Q(x, y) for x ∈ �, and Q̄(0, y) = 0 for any y ∈ �.

Consider the process on � ∪ {0} generated by Q, with initial law µ, and denote by Ttµ its
law at time t conditioned on not having touched {0} up to time t . In other words, for all x ∈ �,

Ttµ(x) =
∑
y∈� µ(y) exp(tQ̄)(y, x)

1 − ∑
y∈� µ(y) exp(tQ̄)(y, 0)

.

Let M be the space of probability measures on �. Then {Tt , t ≥ 0} is a semigroup on M and
Ttµ is the unique solution to the Kolmogorov forward equations: T0µ(x) = µ(x), and, for any
x ∈ �,

d

dt
Ttµ(x) =

∑
y∈�

q(y, x)Ttµ(y)+
∑
y∈�

q(y, 0)Ttµ(y)Ttµ(x). (1)
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QSDs and Fleming–Viot processes 323

A quasistationary distribution (QSD) forQ is a probability measure ν on� that is invariant
under {Tt , t ≥ 0}, that is,

Ttν = ν for all t ≥ 0.

Our goal is to approximate the conditioned process by a particle system. This is useful from
a theoretical point of view (in [4] the QSD is constructed as the limit of the invariant measures
of the processes that approximate the conditioned evolution) as well as for simulation purposes,
since the conditioned evolution cannot be simulated by the rejection method for large times.

1.1. The associated Fleming–Viot process

For each integer N > 1, the Fleming–Viot process with N particles is a continuous-time
Markov process ξt ∈ �N, t ≥ 0; let ξt (i) denote the position of the ith particle at time t . The
generator LN acts on functions f : �N → R as

LNf (ξ) =
N∑
i=1

∑
x∈�\{ξ(i)}

[
q(ξ(i), x)+ q(ξ(i), 0)

∑N
j �=i 1{ξ(j)=x}
N − 1

]
(f (ξ i,x)− f (ξ)), (2)

where ξ i,x(i) = x, and, for j �= i, ξ i,x(j) = ξ(j). We set ENξ [f (ξt )] = exp(tLN)f (ξ). In
words, each particle moves independently of the others as a continuous-time Markov process
with transition rates matrix Q, but when it attempts to jump to state 0, it jumps to the position
of one of the other particles chosen uniformly at random.

Denote by η(ξ, x) the number of ξ particles at site x, and by m(ξ) the empirical measure
induced by a configuration ξ ∈ ⋃

N �
N :

η(ξ, x) :=
N∑
i=1

1{ξ(i)=x} and m(ξ) :=
∑
x∈� η(ξ, x)δx∑
x∈� η(ξ, x)

. (3)

We also use mx(ξ) to denote m(ξ)(x) and q(x, x) = − ∑
y∈�∪{0}\{x} q(x, y). With this nota-

tion, the time derivative of ENξ [mx(ξt )] is easily seen to be

dENξ [mx(ξt )]
dt

=
∑
y∈�

q(y, x)ENξ [my(ξt )] + N

N − 1

∑
y∈�

q(y, 0)ENξ [my(ξt )mx(ξt )]. (4)

There is a natural Fleming–Viot process associated to any given Markov process with
absorbing states. This appears for the first time in [2] for Brownian motion absorbed at the
boundary of a bounded domain. In the associated Fleming–Viot process N Brownian particles
evolve independently until one of them reaches the boundary, which plays the role of state 0.
This model and generalizations of it were studied in several papers; see, e.g. [1], [2], [5], [6],
and [7], which dealt with diffusions in bounded or unbounded domains. These works had to
address the serious problem of nonexplosion of the number of hits of the boundary, and this
required sophisticated analysis. On the other hand, Ferrari and Marić [4] considered a countable
space, and a Doeblin-type condition was imposed on the transition rates matrix Q. Here we
continue the analysis of [4] without their strong Doeblin-type condition but with a finite space.
The starting point is still the similarity between (1) and (4). It is obvious that we require
a control of the correlations between occupation numbers. We mention that a sophisticated
approach, formulated in the proof of Theorem 1.4 of [2], was used to study the same object (for
N Brownian motions on a bounded domain), without the need for controlling such correlations.
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324 A. ASSELAH ET AL.

