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An application of the p-adic analytic class number formula

Claus Fieker and Yinan Zhang

Abstract

We propose an algorithm to verify the p-part of the class number for a number field K, provided
K is totally real and an abelian extension of the rational field Q, and p is any prime. On fields
of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical
algorithms that compute the entire class number, with improvement increasing with larger field
degrees.

1. Introduction

The quotient of the group of invertible ideals of a number field K, modulo principal ideals,
is the class group of K, denoted by ClK . It is one of the fundamental invariants of the field,
and of core importance to almost all multiplicative problems concerning number fields. As a
result, the ability to compute ClK is an important task in algebraic number theory. Whilst
there are conjectures about the structures of class groups, the computation of ClK is difficult
and existing approaches to obtaining provable results are slow. These either assume some
generalised Riemann hypothesis, thus delivering results that are not proven, or make use of
Minkowski-type bounds, which is computationally infeasible for most examples.

There are, however, circumstances where only the p-part of the class group is required. This
is especially important in certain areas of Iwasawa theory and elliptic curves, where they are
used in descents to find rational points on elliptic curves. Here, it would be useful to have an
algorithm that could efficiently compute only the p-part.

Whilst there have been approaches to this problem in the past, including attempts by Gras
and Gras [8], much progress has been made in the past fifteen years, including most recently
work by Hakkarainen [9], which focused on an algorithm to find prime divisors of class numbers,
and Aoki and Fukuda [1], whose algorithm was more focused on p-adic decomposition of the
class group. Both algorithms require the condition that p does not divide the field degree of K,
and p 6= 2 (problematic as given a fixed degree, genus theory indicates that there are infinitely
many fields with class number divisible by the degree). This prevents them from dealing with
all fields K which are abelian extensions of the rational field Q, despite a theoretical result
from Leopoldt showing that this is possible [10, § 5.5].

In this paper we propose a new algorithm to compute the p-part of the class number for
any totally real abelian number field K and prime p. The result is unconditional and can be
used to verify the p-part of the class group. Just as classical algorithms use the class number
formula for their computation, this algorithm makes use of the p-adic version of the formula.
Whilst this may not be the most efficient way to implement a p-adic algorithm to compute
the p-part of the class group, it does present an unconditional method that runs in polynomial
time in the conductor of the field.
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The computation of the p-part of the class number, apart from few special cases, is usually
done through a computation of the structure of the full class group using a variation of
Buchmann’s subexponential algorithm. The method essentially proceeds in two steps. First,
a (small) finite set of prime ideals is chosen. The algorithm then proceeds to determine the
subgroup of the class group generated by those ideals. In the second step, the choice of the
initial ideals is verified by checking all prime ideals of norm up to some bound.

Depending on the application, the bound can be of size O(log2 |D|), where D is the
discriminant of the number field, in the case where the generalised Riemann hypothesis (GRH)
is assumed, or of size O(

√
|D|) for unconditional results. As a consequence the running time is

overwhelmingly dominated by the verification step in all but the trivial examples. In this paper,
we propose a new method that can compute unconditionally the p-part of the class number
(under a reasonable heuristic assumption supported by numerical data) in time polynomial
in O( n−1

√
|D|) for cyclic fields of prime degree n. This allows an asymptotically much faster

unconditional verification than any previously known method. At the end of the paper, we
produce examples showing the approach to be practical as well.

2. p-adic class number formula

Our algorithm is based on the p-adic class number formula, which provides a link between the
p-adic L-function, the p-adic regulator and class number of a number field [14, Theorem 5.24].

Theorem 2.1. Suppose K is a totally real abelian number field, with discriminant D,
regulator Rp and class number h. Let its group of corresponding Dirichlet characters be X.
Then

2n−1hRp√
D

=
∏
χ∈X
χ 6=1

(
1− χ(p)

p

)−1
Lp(1, χ), (2.1)

where n is the field degree of K, up to choice of sign for
√
D.

