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Abstract
The accumulation area ratio (AAR) of a glacier reflects its current state of equilibrium, or disequi-
librium, with climate and its vulnerability to future climate change. Here, we present an inventory
of glacier-specific annual accumulation areas and equilibrium line altitudes (ELAs) for over 3000
glaciers in Alaska and northwest Canada (88% of the regional glacier area) from 2018 to 2022
derived from Sentinel-2 imagery. We find that the 5 year average AAR of the entire study area
is 0.41, with an inter-annual range of 0.25–0.49. More than 1000 glaciers, representing 8% of the
investigated glacier area, were found to have effectively no accumulation area. Summer temper-
ature and winter precipitation from ERA5-Land explained nearly 50% of the inter-annual ELA
variability across the entire study region (R2 = 0.47). An analysis of future climate scenarios
(SSP2-4.5) projects that ELAs will rise by ∼170 m on average by the end of the 21st century. Such
changes would result in a loss of 25% of the modern accumulation area, leaving a total of 1900
glaciers (22% of the investigated area) with no accumulation area. These results highlight the cur-
rent state of glacier disequilibriumwithmodern climate, aswell as glacier vulnerability to projected
future warming.

1. Introduction

Glaciers play an important role in a wide range of both human and ecological systems (O’Neel
and others, 2015; Immerzeel and others, 2020). Global observations show that glaciers have
lost mass throughout the 20th and 21st centuries, and mass loss from glaciers in Alaska and
northwest Canada (the Randolph Glacier Inventory (RGI) ‘Alaska region’; (RGI Consortium,
2017)) outpaced any other region (Larsen and others, 2015; Zemp and others, 2019; Hugonnet
and others, 2021). Global glacier mass loss will continue through the end of the century, and
glaciers in the Alaska region are projected to provide the largest contribution to global sea level
rise in the 21st century of any glacierized region on Earth (Rounce and others, 2023).

Repeated, systematic observations of glacier mass balance provide critical information for
understanding how glaciers respond to a changing climate (Zemp and others, 2009). However,
fewer than 0.1% of glaciers in the Alaska region have consistent and long-term in situ obser-
vations (e.g. U.S. Geological Survey Benchmark Glacier Program and others, 2016). Geodetic
remote sensing methods offer a complementary approach to collecting direct measurements,
providing insight into glacier mass balance across local to global scales (Jourdain and others,
2023; Zeller and others, 2023). However, geodetic mass balance approaches are affected by a
variety of potential biases related to limitations on glacier area change datasets (Florentine and
others, 2023), different processing steps in the elevation data processing chain (Piermattei and
others, 2024) and the time intervals over which they can be applied (Huss, 2013).

The line separating snow surfaces from ice or firn surfaces on a glacier is the snowline, and
the average altitude of this boundary at any instant, particularly during the ablation season, is
referred to as the transient snowline altitude (SLA) (Cogley and others, 2011). For glaciers with
a distinct accumulation and ablation season (such as the Alaska region), the SLA at the end
of the ablation season can be used as a proxy for the annual equilibrium line altitude (ELA)
(Rabatel and others, 2012). The area which remains snow covered at the end of the ablation sea-
son represents the glacier’s accumulation area, which can be used in conjunction with the total
glacier area to calculate the glacier’s accumulation area ratio (AAR) (Cogley and others, 2011).
Furthermore, this snow covered area on a glacier surface is readily observable from space-based
platforms by differentiating the areas of a glacier which are covered in snow from those which
are ice or firn, because snow has higher reflectance across visible and near-infrared wavelengths
(Gao and Liu, 2001).
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TheELAandAARprovide insight into the relationship between
local climate and glacier mass balance on short (annual) time
scales as variations in the ELA and accumulation area respond
to changing patterns and magnitudes of snow accumulation and
ablation. Remotely sensed observations of these variables can be
used for translating long-term geodetic mass balance measure-
ments to annual time steps (Davaze and others, 2020), investigat-
ing glacier vulnerability and disequilibrium (McGrath and others,
2017; Carturan and others, 2020; Lorrey and others, 2022) and
calibrating glacier models (Geck and others, 2021).

Many previous studies have explored approaches to extracting
the SLA fromoptical satellite imagery, withmost focused on identi-
fying the snow covered areas from Landsat imagery usingmethods
that range from manual delineation to fully automated classifi-
cation approaches (Rabatel and others, 2017). These studies have
focused on glaciers in, for example, theTropics (Rabatel and others,
2012), the European Alps (Rabatel and others, 2008; Rastner and
others, 2019; Prieur and others, 2022), Canadian Rockies (Jiskoot
and others, 2009) and High Mountain Asia (Racoviteanu and oth-
ers, 2019; Guo and others, 2021) or a global sample of glaciers (Li
and others, 2022), but very few have utilized the higher spatial and
temporal resolution of more recently available Sentinel-2 imagery
(Kavan and Haagmans, 2021).

These previous studies tend to be limited to a small sample
size of glaciers (fewer than 250), focus on regional-scale SLAs
rather than glacier-specific SLAs and/or have notmade the derived
datasets accessible for use in other studies. Additionally, few stud-
ies have explored SLA and snow cover extraction in the Alaska
region, and those that have are focused on a small sample size
or regional approximations of snowline variability from coarser-
resolutionMODIS imagery (Pelto, 2011;Mernild and others, 2013;
Shea and others, 2013).

