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Evolution of linear internal waves over large
bottom topography in three-layer stratified fluids
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Evolutions of internal waves of different modes, particularly mode 1 and mode 2,
passing over variable bathymetry are investigated based on a new numerical scheme.
The problem is idealized as interfacial waves propagating on two interfaces of a
three-layer density stratified fluid system with large-amplitude bottom topography. The
Dirichlet-to-Neumann operators are introduced to reduce the spatial dimension by one
and to adapt the three-layer system and significant topographic effects. However, for
simplicity, nonlinear interactions between interfaces are neglected. Numerical techniques
such as the Galerkin approximation, proven effective in previous works, are applied
to save computational costs. Shoaling of linear waves on an uneven bottom is first
studied to validate the proposed formulation and the corresponding numerical scheme.
Then, for two-dimensional numerical experiments, mode transition phenomena excited
by locally confined bottom obstacles and quickly varying topographies, including the
Bragg resonance, mode-2 excitation, wave homogenization, etc., are investigated. In
three-dimensional simulations, internal wave refraction by a Luneberg lens is considered,
and good agreement is found in comparison with the ray theory. Finally, in the limiting
case, when the top layer can be negligible (for example, a gas layer of extremely small
density), the problem is reduced to a two-and-a-half-layer fluid system, where an interface
and a surface are unknown free boundaries. In this situation, the surface signature of an
internal wave is simulated and verified by introducing the realistic bathymetry of the Strait
of Gibraltar and qualitatively compared with the satellite image.
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1. Introduction

Wave dynamics in the oceanic environment with density stratified structures, known as
internal waves, are essential for untangling many physical and environmental processes
in oceanography. The topographic effects on generation, propagation and interactions of
internal waves of different modes have attracted great interest in the past few decades. The
corresponding mechanisms are vital in physical oceanography and coastal engineering
applications. The bottom boundary, with varying forms in the typical oceanic area such as
strait, submerged reef and seacoast, represents a specific and primary source of disturbance
on internal waves. Though it will increase complexity, the necessity of involving real
bathymetry in the internal wave system has inspired current research.

Numerically solving the classical water-wave problem, i.e. the full Euler equations
composed of the Laplace equation governing the motion of the bulk fluid, the
impermeability condition at the bottom and the kinematic and dynamic conditions on
the free surface, is usually challenging. Its core difficulty lies in accurately obtaining
the normal velocity on the free surface at every time step. In a two-dimensional fluid
domain (corresponding to a one-dimensional free surface), numerical methods designed
based on complex analysis in one variable perform well, with or without the inclusion
of bottom topography. However, other types of numerical methods that accommodate
more general cases have to be developed since the complex function theory cannot be
applied or generalized to three-dimensional problems. A large category of methods is to
reformulate the system with the surface variables using a Dirichlet–Neumann map for the
velocity potential so as to reduce the dimension of the problem. The advantage of this
type of method is avoiding the expensive numerical solution of the Laplace equation in
an irregular time-varying domain, and the key to such methods lies in the accurate and
efficient computation of the Dirichlet-to-Neumann (DtN) operator that maps the given
Dirichlet data to the associate Neumann data at the free surface. Wilkening & Vasan (2015)
summarized four existing forms of the DtN operator and compared them with the boundary
integral collocation method from some numerical perspectives.

The first characterization of the DtN operator is the Craig–Sulem expansion pioneered
by Craig & Selum (1993). They proposed expressing the DtN operator as a Taylor series
by assuming the analyticity of the wave profile and using a pseudo-spectral method for
numerical computations. Craig et al. (2005) and Guyenne & Nicholls (2005) extended
the Craig–Sulem expansion to water waves over a periodically varying bottom, showing
that the topographic effect introduces an additional term in the DtN operator. This
additional operator also has a convergence Taylor series when the deformation in the
bottom boundary is analytic and small. With the aid of this extended DtN operator,
Craig et al. (2005) presented, in various asymptotic limits, a systematic derivation of
long-wave nonlinear models with a non-trivial bathymetry based on the Hamiltonian
perturbation analysis. Guyenne & Nicholls (2005) implemented the explicit recursion
formula of the topographic operator to simulate the evolution of solitary waves over plane
slopes. They noticed the instability at high wavenumbers, presumably owing to aliasing
errors or the ill-conditioning of the operator expansion. The Craig–Sulem expansion of
the DtN operator was also generalized to a moving bottom topography by Guyenne &
Nicholls (2008) to mimic the earthquake- and landslide-generated tsunamis. The authors
rewrote the formal expression of Taylor series terms to eliminate the explicit appearance
of extremely unstable operators. Upon noticing that the topographic operator in the works
mentioned above (Craig et al. 2005; Guyenne & Nicholls 2005, 2008) already includes a
smoothing operator, Cathala (2016) derived a non-local shallow-water model in which
only smoothing contribution is involved for flows over a non-smooth topography and
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showed numerically a satisfactory comparison with that of Nachbin (2003) for the case
of a polygonal topography.

The second and third methods, the Ablowitz–Fokas–Musslimani (AFM) implicit
formulation and the dual AFM (AFM*) formulation, for characterizing the DtN operator,
are homologous. To construct a global relation between the Dirichlet and Neumann
data, basic hyperbolic functions and Green’s second identity are used to obtain integral
equations. Solving the implicit or explicit non-local characterization is equivalent
to summing all terms in the Craig–Sulem expansion. Milewski (1998) proposed an
early derivation with weakly nonlinear approximation and asymptotic expansion of
velocity potential, where a Fourier integral equation was obtained as an alternative
formulation of the water-wave problem involving topographic and capillary effects.
From the mathematical point of view, Fokas (2000) introduced a general approach for
boundary value problems for linear and integrable nonlinear partial differential equations
and showed that the last step of this approach was to analyse the global relation
between the solution and its derivatives on the boundary, which could be obtained by
constructing and integrating Green’s function. Based on previous works, Ablowitz, Fokas
& Musslimani (2006) presented the AFM non-local formulation of water waves with
non-local spectral equations where both surface tension and bottom topography were taken
into consideration. The AFM* formulation is a dual version of the AFM method (noticing
the adjoint property of the DtN operator) initially derived by Ablowitz & Haut (2008)
for interfacial waves in the classic two-layer system. After that, considerable effort has
been devoted to utilizing/generalizing the AFM* method from multiple aspects. Of note
is the work of Haut & Ablowitz (2009) who derived the Benny–Luke and intermediate
long-wave equations for interfacial waves with a free surface and numerically investigated
lump-type solutions, Vasan & Deconinck (2013) who used the fully nonlinear AFM*
formulation to study the inverse problem for bathymetry detection in a two-dimensional
system, and Andrade & Nachbin (2018) who developed a three-dimensional DtN operator
based upon the linearized AFM* formulation. It is worth mentioning that in the linear
approximation, the Craig-Sulem expansion and AFM formulation give the same result for
the surface water-wave problem, regardless of the amplitude of bottom topography (see
Craig et al. 2005).

The last characterization of the DtN operator is the transformed field expansion method.
It is, in fact, an application of boundary-flattening change of variables to avoid the
amplification of a round-off error in computations of the Craig–Sulem expansion terms.
Nicholls & Reitich (2001, 2006) considered a three-dimensional problem and proved the
change of variables can lead to an accurate and well-conditioned perturbative calculation.
These works do not include the topographic effect.

Except for the DtN operator, there also exist other reformulations of the water-wave
problem in the spirit of Zakharov’s equations, among which the most famous one is
the high-order spectral (HOS) method pioneered by Dommermuth & Yue (1986). The
basis of the HOS method is the mode coupling idea, and the topographic effect can
also be incorporated into the coupling. Instead of introducing the DtN operator, a series
of boundary value problems are given at each order of the Taylor expansion of the
velocity potential Φ. At mth order, with the mode coupling approach, Φ(m) has an
eigenfunction expansion of free modes. The time advancement of the amplitude of each
mode is computed with free-surface conditions. The advantage of this method is the
accessibility to the evolution of each mode calculated. However, the restriction on the
system is unavoidable; for example, the bottom deformation and free-surface displacement
are demanded to be small. Liu & Yue (1998) performed the numerical simulation with the
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HOS method to investigate the generalized Bragg scattering in three-dimensional cases,
and Alam, Liu & Yue (2009a,b) extended this method for a two-fluid system with a free
surface for analyses of the Bragg resonance over bottom ripples.

When it comes to a more realistic oceanic situation, the complexity of the internal
wave problem over real bathymetry (which could be smoother, slowly varying or periodic)
poses more challenges. To the best of the authors’ knowledge, among the above methods,
only AFM* and HOS have been generalized to the direct numerical simulation of
internal waves. Most existing studies focus on deriving the reduced models, such as
the Korteweg–de Vries (KdV) and Kadomtsev–Petviashvili (KP) equations. For models
considering seabed terrain, Chen & Liu (1996) derived the modified KdV equation
for a two-fluid system with a critical depth ratio and investigated the interfacial waves
over random topography. They found that the randomness of the topography with white
Gaussian noise distribution results in an averaged solitary wave, which gradually deforms
into a spreading Gaussian wavepacket. Lynett & Liu (2002) considered a two-layer
system with a free surface and proposed a weakly dispersive, weakly nonlinear and
depth-integrated model for interfacial waves passing over real bathymetry. However, even
though the authors did not use the rigid-lid approximation, the amplitude of waves on
the free surface was much smaller than internal waves due to a small density difference
between two layers; thus, only internal waves were numerically solved and compared
with satellite images for model verification. Nonlinear models for internal waves in a
continuously stratified density environment were introduced by Grimshaw (1981). Based
on generalized Lagrangian variables, Grimshaw separated the motion of the fluid into a
background shear flow and a relative perturbation. With asymptotic analysis and method
of multiple scales, the variable coefficient KdV and Benjamin–Davis–Ono equations were
derived for shallow and deep water cases, respectively. Later on, Helfrich & Melville
(1986) extended the model to include bottom topography and its application to tidal flows
can be referred to Griffiths & Grimshaw (2007). Yuan et al. (2018b) derived a variable
coefficient KP equation in a three-dimensional system and compared the evolution of
internal solitary waves with those of the Massachusetts Institute of Technology general
circulation model. Grimshaw’s method can also be generalized to study multimode
internal waves. The variable coefficient KdV equation was used to simulate the evolution
of a mode 2 internal solitary wave over a slope-shelf topography by Yuan, Grimshaw
& Johnson (2018a). Moreover, Liu, Grimshaw & Johnson (2019) used a limited linear
coupling model between mode 1 and mode 2 to analyse the mode-2 generation as mode 1
propagates shoreward.