Another approach given in [5], still for N Brownian motions on a bounded domain, was used
to study the limit of the empirical measure through the hydrodynamics limit technology. Both
approaches in [2] and [5] are sophisticated, whereas here we present a simple, short, and natural
way to link quasistationary measures with the law of the empirical measure of the Fleming–
Viot process under its invariant measure. This latter approach is adapted to finite-state Markov
chains.

Once the Fleming–Viot process is considered, the issues to address are, of course, the
well definiteness of the process and its ergodicity. Neither issue is straightforward to resolve
in general state spaces. In countable spaces the well definiteness is immediate but not the
ergodicity (see [4]). The conditions on the original process that guarantee the ergodicity of the
Fleming–Viot process is still an open problem. Once this is solved, we are interested in the
approximation of the conditioned process by its associated Fleming–Viot process.

1. Does the Fleming–Viot process approximate the conditioned evolution as N → ∞ for
each t ≥ 0?

2. Does the empirical profile of the invariant measure of the Fleming–Viot process approx-
imate a QSD? In the case of the existence of more than one QSD, which QSD is chosen
by the Fleming–Viot process?

These two questions have been answered affirmatively for Brownian motion (the empirical
profile of the invariant measure converges in this case to the first eigenfunction of the Laplacian
with homogeneous Dirichlet boundary conditions) and more general diffusions (see [1], [2],
and [5]). For countable spaces, under the condition that

∑
z∈�

inf
x∈�\{z} q(x, z) > max

x∈� q(x, 0),

Ferrari and Marić [4] proved the existence of a unique stationary measure λN for the Fleming–
Viot process and the existence of a measure ν on � such that

lim
N→∞

∫
�N
(mx(ξ)− ν(x))2 dλN(ξ) = 0.

Furthermore, ν is the unique QSD of Q.
The main goal of this paper is to prove that the Fleming–Viot process approximates the

conditioned evolution as well as the QSD under the only hypothesis that� is finite (Theorem 2).
The result is not included in [4] and requires control of the two-particle correlations uniformly
in the initial configuration.

Assume that µ is close to m(ξ), and look at (1) and (4). A natural approach to show that
ENξ [m(ξt )] is close to Ttµ is to establish that the occupation numbers of two distinct sites, at
time t , become independent when N tends to ∞ (the so-called propagation of chaos). For this
purpose, Ferrari and Marić [4] estimated the correlation of two ξ -particles, for � countable as
the unique assumption.

Proposition 1. ([4, Proposition 3.1].) Let µ be any probability measure on �, and let µ⊗N
be the product probability on �N . Then, there is a constant κ such that, for any x, y ∈ � and
t > 0,∣∣∣∣
∫

ENξ [mx(ξt )my(ξt )] dµ⊗N(ξ)−
∫

ENξ [mx(ξt )] dµ⊗N(ξ)
∫

ENξ [my(ξt )] dµ⊗N(ξ)
∣∣∣∣ ≤ eκt

N
.
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In contrast to [4], our argument requires a control of the correlations under the invariant
measure of the Fleming–Viot process. To that end, we obtain bounds that hold uniformly on
the initial distribution of the particles. This result also holds for countable � with no further
assumptions.

Proposition 2. For each t > 0 and any x, y ∈ �,

sup
ξ∈�N

|ENξ [mx(ξt )my(ξt )] − ENξ [mx(ξt )]ENξ [my(ξt )]| ≤ 1{x=y}
N

+ 2

N
(e2Ct − 1). (5)

Our proof of Proposition 2 also shows that any finite number of particles evolve independently
in the limit N → ∞. A similar result was obtained by Grigorescu and Kang [6], following
their approach in [5].

1.2. Finite state spaces

In the rest of the paper we consider a finite�. In this case, for eachN ≥ 2, the Fleming–Viot
process is an irreducible pure-jump Markov process on the finite state space �N . Hence, it is
ergodic, that is, there exists a unique stationary measure for the process, and starting from any
measure, the process converges to the stationary measure. We still denote this measure by λN .

When � is finite, Darroch and Seneta [3] proved that Ttµ converges exponentially fast to
a probability measure ν, uniformly in the initial measure. The measure ν is the unique QSD
of Q.