To evaluate the current state and future vulnerability of glaciers
across the entire Alaska region, we create a high resolution inven-
tory of 2018–22 end-of-summer accumulation areas and ELAs for
over 3000 glaciers (> 76, 000 km2) using an automated classifi-
cation of Sentinel-2 imagery (Zeller and others, 2024). Using this
dataset, we assess the current state of Alaska glacier accumulation
areas and investigate the climatic drivers of ELA variability. Lastly,
we project how ELAs will change by the end of the century using
an ensemble mean of 13 global climate models and estimate the
resulting loss of glacier accumulation area across the region.

2. Study area

We derived accumulation areas and ELAs for glaciers defined
by the RGI version 6.0 (RGI Consortium, 2017). All glaciers in
the Alaska region larger than 2 km2 were evaluated (Fig. 1). This
includes 3031 individual glaciers (11% of the 27,108 glaciers in
the region) which together cover 76, 569 km2 (> 88% of the total
glaciated area). Glaciers smaller than 2 km2 were excluded from
our analysis as their smaller size increases the relative effects of
misclassification, and local terrain and topography provide more
dominant controls on their patterns of snow accumulation and
ablation (Florentine and others, 2018). Glaciers in the Brooks
Range (of which 31 are larger than 2 km2) were excluded due
to their short ablation seasons and limited mass turnover when
compared to those at lower latitudes (Wendler and others, 1972).

Five second-order subregions (‘O2Regions’) of the first-order
Alaska region, as defined by RGI Consortium 2017, encompass
our study area: the Alaska Peninsula, Alaska Range, West Chugach
Mountains, Saint Elias Mountains and North Coast Ranges (these
O2Region boundaries are unchanged in the recently updated RGI

Figure 1. The study area in Alaska and northwest Canada. Glaciers included in the study are mapped, with colors corresponding to their O3Region. The inset legend indicates
the color, name and labeled number of each O3Region. Red outlines and corresponding names indicate the O2Regions defined by the RGI (RGI Consortium, 2017). Inset globe
and rectangle show the global context of the area. This map and all other figures are presented in the Alaska Albers equal-area projection (EPSG:3338).
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Figure 2. An example of a Sentinel-2 image from which the training data were collected, showing Wright Glacier (RGI60-01.02602) (a), with example snow, firn and ice regions
labeled in (b). Boxes in (a) indicate the extent of (b), (d) and (e). (c–e) show the process of normalizing imagery by the snow-on mosaic. (c) shows the snow-on mosaic of
Wright Glacier, (d) shows a subset of the original image and (e) shows the effect of snow-on normalization. All images are displayed using the near-infrared, red and green
bands.

version 7.0). We further divided these into 16 smaller subregions
(‘O3Regions’), largely following the regions used by Kienholz and
others (2015). Glaciers are clustered mainly along the coast of
the Gulf of Alaska in a maritime climate. Further from the coast,
glaciers in the Alaska Range are generally smaller and experi-
ence a more interior climate with colder temperatures and less
precipitation.

3. Methods

The snow cover distribution on glacier surfaces was delineated in
all 2018–22 Sentinel-2 Level-1C (top of atmosphere reflectance)
multispectral imagery during the May–November months using
a random forest classifier. After preliminary filtering and infilling
of data gaps, each glacier’s SLA was extracted for each observa-
tion by identifying the elevation band at which the glacier surface
transitioned from majority snow-free (ablation zone) to majority
snow-covered (accumulation zone). The maximum SLA was iden-
tified from each annual time series of SLAs and taken to represent
the ELA. This resulted in a 10 m resolution annual accumula-
tion area product for each glacier each year, along with the annual
ELA. The five annual accumulation area products for each glacier
were then combined to produce a single average product, from
which the 5 year average ELA was calculated. Each of these steps
are described in detail in the following sections, and an overview
workflow diagram in provided in the Supplementary material
(Fig. S1).

3.1. Random forest classification

A random forest classifier (Breiman, 2001) was created to clas-
sify Sentinel-2 top of atmosphere reflectance images (Level-1C)
of glaciers into six classes: snow, firn, ice, debris/rock, water and
shadow. We created a training dataset in Google Earth Engine
(Gorelick and others, 2017) from eight Sentinel-2 datatakes (the
continuous image strip acquired by a single Sentinel-2 satellite,
hereafter called images), with images selected to represent the full
spatial and temporal range of the study area. Polygons of each class
were manually digitized on each of these eight images. All image
bands were resampled to 10 m resolution, and 20,000 pixels of
each class were randomly chosen from each image and band values
extracted, resulting in 16,0000 pixels of each class (96,0000 total).

In addition, a representative snow-onmosaic of the study region
was created by combining all late-winter (between 19 February
and 30 April) cloud-free Sentinel-2 imagery for 2018–22. Each

image’s band reflectance was normalized relative to this snow-on
mosaic, and these normalized band values were also used as inputs
to the random forest classifier. This snow-on normalization was
used as a way to provide a topographic correction for variable
reflectances caused by variations in the solar incidence angle on
the glacier’s surface (Fig. 2).The normalized difference water index
(Gao, 1996) and normalized difference snow index (Dozier, 1989)
were calculated for each observation and included as features in the
classification (Table S1).

