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The Wedge-of-the-edge Theorem:
Edge-of-the-wedge Type Phenomenon
Within the Common Real Boundary

J. E. Pascoe

Abstract. _e edge-of-the-wedge theorem in several complex variables gives the analytic continua-
tion of functions deûned on the poly upper half plane and the poly lower half plane, the set of points
inCn with all coordinates in the upper and lower half planes respectively, through a set in real space,
Rn . _e geometry of the set in the real space can force the function to analytically continue within
the boundary itself, which is qualiûed in our wedge-of-the-edge theorem. For example, if a function
extends to the union of two cubes in Rn that are positively oriented with some small overlap, the
functions must analytically continue to a neighborhood of that overlap of a ûxed size not depending
of the size of the overlap.

1 Introduction

Let Π denote the open upper half plane in C. _at is, Π = {z ∈ C ∣ Im z > 0}.

Π

−Π

R

Figure 1: A picture of Π.

Let U ⊆ R be an open set. One can show using elementary complex analysis, for
exampleMorera’s theorem, that any continuousmap f ∶Π∪U∪−Π → C that is analytic
on Π ∪ −Π is indeed analytic on the whole of Π ∪U ∪ −Π. When f ∣U is real-valued,
this observation is the essential part of the proof of the Schwarz re�ection principle.

_e analogue in several variables was proved by Bogoliubov in 1956 and is known
as the edge-of-the-wedge theorem. _e edge-of-the-wedge theoremwas ûrst presented
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Figure 2: A projection of the edge-of-the-wedge theorem onto the imaginary axes. Note that
all of U appears as a point in this projection.

at the International Conference on_eoretical Physics in Seattle, and a couple of years
later appeared in a book with additional coauthors [6]. A quality, concise, compre-
hensible discussion was given by Rudin in Lectures on the edge-of-the-wedge theorem
[13]. _e edge-of-the-wedge theorem is an important stem theorem in several com-
plex variables.

_eorem 1.1 (_e edge-of-the-wedge theorem) Let U ⊆ Rn be an open set. _ere
is an open set D in Cn containing Πn ∪ U ∪ −Πn such that every continuous function
f ∶Πn ∪U ∪ −Πn → C that is analytic on Πn ∪ −Πn analytically continues to D.

Some dégustation of the edge-of-the-wedge theorem is needed before we proceed.
Two somewhat remarkable notes are as follows:

1. _e set Πn ∪ U ∪ −Πn is not open. _at is, the open set D containing Πn ∪
U ∪ −Πn must intersect the exterior, somehow leaking out the sides in a nontrivial
way. For example, when n = 2, this means that D ∩ Π × −Π and D ∩ −Π × Π must
be nonempty. _us, we can imagine the result is somewhat deeper than in the one
variable case. Additionally, we are presented with a mystery: What is the geometry of
the maximal D?

2. _e set D is independent of the function f . On its face, this fact is somewhat
surprising. However, in light of Montel type theorems, at least intuitively, how could
it be otherwise?

_e metaphor evoked in the phrasing edge-of-the-wedge merits some additional
discussion. _e phrase thin edge of the wedge refers to something minor with major,
o�en spurious, implications, evoking the classical use of a metal wedge to split logs
for ûrewood. _e continuous continuation through the superûcially thin looking set
U between the wedges Πn and −Πn gives way to the major analytic continuation
throughout the fatter set D.
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We note that there exist various generalizations of the edge-of-the-wedge theorem
to weaker distributional notions of agreement between the twowedges; see, for exam-
ple, [8]. Rudin’s book [13] gives some other generalizations and some more modern
surveys include [15]. Our goals are somewhat orthogonal to these matters; during
our current enterprise, we will consider the geometry of such a continuation once we
already know that it exists. _at is, givenU , the edge-of-the-wedge theorem automat-
ically manufactures a set D and we would like to understand how U shapes D.

Speciûcally, we will be particularly interested in D ∩Rn . In principle, we might be
tempted to assume we are forced to have D ∩ Rn = U , which is o�en the case, for
example, when U is a cube, that is, U = (−1, 1)n . When n = 1, one can simply take xn
to be a dense sequence in (−1, 1)c , and deûne

f (z) = ∑
2−n

z − xn
,

and for n > 1, products of such functions will suõce.
While a general qualitative description of D remains somewhat elusive, when U

has some nontrivial geometry in several variables the situation is more exciting. Un-
der certain nice geometric conditions, speciûcally ifU is the union of two cubes with
a small overlap that are positively oriented with respect to each other, we will see that
our continuation is somewhat larger than U within Rn . _is is the content of our
wedge-of-the-edge theorem.