Theorem 1. ([3].) Assume that� is finite and that the process on�with rates {q(x, y), x, y ∈
�} is irreducible. Then there exists θ > 0 such that

sup
µ∈M

‖Ttµ− ν‖ ≤ e−θt . (6)

In Theorem 1 we have used the total variation norm

‖µ− ν‖ =
∑
x∈�

|µ(x)− ν(x)|.

The asymptotic independence of Proposition 2 naturally implies the convergence of the
empirical means in the Fleming–Viot process to the conditioned distribution Ttm(ξ), uniformly
in ξ . Moreover, since� is finite, Ttm(ξ) is close to the unique QSD, uniformly in ξ , as implied
by (6). These two facts imply the following, which is our main result.

Theorem 2. Assume that � is finite. Then,

lim
N→∞

∫
�N

‖m(ξ)− ν‖ dλN(ξ) = 0. (7)

Remark 1. Note that (7) readily implies (using the fact that 0 ≤ mx ≤ 1 for all x ∈ �) that,
for any subset U ⊂ �,

lim
N→∞

∫ ∏
x∈U

mx dλN =
∏
x∈U

ν(x).

The rest of the paper is organized as follows. In Section 2 we construct the process à la Harris
following [4]. We use this construction to estimate the correlations and prove Proposition 2 in
Section 3. Finally, in Section 4 we prove Theorem 2.
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2. Graphical construction

We use the Harris graphical method [8] to construct the process. This representation is then
used to prove the asymptotic independence property. A realization of the process (ξt , t ≥ 0)
is a deterministic function of a realization of a marked (Poisson) point process. All initial
conditions ξ use the same realization of the marked point process. The construction allows us
to explore the process backwards in time (in the absence of the useful duality tool in particle
systems) and control the two-point correlation function with a branching process at a finite
time.

Let C := maxx∈� q(x, 0) be the (maximum) absorption rate, and let

q̄ := sup
x∈�

∑
y∈�\{x}

q(x, y); p(x, y) := q(x, y)

q̄
, y �= x;

p(x, x) := 1 −
∑

y∈�\{x}
p(x, y).

To each particle i, we associate two independent marked Poisson processes (ωI
i , ω

V
i ), which

we respectively call the internal and voter point processes, described as follows.

• The internal process is defined on R ×�� with intensity measure q̄ dt dγ (F ), where

dγ (F ) =
∏
x∈�

p(x, F (x)) for all F ∈ ��,

that is, γ is the joint distribution of independent random variables with marginal distri-
butions {p(x, ·), x ∈ �}, so that to each state x the (random) F assigns a state y = F(x)

with probabilityp(x, y). If (t, F ) is an internal marked time associated to particle i and at
time t− particle i is at site x, then at time t , particle i jumps to site F(x). The function F
associated to this time is called the mark. This gives the correct rate q(x, y) = q̄p(x, y)

for jumps from x to y.

• The voter point process is defined on R × ({1, . . . , N} \ {i}) × {0, 1}� with measure
intensity C dt dβi(j) dγ ′(ζ ), where βi is the uniform probability on {1, . . . , N} \ {i} and
γ ′ is the joint distribution of independent Bernoulli random variables with parameters
q(x, 0)/C, x ∈ �. A voter marked time is (t, j, ζ ), where j corresponds to a reincar-
nation label and ζ takes into account the position-dependent rate: if the ith particle is at
position x at time t−, it jumps to the position of particle j at time t only if ζ(x) = 1,
yielding the correct rate q(x, 0)/(N − 1).

We call ω = ((ωI
i , ω

V
i ), i ∈ {1, . . . , N}) an independent and identically distributed sequence

of stationary marked point processes associated with labeled particles. Finally, for any subset
of labels a ⊂ {1, . . . , N}, we denote by ωa the processes associated with labels a. For any real
numbers s < t , we denote by ωa[s, t) and ωa[s, t] the projections of the marked times in the
time period [s, t) and [s, t], respectively.

We construct {ξt , t ≥ 0} in such a way that ξt is a function of the initial configuration ξ0
and the time marks ω[0, t], t ≥ 0. Fix an initial configuration ξ0 ∈ �N , and t > 0. There is,
almost surely, a finite number of time marks within [0, t], say K; let {bk, 0 ≤ k ≤ K} be the
ordered time realizations with b0 = 0. We build ξt inductively as follows.