The oceanic environment usually shows pycnocline, the density of which varies rapidly;
thus, the ocean can approximately be separated into three layers with different typical
densities. The stratification is continuous in the pycnocline, with infinitely many interfaces
presented so that multimode internal waves exist. Consequently, the three-layer fluid
system with two interfaces may be the simplest idealization to be analogous to the
real situation and is considered in this paper with the further assumption of being
incompressible, inviscid and irrotational for each layer fluid; thus, interactions between
mode 1, mode 2 and bathymetry can be analysed. When the density of the top layer is
negligible (for example, the air–water interface), the three-layer system reduces to the
two-fluid system with a free surface on the top, which can be considered a limiting case
of the three-layer configuration. Multimode nonlinear internal waves in the three-layer
configuration with flat boundaries have attracted considerable interest in recent years,
and particular attention has been paid to the mode 2 solitary waves without oscillatory
tails. For example, mode 2 free solitary waves have been found in the strongly nonlinear
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Miyata–Choi–Camassa type equations by Barros, Choi & Milewski (2020) for the
shallow-water scenario and by Wang, Wang & Yuan (2022) for fluids of great depth,
and solutions in the former situation have also been confirmed in the full Euler equations
by Doak, Barros & Milewski (2022). In the present work, the DtN operator method is
generalized to a three-layer system. The ansatz for the topographic component follows the
expression of Milewski (1998). Inspired by Andrade & Nachbin (2018), internal waves
are assumed to be linear, but no restriction is imposed on the topography. Both two- and
three-dimensional evolutions of multimode internal waves over bathymetry are simulated,
and a Galerkin approximation is applied to reduce the computational cost when calculating
topographic coefficients.

The rest of the paper is structured as follows. In § 2 the mathematical formulation
of interfacial waves in a three-layer fluid system passing over bottom topography,
together with the linear dispersion relation, is presented. The numerical method based
on a generalization of Andrade & Nachbin (2018) by introducing two DtN operators is
constructed in § 3. Corresponding lateral boundary conditions and initialization are also
explained. Section 4 presents the main simulation results for multimode internal waves in
both two and three dimensions. Finally, the concluding remarks are given in § 5.

2. Mathematical formulation

A system composed of three superposed inviscid, immiscible and incompressible fluids
separated by two interfaces is considered in three dimensions (see figure 1 for a sketch).
The system is bounded above by a flat rigid wall and below by variable topography. The
fluid in each layer, which is assumed to be irrotational, has finite depth and constant
density. A Cartesian coordinate system (x, y, z) is introduced such that x and y are
horizontal coordinates and the z axis is in the opposite direction of gravity. Properties
in the lower layer are designated with subscript 1 and those in the middle and upper
layers are analogously assigned with subscripts 2 and 3, respectively. The depth of the
lower layer, H1, is defined with the vertical distance between the position of the lower
interface at rest and the reference bottom position z = 0. The bottom topography is
expressed by z = b(x, y) and the two interfaces are designated by z = H1 + η1(x, y, t)
and z = H1 + H2 + η2(x, y, t), with t being the time. The lighter fluid is always placed
on top of the heavier one to avoid the Rayleigh–Taylor instability, namely ρ3 < ρ2 < ρ1
in figure 1.

Applying the potential theory, the motions of fluid bodies are governed by the Laplace
equations, which can be written as

φ1xx + φ1yy + φ1zz = 0 for b(x, y) < z < H1 + η1(x, y, t),
φ2xx + φ2yy + φ2zz = 0 for H1 + η1(x, y, t) < z < H1 + H2 + η2(x, y, t),
φ3xx + φ3yy + φ3zz = 0 for H1 + H2 + η2(x, y, t) < z < H1 + H2 + H3.

⎫⎬⎭ (2.1)

The impermeability boundary conditions on the top and bottom walls can be expressed as

φ1z − φ1xbx − φ1yby = 0 on z = b(x, y),
φ3z = 0 on z = H1 + H2 + H3.

}
(2.2)

On the interfaces, the kinematic boundary conditions governing the time evolutions of the
wave displacements, η1(x, y, t) and η2(x, y, t), read

η1t + η1xφ1x + η1yφ1y − φ1z = 0 on z = H1 + η1(x, y, t),
η1t + η1xφ2x + η1yφ2y − φ2z = 0 on z = H1 + η1(x, y, t),

η2t + η2xφ2x + η2yφ2y − φ2z = 0 on z = H1 + H2 + η2(x, y, t),
η2t + η2xφ3x + η2yφ3y − φ3z = 0 on z = H1 + H2 + η2(x, y, t).

⎫⎪⎬⎪⎭ (2.3)
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H2

H3

H1

ρ2

ρ3

ρ1

z = b(x, y)

Periodic condition

z

y

x

z = η1(x, y) + H1

z = η2(x, y) + H1 + H2

Figure 1. Sketch of interfacial waves propagating over large bottom topography in a three-layer density
stratified system.

Finally, the Bernoulli principle yields the dynamic conditions on the interfaces, namely,

φ1t − R1φ2t + g(1 − R1)η1 + 1
2 (φ2

1x + φ2
1y + φ2

1z − R1φ
2
2x − R1φ

2
2y − R1φ

2
2z) = 0

on z = H1 + η1(x, y, t),

φ2t − R2φ3t + g(1 − R2)η2 + 1
2 (φ2

2x + φ2
2y + φ2

2z − R2φ
2
3x − R2φ

2
3y − R2φ

2
3z) = 0

on z = H1 + H2 + η2(x, y, t),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.4)

where R1 = ρ2/ρ1 < 1 and R2 = ρ3/ρ2 < 1. We remark that though there is no smallness
assumption on topographic relief, a restriction, b(x, y) < H1 + η1, is still imposed in the
present problem.

2.1. Non-dimensional form and linear model
We non-dimensionalize the system using the scalings

x′ = lx, y′ = ly, z′ = H1z, η′ = aη, b′ = H1b, t′ = l√
gH1

t, φ′ = agl√
gH1

φ,

(2.5a–g)

where l is the reference wavelength and a is the typical wave amplitude. The small
dimensionless parameter ε = a/H1 � 1 arises along with μ = H1/l for which, notably,
no assumption is imposed (which is different from the Boussinesq scaling). Here μ will
be used as a parameter whose value is preassigned, and we choose μ = 0.1 in most
computations in the present paper.

Dropping the apostrophes of dimensionless variables, the governing equations and
impermeability boundary conditions in non-dimensional form can be recast to

μ2(φ1xx + φ1yy) + φ1zz = 0 for b < z < 1 + εη1,

μ2(φ2xx + φ2yy) + φ2zz = 0 for 1 + εη1 < z < 1 + Θ1 + εη2,

μ2(φ3xx + φ3yy) + φ3zz = 0 for 1 + Θ1 + εη2 < z < 1 + Θ1 + Θ2,

φ1z − μ2(φ1xbx + φ1yby) = 0 on z = b,

φ3z = 0 on z = 1 + Θ1 + Θ2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.6)
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Internal waves in three-layer stratified fluids

where Θ1 = H2/H1 and Θ2 = H3/H1 are the depth ratios. The kinematic and dynamic
boundary conditions on the interfaces are, on z = 1 + εη1,

η1t = 1
μ2 φ1z − ε(φ1xη1x + φ1yη1y) = 1

μ2 φ2z − ε(φ2xη1x + φ2yη1y),

φ1t − R1φ2t + (1 − R1)η1

+ ε

2

(
φ2

1x + φ2
1y + 1

μ2 φ2
1z − R1φ

2
2x − R1φ

2
2y − R1

μ2 φ2
2z

)
= 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.7)

and on z = 1 + Θ1 + εη2,

η2t = 1
μ2 φ2z − ε(φ2xη2x + φ2yη2y) = 1

μ2 φ3z − ε(φ3xη2x + φ3yη2y),

φ2t − R2φ3t + (1 − R2)η2

+ ε

2

(
φ2

2x + φ2
2y + 1

μ2 φ2
2z − R2φ

2
3x − R2φ

2
3y − R2

μ2 φ2
3z

)
= 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.8)

As the linear dispersive system has been proven to be well suited for the investigation of
small-amplitude waves in a realistic physical scale, following the previous work (Andrade
& Nachbin 2018), the quadratic terms of O(ε) in (2.6)–(2.8) will be dropped. It is worth
noting that the topographic effect can be retained in the bottom boundary condition by
regarding μ as a variable parameter. Finally, the linearized system to be solved can be
rewritten as

μ2(φ1xx + φ1yy) + φ1zz = 0 for b < z < 1,

μ2(φ2xx + φ2yy) + φ2zz = 0 for 1 < z < 1 + Θ1,

μ2(φ3xx + φ3yy) + φ3zz = 0 for 1 + Θ1 < z < 1 + Θ1 + Θ2,

⎫⎬⎭ (2.9)

φ1z − μ2(φ1xbx + φ1yby) = 0 on z = b,

φ3z = 0 on z = 1 + Θ1 + Θ2,

}
(2.10)

η1t − 1
μ2 φ1z = η1t − 1

μ2 φ2z = 0 on z = 1,

η2t − 1
μ2 φ2z = η2t − 1

μ2 φ3z = 0 on z = 1 + Θ1,

⎫⎪⎬⎪⎭ (2.11)

φ1t − R1φ2t + (1 − R1)η1 = 0 on z = 1,

φ2t − R2φ3t + (1 − R2)η2 = 0 on z = 1 + Θ1.

}
(2.12)

2.2. Dispersion relation
We investigate the characteristics of the linear system with trivial bottom topography,
i.e. b(x, y) = 0. Since the system is isotropic in horizontal directions, it suffices to
focus on the two-dimensional problem. Considering monochromatic incident waves, the
wavenumber is related to the frequency through the dispersion relation. Assuming that
two interfacial waves with sinusoidal profiles propagate in the x direction from left to right
without phase difference, namely

η1 = a1 sin (kx − ω0t), η2 = a2 sin (kx − ω0t), (2.13a,b)

we then calculate the dispersion relation and the expression of a2/a1 as a function of
wavenumber and angular velocity (k, ω0). First, for a flat bottom, the impermeability
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boundary conditions in (2.10) become

φ1z = 0 on z = 0,

φ3z = 0 on z = 1 + Θ1 + Θ2.

}
(2.14)

Substituting (2.13a,b) into (2.11), the vertical derivatives of velocity potentials on two
interfaces can be obtained as

φ1z = φ2z = −μ2ω0a1 cos (kx − ω0t) on z = 1,

φ2z = φ3z = −μ2ω0a2 cos (kx − ω0t) on z = 1 + Θ1.