_eorem 1.2 (_e wedge-of-the-edge theorem for hypercubes) _ere is an open set
D in Cn containing 0 such that for any ε > 0, every continuous function

f ∶Πn ∪ (−1, ε)n ∪ (−ε, 1)n ∪ −Πn Ð→ C

that is analytic on Πn ∪ −Πn , analytically continues to D.

_eorem 1.2 follows from the more general _eorem 2.1. In fact, D can be taken
to contain a ball around 0 of uniform radius independent of the dimension n, which
we discuss in Subsection 3.1.

_e geometric situation in the wedge-of-the-edge theorem has (−1, ε)n and
(−ε, 1)n , pieces of the edge, emulating the roles of the wedges Πn and −Πn in the
classical edge-of-the-wedge theorem, hence the name wedge-of-the-edge theorem.

Several examples show the necessity of the orientation and small ε overlap. _e
function 1/(1− tzw) can ût two squares in the opposite orientation with a small over-
lap in the opposite orientation as in the wedge-of-the-edge theorem, but cannot be
analytically continued to a uniform neighborhood of 0 for large t. _e function

√
zw

cannot analytically continue through the point 0, demonstrating the necessity of the
small overlap. Our qualitative understanding is still incomplete. For example, we have
not eliminated the possibility that D cannot be taken to contain the whole (−1, 1)n .
An interesting matter to consider is the large rescaling limit of the wedge-of-the-

edge theorem. _at is, functions that are continuously deûned on the entire positive
and negative orthants plus some small overlap and the upper and lower multivariate
half planes are entire.
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Ô⇒ D

Figure 3: A pictographic representation of the wedge-of-the-edge theorem. Note the visual
analogy with the edge-of-the-wedge theorem.

Figure 4: Figures of the domains of 1/(1 − tzw) and
√

zw , respectively. In the ûgure of
1/(1 − tzw), the curve represents the singular set of the function, which as t goes to inûnity
approaches the coordinate axes.

Corollary 1.3 (_e limiting wedge-of-the-edge theorem) For any ε > 0, every con-
tinuous function f ∶Πn∪(−∞, ε)n∪(−ε,∞)n∪−Πn → C that is analytic onΠn∪−Πn ,
analytically continues to all of Cn .

We now give a nice, somewhat amusing, corollary of the main result along the
lines of Hartogs’s phenomenon. If we have a function deûned on a upper and lower
multivariate half plane and a region in Rd missing a single point, we see that it must
continue to that point.

Corollary 1.4 (A weak Hartogs type phenomenon) Let E ⊆ Rn be an open set. Let
p ∈ E . If f ∶Πn ∪ (E ∖{p})∪−Πn → C is continuous and analytic on the interior of its
domain, then it has a continuous extension to E .

_e following sketch gives a picture of the proof. _e formal details are le� to the
reader.
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E

Ô⇒
p p

Figure 5: Applying the wedge-of-the-edge theorem for hypercubes where the intersection is
squeezed suõciently near p gives the proof of Corollary 1.4, since the function is forced to
analytically continue to p.

_eorigin of the wedge-of-the-edge theorem lies in the theory of Pick functions in
several variables and their boundary values, which has received some amount of in-
terest since the connection tomultivariable operator monotonicity was established by
Agler,McCarthy andYoung[4]. Using strong aspects of their structure, a very detailed
specialized version of the wedge-of-the-edge theorem was obtained by the author in
[11], which can be used to relax the main result in [4], which was done in [10]. _e
wedge-of-the-edge theorem established in [11] gives_eorem 1.2 under the additional
assumptions that f ∣U is real-valued and f (Πn) ⊆ Π. Under these assumptions, better
bounds on the size of D were obtained along with good estimates for the power series
coeõcients at 0. Some of the methods from [11] apply for our current endeavor, but,
in general, the analysis is signiûcantly more opaque here.

2 The Wedge-of-the-edge Theorem in General

We deûne a real wedge W ⊆ Rn which
(a) is contained within the positive orthant, that is W ⊂ (R≥0)n ;
(b) is a measurable set;
(c) has positive measure;
(d) is starlike with respect to the origin, that is, if x ∈ W , then tx ∈ W whenever

0 < t < 1.
_e full version of the wedge-of-the-edge theorem is as follows.