The random forest classifier was trained using the scikit-learn
RandomForestClassifier() implementation (Pedregosa and others,
2011) to classify pixels as one of the six classes (snow, firn, ice,
debris/rock, water and shadow). A leave-one-out cross-validation
approach was used during the training process to identify the opti-
mal hyperparameters (namely, n_estimators and max_depth) for
the model to give the best results and to avoid overfitting to the
training data. All pixels from seven of the eight images were used
to train a random forest classifier with a set of hyperparameters,
and the pixels from the eighth image were used to test the accu-
racy of the classifier. This was repeated eight times, using pixels
from each of the training images as the test set, and the average
accuracy across all eight ‘folds’ was used to calculate the accu-
racy of that specific hyperparameter combination. This was then
repeated formany sets of hyperparameter combinations to identify
the optimal combination that resulted in the most accurate clas-
sifier. The optimal hyperparameters found were n_estimators=50
and max_depth=15. A final random forest classifier was trained
on pixels from all eight training images using these hyperparam-
eters (as well as min_samples_split=500, min_samples_leaf=100
and max_features=‘sqrt’, which are reasonable values for datasets
of this size) and was imported to Google Earth Engine.

3.2. Snow cover identification

The random forest was used to classify all available Sentinel-2
Level-1C images of the study glaciers from 2018 to 2022 between
May and November in Google Earth Engine (n = 1.4 million
glacier images) at a 10 m resolution. Cloudy pixels were masked
using the s2cloudless algorithm (Zupanc, 2017) with a cloud prob-
ability threshold of 20% (pixels with cloud probabilities higher than
this were masked). Areas with slopes steeper than 25∘ were also
masked to avoid misclassification of these areas due to the high
solar incidence angles. Terrain shadows were physically modeled
and masked out using the Google Earth Engine TerrainShadow()
function, with the Copernicus WorldDEM-30 (GLO-30 DEM)
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(European Space Agency andAirbus, 2022) and image-specific sun
azimuth and incidence angles as inputs.

Snow cover maps of each glacier were made for each obser-
vation date from the image classification results, distinguishing
between accumulation (snow), ablation (firn, ice, debris andwater)
and missing data (cloud and shadow) areas. A pixel-wise temporal
filter was used to fill missing data and remove outliers in the sur-
face classification by using the most frequently observed class in
all other observations up to 7 days before and 3 days after. If there
were no usable observations in that period, then the pixels were
left as no-data. Frequent misclassification of debris cover as clouds
by the s2cloudless algorithm (Zupanc, 2017) was observed, so the
debris cover product fromHerreid and Pellicciotti (2020) was used
to fill inmissing data gaps over these areas. Observations were then
discarded if they had less than 30% coverage of the glacier surface
before applying the filtering and infilling or less than 70% coverage
after applying the filtering and infilling.

3.3. ELA and AAR extraction

A time-varying digital elevation model (DEM) of each glacier was
constructed by combining the GLO-30 DEM (European Space
Agency and Airbus, 2022) with elevation change products from
Hugonnet and others (2021), which provide spatially distributed
elevation change rates (ma−1) over glacierized areas globally at a
100 m pixel scale as 5 year temporal averages for four intervals
from 2000 to 2020. The original GLO-30 DEM was taken to repre-
sent the 2013 glacier surface elevation, as it was constructed using
data acquired during the 1 December 2010 to 31 January 2015
TanDEM-X mission (Rizzoli and others, 2017). X-band radar pen-
etration into snow and icemay introduce uncertainty (less than the
4 m penetration depth expected for wet snow) (Millan and others,
2015; Rizzoli and others, 2017), but it is considered negligible for
our purposes as we are most interested in relative differences in
ELA across space and time rather than using the GLO-30 DEM
for point measurements of surface elevation changes. DEMs for
each year were constructed by applying the 2010–14 and 2015–19
glacier surface elevation change rates, with the 2015–19 product
extended for the years 2020–22.

The SLAwas extracted for each glacier’s daily snow-cover prod-
ucts using a modification of the approach described in Rastner
and others (2019). The glacier surface area was divided into ele-
vation bands at 10 m increments. The fractional snow cover of the
observed pixels within each band was calculated, and bands with
fewer than 50 observed pixels were removed. Bands with at least
a 50% snow cover fraction were labeled accumulation bands, and
those with less than 50% were labeled ablation bands. The lowest
point with at least five consecutive accumulation bands was then
taken to represent the SLA of the glacier at that time step. If no
SLA was identified, the process was repeated for four and then
three consecutive bands. If there was still no SLA identified, then
the SLA was assumed to be higher than the elevation range of the
glacier, and the SLA is assigned the glacier’s maximum elevation.
The glacier’s AAR was also calculated at each time step as the ratio
between the observed snow-covered area and the total observed
area of the glacier.

This resulted in a series of accumulation area maps of each
glacier (referred to as ‘observations’ below) with an SLA and AAR
associated with each. For each glacier each year, the observation
with the maximum SLA was chosen to represent its annual accu-
mulation area and ELA. But first, inaccurate observations were
filtered out by identifying outliers in each glacier’s annual SLA

and AAR time series. This works on the assumption that the
trend in SLA and AAR over the course of a given melt season
should be consistent (with SLA increasing and AAR decreasing).
Widespread misclassification of the glacier surface in a single
image (for instance, from atmospheric noise or clouds not being
properly masked out) would result in the image’s derived SLA and
AAR being inconsistent with the seasonal progression up to that
point in time.

