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Effect of fluid inertial torque on the rotational
and orientational dynamics of tiny spheroidal
particles in turbulent channel flow
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Rotation and orientation of non-spherical particles in a fluid flow depend on the
hydrodynamic torque they experience. However, little is known about the effect of the
fluid inertial torque on the dynamics of tiny inertial spheroids in turbulent channel flows,
as only Jeffery torque has been considered in previous studies by point-particle direct
numerical simulations. In this study, we investigate the rotation and orientation of tiny
spheroids with both fluid inertial torque and Jeffery torque in a turbulent channel flow.
By comparing with the case in the absence of fluid inertial torque, we find that the
rotational and orientational dynamics of spheroids is significantly affected by the fluid
inertial torque when the Stokes number, which is non-dimensionalized by fluid viscous
time scale, is larger than the critical value Stc ≈ 2, indicating that the fluid inertial torque
is non-negligible for most particle cases considered in earlier studies. In contrast to the
earlier findings considering only Jeffery torque (Challabotla et al., J. Fluid Mech., vol.
776, 2015, p. R2), we find that prolate (oblate) spheroids with a large Stokes number tend
to tumble (spin) in the streamwise–wall-normal plane in a thinner region near the wall
due to the presence of the fluid inertial torque. Approaching the channel centre, the flow
shear gradually vanishes, but the velocity difference between local fluid and particles is
still pronounced and increasing as particle inertia grows. As a result, in the core region,
fluid inertial torque is dominant and drives the particles to align with its broad side normal
to the streamwise direction rather than a random orientation observed in earlier studies
without fluid inertial torque. Meanwhile, the presence of fluid inertial torque enhances the
tumbling rates of spheroids in the core region. In addition, the effect of fluid inertial force
on the dynamics of spheroids is also examined in this study, but the results indicate the
effect of fluid inertial force is weak. Our findings imply the importance of fluid inertial
torque in modelling the dynamics of inertial non-spherical particles in turbulent channel
flows.
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1. Introduction

Non-spherical particle-laden turbulent flows are ubiquitous in both natural and industrial
processes, such as pollen transmission (Sabban & van Hout 2011), papermaking processes
(Lundell, Söderberg & Alfredsson 2011), biomass combustion (Cui & Grace 2007)
and drug delivery industries (Kleinstreuer & Feng 2013), to name a few. In practical
applications, the particles’ shape has a significant effect on their orientation and rotation,
thereby shaping the dynamics of particles and the particle–fluid interactions. Moreover,
the presence of the wall makes turbulent flows inhomogeneous and anisotropic as well
as results in a strong shear rate in the near-wall region. To conveniently investigate the
complicated particle behaviours, the non-spherical particles were normally modelled by
spheroids with an axisymmetric shape in earlier theoretical and numerical studies (Voth &
Soldati 2017).

1.1. Angular dynamics of spheroidal particles in turbulent channel flow
Turbulent channel flow (TCF) is a prototype of typical wall-bounded turbulence. Since
the pioneering work of Zhang et al. (2001), numerous numerical studies of non-spherical
particles in TCF have been conducted in the past decades via point-particle (PP) (Zhang
et al. 2001; Mortensen et al. 2008a,b; Marchioli, Fantoni & Soldati 2010; Marchioli
& Soldati 2013; Zhao, Marchioli & Andersson 2014; Challabotla, Zhao & Andersson
2015a; Zhao et al. 2015; Challabotla, Zhao & Andersson 2016a; Marchioli, Zhao &
Andersson 2016; Yuan et al. 2017; Ouchene et al. 2018; Yuan et al. 2018a,b; Yang,
Zhao & Andersson 2020; Michel & Arcen 2021, 2023) and particle-resolved (PR) direct
numerical simulations (DNSs) (Uhlmann 2008; Do-Quang et al. 2014; Ardekani et al.
2017; Eshghinejadfard, Zhao & Thévenin 2018; Eshghinejadfard, Hosseini & Thévenin
2019; Assen et al. 2022). In PP-DNS, the hydrodynamic forces and torques acting on
the particles are modelled analytically or empirically to simulate the motion of particles
smaller than the Kolmogorov scale. As for the PR-DNS, the particle–fluid interactions are
fully resolved without any models, with the size of the particles generally ten times larger
than the Kolmogorov scale to reduce the cost of computations.