}
(2.15)

Then, the Laplace equations in (2.9) can be solved, and the velocity potentials can be
expressed as

φ1 = − μω0a1

k sinh (μk)
cos (kx − ω0t) cosh (μkz),

φ2 = μω0

k sinh2 (μkΘ1)
cos (kx − ω0t)[(a1 − a2 cosh (μkΘ1)) sinh (μk(z − 1))

+ (a2 − a1 cosh (μkΘ1)) sinh (μk(z − 1 − Θ1))],

φ3 = μω0a2

k sinh(μkΘ2)
cos (kx − ω0t) cosh (μk(z − 1 − Θ1 − Θ2)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.16)

Substituting the velocity potentials and wave profiles into the dynamic boundary
conditions on two interfaces (see (2.12)), and after some algebra, one obtains

a2

a1
= sinh(μkΘ1)

R1 tanh(μk)
+ cosh(μkΘ1) +

(
1 − 1

R1

)
k

μω2
0

sinh(μkΘ1) (2.17)

and

A

(
μω2

0
k2

)2

+ B
μω2

0
k2 + C = 0, (2.18)

with

A
k2 = tanh(μkΘ2) + R2 tanh(μkΘ1)

R1
+ tanh(μk)[tanh(μkΘ1) tanh(μkΘ2) + R2],

B
k

=
(

R2

R1
− 1

R1

)
tanh(μkΘ1) tanh(μkΘ2) +

(
R2 − 1

R1

)
tanh(μk) tanh(μkΘ2)

+
(

R2 − R2

R1

)
tanh(μk) tanh(μkΘ1),

C = (R2 − 1)

(
1 − 1

R1

)
tanh(μk) tanh(μkΘ1) tanh(μkΘ2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.19)

Equation (2.17) describes the ratio between wave displacements on two interfaces. Mode
1 internal waves will be obtained when a2/a1 is positive, and waves of mode 2 will be
identified the other way around (i.e. a2/a1 < 0). The dispersion relation in a quadratic
form is given in (2.18), and the unknown to be solved is μω2

0/k2 = μc2
φ , where cφ is

termed the phase velocity. With the fixed parameters (R1, R2, Θ1, Θ2, μ) and specific
wavenumber k, two solutions can be obtained representing phase velocities for mode 1
and mode 2 internal waves, respectively. Some examples are given in figure 2.
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Figure 2. Characteristics of monochromatic waves in three-layer configurations, including the dispersion
relation between k and cφ and the ratio between wave displacements on two interfaces as a function of
wavenumber: mode 1 internal waves (single lines) and mode 2 internal waves (lines with marks). Results
are shown for (a,b) (R1, R2, μ) = (0.6, 0.6, 0.1) with (Θ1, Θ2) = (1, 1) (black solid lines), (Θ1, Θ2) = (3, 1)

(blue dashed lines) and (Θ1, Θ2) = (1, 2) (red dotted lines); (c,d) (R1, Θ1, Θ2, μ) = (0.6, 1, 1, 0.1) with
R2 = 0.6 (black solid lines), R2 = 0.4 (blue dashed lines) and R2 = 0.2 (red dotted lines).

In figure 2(a) the curves of cφ(k) for mode 1 and mode 2 approach each other when
the depth of the middle layer increases. On the contrary, the distance between the two
curves slightly increases when the depth of the upper layer increases. The density of the
upper layer impacts the phase velocity for both modes in figure 2(c) (decreasing in R2
leads to an increase in velocity for a fixed wavenumber), and the influence for mode 1
is more prominent. The ratio of wave displacement is monotone and can be ascending
or descending. The opposite tendency of this ratio is observed in figures 2(b) and 2(d)
for mode 1 and mode 2 waves. For a thick middle layer, mode 1 waves show increasing
displacement ratio curves, while the ratio function decreases with wavenumber for a thick
upper layer. The variable tendency can also be influenced by density ratios.

The solvability of the linear dispersion relation is worth attention. The solution, μc2
φ ,

solved from (2.18) with pre-given system parameters should be non-negative; otherwise,
the system becomes linearly ill-posed. It can be easily inferred from (2.19) that, for all
k > 0, A > 0, B < 0 and C > 0. Assuming B2 − 4AC � 0, the quadratic equation has
real solutions giving rise to positive phase velocities. However, in the domains of the

997 A73-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.586


J. Chai and Z. Wang

system parameters, i.e. Θ1, Θ2 ∈ (0, +∞) and R1, R2 ∈ (0, 1), it is not easy to prove that
the discriminant is always non-negative. We consider the asymptotic limiting situations
to elaborate on the potential restriction on system parameters. When k → +∞, it is not
difficult to prove the positivity of the discriminant. We then consider the behaviour for a
small wavenumber; asymptotic expansion with k → 0+ is performed for the coefficients
in (2.19), which gives

A ∼ μk3
(

Θ2

R1
+ Θ1R2

R1
+ R2

)
,

B ∼ μ2k3
[
Θ1Θ2

(
R2

R1
− 1

R1

)
+ Θ2

(
R2 − 1

R1

)
+ Θ1R2

(
1 − 1

R1

)]
,

C ∼ μ3k3Θ1Θ2

(
R2 − 1 + 1

R1
− R2

R1

)
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.20)

By taking the limit k → 0+, the two solutions to the quadratic equation read

μc2
φ = μ

±√
Δ −

[
Θ1Θ2

(
R2

R1
− 1

R1

)
+ Θ2

(
R2 − 1

R1

)
+ Θ1R2

(
1 − 1

R1

)]
2
(

R2 + Θ1R2

R1
+ Θ2

R1

) , (2.21)

where

Δ =
[
Θ1Θ2

(
R2

R1
− 1

R1

)
+ Θ2

(
R2 − 1

R1

)
+ Θ1R2

(
1 − 1

R1

)]2

− 4Θ1Θ2

(
R2 − 1 + 1

R1
− R2

R1

)(
Θ2

R1
+ Θ1R2

R1
+ R2

)
. (2.22)

We can numerically show that, for small wavenumbers, the system remains feasible under
most circumstances, and both modes of internal waves exist. Figure 3 illustrates the
distribution of mode-2 phase velocities (which is the smaller solution) solved from (2.21)
with different system parameters. Two particular parameters, for example, depth ratios in
figure 3(a), are fixed, and the phase velocity is investigated in the plane of the other two
parameters. Apparently, in figure 3 the phase velocity as k → 0+ is physical in all the areas
considered. When the depth ratio tends to 0, or the density ratio tends to 1, c2

φ tends to 0.
There is no indication that the three-layer system will become linearly unstable for a wide
range of parameters for these two asymptotic limiting cases.

We finally remark that by taking the limit Θ2 → +∞ and R2 → 0, ((2.17)–(2.19))
directly degenerate to those of a two-layer fluid system with a free surface. For this limiting
case, these results can also be derived directly from governing equations and boundary
conditions and are presented in § A.1.

3. Numerical methods

3.1. A spectral method and DtN operators
The linear model described in ((2.9)–(2.12)) will be numerically solved in spectral space
by assuming periodic boundary conditions in horizontal directions on interfacial waves
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Figure 3. (a) Distribution of c2
φ in the R1–R2 plane for Θ1 = Θ2 = 1 and μ = 0.1. (b) Distribution of c2

φ in
the Θ1–Θ2 plane for R1 = R2 = 0.6 and μ = 0.1. The feasibility region covers all the presented areas.

(see figure 1). The spatial Fourier transform in the horizontal plane is defined as

F [ f ](k) =
∫

x∈Ω

e− i k · xf (x) dx, (3.1)

where x = (x, y) denotes the horizontal variables, k = (kx, ky) represents the wavevector

with k =
√

k2
x + k2

y the corresponding wavenumber, i = √−1 is the imaginary unit
and Ω = [0, L] × [0, L] is the physical domain for integration, namely a region in the
horizontal plane with width and length as L. The set of wavevectors is defined as
k ∈ Λ = Z2(2π/L) and Λ∗ = Λ \ 0 is defined for the set excluding the zero wavenumber
element.

The algorithm consists primarily of three parts: (i) deriving the expression of the DtN
operators from the elliptic boundary value problems, (ii) constructing the time-evolution
equations, (iii) calculating the topographic coefficients (when the bottom has a spatially
varying form). In the subsequent analyses, the particular case with a uniform depth in the
lower layer is considered in the first place, where the DtN operators will be defined, and
how they work to simulate the evolution of interfacial waves in a three-layer system will
be presented. After gaining an overall understanding of the calculation process, we then
introduce the bottom topography and elaborate on the more complicated DtN operators.

3.1.1. Elliptic boundary value problems and time-evolution equations
The whole linear system can be divided into three elliptic boundary value problems and
one time-evolution problem, and their connection can be achieved by introducing the DtN
operators. The three elliptic boundary value problems associated with three-fluid layers
are, for the bottom layer,

μ2(φ1xx + φ1yy) + φ1zz = 0 for b < z < 1,

φ1z − μ2(φ1xbx + φ1yby) = 0 on z = b,

φ1 = q1 on z = 1,

⎫⎬⎭ (3.2)
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for the middle layer,

μ2(φ2xx + φ2yy) + φ2zz = 0 for 1 < z < 1 + Θ1,
φ2 = q22 on z = 1 + Θ1,

φ2 = q12 on z = 1,

⎫⎬⎭ (3.3)

and for the upper layer,

μ2(φ3xx + φ3yy) + φ3zz = 0 for 1 + Θ1 < z < 1 + Θ1 + Θ2,
φ3 = q3 on z = 1 + Θ1,

φ3z = 0 on z = 1 + Θ1 + Θ2,

⎫⎬⎭ (3.4)

where we introduce the interfacial velocity potentials q1(x, t) = φ1(x, 1 + εη1(x, t), t),
q12(x, t) = φ2(x, 1 + εη1(x, t), t), q22(x, t) = φ2(x, 1 + Θ1 + εη2(x, t), t) and q3(x, t) =
φ3(x, 1 + Θ1 + εη2(x, t), t) as new variables. We show that q12 and q22 can be expressed
with q1 and q3 due to the kinematic boundary conditions on two interfaces. Furthermore,
we remark that the boundary value problem corresponding to the middle layer has two
Dirichlet conditions rather than one Dirichlet and one Neumann in the other two layers.
The matchings of solutions on two interfaces can be described as

φ1z(x, z = 1, t) = φ2z(x, z = 1, t),
φ2z(x, z = 1 + Θ1, t) = φ3z(x, z = 1 + Θ1, t),

}
(3.5)

leading to the elimination of q12 and q22 with q12 = H1[q1, q3] and q22 = H2[q1, q3],
where H1 and H2 are pseudo-differential operators defined later on.

The kinematic and dynamic boundary conditions on the interfaces give the time
evolutions of interfacial variables, more specifically,

η1t = 1
μ2G1[q1], η2t = 1

μ2G3[q3],

q1t − R1q12t = (R1 − 1)η1, q22t − R2q3t = (R2 − 1)η2,

⎫⎬⎭ (3.6)

where G1 and G3 are the DtN operators defined as G1[q1] = φ1z(x, z = 1, t) = φ2z(x, z =
1, t) and G3[q3] = φ3z(x, z = 1 + Θ1, t), respectively. Once the DtN operators can be
appropriately computed, the numerical procedure is summarized as follows: (i) simulation
starts with initial conditions for interfacial velocity potentials (q1 and q3) and wave profiles
(η1 and η2); (ii) elliptic boundary problems ((3.2)–(3.4)) are solved, and expressions of the
DtN operators are obtained; (iii) time stepping based on (3.6) is performed with the explicit
forth-order Runge–Kutta scheme; (iv) simulation repeats the same three steps precedent in
the next time step. Apparently, for a three-dimensional problem, the calculation for wave
evolution has been reduced to a two-dimensional problem, benefiting from the introduction
of the DtN operators. In the subsequent sections we show that this numerical method can
be easily implemented and performed in spectral space.