For each observation, a linear regression was fit to the SLAs
from all other observations in the preceding 60 days, and the
expected SLA for the given date was predicted. If the observa-
tion of interest had an SLA which was more than 200 m higher
than predicted by this linear regression, then the observation was
flagged as an outlier and removed. We tested various thresholds
and found 200 m to optimize the trade-off between omitting erro-
neous outliers due to misclassification (e.g. clouds as snow or
clouds as ice) without excluding actual changes in SLA based on
visual inspection. The same process was applied using the AARs,
and observations with AARs which were more than 0.15 lower
than that predicted based on the linear regression were removed.
Underestimations of SLA and over-estimations of AAR were never
considered outliers, as these conditions are physically realistic
effects of new snow accumulation. Similarly, observations from
days after the observation of interest were not included in the
linear regression because rapid decreases in SLA (and increases
in AAR) at the onset of the accumulation season could result
in these optimal end-of-summer observations being flagged as
outliers.

After these filtering steps, the maximum SLA for each glacier
in each year was found, and that observation was taken to rep-
resent the end-of-summer accumulation area product and annual
ELA. We refer to these products as each glacier’s “annual” prod-
ucts. If multiple observations had the same SLA, then the one with
the smallest AAR was chosen. For glaciers larger than 500 km2 (n
= 22), additional manual selection was used to ensure that the
optimal end-of-summer observation was chosen.

3.4. Final formatting

Each glacier’s annual products were combined to create an average
accumulation area product (referred to as the ‘average’ products)
by taking the most frequent observation of each pixel (default-
ing to accumulation area if the number of years of accumulation
and ablation were equal). The ELA was then recalculated for these
average products to provide a baseline long-term (5 year aver-
age) ELA of each glacier. Remaining missing data gaps were then
filled in each annual accumulation area and average accumula-
tion area product. Missing data for elevations at or above the ELA
were classified as accumulation areas, and those below the ELA
were classified as ablation areas. The majority of these missing data
pixels were located at higher elevation, north facing slopes which
were in terrain shadows across the entire observation period, and
were predominantly infilled as accumulation areas. Not accounting
for these missing data gaps would lead to a systematic under-
estimation of accumulation area across the region. The AAR of
each product was then recalculated, and these final infilled prod-
ucts were used for subsequent analyses. The RGI glacier outlines
(derived predominantly from imagery over the 2004–10 period)
and total glacier area were used for all analyses, as there are no
time-varying glacier extent datasets available for the entire study
region.
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3.5. Climate data

To investigate the climatic controls on glacier ELAs and generate
future ELA projections, we utilized ERA5-Land (Muñoz-Sabater,
2019) reanalysis datasets to investigate the climatic controls on
observed glacier ELAs and global climate models from CMIP6
(Eyring and others, 2016) to estimate end-of-century ELA changes.
Average daily summer (June, July and August) temperature and
total winter (January, February and March) precipitation of each
of the 16 O3Regions were calculated from ERA5-Land daily values
for 2018–22, and annual anomalies were calculated for each region
in each year. A 13-model ensemble (Table S2), selected for its rep-
resentativeness over North America (Mahony and others, 2022),
was used for CMIP6 analyses. Ensemble-mean values for the SSP2-
4.5 scenario, considered the standard ‘middle of the road’ scenario,
were used (O’Neill and others, 2016). Average summer temper-
ature and total winter precipitation was found for the 2013–22
(modern) and 2090–99 (future) periods to calculate the projected
end-of-century changes in each.

4. Results

4.1. Classification accuracy

The random forest classifier showed highly accurate results in
the cross-validation testing. Throughout the eight cross-validation
folds, themedian classification accuracy and F1 score (which com-
bines the precision and recall of the classifier into a single number)
across all classes were 93.1% (with ranges of 67.4–99.8% and

Figure 3. Confusion matrices showing the random forest classifier accuracy in clas-
sifying pixels within our training/validation dataset. A confusion matrix was created
for each of the eight folds of the leave-one-out cross validation approach, and those
eight were combined to a single confusion matrix (as shown here) by taking the mean
value in each cell. The top shows the confusion matrix for all six surface classes which
the classifier was trained to detect, and the bottom shows the same confusion matrix
collapsed down to just the snow class and all others. Squares in the top plot are col-
ored by the number of observations in each, and the text inside each true positive
square indicates the accuracy of that class (i.e. snow was correctly classified 95% of
the time, firn 59%, etc.).

Figure 4. Comparison between glaciological ELAs and our derived ELAs (Remotely
Sensed ELA) on three benchmark glaciers. (a) shows the ELA derived from each plot-
ted against each other, and (b) shows the magnitude of difference between the two
(remotely sensed minus in situ). Marker size in (a) indicates the number of days
separating the observations, with smaller dots indicating larger time discrepancies
(ranging from 5 to 59 days). Note that there are two points for Lemon Creek at 1500
m, indicating 2 years in which the ELA was above the elevation range of the glacier
in both the remotely sensed and in situ datasets.

66.7–99.8%, respectively). When considering just the performance
in identifying snow, themedian accuracy increases to 99.5% (rang-
ing from 90.1% to 99.9%) and the median F1 score increases to
98.6% (ranging from 76.9% to 99.8%) (Fig. 3).

