http://dx.doi.org/10.4153/S0008414X2000067X SMC
© Canadian Mathematical Society 2020. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Canad. J. Math. Vol. 74 (1), 2022 pp. 1-23 GQCMS

Spaces of knotted circles and exotic
smooth structures

Gregory Arone and Markus Szymik

Abstract. Suppose that N; and N, are closed smooth manifolds of dimension # that are homeo-
morphic. We prove that the spaces of smooth knots, Emb(S!, Ni) and Emb(S!, N, ), have the same
homotopy (21 — 7)-type. In the four-dimensional case, this means that the spaces of smooth knots in
homeomorphic 4-manifolds have sets 779 of components that are in bijection, and the corresponding
path components have the same fundamental groups ;. The result about 7y is well-known and
elementary, but the result about 7; appears to be new. The result gives a negative partial answer to
a question of Oleg Viro. Our proof uses the Goodwillie-Weiss embedding tower. We give a new
model for the quadratic stage of the Goodwillie-Weiss tower, and prove that the homotopy type of
the quadratic approximation of the space of knots in N does not depend on the smooth structure
on N. Our results also give a lower bound on 7, Emb(S', N). We use our model to show that for
every choice of basepoint, each of the homotopy groups, 7; and 7, of Emb(S!, S! x $*) contains an
infinitely generated free abelian group.

Oleg Viro asked: is the algebraic topology of the space of smooth 1-knots in a
4-manifold sensitive to the smooth structure on the ambient manifold [16]? More
generally: can the homotopy type of the embedding space Emb(S', N) of knotted
circles in a manifold N detect exotic smooth structures on N? One of our main results
answers these negatively in a range (see Corollary 4.2 below):

Theorem A Let N be a smooth manifold of dimension n. The homotopy (2n —7)-type
of the space Emb(S', N') of smooth embeddings of the circle into N does not depend on
the smooth structure.

Recall that two spaces have the same homotopy, k-type, if their kth Postnikov
sections are homotopy equivalent; in particular, their homotopy groups, 7., are
isomorphic for * < k. The theorem has content only for # > 4. In particular, in
dimension n = 4, which is the context of Viro’s original question, our result says that
the spaces of knotted circles in two homeomorphic 4-manifolds have sets of compo-
nents that are in bijection and that the corresponding components have isomorphic
fundamental groups (see Corollary 5.1). For example, this implies that, if £* is any
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2 G. Arone and M. Szymik

homotopy 4-sphere,then the space Emb(S!, 2*) of knots in £* is simply connected
(see Proposition 5.2), regardless of the smooth structure.

Our proof of Theorem A is based on the manifold functor calculus developed by
Goodwillie, Klein, and Weiss (see [8, 6,17, 18]). Let T, Emb(M, N) be the second (i.e.,
quadratic) approximation of the embedding tower constructed in [18]. In Section 3,
we give a new description of the space T Emb(M, N) as a homotopy pullback (see
Theorem 3.5).

Theorem B Let M and N be closed smooth manifolds. There is a homotopy pullback
square

T, Emb(M, N) _ Map22 (M[Z], N[Z])

|

Imm(M, N) — Mapy_ (M), 8(M)), (N x N, NIZy).

Here, Inm(M, N) denotes the space of immersions of M into N, while M[?] is the
spherical blowup of M x M at the diagonal, and S(M) is the spherical tangent bundle
of M (see Sections 1 and 3 for more details).

There is a well-known description of the quadratic approximation, T, Emb(M, N),
that goes back to Haefliger [7, Theorem 1.2.1]. The description in Theorem B has a
similar flavor, but is not identical to Haefliger’s. Perhaps, its main feature is that it
isolates the extent to which T, Emb(M, N) depends on the tangential structure of M
and N. Moreover, Dax [4, VII.2.1], distilling Haefliger’s double point elimination meth-
ods into a bordism theory, has given a refined description of the homotopy groups of
the homotopy fiber of the inclusion of an embedding space into an immersion space
in a range that is similar to ours. However, note that this does not solve our problem
because it does not explain how this fiber is “attached” to the immersion space. There
are several other results (see [8, 10] , for example) suggesting that we can stratify
the embedding space into pieces that are more or less obviously homeomorphism
invariants. None of these arguments implies that also the extension problems can
be solved, and it is in this direction where we leverage the geometry of the blow-up
construction to address the first of them successfully.

For embeddings of the circle M = S', we can use Theorem B to show that the
homotopy type of T, Emb(S', N) is independent of the smooth structure on N. The
following theorem is Theorem 4.1 in the text.

Theorem C  Let Ny and N, be smooth n-dimensional manifolds that are homeomor-
phic. Then, the quadratic approximations, T, Emb(S!, N;) and T, Emb(S', N,), are
homotopy equivalent.

Theorem A is then a consequence of Theorem C and known estimates of the
connectivity of the approximation map Emb(M, N) — T, Emb(M, N). In fact, The-
orem C implies a slightly stronger conclusion than what we stated in Theorem A.
In particular, if N is four-dimensional then the approximation map Emb(S!, N) —
T, Emb(S!, N) is not just an isomorphism on 7y and 7 but is also an epimorphism
on 1. Therefore, one can use Theorem C to derive alower bound on 7, (Emb(S*, N)).
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We calculate some examples in Section 5: we show that the space Emb(S', =*) of
knots in any homotopy 4-sphere £* is simply connected (see Proposition 5.2) and
we give an example of a 4-manifold N such that the map Emb(S', N) - Imm(S!, N)
has infinitely generated kernels on 71; and 7, (see Corollary 5.7).

The outline of this paper is as follows. In Section 1, we review some results on
tangent bundles and blow-ups that we will use in the later sections. Section 2 contains
a discussion of spaces of immersions; these both illustrate our general strategy and
provides results that we use later on. Section 3 is the center of the text, where we
give a new description of the quadratic approximation T, Emb(M, N) that is valid
for all M and N of any dimension. We return in Section 4 to the case where the source
M = S!is the circle, to deduce our main results for spaces of knotted circles in general
targets. The final Section 5 specializes further to the case where the target N is a smooth
4-manifold, to give more specific examples in Viro’s original context. In particular, we
show that for every choice of basepoint, each of the homotopy groups, 7; and 7, of
Emb(S!, S x $*), contains an infinitely generated free abelian group.