Provided we are able to compute Lp(1, χ) for the required characters and Rp, it is possible
for us to calculate h. To do so we make use of two formulae for computing Lp(1, χ). The first
one [7, Theorem 11.5.37] is a closed formula in terms of (p-adic) logarithms, similar to the
formula for L(1, χ):

Theorem 2.2. Let χ be an even character with conductor fχ, and ζ a primitive fχth root
of unity. If χ is the trivial character then Lp(s, χ) has a pole at s = 1. Otherwise

Lp(1, χ) = −
(

1− χ(p)

p

)∑fχ
a=1 χ(a)ζa

fχ

fχ∑
i=1

χ(i) logp(1− ζ−i).

Note that
∑fχ
a=1 χ(a)ζa is a Gauss sum.

The second [7, Proposition 11.3.8] is a convergent series:
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Theorem 2.3. Let χ be a primitive character of conductor fχ, let m = lcm(fχ, qp), where
qp = 4 if p = 2 and qp = p otherwise. If χ is a non-trivial character then Lp(1, χ) is given by
the formula

Lp(1, χ) =
∑

06a<m
(a,p)=1

χ(a)

(
−

logp(a)

m
+
∑
j>1

(−1)j
mj−1

aj
Bj
j

)
,

where Bj is the jth Bernoulli number.

The main steps in computing the p-adic L-functions involve computing p-adic logarithms
and creation of the Qp extension fields required for parts of the formula. In addition, the
appropriate characters for K have to be selected, and Rp calculated. We shall define these
formally as we come to compute them.

3. Computing p-adic L-functions

Let p be a prime number. Denote by Qp the field of rational p-adic numbers, with the usual
p-adic norm |·|p and valuation vp. Let Qp be the algebraic closure of Qp, and Cp the topological
closure of Qp with respect to | · |p.

3.1. p-adic logarithm

Evaluating Lp(1, χ) requires the use of the p-adic logarithm, logp, in both cases. It is defined
by the usual power series expansion,

logp(1 +X) =

∞∑
i=1

(−1)i+1Xi

i
.

Here the series has a radius of convergence of 1, so the domain of logp(x) is U1 = {a ∈ Cp |
|x− 1|p < 1}.

It is possible to extend this logarithm to C×p . We know that by [14, Proposition 5.4], any
element x ∈ C×p can be uniquely represented in the form

x = prωu,

where r is some rational number, ω is a root of unity of order prime to p, and u ∈ U1, and
that there is a unique extension of logp from U1 to C×p given by

logp(x) := logp(u).

Remark 3.1. The above logarithm commutes with Frobenius endomorphism, which maps
elements in a commutative ring of characteristic p to their pth powers.

A key problem in computing Lp(1, χ) is the need for the computation of p-adic logarithms of
arbitrary elements. The straightforward power series is only valid for 1-units, that is, elements
in 1 + pZK . Its naive use would require us to extend the field, which we want to avoid. As
r is rational (r = a/b), the field needs to be extended to contain a uniformising element of
valuation (1/b).
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Algorithm 3.2. Computation of the p-adic logarithm of an arbitrary element x.
Input: x

Output: logp x

1: k := vp(x) and y := π−kx, where π is a uniformising element of Qp(x)
2: z := yn−1 where n := #F for the residue class field F
3: Use the power series to compute log z and log y := 1/(n− 1) log z
4: ε := πe/p
5: Return logp x := (k/e) log ε+ log y.

Proof. We know that x can be rewritten as prωu. Let e be the ramification index of
Qp(x)/Qp, and the valuation of x be v. Then we have r = v/e.

Let π be a uniformising element of Qp(x), that is, an element with valuation 1. Then πe = pε,
for some unit ε. Using this fact, we compute ε. Now we rewrite x so that

x = pv/eωuπ−v/e = pv/eu(pε)−v/e = uε−v/e.

Taking logp of both sides, we get

logp(x) = logp(uε
−v/e) = logp(u)− v

e
logp(ε).

Since logp(x) = logp(u), we need to add a correction factor of (v/e) logp(ε) to return the
correct value, and this completes our algorithm.

Recall that this logarithm commutes with the Frobenius endomorphism. This allows faster
computations of the terms logp(1 − ζ−i) in Theorem 2.2 by making use of the Frobenius
endomorphism (where applicable) to reduce the number of logarithms calculated, which is in
general computationally tedious, especially in fields with large ramification degree. This maps
logp(1− ζi) to logp(1− ζip) at a fraction of the cost of actually evaluating logp(1− ζip).