_eorem 2.1 (_e wedge-of-the-edge theorem) Let W be a real wedge. _ere is
an open set D in Cn containing 0 such that for any real neighborhood B of 0, every
continuous function f ∶Πn ∪W ∪ B ∪−W ∪−Πn → C which is analytic on Πn ∪−Πn ,
analytically continues to D.

_e remainder of the section will consist of a proof the wedge-of-the-edge theo-
rem, along with some remarks on the limitations of our techniques. _e trick is to
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(0, 0)

Figure 6: A real wedge.

B
Ô⇒ D

Figure 7: _e general wedge-of-the-edge theorem.

bound the polynomials occurring in the power series for f at 0 by interpolating their
values a�er some superûcially elaborate reduction.

Proof Without loss of generality, our wedge will be contained inside (0, 1)n .
We ûrst note that f must be analytic at 0 by the classical edge-of-the-wedge theo-

rem. So f has a power series at 0. Write

(2.1) f (z) =
∞
∑
d=0

hd(z)

near 0, where hd are the homogeneous terms of the power series for f . Our goal will
be to show that the series for f is absolutely convergent in some neighborhood of 0,
which has size that depends onW and not on the size of B. _at is, it will be our goal
to show that ∣hd(z)∣ ≤ K ⋅ Cd∥z∥, where ∥z∥ = max ∣z i ∣.

Under our assumptions, it is clear to see that the series in equation (2.1) converges
almost everywhere on W . Namely, the series converges absolutely on each (1− ε)W .
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For x ∈ (1 − ε)W , if we consider the function

g(w) = f (wx) =
∞
∑
d=0

hd(wx) =
∞
∑
d=0

hd(x)wd ,

we see that the rightmost series for g(w) converges on 1
1−εD and therefore absolutely

whenw = 1. Here, we are using the assumption thatW is starlike to ensure the deûni-
tion of g on the whole of (− 1

1−ε ,
1

1−ε ) and sinceW is contained in the positive orthant,
wx ∈ Πn ∪Rn ∪ −Πn .

_at is, it is now suõcient to prove the following lemma.

Lemma 2.2 Fix a real wedge W. _ere is a constant C > 0 such that, given
(hd)∞d=0 a sequence of homogeneous polynomials in n variables each of degree d such
that ∑∞d=0 hd(x) converges almost everywhere on W, there is a K > 0 such that
∣hd(z)∣ ≤ KCd∥z∥d .

First note that∑∞d=0 ∣hd(x)∣ converges for x ∈ (1− ε)W , since the function g(w) =
f (wx) is deûned and analytic for w ∈ 1

1−εD.
Deûne SN = {x ∈ W ∣∑∞d=0 ∣hd(x)∣ ≤ N}. We note that Alaoglu’s theorem implies

that SN is relatively closed in W . _at is, a sequence of elements s i of ℓ1(N) that
converge pointwise to a limit S in ℓ1(N)must satisfy ∥s∥ℓ1 ≤ lim inf ∥s i∥ℓ1 . Here, given
a sequence x i ∈ SN and a limit point x ∈ W , we are taking s i = (hd(x i))d∈N and
s = (hd(x))d∈N . Namely, each SN is measurable.

Moreover, the measure of SN converges to the measure ofW as N goes to inûnity.
So there is some N0 such that SN0 has measure greater than half the measure ofW .

Now, note that each ∣hd(x)∣ ≤ N0 on SN0 . So, it is now suõcient to prove the
following lemma to establish Lemma 2.2.

Lemma 2.3 Fix n. Fix p > 0. _ere is a constant C > 0 and a constant K > 0 such
that for every S a measurable set inside [0, 1]n with positive measure greater than p and
every h a homogeneous polynomial of degree d in n variables such that ∣h(x)∣ ≤ 1 on S,
we have ∣h(z)∣ ≤ KCd∥z∥d .

Now we need to introduce the ℓ1 norm on polynomials, which is given by the sum
of the moduli of the coeõcients. _at is, given a polynomial

h(z) = ∑ aIzI ,

we deûne ∥h∥ℓ1 via the formula

∥h∥ℓ1 = ∑∣a i ∣.

Note that, if h is a polynomial in some set of variables x1 , . . . , xk and g is a poly-
nomial in y1 , . . . , y l , we see that ∥hg∥ℓ1 = ∥h∥ℓ1∥g∥ℓ1 . Moreover, we note that for
homogeneous polynomials,

∣h(z)∣ ≤ ∥h∥ℓ1∥z∥d .