1 Blow-ups
The results in this section are valid for manifolds of all dimensions. Only in the last
subsection shall we work out the example of the circle in sufficient detail for later use.

Notation Let A be a submanifold of a manifold X. We will denote the spherical normal
bundle of A by Sy(X), and the spherical blowup of X at A by X\A.

Recall that X\A is a manifold with boundary whose interior is the complement
X\A and whose boundary is S5 (X). There is a commutative diagram

=]

X\A ——X\A Sa(X)
X\A——=X<—4A

The spherical blowup is locally modeled as follows: take an inclusion U c V of linear
spaces. Then, there is an inclusion j: VAU — V, and a projection q: VAU — Sy(V).

The blowup V\U is the closure of the image of the natural map
(j@): V\U — V xSy(V).

Proposition 1.1 If B is a submanifold of another manifold Y, and if f:X - Y is a
smooth map with f B = A that induces (via the derivative) a fiberwise monomorphism
between normal bundles, then it induces a smooth map X\A — Y\B.

The induced map X\A — Y\B is defined by using the restriction of the map
f between the interiors X\A and Y\B, and the map induced by the derivative f’
between the spherical normal bundles on the boundaries. More details can be found
for example in [1].

We will mostly be interested in the case when X = N x N is the product of a
manifold N with itself, and A is the diagonal.
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Notation We will denote the blow-up N x N\N by N2],

Note that if N is a closed manifold, then the boundary of N[?} is Sy (N x N), the
spherical normal bundle of the diagonal in N x N, which can be identified with the
spherical tangent bundle of N.

Notation We will denote the spherical tangent bundle of N by S(tN) or just S(N).

Thus, there is a canonical homeomorphism S(N) = Sy (N x N). We identify S(N)
with the boundary of N[2]. Note that the pair (N[, S(N')) has a canonical action by
the group Z,.

Locally, we have the following situation:

Example 1.2 In the case when M = R™ is the local model, a linear transformation
gives

R™ x R™\A = R¥™\R™ = R™ x (R™\0) 2 R™ x $"'x] 0,00 .

The involution is free: it is the antipodal action on "~ and trivial on all other factors.
In this model, we have

S(R™) = R™ x S™ ! x {0}
and
(R™M2 2 R™ % §1 5 [ 0,00,
so that the boundary inclusion of S(R™) into (R )[? is a ,-homotopy equivalence.

In fact, both of these spaces are 2,-homotopy equivalent to ™! with the antipodal
action.

The following simple proposition is one of the main technical results of this paper.

Proposition 1.3 If M and N are smooth closed manifolds that are homeomorphic to
each other, then the diagrams of spaces

S(M) > M 5 MxMm
and
S(N) > NPl NxN
are connected by a zig-zag of ,-equivariant homotopy equivalences.

Proof We shall use several times that every open X,-neighborhood of the diagonal
contains a tubular X;-neighborhood.
To start with, we choose any tubular X,-neighborhood A such that

McACMxM.

Here, and elsewhere, we identify M with the diagonal of M x M. Let f: M — N be a
homeomorphism, and let

h=fxf:MxM-— NxN
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be its square. This is 2, -equivariant, so that we get an open 2,-neighborhood h(A) of
the diagonal within N x N. We choose another tubular X,-neighborhood B such that

NcBch(A)cNxN.

We repeat this process twice more and find tubular X,-neighborhoods, C and D, of
the respective diagonals and end up with a chain

Mch'(D)cCch™ (BycAcMxM.
Once this is set up, we consider the three inclusions
(1.1) h(D)\M — C\M — h™ (B)\M — A\M.

We have h™!(D)\M = D\N =~ S(N) and similarly h™'(B)\M =~ S(M). The composi-
tion of the first two inclusions in (1.1) is an equivalence. Similarly, the composition of
the last two maps in (1.1) is an equivalence (this time of spaces equivalent to S(M)). It
follows that the inclusion C\M — h~}(B)\M in the middle is also an equivalence of
subsets of M x M. Thus, h induces an equivalence of diagrams

C\M ——= MxM\M —— MxM
B\N ——= NxN\N ——= N xN.
Next, observe that there is also a zig-zag of X,-equivariant equivalences of diagrams

C\M ——= MxM\M —— MxM

e

C\M M2 MxM
S(M) ML MxM

and similarly there is a zig-zag of equivalences connecting the diagrams
B\N — NxN\N — Nx N
and
S(N) — NP — N xN. ]

Remark 1.4 It seems likely that the assumption that M and N are closed manifolds
can be relaxed.

Example 1.5 We need to understand the pair (N2], S(N)) in the case N = S'. The
complement of the diagonal in the torus S! x S! consists of the ordered pairs of distinct
points on the circle, and this is homeomorphic to S'x] 0,27 [ under the map that
sends a pair of distinct points to the pair consisting of the first point and the angle
to the second point (counter-clockwise, say). The involution that interchanges the
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two points is given, in this model, by (z,t) — (zexp(ti),2n — t), and it apparently
extends to the spherical blowup, which is the cylinder S' x [ 0,27 ]. Note that the
involution interchanges the two boundary components via (z,t) — (z,27 - t) for
t € {0,27} and acts on the central circle as (z, ) — (-z, 7). To summarize, there is a
homeomorphism

((SH2, s(s") = (8! x [0,27], 8" x {0,27}).

Notice also that the blow-up (S")[?] is 2,-equivariantly homotopy equivalent to the
circle S! with the antipodal involution.

2 Linear approximation: immersions

In this section, we point out that while, in general, Inm(M, N) is sensitive to the
smooth structure on N, the space Imm(S!, N) is not. This is true for target manifolds
N of all dimensions.

Let M and N be smooth manifolds. Let Mono(7M, TN) denote the space of
monomorphisms from the tangent bundle of M into the tangent bundle of N. Dif-
ferentiation induces a natural map Imm(M, N) - Mono(7M, 7N). It is well-known
from Hirsch-Smale theory that this map is an equivalence if dim(N) > dim(M). One
can identify Mono(7M, 7N) with T; Emb(M, N), the first stage in the Goodwillie-
Weiss tower of approximations of Emb(M, N) [18].