We can also evaluate 1/pl logp(1 + X)p
l

instead of logp(1 + X). This reduces the number
of terms that need to be computed from the power series, as it now converges more quickly
due to larger valuations. However, this comes at the cost of requiring additional precision for
the division by pl. For each explicit example we can calculate the optimal value of l for the
logarithm computation.

An example of this is when p = 3 and ζ is a 1423rd root of unity. The time taken to compute
logp(1 − ζ−1200) is around 53 s without this optimisation (that is, l = 0), decreasing to 27 s
when l = 15 before increasing again with larger values of l.

Bernstein outlined a fast algorithm for logarithms [2] which may be used here. This, along
with other fast algorithms for logarithms, are intended for calculations requiring high precision
(at least several thousand digits) and it is not clear whether this is required for our algorithm.

3.2. Qp extension field creation

We need to construct a field that enables us to compute Lp(1, χ). Both approaches require roots
of unity, either explicitly in the calculation or for the construction of the Dirichlet character
χ. This calls for a cyclotomic extension of Qp. Suppose we need an oth root of unity for the
calculations. We can write

o = pvp(o)c

so that p and c are relatively prime. The value of c and valuation of o determine whether we
need a ramified or unramified extension, or possibly both.

The following algorithm constructs the necessary extension.
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Algorithm 3.3. Construction of an extension field of Qp containing a oth root of unity
Input: o, Qp

Output: Qp[ζo]
1: c := o mod pvp(o)

2: f := order of p mod c or 1 if c = 1
3: Construct T , unramified extension of Qp of degree f
4: If vp(o) > 0, g(x) := ((x+ 1)p − 1)/(x)
5: Construct S, totally ramified extension of T defined by g(x)
6: If vp > 1 then h(x) := g(x+ 1)vp(o)−1 − π − 1, where π is a uniformiser
7: Construct R, totally ramified extension of S defined by h(x).

This is achieved through the construction of the intermediate fields below:

Qp[ζo] = Qp[ζpvp(o) , ζc]

Qp[ζp, ζc]

Qp[ζc]

Qp

Proof. Qp[ζc] is an unramified extension of Qp. Since Qp contains the (p − 1)th roots of
unity, an unramified extension of degree f would yield (pf −1)th roots of unity. It is clear that
if n|(pf − 1), then the smallest such f is the order of p modulo c, by definition.

The construction of the totally ramified extensions is simple once we have Qp[ζc]. The only
thing we need to be careful about is to ensure that the defining polynomials are Eisenstein.
Since g(x) is the pth cyclotomic polynomial, evaluating it at x + 1 instead of x satisfies our
criterion. A similar process follows for h(x).

3.3. Computing Lp(1, χ)

The computation based on Theorem 2.2 is mostly clear. On the other hand, when using the
formula from Theorem 2.3, it is important to know how many terms in the infinite sum need to
be calculated for the result have precision ν, that is, correct in value modulo pν . This follows
as a corollary from the proof that the infinite sum converges.

Proposition 3.4. The infinite sum∑
j>1

(−1)j
mj−1

aj
Bj
j

converges with respect to | · |p.

Proof. Let sj be the jth term of the sequence. Since | · |p is a non-Archimedean norm it is
sufficient to show that limj→∞ sj = 0.
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Consider the valuation of the individual terms in sj . Since (a, p) = 1,

vp(sj) = vp(m
j−1) + vp(Bj)− vp(j).

We want to show that vp(sj)→∞ as j →∞. This can be achieved by finding the lower bound
of vp(sj), using a result from [14, Theorem 5.10].

Lemma 3.5 (von Staudt–Clausen theorem). Let Bj be a Bernoulli number. Then the
fractional part of Bj is given by ∑

(p−1)|j

1

p
.

Suppose vp(m) = r, then we have vp(m
j−1) = r(j − 1). By the above lemma, vp(Bj) > −1,

since Bj contains at most a single factor of p in its denominator. Since vp(j) 6 (log j)/(log p),
we obtain

vp(sj) > r(j − 1)− log j

log p
− 1.