In order to establish Lemma 2.3, it is now suõcient to prove the following lemma.
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Lemma 2.4 Fix n. Fix p > 0. _ere is a constant C > 0 and a constant K > 0 such
that, for every S a measurable set inside [0, 1]n with positive measure greater than p
and every h a polynomial of degree d in n variables such that ∣h(x)∣ ≤ 1 on S, we have
∥h∥ℓ1 ≤ KCd .

_e proof is by induction on the number of variables.
In no variables, that is, n = 0, we see that h ≡ k. Clearly, the maximum modulus

that the constant value k can have if our monomial h is to be bounded on S is 1. So
we get that ∥h∥ℓ1 ≤ 1.

P0 P1 P2

S

x0 x1 x2

Figure 8: _e idea of the proof is to approximate on pieces of one lower dimension that are
relatively large and relatively far apart, where “relatively large” and “far apart” are constrained
by the measure of S .

Now ûx a general number of variables n. We note that the measurable nature of
S ensures almost every slice {x i} × [0, 1]n−1 ∩ S will be measurable as a set in n −
1 dimensions by Fubini’s theorem. (See [7, Exercise 5.2.6, p. 162].) One may pick
points x0 , . . . , xd such that if we deûne Pi = {x i} × [0, 1]n−1 ∩ S, then each Pi has
n − 1 dimensional measure greater than p/2 and each x i is at least p/2d apart. (_is
follows from applying Fubini’s theorem to the function p̃(x) giving the measure of
{x} × [0, 1]n−1 to obtain that the set of x such that p̃ has value greater than p/2 has
measure greater than p/2. For any measurable subset of [0, 1] with measure greater
than some number q, one can, essentially greedily, ûnd points d+ 1 that are q/d apart.
_e worst case is essentially when all the measure is pushed to one side of the box,
with measure p/2 everywhere else.)

Let h i be a polynomial in n− 1 variables that gives h on each Pi . Now, by induction
we see that there are K̂ and Ĉ such that ∥h i∥ℓ1 ≤ K̂Ĉd .

Now apply the Lagrange interpolation theorem, noting that interpolation recovers
the polynomial exactly, since we have enough nodes, to get that

h =
d

∑
i=0

h i ∏
i /= j

x − x j

x i − x j
.
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So we see that

∥h∥ℓ1 = ∥
d

∑
i=0

h i∏
i /= j

x − x j

x i − x j
∥
ℓ1
≤
d

∑
i=0

∥h i∥ℓ1∥ ∏
i /= j

x − x j

x i − x j
∥
ℓ1

≤
d

∑
i=0

∥h i∥ℓ1∏
i /= j

2
∣i − j∣p/2d ≤

d

∑
i=0

∥h i∥ℓ1
dd

d!pd
(d
i
)4d

≤ K̂Ĉd dd

d!pd
8d ≤ KCd .

In the last line we needed to apply Stirling’s estimate, which says that dd/d! grows like
ed . _is completes the proof.

2.1 Caveat Emptor

_ere are several reasons the reader should beware.
First, our methods generate some kind of abstract estimates on D, but we do not

really understand the polynomial estimates obtained. Second, even if we understood
an optimal phrasing of something like Lemma 2.2, there are severe limits to our tech-
nique. We apparently did not fully use the continuation to the full poly upper half
plan, in fact, not even the whole polydisk. (A modest abstract improvement can be
obtained therefore by conformally mapping into the polydisk ûrst.) However, more
importantly, there are limits to the polynomial interpolationmethod itself that do not
seem to be optimal. For example, taking a sumover homogenizedChebychev polyno-
mials (which are all bounded by one on a certain wedge) would give some slight trans-
formation of their generating function, namely (1 − x)/(1 − 2x + t2) (see [14, p. 69]),
which satisûes the hypotheses of Lemma 2.2, but also apparently has singularities in
the poly upper half plane.

_at is, the polynomial value interpolation appears to be a rather naive way to
approach the optimal wedge-of-the-edge theorem.

3 Some Concluding Remarks and Conjecture

3.1 On Cones and Some Uniformity

Some formulations of the edge-of-the-wedge theorem state the theorem with respect
to cones [8, 13]. _e goal now will be to discuss the context of cones and show that in
that context we obtain some uniform amount of analytic continuation.