In the case M = S!, we obtain that there are equivalences

Imm(S', N) ~ Mono(7S', 7N) ~ AS(N),

where A denotes the free loop space functor and S(N)) is, as usual, the sphere tangent
bundle of N.

The tangent bundle of a smooth manifold N is not a topological invariant: Milnor
[12, Corollary 1] showed that there are smooth manifolds that are homeomorphic, but
where one of them is parallelizable, and the other one is not. In other words, there are
smooth structures on some topological manifold that afford nonisomorphic tangent
bundles.

On the other hand, the sphere bundle is, to some extent, a topological invariant.
The following result is a corollary of theorems of Thom [15, Corollary IV.2] and Nash
[14]. It also follows from our Proposition 1.3.

Proposition 2.1 If smooth manifolds M and N are homeomorphic, then the total spaces
of the spherical tangent bundles S(M) and S(N) are homotopy equivalent.

Theorem 2.2 The homotopy type of the space Imm(S', N) of immersion of the circle
into a smooth manifold N does not depend on the smooth structure of N.

Proof We saw that the space Imm(S', N) is homotopy equivalent to AS(N). Now
the result follows from Proposition 2.1. [ ]

Goodwillie and Klein [6] have shown that the connectivity of the map
Emb(M, N) — Ty Emb(M, N)

to the kth layer in the Goodwillie-Weiss tower is at least k(n —m —2) +1-m.
Recall: a map is called c-connected if all of its homotopy fibers are (¢ — 1)-connected.
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In particular, the Goodwillie-Klein result implies the much more elementary fact that
the inclusion Emb(M, N) — Imm(M, N) is (n — 2m — 1)-connected. It follows for
M = S! that the inclusion Emb(S!, N) - Imm(S!, N) is (1 — 3)-connected. Theorem
2.2 implies that the homotopy (n — 4)-type of Emb(S!, N) does not depend on the
smooth structure of N. In the following sections, we shall roughly double this range.

We end this section with a couple of elementary observations about the set 77y of
components and the fundamental groups m; of Imm(S', N). Let n be the dimension
of N. The bundle map S(N) — N is (n —1)-connected. It follows that there is an
(n - 2)-connected map

Imm(S',N) ~ AS(N) - A(N).

Assuming 7 > 4, we have isomorphisms 7; Imm(S', N) = 7; A(N) for i = 0,1. Using
well-known facts about the homotopy groups of 7; A(N), we obtain the following
proposition.

Proposition 2.3  Let N be a connected smooth manifold of dimension n > 4. Then, the
set of components of the space Imm(S', N) is in natural bijection with the set of conju-
gacy classes of elements in the fundamental group of N. If N is simply connected, then
the fundamental group of the space of immersions is isomorphic to t,N = Hy(N; 7).

3 Quadratic approximations

In this section, we will give a new description of the quadratic approximation
T, Emb(M, N) that is valid for all M and N.

The first-order (a.k.a. linear) approximation to the space Emb(M, N) of embed-
dings M — N is given by the space Mono(7M,7N) of monomorphisms of tan-
gent bundles [18], and the corresponding approximation map Emb(M,N) —
Mono(tM, TN) is induced by differentiation. To understand the quadratic approx-
imation, we need to study the behavior of maps on pairs of points.

Recall that we have two canonical 3,-equivariant maps S(M) - M2l and M[?]
M x M. We define the space Mapzz((M[z], S(M)), (N x N, N[1)) as the space of
commutative diagrams

S(M) —%—~ N1

.

MBI — > NxN

of X, -equivariant maps, where the vertical arrows are canonical. In other words, there
is a pullback square

(31 Mapy ((MP1,S(M)), (N x N, NP)) —— Map, (M, N x N)

| |

Mapzz (S(M), N[Z]) - Mapzz(S(M)’N X N)

https://doi.org/10.4153/S0008414X2000067X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2000067X

8 G. Arone and M. Szymik

Notice that the boundary inclusion S(M) — M2 is a 3,-cofibration: it is a cofibration
and the group X, acts freely on the complement of the image. It follows that the right
vertical map in (3.1) is a fibration, and that the square diagram (3.1) is both a strict and
a homotopy pullback.

Lemma 3.1 The homotopy type of
Mapy, ((M'2,S(M)), (N x N, N21))

for a fixed source M, only depends on the homeomorphism type of N.

Proof Since the inclusion of N x N\N — N?! is an equivalence, the space
Mapy, (M1, 5(M)), (N x N, NPT))

is a homotopy equivalent to the homotopy pullback of the diagram

Mapy, (M, N x N)

|

MapZZ(S(M),N x N\N) —— Mapzz(S(M),N x N).

Clearly, this homotopy pullback only depends on the homeomorphism type of N. m

There is an evident commutative diagram

Mapy (M, NPy —— Map, (M[P],N x N)

|

Mapy (S(M), N x N\N) —— Mapy_(S(M), N x N).
This diagram induces a natural map.
(3.2) Map, (MU, NPy — Map, ((MP,s(M)), (N x N, NPI)).
There also exists a natural map.
(3.3) Emb(M, N) — Map, (M, NP),

Indeed, for an embedding f: M — N,themap f x f: M x M - N x N is automatically
a fiberwise monomorphism on the normal bundle of the diagonal. Furthermore, f x f
satisfies (f x f)™'N = M. Therefore, we can use Proposition 1.1 to produce a map: the
blow-up of f x f at the diagonal.