The US Geological Survey (USGS) collects seasonal and annual
glaciological mass balance observations at three ‘Benchmark
Glaciers’ within our study area (U.S. Geological Survey Benchmark
Glacier Program and others, 2016). Mass balance profiles are cre-
ated from point observations of annual mass balance, and the
ELA is calculated as the point at which the annual mass balance
is zero (O’Neel and others, 2019). We used the ELAs from these
glaciers (Wolverine Glacier, Gulkana Glacier and Lemon Creek
Glacier) to validate the accuracy of our remotely sensedELA results
(Fig. 4).

The mean absolute ELA error for all glaciers was 88 m (median
absolute error of 44 m), with a mean bias of –4 m (median bias of
–13 m). These errors were skewed by two outliers in the dataset
on Gulkana and Lemon Creek glaciers which have large time dis-
crepancies. The outlier on Gulkana was caused by significant cloud
cover which was misidentified as firn and ice, and the outlier on
Lemon Creek was caused by no cloud-free imagery being available
in the later summer months. Removing these outliers results in a
mean absolute error of 44 m and a bias of –18 m (indicating that
the remotely sensed ELAs were on average 18 m lower than the
glaciological ELAs).

4.2. Spatial patterns

The automated methods resulted in physically realistic patterns of
glacier ELAs and AARs at both the individual glacier and regional
scale. A clear relationship between continentality (the glaciers’
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Figure 5. The ELA of each glacier (indicated by the color), as calculated from the 5 year (2018–22) average accumulation area products. The inset scatterplot shows the
relationship between distance-from-ocean and ELA. Light colored dots are all glaciers with observable ELAs, and darker purple dots are glaciers with observable ELAs that
are larger than 10 km2. The red line indicates the definition of the coastline that was used.

Figure 6. The AAR of each glacier (indicated by the color), as calculated from the 5 year average accumulation area products. Inset plots show the total accumulation and
ablation area of each O3Region (bottom, left axis), as well as the total AAR (top, right axis), with numbers and colors corresponding to Figure 1.

distance from the ocean) and ELAs was found, with glaciers with a
geometric center nearer to the ocean having lower ELAs thanmore
continental glaciers due to increased moisture availability and

precipitation (Fig. 5). For glaciers within 100 km of the ocean, each
additional kilometer from the ocean leads to an increase in ELA
of 8.6 m (with an intercept of 1027 m at the ocean). However for
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Figure 7. Comparison between average AAR for 2018 and 2019 and the 2015–19
elevation change rate (Hugonnet and others, 2021) in each O3Region. Markers are
colored and labeled according to Figure 1, with their size corresponding to the total
glacier area in each. Points with black borders indicate regions that contain marine-
terminating glaciers, while those with gray borders do not.

those glaciers further than 100 km from the ocean, the trend is less
clear.

The total accumulation area of all study glaciers is 31, 334 km2

(calculated from the 5 year average products), with a correspond-
ing AAR of 0.41 which is well below the AAR range of 0.54–0.64
needed for glaciers of this size to be at equilibrium with cli-
mate (Kern and László, 2010). The AAR of individual subregions
varies substantially across the study area, ranging from 0.26 (in the
Aleutian Range) to 0.49 (in the Wrangell Mountains) (Fig. 6, Table
S3). The glaciers with the highest AARs tend to be large tidewater
glaciers (e.g. Hubbard Glacier, Yahtse Glacier Taku Glacier), while
smaller glaciers on the periphery of theirmountain ranges have the
lowest AARs.

Our observed AARs correlate well with coincident observa-
tions of glacier elevation change (Fig. 7). The average of the 2018
and 2019 AARs of each O3Region was compared to the aver-
age 2015–19 elevation change rate from Hugonnet and others
(2021). Regions with lower AARs (less accumulation area) exhib-
ited greater elevation change (mass loss) than regions with higher
AARs (R2 = 0.54). We also note that regions with marine-
terminating glaciers (regions 8–15) display greater surface eleva-
tion loss (i.e. greater mass loss) than other regions with similar
AARs (Kochtitzky and others, 2022). This is explainable by the
increased glaciermass loss from frontal ablation of these glaciers (a
process which is not captured by variations in accumulation area)
in addition to surface mass balance (the process which variations
in accumulation area do capture). Region 13 seems to not fit this
pattern as well (Fig. 7), which may be attributable to the Glacier
Bay tidewater glaciers undergoing rapid retreat in the early 20th
century and now being more or less stable (McNabb and Hock,
2014).

4.3. Temporal patterns

Substantial inter-annual variability in ELA was observed (Fig. 8).
The median difference between the maximum and minimum ELA
of individual glaciers was 470m (interquartile range of 330–650m)

across the 5 year study period. The highest ELAs across the entire
region were observed in 2019, with ELAs being 140 m higher than
average across all glaciers, while the lowest ELAs were observed
in 2021 at 90 m below the average. The particularly high ELAs in
the North Coast Ranges in 2018 and 2019match with observations
on Taku Glacier of ELAs which were 150 m higher than any other
year of record (1948–2022), caused by exceptionally warm sum-
mer temperatures even at high elevations (Pelto, 2019). The range
in observed ELAs resulted in substantial variability in AAR across
the study region, with the median difference between the maxi-
mum and minimum glacier AAR being 0.46 (interquartile range
of 0.30–0.62), with the most pronounced variability found in the
North Coast Ranges (Fig. 8, Table S4).