In the earlier studies using PP-DNS with a particle Reynolds number Rep less than
one, the hydrodynamic force and torque models are typically obtained under the Stokes
flow approximation, which neglects fluid inertial effects. Here, the particle Reynolds
number is defined by Rep = r̃|us|/ν, where r̃ is the volume equivalent radius, us is the
slip velocity between the fluid and particle velocities and ν is the fluid kinematic viscosity.
Meanwhile, the particle Reynolds number Rep is proportional to the magnitude of the
slip velocity, which increases as particle inertia grows. For Rep � 1, the models include
the Stokes resistance (Brenner 1963, 1964; Brenner & Cox 1963) and Jeffery torque
(Jeffery 1922) for non-spherical particles. In the PP-DNSs without considering the effect
of gravity, the weak inertial or inertialess prolate spheroids near the wall tend to align
their symmetry axes with the streamwise direction, while the weak inertial or inertialess
oblate spheroids preferentially align their symmetry axes with the wall-normal direction
(Marchioli et al. 2010; Challabotla, Zhao & Andersson 2015b; Zhao et al. 2015; Zhao &
Andersson 2016; Jie et al. 2019b; Cui et al. 2020b, 2021). As the particle inertia increases,
prolate spheroids have a tendency to tumble, while oblate spheroids preferentially spin
in the streamwise–wall-normal plane near the wall (Marchioli et al. 2010; Marchioli &
Soldati 2013; Challabotla et al. 2015a; Zhao et al. 2015, 2019). However, in the core region
of channel flow, the orientation and rotation of particles are nearly isotropic, irrespective
of particle inertia, because of the quasi-isotropy of the turbulence (Marchioli et al. 2010;
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Marchioli & Soldati 2013; Andersson, Zhao & Variano 2015; Zhao et al. 2015, 2019).
In the case of Rep � 1, a series of studies by PR-DNS (Do-Quang et al. 2014; Ardekani
et al. 2017; Eshghinejadfard, Hosseini & Thévenin 2017; Eshghinejadfard et al. 2018, 2019)
or PP-DNS with empirical models (van Wachem et al. 2015; Njobuenwu & Fairweather
2016) have reported that long rod-like fibres are slightly normal to the streamwise direction
rather than quasi-isotropic distribution in the centre of the channel due to the effect of fluid
inertia. When the gravity effect is taken into consideration, there are several studies on the
dynamics of spheroidal particles in vertical TCF (Challabotla et al. 2016a; Challabotla,
Zhao & Andersson 2016b; Yuan et al. 2017, 2018b). Their results show that gravity has
significant effects on the patterns of aggregations of inertial spheroids as well as the
transport of spheroids along the wall-normal direction, while gravity has a weak influence
on the particles’ angular dynamics. Nevertheless, Arcen et al. (2017) reported that the
symmetry axes of prolate spheroids tend to align to the gravity direction when considering
the pitching torque, as obtained by Ouchene et al. (2016).