Next, we claim that there is a commutative diagram

(3.4) Mono(tM, TN) —— Map, (M2, N x N)

| |

Mapy_(S(M), N2l) —— Mapy (S(M),N x N).
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To define this diagram, we have to specify the top horizontal and the left vertical maps.
The top horizontal map is the composition of the following maps, each one of which
is apparent

Mono(tM, TN) - Map(M, N) Iord, Mapy (M x M,N x N)
- Mapy (M, N x N).
The left vertical map is the following composition of apparent maps
Mono(7M, 7N) - Mapy (S(M),S(N)) — Mapy_(S(M), NED,

It is an easy exercise to check that, with these definitions, the diagram (3.4) commutes.
This diagram gives rise to a natural map

(3.5) Mono(tM,TN) — Mapzz((M[z], S(M)), (N x N, N2Y).
Lemma 3.2 The following diagram commutes

(3.3)

Emb(M, N) Map_(M[2, N[2T)

| -

Mono(TM, TN) &Mapzz((M[z],S(M)), (N x N, N2y,

Proof Let f: M — N be an embedding. Our task boils down to the question whether
the diagram

S(M) — = s(N) N2

| a—

M[2]4>M><Mf—Xf>N><N

is commutative for all embeddings f: M — N. Here, f1?] is the blowup of f x f at the
diagonal, and the unlabeled arrows are the obvious ones. The diagram is commutative
by definition of the map f12. [ ]

The commutative square in Lemma 3.2 is not a (homotopy) pullback in general.
But it is in some important cases:

Lemma 3.3 The commutative square in Lemma 3.2 is a homotopy pullback if M is the
disjoint union of at most two copies of R™.

Proof Let M =k xR™, where k is a finite set with k elements, and analyze the
commutative square

Emb(M,N) ————— Map, (M2, N1?))

|

Mono(tM, TN) — Mapy ((M[?,8(M)), (N x N, N12]))

in this case. Our goal is to show that when k < 2 the square is a homotopy pullback.
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In the case, the set k = 0 is empty, all the spaces involved are contractible and there
is nothing to prove.

Next, suppose that k = 1is a singleton, so that we have a homeomorphism M = R™.
In this case the map Emb(R™, N) — Mono(7R"™, TN) is an equivalence, so we need
to show that the map

(3.6)  Mapy, (R")2), NPTy — Mapy ((R")2),S(R™)), (N x N, N1))

is a homotopy equivalence. This is equivalent to showing that the diagram

Maps, ((R™)2], NI2)) —— Mapy (S(R™), N2))

| |

Mapy, (R™)P), N x N) —— Mapy, (S(R"), N x N)

is a homotopy pullback square. The boundary inclusion S(R™) — (R™)[2] is a 3,-
equivariant homotopy equivalence (see Example 1.2). Therefore, both horizontal
arrows are homotopy equivalences, and then the square must be a homotopy pullback.
Lastly, let us suppose that the set k = 2 consists of two points. Let M denote k x R™.
There is an embedding of k into M, sending each point of k to the origin of the
corresponding copy of R™. This embedding gives rise to the following diagram,

Emb(k, N) Maps, (k%) NT2T)
Emb(M, N) i Mapzz(M[z], N
/ Nk BIA (k’ N)
Mono(7M, 7N) BlA(M,N)

where we have used the abbreviation
Bla (M, N) = Mapy ((MP, (M), (N x N, NBy).

We want to prove that the front face is a homotopy pullback. For this, it is enough to
prove that the left, back, and right faces are each a homotopy pullback.

It is a standard fact that the left face is a homotopy pullback for M = k x R™, for
any k: the difference between an embedding of R™ and an embedding of its center
is given by a framing of the tangent space at the center, and it is the same for mere
immersions.

Note that since k is a zero-dimensional manifold, S (k) = @ and k[z] =k x k\k.In
particular, for k = 2, we have k[z] > ¥, as X,-sets. Then, by inspection, the back face
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is homeomorphic to the square

N x N\N —— N[

|

NXN?NXN

Clearly, the horizontal arrows are equivalences, so we have a homotopy pullback
square.
As for the right face, the general formula

(LuM)B = (LxM)yu(MxL)uLPy M
gives that in the case M = 2 x R™ there is a homeomorphism
M) = (5, R¥) 1 2% (R™)2),
and then
Mapy (M, NPy = NBTx Map, (R™)2), NT2T)2,
This maps to
Bly(2x R™,N) = (N x N) x Bl (R™, N)2.
Moreover, we have S(M U N) = S(M) 1 S(N), so that
S(2xR™) =2 xS(R™),
and the boundary inclusion of $(2 x R™) into (2 x R™)[?] becomes the evident map
2x S(R™) —> (2, x R*™) u (2 x (R™)1)

into the summand on the right: 2xboundary inclusion of S(R™) — (R")[2],
Together, we see that the right face becomes

N2« Mapzz((Rm)[z],N[z])z — > N2

|

(N x N) x Bl (R™,N)> ——— N x N.
We proved that the map
Mapy, (R"), NT) Bl (", N)

is a homotopy equivalence when we considered the case k =1 (see (3.6)). It follows
that the last square is a homotopy pullback. [ ]
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For general M, we have the following result:

Lemma 3.4 Define Fy (M) to be the homotopy pullback of the following diagram

Mapy, (M[Z], N[Z])

l(s.z)

Mono(TM,TN) ——= MaPzz((M[z]’S(M))> (N x N, N2y,

The functor M — Fy (M) is quadratic

Proof The class of functors of degree at most d is closed under homotopy limits.
Therefore, it is enough to prove that the three functors in the homotopy pullback
defining Fy are quadratic.

The functor M — Mono(7M, TN) is in fact linear. The functor

M— Map22 (M[Z], N[z])
is quadratic essentially by [18, Example 2.4/71]. Finally, the functor
M — Map,, (M1, S(M)), (N x N, NI2)))

is, by definition (3.1), itself a homotopy pullback of functors each one of which is easily
shown to be of degree at most to 2. |

Theorem 3.5 For all M and N, the commutative square in Lemma 3.2 induces a
homotopy pullback square

T, Emb(M, N) _> Map22 (M[z]’ N[2])

|

Mono(tM, TN) — Mapy_((M[?1,8(M)), (N x N, N2)).

Proof Lemma 3.3 shows that the canonical map Emb(M, N) — Fy (M) of functors
in M induces an equivalence T, Emb(M, N) — T,Fy(M) between their second-
order approximations. Lemma 3.4 shows that the canonical map Fy — T,Fy is an
equivalence. Both together imply the result. [ ]

4 Embeddings of the circle

For a general source manifold M, we see no reason why the homotopy type of
the quadratic approximation T, Emb(M, N) should be independent of the smooth
structure on N. In this section, we will specialize to the case M =S!, so that the
embedding spaces are spaces of knots. The target manifold N can still be arbitrary
of dimension at least 4.