5. Discussion

5.1. Methods’ limitations

The automated methods that are presented here allow for annual
glacier AARs and ELAs to be efficiently extracted across large
regions at high spatial resolution. However, as with any approach
that is applied at scale, there are limitations. Although the 5 day
return interval for Sentinel-2 provides imagery at a higher fre-
quency than Landsat missions, capturing the true end-of-summer
snow cover distribution is still dependent on the availability of suit-
able cloud-free imagery prior to the date of maximum SLA. In
particulary cloudy years, this can result in offsets of more than a
month between the true glaciological mass balance minimum and
the timing of the best available image (Fig. 4).

The random forest classification approach which we
implemented has high accuracy (Fig. 3), but misclassification
is still possible particularly in steeper terrain or when cloud
cover is not properly identified. Areas with slopes greater than
25 degrees (largely ice falls and glacier headwalls) were masked
out in our analysis to limit misclassification of these areas. In
rare cases, this may make it impossible to identify the true ELA
on glaciers if the ELA falls within the elevation range of an
extensive ice fall because too large of an area is masked out. Other
machine learning approaches that are able to incorporate the
wider spatial context of imagery, such as a convolution neural
network, might be capable of improving the glacier surface
facies classification. However, such an approach would require
a much larger training dataset and be more computationally
expensive.

Using the RGI glacier area dataset allows direct comparison
between our findings and other studies and facilitates the use of
our accumulation area, ELA and AAR products in future stud-
ies. RGI outlines in the Alaska region are derived from satel-
lite imagery primarily from 2004–10, and glacier retreat in the
intervening years means that non-glacierized areas are included
in our analysis. This systematic over-estimation of glacier area
causes the AARs to be smaller than if contemporaneous glacier
extents were used, but the accumulation area and ELAs are not
impacted. Roberts-Pierel and others (2022) analyzed glacier sur-
face area changes over the majority (but not all) of our study
region and found that total glacier area in 2020 was ∼94.5% of
the 2006 glacier area (the approximate date of imagery from which
the RGI glacier outlines were derived). This suggests that the
modern-day AAR estimates which we present here may be over-
estimated by ∼5.5%, and the truemodern region-wide AARwould
be 0.43.
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Figure 8. Interannual variability in the ELA of each glacier (a–e), presented as anomalies from each glacier’s average ELA in Figure 5. Red colors indicate higher-than average
ELAs, and blue colors indicate lower-than average ELAs. (f) shows the variability in AAR for each glacier across the five years of observations.

Lastly, climate reanalysis products and future climate projec-
tions in mountainous regions have inherent limitations due to
the scarcity of in situ data and complex topography (Zandler and
others, 2019). The end-of-century ELAs that we present here are
meant to represent a reasonable estimate of future changes in these
regions, rather than absolute projections of glacier-specific AAR
and ELA changes.

5.2. Benchmark Glaciers and regional variability

One of the goals of the USGS Benchmark Glacier observations
(U.S. Geological Survey Benchmark Glacier Program and others,
2016), and mass balance programs across the globe, is to provide
detailed insight into the mass balances processes on the single
glacier scale such that those observations can provide standards
for comparison against other glaciers in the surrounding regions
(Huss, 2012; O’Neel and others, 2019). The interannual variabil-
ity in mass balance on benchmark glaciers is uniquely captured
by seasonal in situ measurements, yet their geometry, location or
hypsometry can result in short-term and long-term benchmark
glacier mass balance changes that are atypical of the wider regional
changes (Fountain and others, 2009; Zemp and others, 2009). The
ELA and AAR products in this study provide an opportunity
to investigate how well the interannual variability of site-specific
benchmark glacier mass balance captures the wider regional mass

balance by using the region’s AAR as a proxy for its annual mass
balance.

To do so, we compare the annual mass balance of each
of the three benchmark glaciers to the annual AAR of their
surrounding regions (Fig. 9). The annual balances at Lemon Creek
are strongly correlated (P< 0.01) with the AAR of the O2Region
and O3Region, with r2 values greater than 0.96 (Fig. 9). The mass
balance and regional AAR less well correlate at Gulkana Glacier
(r2 = 0.73 and P = 0.07 for the O3Region, r2 = 0.58 and P = 0.13
for the O2Region), while Wolverine Glacier is the least correlated
(r2 = 0.33 and 0.19, P = 0.32 and 0.49).

The higher correlation that we find for Lemon Creek may be
due to the larger range of annual balances (2.7 m w.e.) and AAR
(0.45) for this glacier and region over the 5 years of observation, as
compared to Wolverine (1.0 m w.e. and 0.26) and Gulkana (1.3 m
w.e. and 0.27). Alternatively, it may be that there is greater intra-
regional variability in mass balance in the regions surrounding
Wolverine and Gulkana, or the 5 years may not provide a long
enough temporal baseline for such an investigation.

