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The geometric figure on the cover, a four-dimensional polytope, was redrawn from the inside cover page of the
celebrated book ‘Regular Polytopes’ by Harold Scott MacDonald Coxeter (1907–2003), one of the greatest geometers
of the 20th century. Coxeter, a Fellow of the Royal Society of Canada and a Fellow of the Royal Society (London),
joined the University of Toronto in 1936 and worked there enthusiastically for 60 years. Since 1978, the Canadian
Mathematical Society has awarded the Coxeter-James Prize in his honor.
La figure géométrique sur la couverture, un polytope en dimension quatre, a été reprise du plat intérieur du célèbre
ouvrage Regular Polytopes de Harold Scott MacDonald Coxeter (1907–2003), l’un des plus grands géomètres du XXe
siècle. Membre de la Société royale du Canada et de la Royal Society (Londres), H.M.S. Coxeter s’est joint au corps
professoral de l’Université de Toronto en 1936, où il a travaillé avec enthousiasme pendant 60 ans. Depuis 1978, la
Société mathématique du Canada décerne le prix Coxeter-James en son honneur.
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Spectrality of Moran Sierpinski-type
measures on R2

Min-Min Zhang

Abstract. Let M = diag (ρ1 , ρ2) ∈ M2(R) be an expanding matrix and Let {Dn}∞n=1 be a sequence
of digit sets with Dn = {(0, 0)T , (an , 0)T , (0, bn)T}, where an , bn ∈ {−1, 1}. The associated Borel
probability measure

μM ,{Dn} ∶= δM−1D1 ∗ δM−2D2 ∗ δM−3D3 ∗⋯

is called a Moran Sierpinski-type measure. In this paper, we show that μM ,{Dn} is a spectral mea-
sure if and only if 3 ∣ ρ i for each i = 1, 2. The special case is the Sierpinski-type measure with
an = bn = 1 for all n ∈ N, which is proved by Dai et al. [Appl. Comput. Harmon. Anal. (2020),
https://doi.org/10.1016/j.acha.2019.12.001].

1 Introduction

It is well known that the family {e2πi⟨n ,x⟩ ∶ n ∈ Z
d} of exponential functions forms

an orthonormal basis for L2([0, 1]d). This result is now one of the basic pillars of
modern mathematics. It is natural to ask what other measures have this property, or
whether there is a family of exponential functions that forms an orthogonal basis of
their L2-space?

Let μ be a Borel probability measure with compact support on R
d , and let

⟨⋅, ⋅⟩ denote the standard inner product on R
d . We call μ a spectral measure if

there exists a countable set Λ ⊂ R
d such that E(Λ) ∶= {e−2πi⟨λ ,x⟩ ∶ λ ∈ Λ} forms an

orthonormal basis for L2(μ). The set Λ is then called a spectrum of μ. The existence
and nonexistence of a spectrum for μ is a basic problem in harmonic analysis. The
question was originally studied by Fuglede [20] in 1974, where he proposed a famous
conjecture: a Lebesgue measurable set Ω is a spectral set in R

d if and only if it tiles
R

d by translations. Although the conjecture was proven to be false in R
d , d ≥ 3

[25, 30], the problem generated a lot of interest on the study of a measure to be
spectral. This opened up a new possibility of applying the well developed Fourier
analysis techniques to certain classes of fractals. In 1998, Jorgensen and Pedersen [24]
gave the first singular spectral measure: the standard middle-fourth Cantor measure.
Following these discoveries, many more examples of fractal spectral measures have
been constructed, such as self-similar measures [4, 26], self-affine measures [11, 17,
31] and Moran measures [2, 3, 19]. It is surprising that there are many distinctive
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