We are ready to state and prove our main theorem.

Theorem 4.1 The homotopy type of the space T, Emb(S!, N') does not depend on the
smooth structure of the manifold N.
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Proof By Theorem 3.5, and together with the equivalence Imm(S*, N) ~ AS(N), we
already know that the space T, Emb(S!, N) is equivalent to the homotopy pullback of
the following diagram.

(4.1 Mapzz((Sl)[z],N[z])

|

AS(N) —— Mapy, (8", 8(s"), (N x N, NIT)).

We claim that the homotopy type of this diagram (4.1) is determined by the homotopy
type of the diagram S(N) — N2l = N x N. By Proposition 1.3, the latter is deter-
mined by the homeomorphism type of N and is independent of the smooth structure.

Because the lower right corner of the diagram (4.1) is defined as a pullback, that
entire diagram is determined by the following diagram.

Maps, (8, N % N)

\
/

AS(N) Mapy, (S(S'), N x N) Mapy, (")), NPT)

./
\

,(S(sh), NET)
Using the fact that S(S') = £, x S, we may rewrite this diagram as follows

(4.2) Map; ((SH)P), N x N)

\
/

AS(N) Map(S', NxN)  Mapy ((s")(2],NP2)

/
\

Map(s', N[2])

where f is induced by the squaring map, g is induced by the inclusion S(N) — N[2]
and all the other maps should be self-evident. It is clear that the homotopy type of this
diagram is determined by the homotopy type of the diagram S(N) - N2l - N x N,
and therefore is the homotopy limit of this diagram, which is T, Emb(S', N). [ ]

Corollary 4.2  The homotopy (2n — 7)-type of the space Emb(S', N) does not depend
on the smooth structure on the manifold N.

Proof The approximation map Emb(M,N) — T, Emb(M,N) to the second
layer in the Goodwillie-Weiss tower is (2(n—m —2)+1— m)-connected. For
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the embeddings of the circle M =S', this shows that the approximation map
Emb(S', N) — T, Emb(S', N) is (21 — 6)-connected, so that both spaces share the
same homotopy (2n — 7)-type. Therefore, the theorem implies the corollary. ]

To end this section, we will describe the homotopy fiber of the map
T, Emb(S', N) - T; Emb(S', N) =~ AS(N)

over a convenient basepoint, in low dimensions. Let us pick a point (x, ) € S(N),
i.e,, a point x € N and a unit tangent vector u at x. Let the corresponding constant
loop be our chosen basepoint of the space AS(N'). This point is not in the image of
the homotopy equivalence Imm(S*, N) - AS(N), but it is connected by a path to
the image of an unknot in a Euclidean neighborhood of x. So we may think of our
basepoint as representing a small unknot.

Let QN be the pointed loop space of N with our chosen basepoint x. There is a
map QN — N, evaluating at the middle of a loop. Let (QN)” be the Thom space of
the pullback of the tangent bundle of N along this evaluation map. The group X, acts
on (QN)" by reversing the direction of loops and by -1 on the tangent bundle. Let
QY = colim, Q"2"Y be the usual stable homotopy functor.

Proposition 4.3  Let N be a smooth manifold of dimension of at least 4. The homotopy
fiber of the forgetful map T, Emb(S', N) — AS(N) over a constant loop is related by a
3-connected map to the space

Map*zz(C, QQ(QN)T)

of equivariant pointed maps on the cofiber C = S' x S'/S' of the inclusion S(S') —
(shzl,

Proof By Theorem 3.5 and/or diagram (4.2), the homotopy fiber that we are inter-
ested in is equivalent to the total homotopy fiber of the following diagram

Mapy, (8", NB*J) —— Map,, (s, N x N)

! |

Map(S!, N[2l) — = Map(S!, N x N).

The calculation of the total fiber is pretty straightforward. If there is any subtlety, it
has to do with basepoints and the (lack of) dependence on the choice of basepoint.
We will calculate the total fiber by first taking fibers in the horizontal direction and
then the vertical direction.

Let F be the homotopy fiber of the map N (2] - N x N over the basepoint (x, x).
Because the inclusion N x N\N — N2l is a homotopy equivalence, the space F is
equivalent to the homotopy fiber of the inclusion N x N\N — N x N. There is a map

N\{x} —= NxN\N ——N

| | |

N—>NxN—N
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of (horizontal) fibration sequences, and computing homotopy fibers vertically, we see
that F is homotopy equivalent to the homotopy fiber of the inclusion N\{x} - N.In
particular, the space F is 2-connected.

The total fiber that we are interested in is equivalent to the fiber of the following
map

Maps, ((5), F) - Map(S', F).
Equivalently, we can write this map as follows, using S(S') = %, x S’
(4.3) Mapy_(($")[), F) » Map,_(S(S"), F).

Note that the basepoint of Mapy (S(S'), F) is not a constant map. (There is no
constant X,-equivariant constant map into F, since the action of X, on F is free.)
Rather, the basepoint is a map that is constant on each connected component of
S(S') = =, x S!. It sends one copy of S! to the point (x,) and the other copy to
(x,—i). Let us explain how we think of the two points (x, +ii) as points in F. Initially
(x, 1) was defined to be the chosen basepoint of S(N). Since we have an inclusion
S(N) = N2, the points (x, +ii) can also be thought as points of N[2. In fact, they
are points in the fiber of the map N2 - N x N over the point (x, x). Therefore, they
naturally define points in the homotopy fiber of same map, which is F. It follows that
the homotopy fiber of the map (4.3) is the space of equivariant maps from ($')[?] to F
that take one path component of the boundary of (S')[?] to (x, it) and the other path
component to (x, —ii). Notice that this map from the boundary of (')} to F can
be extended to a %,-equivariant map from all of (S')[?] to F, because (S')[? is two-
dimensional and F is two-connected. In other words, the fiber of (4.3) is not empty.

Next, we would like to stabilize. Let SF be the unreduced suspension of F. We
use the unreduced suspension because F does not have a X,-equivariant basepoint.
Let QXF be the space of paths in XF from the “south pole” to the “north pole”
(By our convention, the south pole is the basepoint of XF.) There is a natural map
F — QXF that is 5-connected because the space F is 2-connected. (This is a version of
the Freudenthal suspension map for unpointed spaces.) It follows that the fiber of the
map (4.3) is connected to the fiber of the map

(4.4) Mapy ((S")1?), QSF) - Mapy_ (S(S'), OZF)

by a 3-connected map.