• At time b0 = 0, the configuration is ξ0.

https://doi.org/10.1239/jap/1308662630 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662630


QSDs and Fleming–Viot processes 327

• Assume that ξbk is known. For t ∈ [bk, bk+1), set ξt = ξbk . We now describe ξbk+1 .

• If bk+1 corresponds to an internal time of particle i and mark F , we move particle
i to F(x), where x = ξbk (i). This move occurs with rate q̄q(x, F (x))/q̄ =
q(x, F (x)).

• If bk+1 corresponds to a voter time of particle i and mark (j, ζ ), we move particle
i to the position of particle j if ζ(x) = 1, where x = ξbk (i). This move occurs
with rate

C
q(x, 0)

C

1

N − 1
= q(x, 0)

N − 1
.

It is easy to check that {ξt , t ≥ 0}, as constructed above, has generator given by (2); see [8].
By translation invariance of the law of ω, if we use the marks ω[−t, 0] instead of the marks

ω[0, t], the configuration so obtained has the same law of ξt as constructed above. We abuse
notation and call ξt the configuration constructed with the marks ω[−t, 0]. For each particle
label i, we build simultaneously a set of labels ψi(t) of particles which could potentially
influence ξt (i) (that is, the set of all other particles that may have interacted with particle i up to
time t). This set is constructed backwards in time (from time 0 to time −t), also as a function
of ω[−t, 0]. First, the process t 
→ ψi(t)may only change at the time realizations of the voter
process ωV , and it changes as follows. Let −v be the largest time realization of ωV

i [−t, 0), and
let (j, ζ ) be its associated mark. Then, for 0 ≤ s < v, we set ψi(s) = {i}, and ψi(v) = {i, j}
(regardless of the values of ζ ). For s < t , assume that ψi(s) is built, let −v be the largest time
realization of ωV

ψi(s)
[−t,−s), and let (j, ζ ) be its associated mark. Then, for all u ∈ [s, v),

ψi(u) = ψi(s) and ψi(v) = ψi(s) ∪ {j}.
Note that, for any t > 0, ψi(t) is σ(ωV [−t, 0))-measurable and that, for any subset of labels
a ⊂ {1, . . . , N} containing i, we have

{ψi(t) = a} ∈ σ(ωVa [−t, 0)) and {ψi(t) = a, ξt (i) = x} ∈ σ(ωa[−t, 0)). (8)

The next lemma says that the sets of labels associated to two different particles intersect with
probability of order 1/N times an exponential factor in t . Since t is fixed andN goes to ∞, the
bound is sufficient to establish the 1/N decay of two-particle correlation at any fixed time t .

Lemma 1. For i, j distinct labels and t > 0,

P(ψi(t) ∩ ψj (t) �= ∅) ≤ 1

N − 1
(e2Ct − 1). (9)

Proof. First, we show that the rate of growth ofψi(t) is at most exponential. It is clear from
the construction of ψi that its rate of growth at time t is at most Cψi(t) and that it grows by
adding one label (from {1, . . . , N} \ ψi(t)) uniformly at random. Thus,

E[|ψi(t)| | σ(ω[−t, 0))] ≤ 1 + C

∫ t

0
|ψi(s)|ds �⇒ E[|ψi(t)|] ≤ exp(Ct). (10)

Second, we show that, for two distinct labels i, j ,

P(ψi(t) ∩ ψj (t) �= ∅) ≤ 2C

N − 1

∫ t

0
E[ψi(s)]E[ψj (s)] ds. (11)
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Note that

P(ψi(t) ∩ ψj (t) �= ∅) =
∫ t

0
E

[
dP(ψi(s) ∩ ψj (s) �= ∅ | σ(ω[−s, 0)))

ds

]
ds

and

E

[
dP(ψi(s) ∩ ψj (s) �= ∅ | σ(ω[−s, 0)))

ds

]

= 2C

N − 1
E[1{ψi(s)∩ψj (s)=∅}|ψi(s)‖ψj (s)|]

= 2C

N − 1

∑
a∩b=∅

|a‖b|P(ψi(s) = a, ψj (s) = b)

= 2C

N − 1

∑
a∩b=∅

|a‖b|P(ψi(s) = a)P(ψj (s) = b)

≤ 2C

N − 1
E[|ψi(s)|]E[|ψj (s)|]. (12)

In (12) we used the fact that, for two nonoverlapping subsets of labels a and b, {ψi(t) = a}
and {ψj (t) = b} are independent by (8).