1.2. Importance of fluid inertial torque
The fluid inertial effect on the particle dynamics has recently received growing attention.
There are some analytical studies using low-Reynolds-number approximations (Brenner
1961; Dabade, Marath & Subramanian 2015, 2016; Einarsson et al. 2015; Candelier,
Mehlig & Magnaudet 2019; Magnaudet & Abbas 2021; Candelier et al. 2022, 2023) as
well as numerical and experimental studies at moderate Reynolds numbers (Zastawny
et al. 2012; Ouchene et al. 2016; Sanjeevi, Kuipers & Padding 2018; Fröhlich, Meinke
& Schröder 2020; Pierson, Kharrouba & Magnaudet 2021) aimed at obtaining the fluid
inertial hydrodynamic forces and torques. However, to the best of authors’ knowledge,
for tiny spheroidal particles suspended in TCF with particle Reynolds number Rep � 1,
the fluid inertial effects on the hydrodynamic force and torque are not considered in earlier
PP-DNSs. When considering the fluid inertial effect, Brenner (1961) derived the resistance
of spheroidal particles moving in flows under the Oseen approximation, which includes
the Rep leading-order fluid inertial force. Dabade et al. (2015) derived the fluid inertial
torque on spheroidal particles in a uniform flow. Besides, other studies on fluid inertial
models of tiny spheroidal particles have been conducted, including a shear-induced torque
(Einarsson et al. 2015; Dabade et al. 2016) and force (Harper & Chang 1968; Candelier
et al. 2019; Cui et al. 2019, 2020a) as well as a high-order correction to the fluid inertial
force (Candelier et al. 2023). For spheroidal particles, recent studies reveal the importance
of the fluid inertial torque on the orientation of tiny spheroids settling in homogeneous
isotropic turbulence (HIT), even though Rep � 1 (Gustavsson et al. 2019; Anand, Ray &
Subramanian 2020; Sheikh et al. 2020). According to the model of the fluid inertial torque
derived by Dabade et al. (2015), the shape function and slip velocity between particle
and fluid are two significant factors. In addition to the shape function, which just depends
on the aspect ratio of the particles, the magnitude and direction of the slip velocity are
of importance for the fluid inertial torque. In the sedimentation of spheroidal particles
in HIT, the slip velocity mainly induced by gravity is approximately equal to the settling
velocity. When the settling velocity is sufficiently large, the effect of the fluid inertial
torque surpasses the effect of the Jeffery torque (Jeffery 1922), making the broad sides of
the particles face the gravity direction (Gustavsson et al. 2019; Anand et al. 2020; Sheikh
et al. 2020). This is qualitatively different from the results in the absence of a fluid inertial
torque, where the spheroids tend to align their long axes with the gravity direction (Siewert
et al. 2014; Gustavsson et al. 2017).
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The gravity effect on particles with certain parameters can be significant in HIT, leading
to a notable slip velocity caused by the gravity-induced settling velocity (Gustavsson et al.
2019; Anand et al. 2020; Sheikh et al. 2020). In TCF, the mechanisms for pronounced slip
velocities are intricate, and gravity is not the sole factor to induce a large slip velocity. In
the earlier studies on spheroids in TCF without gravity, particles with large particle inertia
have pronounced slip velocities relative to the fluid velocity in the buffer layer and core
region, where the slip velocity is enhanced as particle inertia increases (Zhao et al. 2014;
Michel & Arcen 2021). This pronounced slip velocity is mainly induced by the intense
turbulent fluctuations near the wall (Marchioli & Soldati 2002; Zhao et al. 2014). Because
of the presence of slip velocities induced by the particle–fluid interactions in TCF, the fluid
inertial torque can be non-negligible, even though gravity is absent. To understand the
effect of the fluid inertial torque induced by the particle inertia in TCF, we ignore gravity
intentionally to focus on particle–fluid interactions. Although in some applications, such
as in the nuclear (Molyneaux et al. 2017) and lithography (Hyman et al. 1982) industries,
the particle-to-fluid density ratio is extremely large, the gravity effect can be neglected
if the particle Froude number is much larger than one (Sardina et al. 2012; Milici & De
Marchis 2016).

1.3. Validity of fluid inertial torque in turbulent channel flow
So far, little is known about the effect of fluid inertial torque on the dynamics of inertial
spheroids in TCF. In TCF, there is a strong shear and a relatively large particle slip velocity
in the streamwise direction (Zhao et al. 2014), suggesting that both the fluid inertial
torque and Jeffery torque may both be essential. However, according to Gustavsson et al.
(2019) and Sheikh et al. (2020), the model of fluid inertial torque derived by Dabade
et al. (2015) is valid in uniform flows, where the shear is absent. While, in a shear
flow, the shear-induced fluid inertial effect could be crucial. To estimate the importance
of shear-induced fluid inertia relative to the slip-velocity-induced fluid inertia, we can
compare the Saffman length scale ls = 1/

√
Res with the Oseen length scale lo = 1/Rep

(Candelier et al. 2019; Sheikh et al. 2020). Here, Res is the shear Reynolds number based
on the mean shear rate s, i.e. Res = sr̃2/ν. When the ratio ls/lo ≡ Rep/