Next, we claim that one can replace Q with the usual loop space ) in this map.
To see this, observe that the homotopy fiber above can be identified with the space of
¥, -equivariant maps from (S')[2] x I to ¥ F that agree with a prescribed map on the
subspace

1 1\ [2]
S(SY) x IS(SIL)JX(_H (SH¥ x ol.
The prescribed map is defined as follows. On S(S') x I it is the composite S(S') x I —
F x I - XF, where the first map is determined by the basepoint map S(S') - F and
the second map is the canonical quotient map. On the components of (S')[2] x oI the
prescribed map is constant with the image of south pole and north pole, respectively.
We claim that the prescribed map is X,-equivariantly homotopic to the constant map
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into the south pole: this claim follows from the fact that the basepoint map S(S') — F
can be extended to a 3,-equivariant map from (S')[?] to F, because the space F is 2-
connected. It follows, in turn, that the homotopy fiber of the map (4.4) is equivalent
to the space of pointed X,-equivariant maps from (S')[2] x I to SF that agree with the
trivial map on the indicated subspace. This mapping space is the homotopy fiber of
the map

Mapy ((H, o3F) - Maps, (S(S"), Q3F),

which is obtained from (4.4) by replacing the functor Q with the ordinary loop space
functor Q. Note that now the basepoint of Mapy_(S(S"), Q3F) is the constant map
into the trivial loop.

Finally, we can stabilize. By the ordinary Freudenthal suspension theorem, the last
homotopy fiber is mapped to the homotopy fiber of

(4.5) Map,_(($)1?), QQEF) - Map,_(S(S'), QQEF)

by a 4-connected map. It follows that the homotopy fiber that we are interested in is
connected to the last homotopy fiber by a 3-connected map. Now, the homotopy fiber
is taken over the usual basepoint, given by the constant map. The homotopy fiber is
equivalent to the space

Map, ,; (C, QQZF).
of equivariant pointed maps, where C the (homotopy) cofiber of the inclusion S(S') —
(SHE. -
It remains to identify the space F with the Thom space (QAN)*. Recall that
F denotes the homotopy fiber of the canonical map N2/ - N x N. Consider the

following cube, where S(QON) denotes the pullback of the spherical tangent bundle
S(N) along the evaluation map QN — N.

S(ON) ——— - QN

., i\*
.

Nl S NxN

S(N)

By construction, all vertical squares are homotopy pullbacks. The bottom square
is both a strict and a homotopy pushout diagram. By Mather’s cube theorem [11,
Theorem 25], the top square is a homotopy pushout square. Passing to its (horizontal)

homotopy cofibers, we get an equivalence (QN)* = XF . |

5 Applications to the fourth dimension

Let N = N* be a smooth connected 4-manifold. The tangent bundle of an oriented 4-
manifold is determined by its topology (see [5, 9] ): Any oriented 4-plane bundle over
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a four-dimensional complex is determined by its second Stiefel-Whitney class w,, its
first Pontryagin class p;, and its Euler class e. For the tangent bundle, these classes are
all topological invariants. This also implies Proposition 2.1 in dimension 4.

In this section, we work out the implications of our general results for the spaces
Emb(S!, N*):

Corollary 5.1 The homotopy 1-type of the space Emb(S', N*) does not depend on the
smooth structure on the 4-manifold N*.

This allows us to compute the set of components (isotopy classes of embeddings),
which was known before, and all the fundamental groups of the components, which
is new, from the topology alone. We also get a lower bound on 7.

Let us start with mp. If M =S' and N* is any 4-manifold, then the map
Emb(S!, N*) - Imm(S', N*) is 1-connected, so that it induces a bijection between
the sets of (path) components and an epimorphism on fundamental groups. For the
set of components, we have Proposition 2.3, and get

7o Emb(S', N*) = 7o Imm(S', N*) = 1y AS(N) = moAN*?,

and that set is in natural bijection with the set of conjugacy classes of elements in the
fundamental group m;N*. Note that this set only depends on the homotopy type of
the 4-manifold N*.

We can now turn to 71; and 7,. For the moment, let us assume, for simplicity, that
the manifold N* is simply connected. Then, the space Imm(S!, N*) is connected and
the fundamental group of that space is Hy(N*; Z) by Proposition 2.3. Consequently,
it is known that the space Emb(S', N*) is path connected and that the fundamental
group (and the first homology group) of that space surjects onto the abelian group
H,(N*;Z). Corollary 5.1 lets us substantially improve on this estimate.

Our first application concerns homotopy 4-spheres, where the earlier estimate
(“m Emb(S', £*) surjects onto the trivial group”) was contentless. Using Corollary
5.1 we now get:

Proposition 5.2 If 2* is a homotopy 4-sphere, then the space Emb(S!, %) of knots in
>4 is simply connected.

Proof If =* = S* happens to be the standard 4-sphere, then the statement is known
to be true: the embedding space Emb(S',S*) is simply connected (see [2, Proposi-
tion 3.9], for instance): the embedding space Emb(S',S*) has the same homotopy
1-type as the space of linear embeddings, the Stiefel manifold SO(5)/SO(2). In
general, Freedman has shown that every homotopy 4-sphere * is homeomorphic
to the standard 4-sphere S*, and then our Corollary 5.1 implies the result. ]

Remark 5.3 It is known that the space Emb(S', $*) is not 2-connected. In fact, there
is an isomorphism 7, Emb(S!, S*) = Z, as shown by Budney [2, Proposition 3.9 (3)]
(mind the typo in the statement there).

As another application of our results, we will now show that there are 4-manifolds
for N for which the inclusion Emb(S', N) - Imm(S!, N) has a (very) nontrivial
kernel on 7y and m,:
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Example 5.4 Let us consider the space Emb(S',S* x S'). Because the target is
parallelizable, we have an equivalence

(5.1) Imm(S',S* x §') =~ A(S® x $* x §).