From this result, it is clear that vp(sj) → ∞ as j → ∞, and therefore |sj |p → 0, which
completes the proof.

Corollary 3.6. To calculate
∑
j>1(−1)j(mj−1/aj)(Bj/j) to precision ν, we need to sum

up to the smallest j such that

ν < vp(m)(j − 1)− log j

log p
− 1. (3.1)

To be able to compute using this formula we need to know how many terms of the infinite
sum we need to calculate to guarantee correctness up to a given precision.

Proposition 3.7. For sufficiently large ν, calculating the partial sum of sj up to j =
(2ν + 1)/vp(m) + 1 provides the correct result modulo pν .

Proof. We need to show that j = (2ν + 1)/vp(m) + 1 satisfies inequality (3.1). Substituting
the value for j, we obtain

vp(m)(j − 1)− log j

log p
− 1− ν = ν − log((2ν + 1)/vp(m) + 1)

log p

> ν − log(2ν + 2)

log p
since vp(m) > 1

= ν − log 2 + log(ν + 1)

log p
.

Consider this as a function in ν. Since it is monotonically increasing for ν > 0, it is positive
when ν > k for some integer k, which satisfies the condition in Corollary 3.6.

Remark 3.8. We note that when p = 2 and 3, k = 3 and 1, respectively. For all other
primes p, k 6 0, so j = (2ν + 1)/vp(m) + 1 could be used for almost all values of p.

In practice, one can achieve a better bound on j by solving inequality (3.1) for the particular
m, p and ν values.

Possible optimisations to speed up the algorithm include caching common terms in the
computation, and performing some computations in Zp (most terms in the sum are elements
of Zp instead of the extension field).
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4. Computing Rp

Let K be a number field and UK its group of units. A system of fundamental units of K is a set
of units that form a basis of UK , modulo torsion. Let u1, . . . , ur+s−1 be such a system. If we fix
an embedding from Cp to C, then any embedding from K into Cp can be considered either real
or complex, depending on the composite embedding from K to C. Dirichlet’s unit theorem tells
us that there are r real embeddings (σ1, . . . , σr) and s conjugate pairs of complex embeddings
(σr+1, σr+1, . . . , σr+s, σr+s). Let δi be 1 or 2 when σi is respectively real or complex. The
p-adic regulator is given by

Rp = det[δj logp |σj(ui)|]16i,j6r+s−1.

Rp is independent of the choice of ordering of the units and embeddings. If K is totally real
or CM, then Rp is independent of the choice of embedding from Cp to C, but in all other
cases of K there may be ambiguities in its definition. Furthermore, it is not clear that we can
classify an embedding from Cp into C as either real or complex in an efficient manner, and
this provided additional reasons to restrict our algorithms to totally real fields.

Thus, for any system of independent units we can easily compute the p-adic regulator from
there. We also need the different p-adic embeddings, but these are either trivial to compute
using standard techniques for p-adic factorisation or root finding, or otherwise by making use
of the Q-automorphisms of the field and one fixed p-adic embedding. We note that typically
the units are not represented with respect to a fixed basis of the field, but as power products
ui =

∏r
j=1 α

ei,j
j for some (small) elements αi and some (large) exponents ei,j ∈ Z. We note

that, despite logarithms of power products being trivial to compute, the αi are not units
(although their power product is a unit), and this requires the computation of logarithms of
non-units.

To obtain the correct valuation of the p-adic regulator we need a basis for any p-maximal
subgroup of the unit group, that is, a subgroup V of the S-unit group U where p - (V : U).
In order to obtain such a subgroup, we use the saturation techniques developed in [3],
which computes such a group from any subgroup V of full rank. In particular, for abelian
fields of moderate conductor, we can obtain such a group from the cyclotomic units of the
surrounding cyclotomic field, which allows us to deal with fields of degree too large for the
direct computation using class groups.

5. Character selection

Let χ be a Dirichlet character modulo k, which is a multiplicative homomorphism χ :
(Z/kZ)× → C×.

For any k|m, χ also induces a character modulo m. For any given χ the smallest modulus is
the conductor of χ, denoted fχ. Let χ be the conjugate character with the usual definition.