√
Res is much

greater than one, the fluid inertia induced by the shear can be ignored (Candelier et al.
2019; Sheikh et al. 2020). However, this condition is difficult to satisfy near the wall, where
a strong shear is present. In TCF, the ratio of ls to lo is simplified to |us|/√sν. By using the
friction velocity uτ and viscous time scale tν = ν/u2

τ to non-dimensionalize us and s, i.e.
|us| = |u+

s |uτ and s = s+/tν , we obtain |us|/√sν ≡ |u+
s |/√s+. Here, ‘+’ represents the

variable is normalized by viscous units. In general, the mean slip velocity |u+
s | depends

on the particle Stokes number and the distance to the wall, and |u+
s | is usually quite small

in the viscous sublayer (Zhao et al. 2014). Meanwhile, s+ is approximately equal to unity
at the wall, suggesting that the ratio ls/lo is close to |u+

s | in the vicinity of the wall. In
the viscous sublayer, the shear Reynolds number satisfies Rep � √

Res � 1, i.e. ls � lo,
which is out of the range of validity for assuming the dominance of the fluid inertial torque.
This means that the effect of shear-induced fluid inertia should be considered. Recently,
Candelier et al. (2019) conducted an analytical study of the forces and torques acting on a
spheroid particle with a small slip velocity under the condition Rep � √

Res � 1. Their
results indicate that, for spheroidal particles with Rep � √

Res � 1, in addition to the
Stokes drag force and Jeffery torque, only a

√
Res leading-order shear-induced fluid inertial

force needs to be considered but the
√

Res leading-order shear-induced fluid inertial torque
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Figure 1. Schematic of the directions of (a) prolate and (b) oblate spheroids. (c) The rotation transformation
of a spheroid from its original orientation.

vanishes because of the axisymmetric shape. As for the Res-order shear-induced torque
derived by Einarsson et al. (2015) and Dabade et al. (2016), it should be considered when
Rep � Res � 1. In TCF, the ratio Rep/Res is equivalent to |us|/(sr̃) ≡ |u+

s |/(s+r̃+). In the
viscous sublayer, Rep/Res is close to |u+

s |/r̃+, which is much larger than Rep/
√

Res when
r̃+ � 1. This indicates that the region dominated by the Res-order shear-induced torque is
confined to an extremely small region near the wall. Meanwhile, the strong shear mainly
exists in the viscous sublayer. Hence, the Res-order shear-induced fluid inertial torque is
negligible compared with the Jeffery torque induced by the strong shear. To support this
viewpoint, we conducted a series of PR-DNSs by the immersed boundary method (IBM)
to fully resolve spheroid rotation in a shear flow, as shown in Appendix A. As for the√

Res leading-order shear-induced fluid inertial force (Harper & Chang 1968; Cui et al.
2019, 2020a), it may affect the translation of particles near the wall. We do not consider
this force in the present study to make a direct comparison with the earlier studies, which
only considered a Stokesian hydrodynamic force and torque. Therefore, in this study, we
adopt fluid inertial torque derived by Dabade et al. (2015) and fluid inertial force derived
by Brenner (1961).

The aim of this study is to highlight the importance of fluid inertial torque to tiny inertial
spheroidal particles in TCF. Meanwhile, when the fluid inertial torque is non-negligible
and how this torque affects the spheroid dynamics in TCF will be addressed in this paper.
The remainder of this paper is organized as follows. In § 2, we describe the dynamics of the
particles, fluid inertial model and governing equations of the fluid as well as the parameters
of the simulations. In § 3, the numerical simulation results of particles are shown and
discussed. Finally, in § 4, we summarize the main findings and draw conclusions.