3.1.2. The flat bottom case
In this section the case of trivial bottom topography (i.e. flat bottom) in the lower
layer is considered. The formulations of the DtN operators in this situation are given
by conducting mathematical derivations based on the spectra of the velocity potentials
and wave displacements. Considering b(x) = 0, all the elliptic boundary value problems
become linear, allowing the application of the Fourier transform. The spectral variables
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are assigned with a hat symbol. Solving the Laplace equations in the spectral space along
with boundary conditions, one obtains, in the lower layer,

φ1(x, z) =
∑
k∈Λ

ei k · xq̂1(k)
cosh(μkz)
cosh(μk)

,

φ1z(x, z = 1) =
∑
k∈Λ

ei k · xq̂1(k)μk tanh(μk),

⎫⎪⎪⎬⎪⎪⎭ (3.7)

where q̂1(k) is the spectrum, namely the spatial Fourier transform of q1(x, t) at specific
time t. Similarly, in the upper layer the velocity potential and its normal derivative on the
upper interface can be expressed as

φ3(x, z) =
∑
k∈Λ

ei k · xq̂3(k)
cosh(μk(z − 1 − Θ1 − Θ2))

cosh(μkΘ2)
,

φ3z(x, z = 1 + Θ1) =
∑
k∈Λ

ei k · xq̂3(k)[−μk tanh(μkΘ2)].

⎫⎪⎪⎬⎪⎪⎭ (3.8)

As noted in the previous section, the middle-layer fluid is bounded by two interfaces, which
leads to two Dirichlet boundary conditions. The solution form of the velocity potential is
slightly different, namely

φ2(x, z) =
∑

k∈Λ∗
ei k · x

[
q̂22(k)

sinh (μk(z − 1))

sinh(μkΘ1)
+ q̂12(k)

sinh (μk(1 + Θ1 − z))
sinh(μkΘ1)

]
,

φ2z(x, z = 1) =
∑

k∈Λ∗
ei k · x

[
q̂22(k)

μk
sinh(μkΘ1)

− q̂12(k)
μk

tanh(μkΘ1)

]
,

φ2z(x, z = 1 + Θ) =
∑

k∈Λ∗
ei k · x

[
q̂22(k)

μk
tanh(μkΘ1)

− q̂12(k)
μk

sinh(μkΘ1)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

We remark that the spectrum of φ2 at the zero wavevector should vanish. In fact, φ2 can
be recast to a new form, φ2(x, y, z) = φ̄2(z) + φ∗

2 (x, y, z), where the perturbation part with
zero mean on a horizontal plane at any height, φ∗

2 (x, y, z), and the background uniform
part, φ̄2(z), can be separated. With the model being linear, the superposition rule holds,
and from the Laplace equation, the horizontally uniform part writes

φ̄2(z) = Az + B, φ̄2z(z) = A. (3.10a,b)

The continuity of the vertical velocity component on the lower interface (see (3.5))
requires A = F [φ1z(x, z = 1)](0) = 0. We can choose B = 0 without loss of generality
and take q̂22(0) = q̂12(0) = φ̂2(0) = 0. On the other hand, it is reasonable to apply
q̂1(0) = q̂3(0) = 0 = η̂1(0) = η̂2(0), and in numerical simulations the time evolution of
spectra on wavevector k = 0 can be ignored.

With the aid of the orthogonality of the Fourier primary functions, for wavevector k ∈
Λ∗, the matching conditions in (3.5) lead to

q̂12(k) = −q̂1(k) tanh(μk) tanh(μkΘ1) + q̂22(k)
1

cosh(μkΘ1)
,

q̂12(k) = q̂3(k) sinh(μkΘ1) tanh(μkΘ2) + q̂22(k) cosh(μkΘ1).

⎫⎬⎭ (3.11)

It directly follows that q̂12 and q̂22 can be solved from the above linear algebra system and
expressed with q̂1 and q̂3.
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The DtN operators and the time-evolution equations in the spectral space can then be
expressed as

Ĝ1[q1](k) = F [φ1z(x, z = 1)](k) = q̂1(k)μk tanh(μk),
Ĝ3[q3](k) = F [φ3z(x, z = 1 + Θ1)](k) = −q̂3(k)μk tanh(μkΘ2),

η̂1t(k) = 1
μ2 Ĝ1[q1](k), q̂1t(k) − R1q̂12t(k) = (R1 − 1)η̂1(k),

η̂2t(k) = 1
μ2 Ĝ3[q3](k), q̂22t(k) − R2q̂3t(k) = (R2 − 1)η̂2(k).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.12)

Therefore, numerical calculations of time stepping in (3.12) can be effectuated easily
without matrix inversion operations.

3.2. Topographic effects
Next, we consider a more general case when the bottom topography is non-trivial. Inspired
by Andrade & Nachbin (2018), the linear three-dimensional formulation is used to capture
the effects of large and rapidly varying bottom topography. The variable topography is
involved in the elliptic boundary value problem of the bottom layer. Consequently, only
in the solution to (3.2) do we need to introduce the topographic coefficient Xk in the
spectral space. It is worth pointing out that Craig, Guyenne & Selum (2015) have also
noted this analogy for the topographic contribution to the DtN operator between the
one-layer and two-layer settings. We will briefly describe the non-local formulation and
Galerkin approximation used for solving topographic coefficients since they are similar to
the derivations of the single-layer case presented by Andrade & Nachbin (2018).

Following Milewski (1998) or Andrade & Nachbin (2018), the velocity potential on the
bottom layer can be expressed as

φ1(x, z) =
∑

k∈Λ∗
ei k · x

[
q̂1(k)

cosh(μkz)
cosh(μk)

+ Xk
sinh(μk(z − 1))

k cosh2(μk)

]
. (3.13)

Substituting (3.13) into the impermeability boundary condition at the bottom, the relation
between topographic coefficients and the Dirichlet data q1 is established, namely,∑

k∈Λ∗
q̂1(k)∇ ·

[
ei k · x − sinh(μkb)

cosh(μk)
k
k

]
=
∑

k∈Λ∗
Xk∇ ·

[
ei k · x cosh(μk(b − 1))

cosh2(μk)

k
k2

]
.

(3.14)
The wavenumber truncation is achieved by the Galerkin approximation to reduce the
computational costs and increase the stability of the algorithm. For a numerical simulation
with N2 grid points, N2 modes exist in the spectral space. For an arbitrary real function f ,

f̂ (k) = f̂ (−k) (3.15)

holds, where the overbar symbol stands for complex conjugation; thus, only half of
the modes need to be calculated. The maximum wavenumber is N

√
2π/L. Under the

Galerkin approximation, we only calculate topographic coefficients on wavevectors whose
modulus is less than a critical value km, and the number of these wavevectors is M �
N2/2. Coefficients on wavevectors with larger modulus are set to 0, assuming that the
interaction between these components and interfacial waves remains negligible. Then, the
corresponding set of wavevectors is defined as Λ∗

M = {k ∈ Λ∗|k < km}.
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We define two linear operators that map a sequence of complex coefficients to a function
of x as

A[ fk] =
∑

k∈Λ∗
−fk∇ ·

[
ei k · x sinh(μkb)

cosh(μk)
k
k

]
,

BM[ fk] =
∑

k∈Λ∗
M

fk∇ ·
[

ei k · x cosh(μk(b − 1))

cosh2(μk)

k
k2

]
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.16)

Here A[q̂1(k)] is a smooth function, denoted as Y(x), provided q̂1(k) is known. The
Galerkin approximation requires that the residual RM = BM[Xk] − Y satisfies

(RM, ei l·x) = 0 for ∀l ∈ Λ∗
M, (3.17)

which is equivalent to∑
k∈Λ∗

M

Xk
i(l · k)

k2 F
[

ei k · x cosh(μk(b − 1))

cosh2(μk)

]
(l)

=
∑

k∈Λ∗
q̂1(k)

− i(l · k)

k
F
[

ei k · x sinh(μkb)

cosh(μk)

]
(l). (3.18)

Equation (3.18) can be transformed into a linear system. The matrix system is constructed
by extracting the real and imaginary parts of the complex system. Then, the real matrix
will be inverted. Due to the large dimension of the matrix, the computational cost can
easily become extremely high and force restrictions on the accuracy of the simulation.
The topographic coefficients and their dependence on q̂1(k), i.e. dXki/dq̂1(kj), can be
solved by inverting the system. We remark that the matrix inversion is effectuated with
the LU decomposition method, and the dimension of the real matrix constructed and
inverted is 2(M − 1) × 2(M − 1). Each spectral component is decomposed into real and
imaginary parts, and the zero wavevector is excluded. The dimension of the Jacobian
matrix Jij = dXki/dq̂1(kj) is 2(M − 1) × 2(N2/2 − 1). The validation and convergence
study of the Galerkin approximation can be found in Andrade & Nachbin (2018), as well
as the method of choosing the parameter M. Typically, M is selected by considering the
maximal amplitude of bottom topography and particle trajectories beneath the free surface
in the single-layer fluid case. However, the dimension of the matrix can still easily become
very large, so the matrices cannot be stored for the simulation of a three-dimensional
system. Therefore, a smaller M is used in three-dimensional cases. We also remark
that all modes in the spectral space are solved without the Galerkin approximation for
two-dimensional cases.

It is worth noting that solutions of the velocity potentials in the boundary value problems
for the middle- and upper-layer fluids remain unchanged. Using the expression of φ1 under
the non-local formulation in (3.13) and matching solutions on two interfaces (see (3.5)),
one obtains

q̂12(k) = − tanh(μk)
tanh(μkΘ1)

q̂1(k) − 1

k cosh2(μk) tanh(μkΘ1)
Xk − tanh(μkΘ2)

sinh(μkΘ1)
q̂3(k),

q̂22(k) = − tanh(μk)
sinh(μkΘ1)

q̂1(k) − 1

k cosh2(μk) sinh(μkΘ1)
Xk − tanh(μkΘ2)

tanh(μkΘ1)
q̂3(k).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.19)
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Substituting the above expressions into (3.6), the time-evolution equations for k ∈ Λ∗ read

η̂1t(k) = 1
μ2 Ĝ1[q1](k) = 1

μ

[
q̂1(k)k tanh(μk) + Xk

1

cosh2(μk)

]
,

η̂2t(k) = 1
μ2 Ĝ3[q3](k) = − 1

μ
q̂3(k)k tanh(μkΘ2),

⎫⎪⎪⎬⎪⎪⎭ (3.20)

and

q̂3t(k) = cosh(μkΘ1)

R1R2
[1 + R1 tanh(μk) tanh(μkΘ1)] q̂1t(k)

+ sinh(μkΘ1)

R2k cosh2(μk)
Xkt + 1 − R1

R1R2
cosh(μkΘ1)η̂1(k) + 1 − R2

R2
η̂2(k),

q̂1t(k) =

(
−R1 tanh(μkΘ2) tanh(μkΘ1)

R2k cosh2(μk)
− R1

k cosh2(μk)

)
Xkt + R1(R2 − 1) tanh(μkΘ2)

R2 cosh(μkΘ1)
η̂2(k)

tanh(μkΘ1) + R1 tanh(μk) + tanh(μkΘ2)

R2
[1 + R1 tanh(μk) tanh(μkΘ1)]

+

[
(R1 − 1) tanh(μkΘ1) + R1 − 1

R2
tanh(μkΘ2)

]
η̂1(k)

tanh(μkΘ1) + R1 tanh(μk) + tanh(μkΘ2)

R2
[1 + R1 tanh(μk) tanh(μkΘ1)]

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.21)

Finally, the time derivative of the topographic coefficient writes

Xkt =
∑

kj∈Λ∗
M

∂Xk

∂ q̂1(kj)
q̂1t(kj). (3.22)

3.3. Lateral boundary conditions and initialization
In addition to the periodic conditions given implicitly by the spectral method, the
relaxation zone method is applied for wave making and absorption in specific areas. This
method was successfully used by Guyenne & Nicholls (2008) for free-surface water-wave
problems and has proven efficient and easy to implement. At each time step, the updated
spectra will be transformed backward to the physical space, and the physical variables will
then be relaxed towards a specified analytical function over a limited region.