Definition 5.1. Let X be a finite group of Dirichlet characters. Denote by f the lowest
common multiple of the conductors of all the characters in X. Let H be the intersection of
the kernels of all characters in X, and K the fixed field by H in Q[ζf ]. Then X is the set of
Dirichlet characters associated with the the field K.

Corollary 5.2. X is a subgroup of the characters of Gal(Q[ζf ]/Q). In fact, X is isomorphic
to Gal(K/Q), and the degree of K/Q is the order of X.

For each required component in the formula we have already highlighted their computations
in the earlier sections. However, we still need to find X to be able to evaluate Lp(1, χ).
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We start by computing the minimal f so that K ⊆ Q[ζf ]. If K is already a cyclotomic field, we
simply take all even characters of conductor f that are non-trivial. Otherwise, we start with
characters of conductor f with order deg(K/Q). Any further restriction depends on the field
in question, in particular the value of f .

If the field is cyclic and f is prime then the characters required are only the primitive ones.
However, if f is not prime, then there will be several fields with the same degree and conductor,
and thus we must select the characters corresponding to each subfield. Since f , the conductor
of K, can be quite large compared to the degree of K, we do not want to compute the fth
cyclotomic field explicitly, nor any embeddings from K into Q[ζf ].

Algorithm 5.3. Selecting characters associated to field K
Input: K

Output: set of characters X
1: Set degree and conductor of K to be n and f , respectively
2: Denote the set of even Dirichlet characters with conductor f and order n by S
3: Construct map between the ray class group modulo f , Clf , and (Z/fZ)×

4: Construct H, the norm group of K, from Clf
5: Let the set of characters in S that act trivially on H be X.

Proof. We start with Gal(Q[ζf ]/Q), which is isomorphic to (Z/fZ)×. Consider the
projection φ:

Gal(Q[ζf ]/Q)→ Gal(K/Q).

The kernel of φ is Gal(Q[ζf ]/K), or the automorphisms of Q[ζf ] that fix K. Any character
associated to K would act trivially on the kernel.

We know that, from class field theory,

Gal(K/Q) ∼ Clf/H,

where Clf is the ray class field of modulo f [6, Algorithm 4.3.1], and H is the norm group in
Z generated by norms of ideals in K. With knowledge of Clf and Gal(K/Q), we can compute
H by taking norms of primes until Clf/H reaches the appropriate size. The kernel of φ is H,
so we need to find the characters that act trivially on H. Although

Clf ∼ (Z/fZ)×

and χ acts on (Z/fZ)×, there is no canonical map between elements of these two sets. We can
construct such a map by examining how various primes map to both Clf and (Z/fZ)×. This
allows us to find the generators of the kernel of φ. Since we know the characters required act
trivially on the generators, we can test to find the correct characters.

Since we can compute every part of equation (2.1) except h, we can easily compute h using
this formula and find its valuation, which will give the p-part of h.

6. Analysis

We now estimate the complexity of computing Lp(1, χ), using each of the two methods. We
will use classical algorithms for multiplication and division in our comparison.

Proposition 6.1. The complexity of computation of Lp(1, χ) using Theorem 2.2 to precision
ν is O(fχν

3d2), where d = [Qp[ζn, ζfχ ] : Qp].
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Proof. Let df be the degree of Qp[ζfχ ]. Performing each logarithm using classical
algorithms to precision ν requires ν calculations, each of complexity O(d2fν

2). The remaining

multiplication has complexity O(d2ν2 log2 p), giving O(fχν
3d2) as required.

Remark 6.2. We can estimate what the upper bound on complexity is using only the terms
p, fχ and ν. For fixed f , it follows from Dirichlet’s theorem on arithmetic progressions that
the primes p for which p - f are equally distributed in (Z/fZ)×, and the degree of unramified
extension should have the same distribution as orders of elements of (Z/fZ)×. This means
that the extension degree d is not dependent on the size of p.

For large enough p neither n nor fχ would contain p as a factor, so it is safe to say we only
need an unramified extension, and that d 6 φ(fχ) < fχ. This gives us an upper bound of
O(f3χν

3 log2 p).

Proposition 6.3. The complexity of computation of Lp(1, χ) using Theorem 2.3 to precision
ν is O(lcm(fχ, p)d

2
fν

3), where df = [Qp[ζfχ ] : Qp].