5.3. Climate and ELAs

Winter precipitation and summer temperatures from ERA5-Land
were used to investigate the climatic drivers of ELA variations at
the regional scale (ELAs and climate variables were grouped by
O3Region). Over the 5 year study period, ELAs were found to be

https://doi.org/10.1017/jog.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.65


Journal of Glaciology 9

Figure 9. Relationship between glaciological mass balances of the three Benchmark
Glaciers (McNeil and others, 2016) and the AAR of their O2Region (pink dots) and
O3Region (purple squares), with each point representing a single year. r2 values are
shown for a linear regression of each. Higher r2 values indicate that the benchmark
glacier mass balance variations are more representative of the annual AAR variations
of their surrounding regions.

positively correlated (P< 0.01) with summer temperatures (higher
summer temperature led to higher ELAs) and negatively correlated
(P< 0.01) with winter precipitation (increased winter precipita-
tion led to lower ELAs) (Fig. 10). Across the entire Alaska region
each 1∘C increase in summer temperature was associated with a 62
m increase in ELA, while each 10% increase in winter precipitation
was associated with a 24 m decrease in ELA. However, these rela-
tionships were not consistent across the entire study area. Coastal
regions (O3Regions 8–16) and interior regions (O3Regions 3–7)
showed contrasting patterns (Fig. 9). Winter precipitation was
found to be a stronger predictor of ELA variability in coastal
regions, while the linear relationship between ELA and summer
temperature was not statistically significant (P = 0.13). Conversely,
for the interior regions, summer temperature was a stronger pre-
dictor of ELA, while the linear relationship between ELA and
winter precipitation was not statistically significant (P = 0.67).

A multiple linear regression model, using winter precipitation
and summer temperature, was fit to all subregions. This model
(adjusted R2 = 0.46) found that each 1∘C increase in summer tem-
perature resulted in an ELA rise of 85 m, and each 10% increase in
winter precipitation resulted in ELA lowering 32 m.

Changes in summer temperature and winter precipitation
derived from CMIP-6 data (Eyring and others, 2016) were used
to predict the magnitude of end-of-century ELA changes. A sin-
glemodel was used, rather than a region-specific or glacier-specific
approach, because the goal was to investigate the realistic magni-
tude of ELA changes, rather than provide absolute predictions. A
more robust approach might include climate projection downscal-
ing or including multiple SSP scenarios, but is beyond the scope of
this study.

The CMIP6 ensemble shows that summer temperature
increases will range from +1.7 to +3.2 degrees across the study
region between the 2013–22 and 2090–99 periods. Winter precip-
itation is also projected to increase, ranging from +4% to +29%
relative to modern precipitation. The resulting end-of-century

Figure 10. The relationship between climate and ELA variability across the study
area. Y-axis on each subplots is the annual variability in ELA of each O3Region. X-
axis of the left column is the ERA5-Land derived summer temperature (scaled as
difference from mean), and the X-axis of the right column is the ERA5-Land derived
winter precipitation (scaled by percent difference from mean). Points are colored
according to the year which they represent. The top row includes all subregions in
the study area. Middle row includes only the coastal subregions (8–16). Bottom row
includes only the interior subregions (3–7).

projected ELA rise ranges from +86 to +249 meters relative to
the present day (Fig. 11). The most extreme increases in ELA
are projected to occur in the North Coast Ranges, due to the
combination of the largest projected temperature increase and
smallest increase in winter precipitation. These findings are
similar to those of McGrath and others (2017) which utilized a
similar approach but with a much smaller sample size of in situ
observations. The regional AAR which we find in this study is
substantially lower than the range of possible AARs which they
considered when estimating modern glacier ELAs, highlighting
the novelty and value which our glacier-specific observations of
accumulation areas and ELAs provide.

The projected ELA increases which we present here are
increases in the long-term-average ELA. Individual years are likely
to have more extreme changes (both positive and negative). The
2019 mass balance year highlights how anomalies of +300 m in
some regions are realistic expectations for inter-annual ELA vari-
ability. Anomalies this large, on top of the projected increase in
long-term average ELA, could result in individual melt seasons
with ELAs > 500meters above what we see today, with corre-
sponding significant glacier mass losses in those years.

https://doi.org/10.1017/jog.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.65


10 Lucas Zeller et al.

Figure 11. Changes in summer temperature (left) and winter precipitation (center) between 2013–2022 average and 2090–2099 average from a 13-member ensemble of CMIP6
global climate models under the “middle of the road” scenario SSP2-4.5. The resulting change in ELA, as calculated from the multilinear regression described above, is shown
on the right.

Figure 12. (a) The end-of-century AAR for each glacier calculated by applying the
ELA rise in Figure 11 to modern-day ELAs. (b) The percent of the modern-day accu-
mulation area which would be lost with the projected ELA rise.

5.4. Glacier disequilibrium and vulnerability

We modeled the future changes in accumulation area for a range
of ELA increases using a hypsometric approach which accounts
for glacier area altitude distribution (Fig. 12). For each glacier,
the modern ELA was incrementally increased and the resulting
accumulation area and AAR were calculated by assuming that all
surface area above the ELAwould be in the accumulation zone and
all surface area below the ELA would be in the ablation zone. The
initial AAR conditions were calculated by applying the same hyp-
sometric approach given the modern ELAs of each glacier, rather
than using the average observedAAR, to remove the effects of snow
cover below and exposed ice above the ELA. The ELA rise was cal-
culated for each glacier by sampling the projected ELA rise shown
in Fig. 11 using each glacier’s geometric center point (provided by
the RGI ‘CenLon’ and ‘CenLat’).

Across the entire region, total accumulation area is projected to
decrease to 75% of its modern extent by the end of the century,
resulting in an AAR of 0.33 given the modern glacier extents
(compared to the modern hypsometric-derived AAR of 0.44)
(Fig. 12). Substantial differences are found between individual
regions, ranging from 12% to 73% loss of the modern accumula-
tion area in the Eastern Chugach Mountains and Central Coast

Mountains, respectively (Table S3), which match well with the
patterns of end-of-century mass loss projected by Rounce and
others (2023).