This concludes the proof of (11). Now (9) follows from (10) and (11).

3. Proof of Proposition 2

We need to show that, for any x, y ∈ �, any time t ≥ 0, and initial configuration ξ ,

|E[η(ξt )(x)η(ξt )(y)] − E[η(ξt )(x)]E[η(ξt )(y)]| ≤ 2Ne2Ct . (13)

Here and throughout this section, we use E and P to denote ENξ and PNξ , respectively. Using
(3), the difference in the expectations on the left-hand side of (13) is∑

i≤N

∑
j≤N

[P(ξt (i) = x, ξt (j) = y)− P(ξt (i) = x)P(ξt (j) = y)]. (14)

For a subset a, {ξt (i) = x, ψi(t) = a} is σ(ωa[−t, 0))-measurable, by (8). Thus, for two
nonoverlapping subsets of labels a and b,

P(ψi(t) = a, ψj (t) = b, ξt (i) = x, ξt (j) = y)

= P(ψi(t) = a, ξt (i) = x)P(ψj (t) = b, ξt (j) = y).

Compute a generic term on the right-hand side of (14) with i �= j :

P({ξt (i) = x, ξt (j) = y}) = P(ψi(t) ∩ ψj (t) �= ∅, ξt (i) = x, ξt (j) = y)

+
∑

a∩b=∅

P(ψi(t) = a, ψj (t) = b, ξt (i) = x, ξt (j) = y)

= P(ψi(t) ∩ ψj (t) �= ∅, ξt (i) = x, ξt (j) = y)

+
∑

a∩b=∅

P(ψi(t) = a, ξt (i) = x)P(ψj (t) = b, ξt (j) = y).

(15)
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To compute P(ξt (i) = x)P(ξt (j) = y), we can think of two independent marked point
processes driving the evolution (we use a tilde to denote the independent copy), and we have a
decomposition similar to (15) for i �= j :

P(ξt (i) = x)P(ξt (j) = y) = P(ψi(t) ∩ ψ̃j (t) �= ∅, ξt (i) = x, ξ̃t (j) = y)

+
∑

a∩b=∅

P(ψi(t) = a, ψ̃j (t) = b, ξt (i) = x, ξ̃t (j) = y)

= P(ψi(t) ∩ ψ̃j (t) �= ∅, ξt (i) = x, ξ̃t (j) = y)

+
∑

a∩b=∅

P(ψi(t) = a, ξt (i) = x)P(ψj (t) = b, ξt (j) = y).

(16)

Subtracting (16) from (15) we obtain, for i �= j ,

|P(ξt (i) = x, ξt (j) = y)− P({ξt (i) = x)P(ξt (j) = y)|
≤ P(ψi(t) ∩ ψj (t) �= ∅)+ P(ψi(t) ∩ ψ̃j (t) �= ∅)

≤ 2

N − 1
(e2Ct − 1),

by Lemma 1 (we have used the fact that the lemma also holds for ψi(t) ∩ ψ̃j (t)). Thus, by
summing over i and j ∈ {1, . . . , N}, and noting that there are N diagonal terms which bring a
factor N when i = j , we obtain the desired bound.

4. Proof of Theorem 2

Note that (7) follows from (6), combined with the following property: for any positive time t ,

lim
N→∞ sup

ξ∈�N
ENξ [‖m(ξt )− Ttm(ξ)‖] = 0.

Indeed, ∫
�N

‖m(ξ)− ν‖ dλN(ξ)

=
∫
�N

ENξ [‖m(ξt )− ν‖] dλN(ξ)

≤
∫
�N

ENξ [‖m(ξt )− Ttm(ξ)‖] dλN(ξ)+
∫
�N

‖Ttm(ξ)− ν‖ dλN(ξ)

≤ sup
ξ∈�N

ENξ [‖m(ξt )− Ttm(ξ)‖] + sup
µ∈M

‖Ttµ− ν‖.

Thus, we first estimate ENξ [‖m(ξt )− Ttm(ξ)‖]. It is more convenient to work with the l2-norm,
rather than the total variation norm. For a function ϕ : � → R, we denote its l2-norm as

‖ϕ‖2 =
(∑
x∈�

ϕ2(x)

)1/2

.