The relaxation is achieved by defining a relaxation coefficient function and a desired
solution. In the three-layer system the desired solution can be designated as (q̃1, q̃3, η̃1,
η̃2). An example of a relaxation coefficient as a function of x is

cr(x) = 1
2

+ 1
2

tanh
[
2π
(x

l
− p

l

)]
, (3.23)

where l is the characteristic length and p is the central position of the relaxation zone. In
more general cases, the physical variables are controlled by⎛⎜⎝q1(x, t)

q3(x, t)
η1(x, t)
η2(x, t)

⎞⎟⎠ = cr(x)

⎛⎜⎝q1(x, t)
q3(x, t)
η1(x, t)
η2(x, t)

⎞⎟⎠+ [1 − cr(x)]

⎛⎜⎝q̃1(x, t)
q̃3(x, t)
η̃1(x, t)
η̃2(x, t)

⎞⎟⎠ . (3.24)

Figure 4 illustrates the generation of incident monochromatic waves in two-dimensional
fluid systems. Mode 1 and mode 2 waves are respectively shown in figures 4(a) and
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Figure 4. Two-dimensional monochromatic interfacial waves generated with relaxation zone: waves on the
lower interface (solid curves), waves on the upper interface (dotted curves) and theoretical wave amplitudes
(horizontal lines). The system parameters are R1 = R2 = 0.6, Θ1 = Θ2 = 1 and μ = 0.1. The wave-absorbing
zones are x < 5 and x > 34, and the wave-making zone is 5 < x < 15.

4(b). This method has proved reliable: wave profiles outside the relaxation zone can
maintain the desired amplitude with negligible error, and in the absorbing zone, waves
are efficiently dissipated without obvious reflection after some time of evolution. In the
next section, incident waves will be generated with wave-making zones in both two- and
three-dimensional cases.

4. Results

4.1. Two-dimensional internal wave problems
In this part, numerical results for two-dimensional cases are presented. The grid
parameters are chosen as Δx = 0.02 and Δt = 0.01, satisfying the Courant–Friedrichs–
Lewy condition, i.e. Δx/Δt > cφ . The linear system is fully solved with M = N as the
computational cost is affordable for the two-dimensional problem.

4.1.1. Linear wave shoaling
First, we calculate the two-dimensional wave shoaling problem and compare the results
with the linear theoretical predictions to validate our numerical procedure. The topography
is chosen to vary gradually from a lower level to a higher level, which leads to the gradual
reduction of the depth of the bottom layer. The variable-depth profile is similar to the
example shown in figure 1, defined by

b(x) = 1 − b0

[
1 + tanh

(
x − x0

2

)]
. (4.1)

We remark that 2b0 is the amplitude of the bottom undulation and x0 is the topographic
centre, chosen as L/2 with L the length of the computational domain. For a monochromatic
incident wave past the variable bathymetry, the frequency remains invariant and the total
energy of the system is conserved, namely,

E = [a2
2(ρ2 − ρ3) + a2

1(ρ1 − ρ2)]cg = const., (4.2)

where cg stands for the group velocity. On the contrary, the change in depth of the fluid
layer can lead to a change in the dispersion relation; equivalently, the wavenumber and
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Figure 5. Mode 1 and mode 2 linear waves shoaling over slowly varying bottom topography. The wave-making
zone is located in x < 12, and the system parameters are Θ1 = Θ2 = 1, R1 = 0.6, R2 = 0.4 and μ = 0.1.
(a) Wave profiles: waves on the lower interface (solid lines), waves on the upper interface (dotted lines)
and theoretical predictions of wave envelope (dashed and dash-dotted lines). (b) Evolution of Hamiltonian
computed with various numbers of collocation points: N = 2000 (black solid line), N = 1600 (blue circles),
N = 1200 (red squares) and N = 800 (pink triangles). (c) Grid convergence test: a comparison between the
theoretical prediction of downstream wave amplitude and averaged results in numerical simulation.

a2/a1 will evolve. The group velocity can be calculated from the dispersion relation and
then the wave elevation can be theoretically evaluated using (4.2).

The amplitude of the bottom topography is chosen to be substantial and, for cases
presented in this section, variation in amplitude is fixed as 2b0 = 0.75. Wave profiles that
reach the steady state are shown in figures 5–7 for three-layer systems with Θ1 = Θ2 = 1
and different density ratios. The theoretical predictions of wave elevation on the lower
and upper interfaces are drawn with a dashed line and a dash-dotted line, respectively,
indicating that the numerical results are in good coherence with the linear theory. In
figure 5(b,c) the grid convergence and accuracy of the mode-1 case in figure 5(a) are
presented with a quantitative comparison between theoretical prediction and statistical
numerical results. The time evolution of the Hamiltonian for this three-layer system is
investigated, which increases initially because of wave making and finally arrives at a
constant level as it should be an intrinsic conserved quantity (see figure 5b). The relative
difference in downstream wave amplitude between the theoretical prediction and averaged
numerical results is less than 2 %, and it remains almost the same level with growing
grid numbers. As a result, our numerical method is validated. For both modes, the
monochromatic waves propagate from left to right with a subtle increase in wavenumber.
For a mode 1 wave (see figure 5a), the wave amplitude on the lower interface decreases
and the one on the upper interface increases; on the contrary, for a mode 2 wave, the
wave amplitude on the lower interface rises and the one on the upper interface falls. This
phenomenon differs from the single-layer case calculated by Guyenne & Nicholls (2008).
In a single-layer system the total energy depends on the wave amplitude and the group
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Figure 6. Mode 1 and mode 2 linear waves shoaling over slowly varying bottom topography. The wave-making
zone is located in x < 12. The system parameters are Θ1 = Θ2 = 1, μ = 0.1 and various density ratios: (a)
R1 = R2 = 0.6 and (b) R1 = 0.6, R2 = 0.85. Solid lines, waves on the lower interface; dotted lines, waves on
the upper interface; dashed and dash-dotted lines, theoretical predictions of wave envelope.
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Figure 7. A mode 1 linear wave shoaling over slowly varying bottom topography. The wave-making zone is
located in x < 12, and the system parameters are chosen as R1 = 0.6, R2 = 0.8, Θ1 = Θ2 = 1 and μ = 0.1.
Solid line, wave on the lower interface; dotted line, wave on the upper interface; dashed and dash-dotted lines,
theoretical predictions of wave envelope.

velocity with a constant fluid density. The reduction of fluid depth leads to the increase of
wavenumber and decrease of group velocity, giving rise to the increase of wave amplitude.

It can be observed from figures 5 and 6 that the evolution of wave amplitude is more
complicated when it comes to a three-layer system. The density ratios influence the change
in wave amplitude. Compared with the case with R2 = 0.6 in figure 6(a), figure 5(a) shows
that for mode 1 waves when the upper-layer fluid becomes lighter (R2 = 0.4), the variation
of wave amplitude on the upper interface becomes less evident, while the variation on the
lower interface shows no apparent change. The amplitude evolution of a mode 2 wave in
figure 5(a) is akin to the case shown in figure 6(a) but with a smaller relative change.

997 A73-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.586


J. Chai and Z. Wang

10 15 20 25 30 35 400

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

A
m

p
li

tu
d
e

m
o
d
e 

1

5

50 10 15 20 25 30 35 40
x

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

A
m

p
li

tu
d
e

m
o
d
e 

2

(a)

(b)

Figure 8. Theoretical predictions of wave amplitude for R1 = R2 = 0.6, μ = 0.1 and different values of depth
ratio: Θ1 = Θ2 = 1 (solid line); Θ1 = 4, Θ2 = 1 (dashed line); Θ1 = 1, Θ2 = 4 (dotted line). The wave
amplitude on the lower interface is presented with a single line, and on the upper interface it is presented
with a marked line.

As the density of the upper fluid increases, the tendency of wave amplitude evolution on
the lower interface changes after R2 reaches a critical value of around 0.8. In figure 6(b),
with R2 = 0.85, the amplitude of the mode 1 internal wave on the lower interface rises to
another level while climbing the bottom topography instead of decreasing in the other two
cases with R2 = 0.4 and R2 = 0.6. Conversely, no evident change in the behaviour of the
mode 2 wave is observed. In figure 7, near the critical value of R2 for mode 1 waves, the
wave amplitude on the lower interface rises first and then falls to almost the same level as
the incident waves.

The influence of depth ratios is investigated by the theoretical prediction of amplitude
evolution curves demonstrated in figure 8. The variation tendency does not seem to change
in a few limited benchmark tests. It can be observed that with a thick middle layer,
the difference between wave amplitudes on the two interfaces increases for mode 1 and
decreases for mode 2. This phenomenon also appears when the upper layer becomes
thicker. We noticed that in the thick middle-layer configuration, the wave amplitude on
the lower interface reaches a level close to zero for mode 1. For mode 2, the evanescent
waves are present on the upper interface. Besides, the change in thickness of the upper
layer exerts a smaller influence on waves on the lower interface.

4.1.2. Gaussian wavepacket past a significant obstacle
We replace the monochromatic incident wave with a wavepacket of Gaussian envelope.
The objective is to observe the excitation of internal waves of mode 2 when a mode 1
wavepacket passes over a local bottom topography with a significant height (or in a reverse
way). In the case of a flat bottom, the main part of the wavepacket should maintain its
original mode. Nevertheless, we show that narrowing the obstacle while keeping its height
makes the mode excitation possible in a system with suitable parameters.
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The initialization of the incident wave is achieved by filtering a monochromatic wave
with a Gaussian window. We take the filter function as

fg(x) = e−(x−xc)
2/2σ 2

, (4.3)

where xc is the centre of the filtered wavepacket, and the maximal amplitude of the
filter is 1 such that the original amplitude of the monochromatic wave is preserved as
the maximum of the wavepacket. The bottom obstacle features a half-period cosine-type
profile. Mathematically, b(x) can be defined as

b(x) =

⎧⎪⎨⎪⎩
b0 cos2

(
π(x − x0)

L0

)
, |x − x0| <

L0

2
,

0, |x − x0| >
L0

2
,

(4.4)

where b0 is the height of the bottom obstacle and L0 is the width. The centre position of
the bottom obstacle is x0 = 18, while the length of the computational domain is set as
L = 40. The height is chosen to be significant with b0 = 0.8 for all the cases presented in
the following. We vary the width so that the front of the bottom topography has different
slopes.