2. Methodology

2.1. Kinematics of particles
In this study, we consider spheroidal particles and their symmetry axes are defined as
the particles’ orientation, denoted as n (see figure 1a,b). The shape of the particles
is parameterized by the aspect ratio λ of the axisymmetry axis to the equatorial axis.
Prolate spheroids have λ > 1 while oblate spheroids have 0 < λ < 1. For spherical
particles, λ = 1. To describe the translational and rotational motion of particles, we use
the Eulerian frame (x, y, z) and particle frame (x′, y′, z′), as depicted in figure 2, where
(·)′ represents a quantity in the particle frame. Furthermore, we use unit quaternions E =
[e0, e1, e2, e3]T = [cos(Ψ/2), b1 sin(Ψ/2), b2 sin(Ψ/2), b3 sin(Ψ/2)]T that an arbitrary
rotation transformation can be obtained through rotating about an axis b = [b1, b2, b3]
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z

y

x

z′

x′
y′

Figure 2. Schematic of the Eulerian frame (x, y, z) and the particle frame (x′, y′, z′) in TCF.

with an angle Ψ from the original orientation. The schematic of the rotation transformation
of a spheroid is shown in figure 1(c). We use an orthogonal tensor Q to describe the
rotation, whose relationship with quaternions is

Q =

⎡
⎢⎣

e2
0 + e2

1 − e2
2 − e2

3 2 (e1e2 − e0e3) 2 (e1e3 + e0e2)

2 (e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2 (e2e3 − e0e1)

2 (e1e3 − e0e2) 2 (e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

⎤
⎥⎦ . (2.1)

A first-order tensor, i.e. vector p, depicted in the Eulerian frame can be transformed from
the particle frame via p = Q · p′, while a second-order tensor B in the Eulerian frame can
be transformed from the particle frame via B = Q · B′ · QT. The governing equation of E
is

dE
dt

= 1
2

GT · ω′, (2.2)

where

G =
⎡
⎣−e1 e0 −e3 e2

−e2 −e3 e0 e1
−e3 e2 −e1 e0

⎤
⎦ , (2.3)

and ω′ is the particle angular velocity depicted in the particle frame.

2.2. Dynamics of particles
The governing equation of a spheroidal particle’s translational motion is (Brenner 1961;
Brenner & Cox 1963)

mp
dv

dt
= μr̃

(
K s + Rep

32π
K I

)
· (u − v), (2.4)

where u represents the fluid velocity at the particle location, μ is the viscosity of the
fluid, v is the particle velocity, mp is the mass of the particle, r̃ is the volume equivalent
radius of the particle, Rep is the Reynolds number of the particle r̃|u − v|/ν (ν is the
kinematic viscosity of the fluid), K s is the dimensionless Stokes resistance tensor and K I
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Oblate spheroid Sphere Prolate spheroid

λ < 1 λ = 1 λ > 1

α = β − B − π

2(1 − λ2)3/2 − λ

(1 − λ2)
2/3

−A
2(λ2 − 1)3/2 + λ

(λ2 − 1)

γ
B − π

(1 − λ2)3/2 + 2
(1 − λ2)λ

2/3
A

(λ2 − 1)3/2 − 2
λ(λ2 − 1)

χ − B − π√
1 − λ2

2
A√
λ2 − 1

Table 1. Shape factors of particles, where A = 2 ln(λ+ √
λ2 − 1) and B = 2 arctan(λ/

√
1 − λ2).

is the dimensionless resistance tensor contributed by fluid inertia. According to Brenner
(1961), K I is expressed by

K I = 3K s · K s − (K s : ûsûs)K s, ûs = (u − v)/|u − v|. (2.5)

Here, ûs is the direction of the slip velocity. The Stokes resistant coefficients for arbitrary
spheroids in the particle frame are (Brenner 1963)

K′
s,xx = 16π

χ + α
, K′

s,yy = 16π

χ + β
, K′

s,zz = 16π

χ + λ2γ
. (2.6a–c)

Here, the dimensionless shape factors α, β, γ and χ are expressed as follows:

α =
∫ ∞

0

dξ


(ξ)(1 + ξ)
, β =

∫ ∞

0

dξ


(ξ)(1 + ξ)
, γ =

∫ ∞

0

dξ


(ξ)(λ2 + ξ)
,

χ =
∫ ∞

0

dξ


(ξ)
, where 
(ξ) = (1 + ξ)

√
λ2 + ξ .