A substantial number of glaciers are already entirely within the
ablation zone in the present day, which we define as not having
an observable ELA or having an AAR of < 10% in the 5 year
average products (Fig. 13). A total of 1009 glaciers in our study cur-
rently lack an accumulation zone, with a cumulative surface area of
over 6400 km2 (8% of the studied area). Without an accumulation
zone, these glaciers should be assumed to be entirely out of equilib-
riumwith themodern climate and unable to persist in their present
form (e.g. Pelto, 2010). Under the projected end-of-century sce-
nario of ELA rise, thiswill increase to 1944 glaciers and 16, 500 km2

(22% of the studied area). The majority of these glaciers are small
and on the periphery of their mountain ranges (Fig. 13). However,
there are numerous large glaciers that are almost entirely abla-
tion zone today or are likely to be by the end of the century, for
example, Marvine/Hayden Glacier (445 km2), the eastern tribu-
tary of Bering Glacier (534 km2), Tana Glacier (515 km2), Miles
Glacier (420 km2) and the glaciers within the Yakutat Icefield (>
1000 km2).

The end-of-century decreases in AAR will push glaciers even
further out of equilibriumwith climate than they are in themodern
day. The present-day regional AAR of 0.41 is well below the range
of values that would be needed for glaciers larger than 1 km2 to be
at equilibrium with climate (0.54–0.64) (Kern and László, 2010).
Combining this range ofAARswith themodern accumulation area
of 31, 000 km2 would suggest that the present-day accumulation
area is capable of sustaining 49,000–58, 000 km2 of total glacier-
ized area, substantially less than the RGI-defined glacier extent
of 76, 000 km2 of our study glaciers. Under the projected end-of-
century ELA rise scenario, the total sustainable glacier area drops
to 39,000–46, 000 km2, suggesting a potential loss of up to 49% of
the current glacier surface area.

These projected glacier area losses will not occur immediately
but rather will take decades to be realized, with this response
time controlled largely by glacier geometry (Roe and Baker, 2014).
Furthermore, the modeled declines in AAR are based only on
modern-day surface elevations and glacier area and do not account
for future glacier surface elevation changes or surface area changes.
In reality, the altitude-mass-balance feedback will increase the
glacier surface area below the ELA and amplify the magnitude of
glacier area loss, while the reduced glacier area will diminish AAR
losses (e.g. Huss and others, 2012; Trüssel and others, 2013; Sass
and others, 2017).

Our projections of area change are in line with the most dras-
tic scenarios considered by McGrath and others (2017) over these
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Figure 13. Identification of glaciers with no modern (2018–22) accumulation area. Red indicates glaciers with no modern accumulation area. Orange indicates glaciers that
would lose their accumulation area with the projected end-of-century ELA rise.

same glaciers (a 225 m increase in ELA under the RCP 8.5 cli-
mate projection), despite using less extreme climate forcings. This
is due to the differences in the initial AAR and ELA values used
in each study while using the same glacier geometry. McGrath
and others (2017) assumed that glaciers are near equilibrium with
modern climate (using AARs ranging from 0.5–0.75) in order to
derive glacier-specific ELAs. In contrast, our projections of glacier
area change include the committed area loss due to modern-day
disequilibrium, highlighting the value of our glacier-specific obser-
vations to provide validation and to constrain model initialization
in future studies.

6. Conclusions

In this study, we presented a detailed investigation of the modern
and future state of glacier accumulation areas and ELAs for over
3000 glaciers which account for 88% of the glacier cover in the
Alaska region. The automated methods which we developed using
Sentinel-2 imagery could be applied in future years and to other
glacierized regions. Furthermore, the derived products have poten-
tial uses in applications beyond what is presented here, such as for
validating and constraining glacier models, to understand spatial
variability in snowaccumulation and ablation across a range of spa-
tial and temporal scales, and as a supplement to in situ and geodetic
products.

We found that the total AAR of these glaciers is 0.41, with an
inter-annual range of 0.25–0.49.The observed AAR is substantially
smaller than the steady-state AAR of 0.54–0.64, indicating that, on
a regional scale, glaciers are out of equilibrium with modern cli-
mate. Furthermore, more than 1000 glaciers were found to have
effectively no modern accumulation area. We observed substantial
year-to-year variations in ELA and AAR, with an average glacier-
specific ELA range of 470 m and AAR range of 0.46 across the 5
years.

We found that the temporal variability in ELAs can be
explained by inter-annual climate variability. Summer tempera-
tures and winter precipitation derived from ERA5-Land explained
nearly 50% of regional-scale ELA variability, with winter pre-
cipitation being a stronger predictor of ELAs in coastal regions,

while summer temperatures were more important for continen-
tal regions. An analysis of future climate projections indicated
that ELAs will rise by an average of ∼170 m (ranging from
85–250 m) under a middle-of-the-road greenhouse gas emission
scenario, with the largest changes expected in the North Coast
Ranges. We investigated the vulnerability of modern glaciers to
these changes and found that the projected ELA rise would result
in a loss of 25% of the modern-day glacier accumulation area,
while 1938 of the studied glaciers (22% of the investigated area)
would be left with no functional accumulation area. In order
to reach a new equilibrium with the projected end-of-century
climate, up to 49% of the modern glacier surface area may
be lost.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2024.65.
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