Figure 9 presents evolutions of mode 1 interfacial waves passing over bottom topography
with different widths. Each layer has the same depth in this system and the density
ratios are R1 = R2 = 0.6, which means the density difference between adjacent layers is
relatively evident. The wavepacket extends to a broader range during propagation due to
the dispersive effect. When the wavepacket passes a wide obstacle with L0 = 8, no mode
change occurs from beginning to end, as shown in figure 9(a), though the wave amplitude
varies during the stage when the wave climbs up the bottom topography. With a narrower
obstacle, L0 = 4 in figure 9(b), a mode 2 wave gradually appears while passing over the
obstacle. The mode 2 wave is ultimately excited and propagates with a slightly higher
wavenumber and a slower phase velocity. Consequently, it is mainly observed behind the
mode 1 wave in the trailing edge of the packet. With L0 = 2, the excited mode 2 wave
has a larger amplitude in figure 10(a) compared with the case in figure 9(b). Moreover,
figure 10(b) shows that a narrow bottom obstacle can also excite a mode 1 wave when a
mode 2 wavepacket passes over. In this case, the generated mode-1 component surpasses
the mode-2 part due to its lower wavenumber and higher phase velocity. Finally, to show
that the mode exchanging caused by a locally confined bottom topography is also possible
in more realistic situations, we consider a case with both density ratios close to 1, namely
R1 = R2 = 0.9, and the depth of each layer remains the same. In figure 11, we observe
an evident excitation and propagation of a mode 2 wave, and the whole wavepacket is
dispersed into a broader range.

4.1.3. Quickly varying topography
We next consider another interesting situation where an internal wavepacket interacts
with a quickly varying bottom topography. The internal wavepacket is initialized with a
carrier wave, a monochromatic incident wave of wavelength λ = 1, filtered by a hyperbolic
tangent function. Similarly, the bottom obstacle is described by a sinusoidal wave of
wavelength l multiplied by a hyperbolic tangent window function. The system parameters
are fixed to Θ1 = Θ2 = 1 and R1 = R2 = 0.6. The fundamental wavelength of interfacial
waves is also invariant. We investigate how the wavepacket evolves when passing over
obstacles with different basic wavelengths.
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Figure 9. Evolution of an internal wavepacket with a Gaussian envelope past a locally confined, significant
bottom topography. The width of the obstacle is L0 = 8 for (a) and L0 = 4 for (b), and the other parameters are
Θ1 = Θ2 = 1 and R1 = R2 = 0.6. Wave profiles at t = 0, t = 25, t = 50 and bottom topography are presented
from top to bottom. The height of the obstacle is b0 = 0.8. Solid line, wave on the lower interface; dotted line,
wave on the upper interface.

Numerical experiments have been carried out for two cases: λ ≈ l and λ� l. Figures 12
and 13 present wave profiles at different instants as the wavepacket passes over two
kinds of bottom topography: quickly varying topography and plateau-shaped topography.
The fundamental wavelength of wavepacket bottom topography varies from l = 0.8 to
l = 0.25.

Before reaching the undulation part of the bottom, the wave envelope deforms slightly
due to the dispersive effect. Over the bottom topography, small-amplitude ripples are
excited, ascribed to the perturbation applied to the incident wavepacket. These oscillations
are close to standing waves and become more evident when the bottom topography
varies more quickly. The typical wavelength of these ripples is approximately 1.5l. For
comparison, in the case where the bottom topography does not present oscillations, these
small standing waves do not appear. We also remark here that when the wavelength of
bottom topography is small, the numerical stability is challenged. The grid number and
computational domain cannot increase infinitely, which will lead to the divergence of the
standing waves over the bottom topography. No dissipation in the numerical algorithm
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Figure 10. Evolution of internal wavepackets with a Gaussian envelope past a locally confined, significant
bottom topography: (a) mode-1 initial profile and (b) mode-2 initial profile. The height of the obstacle is
b0 = 0.8, the width is L0 = 1 and the other system parameters are Θ1 = Θ2 = 1 and R1 = R2 = 0.6. Wave
profiles at t = 0, t = 25, t = 50 and bottom topography are presented from top to bottom. Solid line, wave on
the lower interface; dotted line, wave on the upper interface.

with the spectral method and the difficulty of solving complex topographic effects by
matrix inversion may be the reason for the divergence. When the topography varies
quickly, the increase in grid point or change in the computational domain will easily lead
to different topographic coefficients. The increase in complexity will evidently influence
the accuracy of matrix inversion, which is worth further improvement on the treatments.

For internal wavepackets equipped with mode-1 carrier waves interacting with bottom
topography, we focus on reflected waves and the potential excitation of mode 2 waves.
During the wavepacket evolution, small ripples propagating to the left appear on the
trailing edge in the early stage due to the filtering on the incident wave envelope. Then,
a reflected wave is generated when the wavepacket meets the bottom obstacle. It is worth
noting that the reflected wave may interact with the excited mode 2 wave as the latter
has a slower phase speed. In figure 12(a) the reflected wave has negligible amplitude and
no mode 2 wave is excited. With the decrease of the fundamental wavelength of bottom
topography, in figure 12(b), both a reflected wave and a mode 2 internal wave can be
observed in the left to the bottom topography (6 < x < 10). The wavelength in the domain
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Figure 11. Evolution of an internal wavepacket with a Gaussian envelope past a locally confined, significant
topography. The height of the obstacle is b0 = 0.8, the width is L0 = 1 and the other system parameters are
Θ1 = Θ2 = 1 and R1 = R2 = 0.9. Wave profiles at t = 0, t = 50, t = 100 and bottom topography are presented
from top to bottom. The solid and dotted lines represent, respectively, interfacial waves on the lower and upper
interfaces.

6 < x < 8, where the mode 1 wave dominates, is λr ≈ 0.8 = 2l, and the one in the domain
8 < x < 10, where the mode 2 wave presents, is λm2 ≈ 0.68 < 2l. The first wavelength
corresponds to the Bragg resonance, and the second one is smaller than the resonant
reflected wavelength 2l but greater than the theoretical mode-2 wavelength λt,m2 ≈ 0.625
excited with incident mode-1 wavelength λ = 1. As a result, in the interval [8, 10], the
wave presents a superposition of two components. The characteristics of wave profiles in
figure 13(a) in the same area are akin to the precedent analysis with a smaller l.

From figures 12(a) to 13(b), the wavelength of the bottom topography decreases from
l = 0.8 to 0.25. Mode 2 waves are only excited with a limited range of l. It is shown that
in figures 12(b)–13(a) the amplitude of mode 2 waves decreases, and then with an even
smaller l in figure 13(b), the mode 2 wave disappears. Furthermore, figure 14 illustrates
the homogenization effect of long internal waves passing over a quickly varying bottom
obstacle. No mode change exists during the propagation and the wave profiles in figure 14
are similar to the case with smooth bottom topography in the envelope form and to the
flat bottom case. It can be observed that the wave passing over quickly varying bottom
topography has a phase velocity smaller than that passing over the envelope but faster than
the flat bottom case. Therefore, the results imply that the internal waves feel the change
in depth in a homogenized way, i.e. the internal waves on both interfaces feel the delicate
structures of bottom topography in a mean-field approximation. These results demonstrate
that the homogenization effect also takes action for internal waves.

Another particular phenomenon should also be highlighted in our cases. On the left side,
far from the bottom topography (2 < x < 6), resonance exists on the wavelength λr2 ≈ 4l.
This is clearly observed in figure 13(a), as well as in figures 12(b) and 14 (solid lines). This
resonance is emphasized with a decrease of l from 0.4 to 0.267 and then weakened with
a further reduction from 0.267 to 0.222. The resonance is excited around t ≈ 13 when the
incident wavepacket is entirely over the bottom topography and interacts directly with it.
The resonant harmonic then travels to the left, similar to reflected waves. The numerical
model assumes that the height of the topography is in the same order as the fluid depth of
the bottom layer, which leads to a strong coupling between the wave on the lower interface
and the topography. Consequently, resonance among harmonics becomes possible.
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Figure 12. Evolution of mode 1 internal wavepackets with a hyperbolic tangent envelope passing over a
quickly varying bottom topography. The fundamental wavelength for the wavepackets is λ = 1 and, for the
bottom topography, it is (a) l = 0.8 and (b) l = 0.4. Wave profiles at t = 1, t = 10, t = 20 and bottom
topography are presented from top to bottom. Solid lines, wave on the lower interface; dotted lines, wave
on the upper interface.

4.2. Three-dimensional problems
In this section we delve into the refraction of horizontally two-dimensional interfacial
waves in response to variations in bathymetry. Our investigation begins with a detailed
examination of interfacial waves passing over a specific submerged circular mound,
often termed a Luneberg lens. This unique bathymetric feature offers valuable insights
into wave refraction phenomena. Subsequently, we shift our focus to the evolution of
interfacial waves in conjunction with free-surface waves within a specific scenario, namely
a two-and-a-half-layer system. This investigation takes into account the influence of
realistic bathymetry, such as the complicated bathymetric patterns found near the Strait
of Gibraltar. We aim to comprehensively understand how bathymetric variations impact
wave behaviour in these settings.
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Figure 13. Evolution of mode 1 internal wavepackets with a hyperbolic tangent envelope passing over a
quickly varying bottom topography. The basic wavelength for the wavepackets is λ = 1 and, for the bottom
topography, it is (a) l = 0.267 and (b) l = 0.25. Wave profiles at t = 1, t = 10, t = 20 and bottom topography
are presented from top to bottom. Solid lines, wave on the lower interface; dotted lines, wave on the upper
interface.

4.2.1. Refraction by a submerged mound
A circular submerged mound is placed on the bottom of a three-layer system with finite
depth. Each layer has equal thickness with Θ1 = Θ2 = 1. This particular mound plays a
role in bending the wavefront in a specific way, and this effect is analogous to that of the
Luneburg lens in optics. In addition to the numerical simulation, the ray theory is applied
to obtain the theoretical prediction for propagation directions of the wavefront, namely
rays, to show that our numerical method can accurately capture the changes in propagation
direction in a three-dimensional system. The bottom topography is given by

bm(r) =
⎧⎨⎩1 − α2

α2 + 1 − (r/r0)2 if r < r0,

0 if r ≥ r0,

(4.5)

where we consider α = 0.85 and r = r(x) =
√

(x − xc)2 + ( y − yc)2; xc = (xc, yc) is the
centre of the mound and r0 stands for the radius. Here we fix xc = yc = 5.5 and r0 =
997 A73-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.586


Internal waves in three-layer stratified fluids

–0.2
–0.1

0
0.1
0.2

–0.2
–0.1

0η1

η2

0.1
0.2

86420 10 12 14 16 18 20

86420 10 12 14 16 18 20

86420 10 12 14 16 18 20

x

–0.5

0

0.5

b

Figure 14. A comparison among wave profiles at t = 20 for wavepackets past over different topographies: a
quickly varying bottom topography (solid lines), bottom topography with hyperbolic tangent envelope (dashed
line with blue circles) and the flat bottom case (dotted lines with red squares). The quickly varying bottom
topography is in the shape of a wavepacket with the basic wavelength l = 0.222.