Proof. To compute the infinite sum with precision ν requires performing at most 2ν + 2
additions, each with complexity in the order of ν2, providing a complexity of O(ν3) for
this sum. The logarithm now has complexity O(d2fν

3), and it must be computed for each
of the lcm(fχ, qp) additions in the formula (each of order ν) for a final complexity of
O(lcm(fχ, p)d

2
fν

3).

Remark 6.4. The degree of extension depends only on the field degree (the only root of
unity required comes from the Dirichlet character, which has order dividing n). Unless p | n,
only an unramified extension is required, and the degree is bounded by n− 1. We also have an
upper bound on lcm(fχ, qp) of 2fχp, so the worst-case scenario for complexity is O(fχpn

2ν3).

It is also unclear what precision is required, although there are numerous heuristic
arguments [13] that h is in general small. However, even if we use the Minkowski bound as an
upper limit for h, this would mean we need to calculate precision of up to O(log(

√
D)/log p).

Comparing the complexities of the two approaches, we see that in addition to the common
ν3 term, the method based on Theorem 2.2 is dependent on fχd

2 whilst the approach based
on Theorem 2.3 is related to lcm(fχ, qp). Thus in the case where the degree of the p-adic field
constructed is small, the first approach will be faster; the second method would be superior if
p is a factor of fχ. This answers Cohen’s question in a remark from [7, p. 304] regarding which
is better for computation.

In the classical algorithm to compute the entire class group, the unconditional verification
of the computation requires O(

√
|D|) steps [5, Algorithm 6.5.6]. Assuming that we have

a tentative class number and unit group for verification, the proposed algorithm requires
the computation of approximately f steps. For a number field K with prime degree n, the
conductor-discriminant formula reduces to D = fn−1. This means that theoretically, the
proposed algorithm is asymptotically faster than the existing algorithms for number fields
of degree 5 or higher, with improvement increasing for larger n. When only the p-part of the
class group is required this would yield a faster computation.

When the degree of the number field is not prime, the relationship between the conductor
and discriminant is more complicated. The conductor-discriminant formula [12, Chapter VII,
Section 5.11] only states that if X is the set of Dirichlet characters associated to the number
field, then

D =
∏
χ∈X

fχ.
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Since f is the lowest common multiple of all the fχ, we have D 6 fn−1. We would need an
upper bound to show that the proposed algorithm is an improvement.

For number fields with Galois group C2×C2 we have either D = f2 or D = 4f2, and we do
not expect any improvement over existing algorithms. In number fields with Galois group C4

the relationship between D and f is more complicated, with either D = f3 or D = gf2, where
g is a divisor of f . Moving up to fields with Galois group C6, it becomes D = g1g

2
2f , where

both g1 and g2 are divisors of f . The lack of relationship between g1 and g2 makes it difficult
to compare the algorithms.

Instead of investigating the individual relationship between D and f for number fields with
a particular Galois group, we provide an asymptotic limit on what the ratio would be, based
on what we know about the densities of discriminants and conductors.

Let D(X) and F(X) be the number of algebraic number fields (with fixed abelian Galois
group G) contained in some fixed algebraic closure, with discriminant up to X and conductor
up to X, respectively. Based on [11], for any ε > 0 we have the formula

F(X) = XP (logX) +O(X1−3/(v0+6)+ε),

where P (logX) is a polynomial (in logX) of degree d0 and leading coefficient c, d0 and v0
being constants dependent on G. This states that the number of fields with conductor at most
X is asymptotic to cX logd0 X, for some constant c.

Wright [15] showed that as X →∞,

D(X) ≈ c(G)α

(v − 1)!
X1/α logv−1X.

Here c(G) is a constant depending on G, α = |G|(1 − 1/Q), where Q is the smallest prime
divisor of the order of G, and v = |G|Q/Q, where |G|Q is the number of elements with order Q.

While we know that the discriminant does not grow monotonically with the conductor,
nevertheless we do have D → ∞ as f → ∞. Therefore, if we have D(X) = F(Y ), then we
know that a field with conductor Y will have discriminant X (at least asymptotically). If we
can solve for X explicitly then we are able obtain a relationship between f and D (and use
this to calculate the ratio).