It follows that the space Imm(S?, $* x S'), and, therefore, also the space Emb(S!, S x
S!) has a countably infinite number of connected components, indexed by the map
induced between the fundamental (or first homology) groups. Notice that the path
components of Imm(S, S* x S') are homotopy equivalent to each other. We also have
an analogous statement for the homotopy fibers of the map from T, Emb(S', S* x S')
to T; Emb(S!, S* x S!) = Imm (S, S* x S') over different path components:

Proposition 5.5 The homotopy type of the homotopy fiber of the map
(5.2) T, Emb(S',S* x §') — T; Emb(S',S* x §')

is the same for every choice of basepoint. In all cases, the homotopy fiber is equivalent to
the space

MaLp*zz(S1 x S'/S', F)

of equivariant pointed maps, where F is the homotopy fiber of the inclusion S* x
SI\(1,1) — S x S'. The action of the group %, on F is defined via the action on S* and
S! that sends an element of S' or S* to its inverse as a complex number or quaternion.

Proof It is enough to verify the proposition for a choice of one basepoint in each
path component. We know that the following maps all induce a bijection on 7.

Emb(S', $* x §') — T, Emb(S', $* x §') — T, Emb(S',$* x §')
— A(S* x $* x Sh).

We want to choose a convenient set of representative basepoints. For the purpose
of this proof, let us identify S! with the circle of unit complex numbers and S* with
the unit quaternions. The point (-1, -1) is our basepoint for S*> x S'. Let i:C — H
be the inclusion of the complex numbers into the quaternions. Let a,,:S' — S* x S!
be the map defined by a,(z) = (i(z),2z"). Then, {a, | n € Z} is a complete set of
representatives of the path components of Emb(S!',S* x S') and, therefore, their
images give a complete set of representatives of the path components in the other
spaces, too. We will show that the homotopy fibers of the map (5.2) are pairwise
homotopy equivalent for all these basepoints.

We have seen in Theorem 3.5 and/or diagram (4.2), that the homotopy fiber of (5.2)
is equivalent to the total homotopy fiber of the following square diagram.

(53)  Mapy ((SHP,($* xSH) —— Map, ((S")[?, §* xS! x §* x §!)

| l

Mapy, (S(8"), (8* x 8")*)) —— Map;; (S(S'), §* x ' x 8> x §').

Of course, “the” total homotopy fiber depends on a choice of basepoint in
Mapy, ((S")[2], (> x $1)[2). Our task is to compare the total homotopy fibers
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for basepoints given by the images of the embeddings «, defined above in
Mapy (($")[2), ($* x 81)[21). The image of a,, in Mapy_ ((S")[?), ($* x 81)[2) is the
map that sends a point (z;,2;) € S' x S'\S! to the point

((i(z1),2), (i(22),23)) € (S* x 81) x (S x S\ x 8.

We will simplify diagram (5.3) in three steps.

(Step 1) Recall from Example 1.5 that there is a homeomorphism (8")[?] = S! x
[0,27]. The middle circle S' x {n} corresponds under this homeomorphism to the
subspace S := {(z,-z) € ($')[%] | z € S'}. With this homeomorphism, it is clear that
the circle S! is a ¥,-equivariant strong deformation retract of (S")(2]. From here it
follows that the total homotopy fiber of (5.3) is equivalent to the total homotopy fiber
of the following diagram.

(5.4) Mapzz(gl, ($xsHlly — Mapzz(g, $* x S x 83 x 1)

| l

Mapy_(S(S"), (S* x ")) —— Mapy_(S(S'), $* x 8! x $* x §').

To remember that the circle S! with the antipodal action arose as the middle of (S')[?],
we continue denoting the elements of Sl as pairs (z,-z), where z is a unit complex
number. The vertical maps in the diagram are induced by the canonical £,-equivariant
maps S(S') 2 2, x §' > SI. Our task now is to compare the total fibers of the diagram
(5.4) with basepoints in Mapy_ (S1, (S* x SH)[21) given by maps

(5.5) (2,-2) = ((i(2), 2"), (-i(2), (-2)"))

where n € Z.

(Step 2) Notice that the boundary of (S* x $')[2] is not in the image of any of
the maps that serve as basepoints of the mapping space Mapzz(gl, ($* xsHN. 1t
follows that, in diagram (5.4), we may replace the space (S* x S')[2] with the homotopy
equivalent space (S* x S')?\S® x S!. So, we are now interested in the total homotopy
fiber of the following diagram.

(5.6) Mapy, (S1, (8° x 81)2\S$? x §') ———= Map,_(S1, (8> x8')?)

| |

Mapzz(S(Sl), ($* x SHA\S? x §1) —— Mapzz(S(Sl), (S* x SH)?).

(Step 3) Our last step is to simplify further the total homotopy fiber of (5.6), using
the fact that S* x S! is a Lie group.

Suppose G is a Lie group. Let G denote the underlying space of G, equipped with
the ,-action that sends an element to its inverse. There is a fibration sequence

G g~(88) GxG (81,82)~81 &2 c
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of spaces with X,-action, when we let X, act trivially on G and by interchange-of-
factors on G x G. The preimage of G\{e} in G x G is G x G\G. It follows that there is
a square

GxG\G ———>GxG
(gugz)Hgllgzi i(gn,gz)wgllgz

G\{e} z G

that is, both a pullback and a homotopy pullback.
Now taking G to be S* x S!, we conclude that the total fiber of (5.6) is equivalent to
the total fiber of the following square.

(5.7) Mapy (S, x S'\(1,1)) —— Map,_ (S}, $* x§!)

| |

1\/Iap2:2(s(sl),’§3 X’S\l\(l, 1) —_— Mapzz(s(sl), '§3 X§1).

Here, > and S! indicate the spheres, S> and S', endowed with the action of the group %,
that sends an element z to its inverse z!, and the map from (5.6) to (5.7) that induces
an equivalence of total fibers is induced by the quotient map (S* x S') x ($* x ') —
$ xS, defined by the formula (wy, wy) = wi'w,.