1.4. The computational domain is a square with dimensions L × L (we choose L = 12
in subsequent simulations), and 240 grid points are used in each horizontal direction.
Due to the memory restrictions while solving the inversion of the matrix, we applied the
Galerkin approximation with the parameter M = 14400, indicating that we only calculate
the topographic coefficients on the first M wavevectors with relatively small modulus.

A mode-1 monochromatic incident wave propagates from left to right with the
wavelength λ = 1. Snapshots for interfacial wave profiles at t = 5 and t = 10 are presented
in figure 15, respectively. Before arriving at the region of terrain undulation, the incident
wave keeps its original monochromatic form well. When the wavetrain enters the
terrain-affected region, the topographic effect becomes active and the wavefronts start to
deform. The fluid depth of the bottom layer decreases due to the convex mound, reducing
the group velocity. At t = 5, the wavefronts on both interfaces bend backward to the left,
forming a semicircular-like structure.

It is worth noting that for mode 1 internal waves, the wave amplitude on the lower
interface in the central area is reduced to a lower level than the original amplitude (see
figure 16). On the contrary, the wave amplitude presents a higher value on the upper
interface. Wave energy on two interfaces may exchange through the middle layer via the
kinematic and dynamic boundary conditions. This means interfacial waves on the lower
interface can influence those on the upper interface as they are coupled in time-evolution
equations.

It can be observed in figure 16 that the potential energy on both interfaces is focused on
a point downstream, behind the central position of the mound. At t ≈ 10, the amplitude
of the mode 1 wave in the vicinity of the focusing point reaches approximately twice the
original amplitude. More downstream behind this point, the wave amplitudes decay.

The ray theory predicts the refraction for monochromatic waves and can be used to
verify the refraction pattern of the numerical wave fields. Considering weak dispersion
with a small parameter μ, the ansatz for the velocity potential writes

φj(x, t) = Amj(x) ei(θ(x)−ωt), j = 1, 2, (4.6)

997 A73-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.586


J. Chai and Z. Wang

0

0.2

(a)

(b)

0

–0.2

η2

0.1

0

–0.1

η1

0.5

0

b

2 4 6 8 10 12 0
2

4
6

8
10

12

0
2

4
6

8
10

12

0 2
4

6
8 10

12

0 2 4 6 8 10 12

2 4 6 8 10 12

0

0.2

0

–0.2

η2

0.2

0

–0.2

η1

0.5

0

b

2 4 6 8 10 12 0
2

4
6

8
10

12

0
2

4
6

8
10

12

0 2
4

6 8 10 12

0 2 4 6 8 10 12

2 4 6 8

x y10 12

Figure 15. A mode 1 internal wave passing over a convex mound with the Luneburg lens profile: (a) t = 5
and (b) t = 10.

where Amj(x) is an amplitude function and θ(x) is a phase function. Both Amj(x) and θ(x)

vary faster than the depth variation of the lower-layer fluid. The eikonal equation governs
the spatial distribution of the phase

θ2
x + θ2

y = σ 2, (4.7)

where σ 2 is solved with the dispersion relation, taking into account the variable depth
and ω. The rays, orthogonal to wavefronts, are searched by applying the method of
characteristics to (4.7). We refer the reader to Johnson (1997) and Zauderer (2006) for
details of this method for solving the eikonal equation.

997 A73-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.586


Internal waves in three-layer stratified fluids

100

2
4
6
8

10

(a) (b)

y

x
–0.20
–0.15
–0.10
–0.05

0
0.05
0.10
0.15
0.20

2 4 6 8 2 4 6 8 100

2
4
6
8

10

y

0 2 4 6 8 10 12 0 2 4 6 8 10 12
x

–0.3
–0.2
–0.1

0
0.1
0.2
0.3

η2η1

Figure 16. A comparison between numerical solutions and theoretically predicted rays for a mode-1 incident
wave. In the upper figures the dashed lines stand for rays, and the contour plots are the isolines of the internal
wave numerically calculated. Wave profiles along the streamwise direction at y = yc = 5.5 are shown in the
lower figures for t = 9.5 (solid lines), t = 10 (dashed lines), t = 10.5 (dotted lines) and t = 11 (dash-dotted
lines). (a) Waves on the lower interface (the amplitude reaches its maximum at x ≈ 7.45); (b) waves on the
upper interface (the amplitude reaches its maximum at x ≈ 8).

Figure 16 illustrates the comparison between the level curves of numerical solutions and
the theoretically calculated rays. Clearly, for the wave profiles (η1 and η2), the deformation
of wavefronts in both modes corresponds well to the ray directions. Furthermore, wave
profiles at different instants are presented to find the location of the maximal amplitude.
The focusing point of wave energy is located in the vicinity of the position where the rays
meet. It is found that the maximum wave elevation on the lower interface is situated before
the one on the upper interface is located. A reasonable explanation is that internal waves on
the lower interface interact directly with the bottom topography, and the boundary effect of
the mound influences the position of the focusing point. Moreover, the topography effect is
transferred to the upper layer by coupling between interfacial waves, which have a delay to
some extent. The focusing point predicted by theoretical solutions for the mode 1 internal
wave is (7.72, 5.5), and the average position where the wave profiles on both interfaces
attain the maximal elevation at t ≈ 10 is (7.73, 5.5). The relative error is apparently tiny.
In these examples, with a non-trivial amplitude, our three-dimensional simulations capture
the predicted dynamic features of interfacial waves well.

A simulation for a mode 2 internal wave is also shown in figure 17. In contrast to mode 1,
the mode 2 wave on two interfaces exhibits opposite phases. Additionally, in figures 17(b)
and 17(d) the envelopes of wave profiles at different instants also show opposite variations.
Notably, the position where the amplitude of η1 reaches its maximum is a local minimum
of η2. Considering the focusing of η1, which is more direct, the focusing point is at
(5.5, 8.3) while the corresponding local extremum of η2 is at (5.5, 8.4). The theoretical
focusing point position is (5.5, 8.33), close to our results. The delay phenomenon still
exists but is less obvious.

4.2.2. Bathymetry in the strait
In this section we investigate a two-fluid system bounded above by a free surface, a limiting
case of a three-layer fluid configuration, assuming the density of the top layer is negligible.
The theoretical derivation and numerical procedure for this situation, which are akin to
the three-layer case, are presented in Appendix A. Figure 18(a) displays the bathymetry
of the Strait of Gibraltar within an 80 × 80 km horizontal area, sourced from the Smith
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Figure 17. A comparison between numerical solutions and theoretically predicted rays for a mode-2 incident
internal wave. In the upper figures the rays are presented with dashed lines, and the projections of interfaces
are plotted for η1 (a) and η2 (b). Wave profiles along the streamwise direction at y = yc = 5.5 are shown in
the bottom figures for t = 13 (solid lines), t = 14 (dashed lines), t = 15 (dotted lines) and t = 16 (dash-dotted
lines). The amplitude of η1 reaches its maximum at x ≈ 8.3.

and Sandwell 2-minute database. The data were downloaded from Smith and Sandwell
2-minute Database (2004), and the interested readers are referred to Marks & Smith
(2006) for more global bathymetry data sets. This geographical location is a focal point
of our investigation due to its unique bathymetric characteristics. The original latitude and
longitude data were converted into a Cartesian coordinate system and interpolated with
the bilinear method on the numerical grid. The depth of the upper-layer fluid is taken as
100 m. The area covered by land over water is treated with shallow-water conditions, where
we take 100 m as the depth of the lower-layer fluid. Although this treatment is enough
for accurate wave simulation in the area of the strait, some unphysical high-frequency
components in the spanwise y direction (orthogonal to the direction of wave propagation)
gradually appear in the time evolution and need to be absorbed during calculation. We also
remark that the largest depth in the computational domain is about 1200 m. Here H1 =
800 m and l = 8000 m are used for non-dimensionalization as reference characteristic
lengths. The ratio of density R = 0.9 is selected to be close to 1 to describe a small density
jump.

The initial perturbation is introduced as a Gaussian velocity potential along the interface
in the streamwise x direction centred around x = 2, where the bottom topography height is
approximately 0 (which means the lower-layer depth is close to 100 m). The initial velocity
potentials and interface displacements are

φ1(x, y, 1) = e−36(x−xc)
2

and φ2 = η1 = η2 = 0. (4.8a,b)

This perturbation is initially uniform in the spanwise y direction and then restricted to
the strait using a filter function. The superposition of internal wave contours and varying
bathymetry, calculated after six-time units with bathymetry, is presented in figure 18(b),
alongside a satellite image of internal waves (see figure 18c). The wavefront exhibits
a bow-shaped pattern upon exiting the strait, with diffraction occurring in both the
southern and northern orientations. Local peaks in wave elevation form a distribution
curve originating from the strait’s centre and extending towards the southeast. From
figure 18(b), the deep and shallow areas can be clearly distinguished. In the shallow area,
the wavenumber increases and the phase velocity decreases. In contrast, the wavefronts
propagate faster in the deep area, which leads to obvious inflection along the deepest
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Figure 18. Illustration of the real bathymetry and numerical simulation of the interfacial and free-surface
waves passing through the Strait of Gibraltar: (a) bathymetry; (b) internal wave contours at t = 6; (c) satellite
image of internal waves in the Strait of Gibraltar; (d–f ) successive snapshots for wave profiles at t = 1.2, t = 3
and t = 5.5.

region. Applying two lines of references, these observations are well aligned with
numerical results in figures 18(d–f ) and 19(a) and the satellite image.

Figure 19 allows us to analyse the topographic impact by comparing it to wave
fields in the flat bottom case. The Strait of Gibraltar’s bathymetry restricts the width
of wave development and leads to asymmetry in wave propagation. Energy becomes
more concentrated in a narrow space near wave peaks. This effect is further explored in
figure 19(c–e), where wave profiles at different positions are extracted and superimposed
for comparison. Mode 2 internal and free-surface waves (i.e. the free surface and interface
are of the opposite phases) exist in the vicinity of the initial perturbance. The region
dominated by mode 2 waves grows in time, and the amplitude of a free-surface wave
is much smaller than that of the associated internal wave. Further from the centre of the
initial Gaussian disturbance in the velocity potential on the interface, waves gradually
transform into mode 1, and the free-surface wave admits an amplitude in the same
order as the interfacial wave. A flat platform that is prolonged with the increase of time
forms between two regions. These phenomena are also recovered in the flat bottom case.
However, the rising bottom topography in the second region leads to a smaller wavelength
(see figure 19c). With the observing point moving from the spanwise centre to the north
in figure 19(d), the amplitude decrease is more rapid in the strait case. The asymmetric
character in the spanwise direction is presented in figure 19(e).