The dominant term in each of D(X) and F(Y ) is the power of X or Y , respectively. Since
we are only interested in asymptotic behaviour, we will only consider these. Since X1/α ≈ Y ,
we find that

log |D|
log f

→ α(= |G|(1− 1/Q)).

Since α is dependent only on the group order, all fields of the same degree would have the
same asymptotic ratio, regardless of the actual structure of the Galois group. For fields with
composite degree greater than 4, we have α > 3, so we can conclusively say that the proposed
algorithms offer an advantage on all fields of degree 5 or higher over the classical method.

Remark 6.5. We have not taken into consideration the complexity of computing Rp, which
is required for computing p-part of h, due to the fact that we are unable to provide a full
complexity analysis. Furthermore, the same algorithm for saturation would be used to speed
up the existing algorithm, albeit at multiple primes rather than a single prime in our case.
Partial analysis of the saturation algorithm shows that no part of the algorithm is worse than
polynomial in either p or n, which would indicate perhaps O(pknl), which is not inconsistent
with results provided by heuristic arguments that the overall algorithm remains linear in f .
For example, for fields with Galois group C7, linear complexity is clearly observed in the graph
of conductor and complexity in Figure 1.
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Figure 1. Computation time for fields with Galois group C7.

7. Examples

We highlight three specific examples here. The first is a complete worked example, while the
latter are instances where p-adic verification can be achieved in less time than the classical
approach (using either a GRH or unconditional bound). These examples were performed using
Magma v2.19 [4] (note that the default bound PARI uses assumes the GRH).

7.1. Q[
√

40], p = 2

Neither method from [1] or [9] can deal with this example (p = 2 and p divides the field
degree).

Both D and f are 40. Using the Iwasawa approach, 40 = 23 · 5 and 24 = 1 (mod 5), so
we construct the unramified extension of Q2 defined by the polynomial x4 + x + 1. Let α be
a root of the defining polynomial in this extension. We then need to construct two ramified
extensions of this field, first with the polynomial x + 2, followed by x4 + 4x3 + 6x2 + 4x + 2.
Let β be the root of x4 + 4x3 + 6x2 + 4x+ 2 in the final extension field.

We obtain an approximation to the 40th root of unity (correct up to modulo 25), which is
required for later calculations, as

(−13α3 + 8α2 + 14α− 2)β − 13α3 + 8α2 + 14α− 2.

The characters required are of order 2, with conductor 40. It turns out that only a single
character χ is required, with χ(17) = −1, χ(21) = −1 and χ(31) = 1.

The p-adic zeta function and p-adic regulator are found to be β4 and γ (a root to the equation
x2 − 10 in Q2), with valuation 4 and 1, respectively. Putting this into the p-adic class number
formula, we get v2(h) = 1 as required.

7.2. Q[θ], p = 2

Take the field of Q adjoined by the root of x7 − x6 − 354x5 − 979x4 + 30030x3 + 111552x2 −
715705x− 2921075. The conductor is 827 and the Minkowski bound is 3461471. The classical
method provides a conditional class group of Z/2Z× Z/2Z× Z/2Z in less than 1 second, but
requires another 160 s to verify the result. 2-adic verification based on computing hRp takes
1.5 s, significantly faster than the classical approach.
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7.3. Q[φ], p = 11

Here, φ is a root of the polynomial

x11 − x10 − 930x9 − 1049x8 + 254577x7 − 177105x6 − 28898705x5

+ 105363794x4 + 1065225462x3 − 7828574944x2 + 15893036840x− 7589985325.

The conductor is 2047 and the Minkowski bound is 5028348788074. The classical method is
capable of computing a tentative class group of C11 for this field in approximately 13 s, and
another 61 s to check up to the Bach bound (69752). It would be infeasible to verify this result
using the Minkowski bound.

11-adic verification of the class group takes 4.5 s. Furthermore, a complete p-adic calculation
determines the p-valuation of the class number to be 1, with the entire process taking 22 s.
This is even faster than using the Bach bound and represents an improvement over the existing
algorithm, even if GRH is assumed.
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