This finishes our simplification of diagram (5.3), and we can now describe the total
homotopy fibers with respect to the various base points. Recall from (5.5) that the
representatives of the basepoints in the space Mapy (S, (S? x S1)2\S? x S!) are given
by the maps

(2,-2) = ((i(2),2"), (=i(2), (-2)")),

for n € Z. The image of this basepoint in the upper left corner Mapy (S1,$ xS1\(1,1))
of the simplified square (5.7) is the map that sends (2, -z) € S' to (=1, (-1)"). We see
that, for any given n € Z, the induced basepoint is a constant map. Therefore, for every
n € Z, the total homotopy fiber of (5.7) for the nth basepoint is equivalent to the space

Map, . (S'xS'/S', F,)

of pointed ¥,-equivariant maps, where S' x S'/S! arises as the homotopy cofiber of the
inclusion S(S') — S, and where the space F, is the homotopy fiber of the inclusion
$® xS1\(1,1) - S* x S over (-1, (~1)"). This already shows that there can be at most
two different homotopy types of homotopy fibers: one for #n even and one for n odd,
because F, depends only on the parity of n by definition. To resolve the remaining
ambiguity, we remark that the spaces F, are all ¥;-homotopy equivalent, because
multiplication by —1 induces a %,-equivariant homeomorphism from S to itself that
sends +1to —1. [ ]
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It is elementary to deduce from the equivalence (5.1) that there are isomorphisms
m(Imm(S', S* x §')) 2 Z as well as m,(Imm(S',S* xS')) 2 Z® Z, and all higher
homotopy groups are finitely generated, too. In contrast:

Proposition 5.6  Both m and m, of each homotopy fiber of the map
Emb(S',$* x §') — Imm(S', $* x §')

are abelian and contain an infinitely generated free abelian group. In particular, they are
not finitely generated.

Proof Because of the equivalence T; Emb(S!,S® x S') ~ Imm(S!, S? x S') and the
fact that the approximation Emb(S!, $* x S') — T, Emb(S?, $* x S') is 2-connected, it
is sufficient to prove the statement for the homotopy fibers of the map T, Emb(S!, S* x
S') — T, Emb(S', S* x S'). By Proposition 5.5, all of these homotopy fibers are equiv-
alent to the mapping space Map, y (S' x S'/S', F), where F is the homotopy fiber of
the map S* x S'\(1,1) - $* x S'.

As for the 2,-homotopy type of the homotopy fiber F, the space S* x S'\(1,1) is
homotopy equivalent to S* v S, where we can take the wedge point to be (-1, -1). Let
us recall that the group 2, is acting on S' and S* by taking each element to its inverse
(as elements in C or H). The Whitehead product fibration £(QA A QB) > Av B -
A x B shows that we have equivalences

(5.8) F=32(QSAQSY) = \/ 208~ \/ S vSvS
nez nez

where the last equivalence comes from the James splitting: the space ZQS? is homo-
topy equivalent to the wedge sum S* v S v §7---. The action of the group %, on the
indexing set Z sends n to its inverse —n.

As for the space S! x S'/S!, it fits into a cofibration sequence

Sy AS e 5, AS s St Sy

of pointed X, -equivariant maps. By adjunction, any such map, f, is described uniquely
by an element in 7;(Z,, A S'), which is the free group on two generators, say a and
o(a), where o is the nontrivial element of the group X,. The map f in question is
a-o(a).

For any space F, using the identifications Map, ; (22, A S',F) = Map, (S, F) =
QF, it follows that with an action ¢ of the group X,, the mapping space
Map, (S1 x S1/St, F) fits in a fibration sequence

1+0

Map,, (S'xS!/S',F) — QF — QF,

where addition means loop multiplication.
Now let us take F to be what it was before, as in (5.8). We obtain a fibration sequence

Map*zz(sl x Sl/sly F) - Q(\/ S3 \% 85) — Q(\/ S3 \V; SS)
nez nez
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Taking the homotopy long exact sequence, and focusing on 7, and 7;, we obtain the
following exact sequence.

712Mapw_2(81 xS'/SLF) > ] Z(n)~ [] Z(n) — mMap*zz(S1 x 8'/S', F) - 0.

n=—oo n=—oo

Here, Z(n) denotes a copy of the group Z corresponding to the index n. The
homomorphism in the middle splits as a product of a homomorphism Z(0) — Z(0),
which we do not need to determine, and, for each n > 0, the homomorphism Z(n) x
Z(-n) —» Z(n) x Z(-n) that sends a pair (i, j) to the pair (i + j, i + j).

The group m,Map, , (S x 8'/S', F) is abelian, because it is a 75, and by exactness
of the sequence above, it surjects onto the kernel of the middle homomorphism,
which obviously contains an infinitely generated free abelian group. Therefore, the
group myMap, ;. (S1 x S!/SL,F ) itself also contains an infinitely generated free abelian

group. As for the fundamental group 7'[1Map*22(81 x S'/SLF ), we first note that
the exact sequence implies that it is abelian as well, as the quotient of an abelian
group. And the cokernel of the middle homomorphism, which is isomorphic to
mMap, 5 (Sl x S'/SLF ), also contains an infinitely generated free abelian group. m

Corollary 5.7 For j =1and j = 2, the kernel of the homomorphism
m;Emb(S',$* x §') — 7; Imm(S', > x §")

is abelian and contains an infinitely generated free abelian group. In particular, the
kernels are not finitely generated.

We have also seen that the group 7; Emb(S', $* x S') contains an infinitely gener-
ated free abelian group. We refer to the Budney’s and Gabai’s more recent preprint [3]
for more information on these fundamental groups. Our methods allow us to obtain
information on higher homotopy groups as well:

Corollary 5.8 The group m, Emb(S',S* x S') contains an infinitely generated free
abelian group. In particular, it is not finitely generated.

It would be interesting to see a calculation showing an example of a simply con-
nected 4-manifold N for which the map Emb(S', N) — Imm(S', N) has a nontrivial
kernel on ;. (Moriya’s recent preprint [13] contains restrictions that apply.) It is
easy to show that the homotopy fiber of the map T, Emb(S!, N) - Imm(S', N), and,
therefore, also of the inclusion Emb(S!, N) - Imm(S', N), has nontrivial 7r; for many
manifolds N, including simply connected ones. But we have not analyzed the long
exact sequence in homotopy in enough detail to show that the map from the homotopy
fiber to T, Emb(S', N) is nonzero on 7, for some simply connected N.
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