5. Conclusions

We have developed a numerical method featuring DtN operators, enabling investigations
of multimode internal waves passing over significant bottom topography. This approach
operates within the framework of linear approximation, eliminating limitations on the
height or smoothness of bottom topography. Moreover, our numerical model is adaptable
to three-dimensional multi-layer systems. We employ the Galerkin approximation to save
computational costs while accurately capturing typical three-dimensional effects.
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Figure 19. Free-surface projections at t = 6 calculated with (a) bathymetry in the Strait of Gibraltar and
(b) a flat bottom. (c–e) Cross-sections at different positions: interfacial waves with bathymetry (solid line),
free-surface waves with bathymetry (dashed line), interfacial waves with a flat bottom (square mark) and
free-surface waves with a flat bottom (dashed line with circular mark). (c) Wave profiles at y = 5 and the
topography profile at the same position marked with a red dotted line; (d) wave profiles at y = 6; (e) wave
profiles with bathymetry at x = 6.8 and with a flat bottom at x = 6.3.

We initially validated our numerical method by applying it to two-dimensional linear
wave shoaling cases. In a three-fluid system we explored the influence of various
parameters on wave behaviour, including depth and density ratios. Multiple simulations
with different parameter settings revealed changing trends in wave amplitudes. Notably,
we identified a critical solution that yielded intriguing results. Additionally, within a
three-layer system, we analysed the excitation of waves of different modes induced
by bottom topography. Our numerical simulations of wavepackets passing over locally
confined bottom obstacles demonstrated that the obstacle’s slope plays a pivotal role
in exciting mode 2 internal waves, aligning with the findings of Liu et al. (2019). We
also examined the effects of rapidly varying bottom topography. By considering internal
wavepackets with a fixed typical wavelength and changing the fundamental wavelength of
bottom topography, we observed classic and novel phenomena, including Bragg resonance,
mode 2 internal wave excitation, special harmonics resonance and the homogenization
effect of quickly varying bottom topography.

For three-dimensional simulations, our numerical procedure, coupled with the Galerkin
method, accurately replicated the deformation of wavefronts and the position of a
focusing point in the presence of a Luneberg lens mound compared with theoretical
values. We also identified a subtle delay in how upper-layer internal waves respond
to topography effects. We used real topographic data from the Strait of Gibraltar for
simulation in a two-and-a-half-layer system featuring an interface and a free surface. Our
results successfully replicated the propagation directions of waves compared with satellite
imageries. Furthermore, our study provided insights into the coupled evolution between
internal and free-surface waves, expanding upon previous research.

Finally, we remark that to include both wave nonlinearity and significant bottom
topography in the three-layer fluid system to understand the dynamics of moderate-
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or large-amplitude multimode internal waves (for example, generation of high-mode
solitary-like internal waves due to the resonance effect of bottom topography, transitions
between nonlinear internal waves of different modes through bottom topography, fission
of high-mode solitary-like internal waves propagating over sharply varying topography,
etc.) merits a thorough investigation, which we leave for future work.
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Appendix A. Two-layer configuration in the presence of a free surface

A.1. Governing equations and linear dispersion relation
A sketch of a two-fluid system bounded by a free surface on top (sometimes termed
the two-and-a-half-layer system) is given in figure 20, and the corresponding governing
equations are

φ1xx + φ1yy + φ1zz = 0 for b(x, y) < z < H1 + η1(x, y, t),
φ2xx + φ2yy + φ2zz = 0 for H1 + η1(x, y, t) < z < H1 + H2 + η2(x, y, t).

}
(A1)

The impermeability boundary condition at the bottom writes

φ1z − φ1xbx − φ1yby = 0 on z = b(x, y). (A2)

The kinematic and dynamic conditions on the interface and free surface read

η1t + η1xφ1x + η1yφ1y − φ1z = 0 on z = H1 + η1(x, y, t),
η1t + η1xφ2x + η1yφ2y − φ2z = 0 on z = H1 + η1(x, y, t),

η2t + η2xφ2x + η2yφ2y − φ2z = 0 on z = H1 + H2 + η2(x, y, t),

⎫⎬⎭ (A3)

φ1t − Rφ2t + g(1 − R)η1 + 1
2 (φ2

1x + φ2
1y + φ2

1z − Rφ2
2x − Rφ2

2y − Rφ2
2z) = 0

on z = H1 + η1(x, y, t),
φ2t + gη2 + 1

2(φ2
2x + φ2

2y + φ2
2z) = 0 on z = H1 + H2 + η2(x, y, t).

⎫⎪⎬⎪⎭ (A4)

Applying the scaling (2.5a–g) to linearize the whole system, the equations to be
numerically solved write

μ2(φ1xx + φ1yy) + φ1zz = 0 for b < z < 1,

μ2(φ2xx + φ2yy) + φ2zz = 0 for 1 < z < 1 + Θ,

φ1z − μ2(φ1xbx + φ1yby) = 0 on z = b,

η1t − 1
μ2 φ1z = η1t − 1

μ2 φ2z = 0 on z = 1,

η2t − 1
μ2 φ2z = 0 on z = 1 + Θ,

φ1t − Rφ2t + (1 − R)η1 = 0 on z = 1,

φ2t + η2 = 0 on z = 1 + Θ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A5)
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H1

H2

Interface: z = H1 + η1(x, y)

Free surface: z = H1 + H2 + η2(x, y)

z = b(x, y)

Figure 20. Sketch of a two-layer density stratified system separated by an interface and bounded above by a
free surface.

where Θ = H2/H1 and R < 1 is the upper-to-lower-layer density ratio. Then, performing
a similar derivation introduced in § 2.2, one obtains(

μω2
0

k2

)2 (
k2

R
+ k2 tanh(μk) tanh(μkΘ)

)
− μω2

0
k2

(
k
R

tanh(μk) + k
R

tanh(μkΘ)

)

+
(

1
R

− 1
)

tanh(μk) tanh(μkΘ) = 0, (A6)

which represents the dispersion relation of a two-and-a-half-layer system. It is worth noting
that the coefficients in this quadratic equation are the same as those obtained directly from
(2.19) by taking the limits R2 → 0 and Θ2 → +∞. Moreover, with (k, μ, Θ) > 0 and
0 < R < 1, both solutions to (A6) are positive, indicating that the whole space of system
parameters remains feasible with real phase velocity. The ratio of wave displacement
between the free surface and the interface can be expressed as

a2

a1
= cosh(μkΘ)

R

[
μω2

0
k

(
1

tanh(μk)
+ R tanh(μkΘ)

)
+ R − 1

]
. (A7)

A.2. Numerical formulation
We first divide the linear system into two elliptic boundary value problems and one
time-evolution system by introducing the DtN operators. Two boundary value problems
are

μ2(φ1xx + φ1yy) + φ1zz = 0 for b < z < 1,

φ1z − μ2(φ1xbx + φ1yby) = 0 on z = b,

φ1 = q1 on z = 1,

⎫⎬⎭ (A8)

and
μ2(φ2xx + φ2yy) + φ1zz = 0 for 1 < z < 1 + Θ,

φ2 = q22 on z = 1 + Θ,

φ2 = q12 on z = 1,

⎫⎬⎭ (A9)

where we introduce q1(x, t) = φ1(x, 1 + εη1(x, t), t), q12(x, t) = φ2(x, 1 + εη1(x, t), t)
and q22(x, t) = φ2(x, 1 + Θ + εη2(x, t), t) as three new variables. We remark that with
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the kinematic boundary condition on the interface

φ1z(x, z = 1, t) = φ2z(x, z = 1, t), (A10)

one can obtain q12 = H[q1, q22]. Furthermore, for the boundary value problem in the
upper layer, we notice that unlike in the lower layer, the problem has two Dirichlet
boundary conditions rather than one Dirichlet and one Neumann condition. The time
evolution is written as

η1t = 1
μ2G1[q1],

η2t = 1
μ2G2[q22, q1],

q1t − Rq12t = (R − 1)η1,
q22t = −η2,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A11)

where G1 and G2 are the DtN operators defined as G1[q1] = φ1z(x, z = 1, t) = φ2z(x, z =
1, t) and G2[q22, q1] = φ2z(x, z = 1 + Θ, t), respectively.

Applying the Fourier transform to the elliptic problems, the expression of the velocity
potential in the lower layer has the same form as (3.13), namely

φ1(x, y, z) = q̂1(0) +
∑

k∈Λ∗
eik · x

[
q̂1(k)

cosh(μkz)
cosh(μk)

+ Xk
sinh(μk(z − 1))

k cosh2(μk)

]
, (A12)

and the solution of topographic coefficients follows the same procedure described in § 3.2.
The solution of the second boundary value problem is

φ2(x, y, z) =
∑

k∈Λ∗
eik · x

[
q̂22(k)

sinh(μk(z − 1))

sinh(μkΘ)
+ q̂21(k)

sinh(μk(1 + Θ − z))
sinh(μkΘ)

]
,

φ2z(x, y, z = 1) =
∑

k∈Λ∗
eik · x

[
q̂22(k)

μk
sinh(μkΘ)

− q̂12(k)
μk

tanh(μkΘ)

]
,

φ2z(x, y, z = 1 + Θ) =
∑

k∈Λ∗
eik · x

[
q̂22(k)

μk
tanh(μkΘ)

− q̂12(k)
μk

sinh(μkΘ)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A13)

where we suppose, without loss of generality, q̂22(0) = q̂12(0) = φ̂2(0) = 0. With the
orthogonality of the Fourier primary functions, the matching condition on the interface
requires

q̂12(k) = − tanh(μk) tanh(μkΘ)q̂1(k) − tanh(μkΘ)

k cosh2(μk)
Xk + 1

cosh(μkΘ)
q̂22(k), (A14)

which signifies that

q̂12t(k) = − tanh(μk) tanh(μkΘ)q̂1t(k) − tanh(μkΘ)

k cosh2(μk)
Xkt + 1

cosh(μkΘ)
q̂22t(k).

(A15)
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Finally, the time-evolution problem writes

η̂1t(k) = 1
μ2 Ĝ1[q1](k) = 1

μ2

[
q̂1(k)μk tanh(μk) + Xkμ

1

cosh2(μk)

]
,

η̂2t(k) = 1
μ2

̂G2[q22, q1](k) = 1
μ2 q̂22(k)

(
μk

tanh(μkΘ)
− μk

cosh(μkΘ) sinh(μkΘ)

)
+ q̂1(k)

μk tanh(μk)
cosh(μkΘ)

+ Xk
μ

cosh2(μk) cosh(μkΘ)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A16)

q̂1t(k)(1 + R tanh(μk) tanh(μkΘ)) + R tanh(μkΘ)

k cosh2(μk)
Xkt

= (R − 1)η̂1(k) − R tanh(μkΘ)

sinh(μkΘ)
η̂2,

q̂2t(k) = −η̂2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A17)
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