Let C be an open cone inRn with a distinguished element 1⃗ ∈ C . We deûne a ∥x∥C
for x ∈ Rn by

∥x∥C = max ( inf{λ ∈ R≥0 ∣ λ1⃗ − x ∈ C}, inf{λ ∈ R≥0∣λ1⃗ + x ∈ C}) .

For example, if C is the positive orthant and 1⃗ = (1, . . . , 1), we recover the ℓ∞ norm.

425

https://doi.org/10.4153/CMB-2018-025-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-025-3


J. E. Pascoe

Another example would be to view Rn×n as n by n Hermitian matrices and 1⃗ as the
identity matrix, which recovers the maximum modulus eigenvalue norm on Her-
mitian matrices. We extend the norm to x + iy ∈ Cn via the formula ∥x + iy∥C =
max(∥x∥C , ∥y∥C). We deûne ΠC = Rn + iC .

Corollary 3.1 Deûne W = {x ∈ C ∣⃗1 − x ∈ C}. _ere is an open set D, containing a
ball of some radius in the ∥ ⋅ ∥C norm independent of W such that for any neighborhood
B of 0 any continuous function f ∶ΠC ∪W ∪ B ∪ −W ∪ −ΠC → C that is analytic on
ΠC ∪ −ΠC analytically continues to D.

Proof _e novel part here is the uniformity. We will show that along any ray point-
ing out of the origin, we get some absolute length of analytic continuation. _e key is
to reduce to a 4 dimensional problem.
First we note that any z ∈ Cn such that ∥z∥C < 1/8 can be written z = x+−x−+ iy+−

iy−, where each of the components are in C have norm less than 1/4, namely x+ = x+
∥z∥C , x− = ∥z∥C−x etc. Now, consider g(a, b, c, d) = f ((ax+ + bx− + cy− + dy+)/2)
that deûnes a continuous function on Π4 ∪ (−1, 0)4 ∪ B̃ ∪ (−1, 0)4 ∪ −Π4 which is
analytic on Π4 ∪−Π4 . So, applying the wedge of the edge theorem we get some small
analytic continuation along the ray spanned by z of independent size andwe are done.
(Note that continuation along each slice is suõcient since, tracing through the proof of
the wedge-of-the-edge theorem, we know that the homogenous expansion at 0 must
converge on our constructed B.)

3.2 Conjecture

We note that the wedge-of-the-edge theorem is much stronger in the case of rational
functions, where it is the case that any analytic function onΠn∪−Πn that extends con-
tinuously through a neighborhood of a line segment from (−1, . . . ,−1) to (1, . . . , 1)
must analytically continue to the whole square (−1, 1)n .

Roughly speaking, ûx a rational function in n variables r(z) = p(z)/q(z) that
is reduced. _e singular set is then the set where V = {q(z) = 0} = {q̂(z) = 0},
where q̂ is the squarefree part of q. If r(z) is analytic on Πn ∪ −Πn , we know that V
cannot intersect Πn∪−Πn , so by an argument involving the implicit function theorem
we get that generically ∇q̂(x) cannot be orthogonal to any directions with positive
imaginary part at points x ∈ V , as otherwise V would intersect Πn , and therefore
one can conclude that all the non-zero coordinates of ∇q̂(x) must have the same
argument. (In fact, one can use the Rudin–Stout theorem [12] to show that we can
take the argument to be 0, although this is somewhat more involved than necessary.)
A geometric argument then gives the original claim. For each x ∈ (−1, 1)n , there is
a λ ∈ (−1, 1) such that the unit vector pointing from x to λ(1, . . . , 1) is orthogonal to
∇q̂(x), which we use to deûne a vector ûeld F . If there were an x ∈ V ∩ (−1, 1)n , we
could �ow from x along F to obtain a point on the line segment from (−1, . . . ,−1) to
(1, . . . , 1) in V . (Note that the orthogonality of F with∇q̂(x) gives that the value of q̂
is constant along the �ow lines.) For a more detailed understanding of such varieties,
which has been rapidly developed in recent years, see [1–3, 5, 9].

We are led to conjecture the following.
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Conjecture 3.2 Let U contain the line segment from (−1, . . . ,−1) to (1, . . . , 1). Any
continuous function f ∶ Πn ∪U ∪ −Πn that is analytic on Πn ∪ −Πn analytically con-
tinues to (−1, 1)n .

We note that in later parts of [4, Section 9], they give a stratagem to show that local
matrix monotonicity implies global matrix monotonicity by rational approximation
schemes, which, in principle, would need the conjecture above to be true.
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