By the Cauchy–Schwarz inequality, note that if µ and ν are probabilities on �,

‖µ− ν‖2 ≤ ‖µ− ν‖ ≤ √|�|‖µ− ν‖2.
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To estimate ENξ [‖m(ξt )− Ttm(ξ)‖2], note that

ENξ [‖m(ξt )− Ttm(ξ)‖2] ≤ ENξ [‖m(ξt )− ENξ [m(ξt )]‖2] + ‖ENξ [m(ξt )] − Ttm(ξ)‖2. (17)

Taking y = x in (5) we obtain

E[(mx(ξt )− E[mx(ξt )])2] ≤ 2e2Ct

N
. (18)

By (18) and Jensen’s inequality, we have

[ENξ ‖m(ξt )− ENξ [m(ξt )]‖2]2 ≤ ENξ [‖m(ξt )− ENξ [m(ξt )]‖2
2] ≤ 2|�|e2Ct

N
.

The second term in (17) is dealt with in the following lemma.

Lemma 2. For any T > 0,

lim
N→∞ max

0≤t≤T max
ξ∈�N

‖ENξ [m(ξt )] − Ttm(ξ)‖2 = 0.

Proof. We introduce some simplifying notation:

ux(t) = ENξ [mx(ξt )] and vx(t) = Ttm(ξ)(x).

We show that there is a constant B such that, for any t > 0,

d

dt
‖u(t)− v(t)‖2

2 ≤ B‖u(t)− v(t)‖2
2 + 4e2Ct ∑

y q(y, 0)

N
. (19)

Since ‖u(0)− v(0)‖2 = 0, the result follows at once by means of Gronwall’s inequality.
We fix t > 0, and we often omit to display the time dependence. From (4),

dux
dt

=
∑
y∈�

q(y, x)uy +
∑
y∈�

q(y, 0), uxuy + Rx(ξ, t), (20)

where

Rx(ξ, t) =
∑
y∈�

q(y, 0)

[
N

N − 1
ENξ [my(ξt )mx(ξt )] − ENξ [my(ξt )]ENξ [mx(ξt )]

]
.

Proposition 2 implies that

sup
x∈�

sup
ξ

|Rx(ξ, t)| ≤ 2e2Ct ∑
y q(y, 0)

N
.

On the other hand, from (1),

dvx
dt

=
∑
y∈�

q(y, x)vy +
∑
y∈�

q(y, 0)vxvy. (21)
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Subtracting (21) from (20), we obtain

d(ux − vx)

dt
=

∑
y∈�

q(y, x)(uy − vy)+
∑
y∈�

q(y, 0)(uxuy − vxvy)+ Rx(ξ, t).

Now,
d

dt

1

2
‖u(t)− v(t)‖2

2 =
∑
x

d(ux − vx)

dt
(ux − vx)

=
∑
x∈�

∑
y∈�

q(x, y)(uy − vy)(ux − vx)

+
∑
x∈�

∑
y∈�

q(y, 0)(uxuy − vxvy)(ux − vx)

+
∑
x

Rx(ux − vx). (22)

We deal with each term on the right-hand side of (22) separately. First,

∣∣∣∣
∑
x∈�

∑
y∈�

q(x, y)(uy − vy)(ux − vx)

∣∣∣∣ ≤
( ∑
x,y∈�

q2(x, y)

)1/2

‖u− v‖2
2. (23)

To deal with the second term, observe that uxuy − vxvy = vx(uy − vy) + uy(ux − vx) and,
hence, the second term in (22) equals

∑
x∈�

∑
y∈�

q(y, 0)vx(uy − vy)(ux − vx)+
∑
x∈�

∑
y∈�

q(y, 0)uy(ux − vx)(ux − vx). (24)

Since v is bounded, the first term in (24) can be treated as (23) with q(x, y) replaced by
q̃(x, y) := q(y, 0)vx . The second term in (24) equals

‖u− v‖2
2

∑
y

q(y, 0)uy ≤ ‖u− v‖2
2 sup

y
q(y, 0).

Finally, taking into account the fact that
∑
x vx = ∑

x ux = 1, the last term of (22) can be
bounded by

2 sup
x

|Rx | ≤ 4e2Ct ∑
y q(y, 0)

N
.

Collecting all these computations, we obtain (19).
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