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

The analytical expressions of the shape factors are listed in table 1. Note that K s and
K I are both anisotropic tensors and dependent on the particle orientation relative to the
slip velocity. Generally, the effect of the particle’s inertia is measured by the ratio of the
particle’s response time to the fluid time scale, denoted as the Stokes number St. Here,
the fluid time scale is the fluid viscous time scale of channel flow, i.e. tν = ν/u2

τ , where
uτ is the wall friction velocity. Unlike a sphere, the response time of a spheroidal particle
strongly depends on its orientation relative to the slip velocity with the fluid. The particle
response time is estimated by assuming that particle orientation is randomly distributed
(Shapiro & Goldenberg 1993). The particle’s response time τp thereby is

τp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Da2λ

9ν

2 ln(λ+ √
λ2 − 1)√

λ2 − 1
, λ > 1;

Da2λ

9ν

π − 2 arctan
λ√

1 − λ2√
1 − λ2

, 0 < λ < 1,

(2.8)

where D is the particle-to-fluid density ratio and a is the semi-length of the equatorial axis.
In this work, only the translational response time is adopted to describe the particle inertia
(Zhao et al. 2015).
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In addition to the translational dynamics of a spheroid, the particle angular dynamics is
a vital part of the present study. The angular dynamics of the spheroids is described by the
Euler equation, i.e.

I ′ · dω′

dt
+ ω′ × (I ′ · ω′) = T ′, (2.9)

where I ′ is the inertial moment tensor, ω′ is the angular velocity and T ′ is the principal
torque acting on the spheroid. The angular dynamics of the particles is solved in the
particle frame (see figure 2), in which the moments of inertia of the spheroid are constant
about the principal axes (Challabotla et al. 2015a). Furthermore, the particle spatial
orientations are calculated through (2.2). Besides, the total torque T ′ is the sum of the
Jeffery torque (Jeffery 1922), T ′

J , and of the contribution from the fluid inertia, T ′
I , i.e.

T ′ = T ′
J + T ′

I . (2.10)

As for spheroids, the Jeffery torque is (Jeffery 1922)

T ′
Jx = 16πμa3

3(β + λ2γ )

[
(1 − λ2)S′

yz + (1 + λ2)(Ω ′
x − ω′

x)
]
,

T ′
Jy = 16πμa3

3(α + λ2γ )

[
(λ2 − 1)S′

xz + (λ2 + 1)(Ω ′
y − ω′

y)
]
,

T ′
Jz = 32πμa3

3(α + β)
(Ω ′

z − ω′
z).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

The fluid inertial torque in the Eulerian frame is expressed as (Dabade et al. 2015)

T I = −ρf |us|2ã3Fλ

(
us

|us| · n
) (

us

|us| × n
)

, (2.12)

where

ã =
{
λa , λ > 1;
a , λ < 1,

(2.13)

and Fλ is a shape function that depends on the particle’s shape (Dabade et al. 2015). To
compute conveniently, the final form of the fluid inertial torque in the particle frame T ′

I is

T ′
I = −ρf ã3Fλu′

s3

⎛
⎝ u′

s2
−u′

s1
0

⎞
⎠ . (2.14)

In addition, the forms of the shape function Fλ for prolate and oblate spheroids are
different. For the prolate spheroids (λ > 1), the eccentricity of the spheroid e = √

1 − λ−2
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Figure 3. Function Fλ vs the aspect ratio λ of spheroids. The red lines represent λ = 0.02, 0.1, 0.33, 1, 3, 10
and 50 from left to right, respectively. The inset shows function Fλ vs the eccentricity e.

and the corresponding shape function Fλ is expressed as

Fλ = −πe2(420e + 2240e3 + 4249e5 − 2152e7)

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

+ πe2(420 + 3360e2 + 1890e4 − 1470e6) tanh−1 e

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

− πe2(1260e − 1995e3 + 2730e5 − 1995e7)(tanh−1 e)2

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)
. (2.15)

For the oblate spheroids (0 < λ < 1), the eccentricity of the spheroid is e = √
1 − λ2 and

the corresponding shape function is

Fλ = πe3(−420 + 3500e2 − 9989e4 + 4757e6)

315(−e
√

1 − e2 + (1 + 2e2) arcsin e)(e
√

1 − e2 + (2e2 − 1) arcsin e)2

+ 210πe2(2 − 24e2 + 69e4 − 67e6 + 20e8) arcsin e

315
√

1 − e2(−e
√

1 − e2 + (1 + 2e2) arcsin e)(e
√

1 − e2 + (2e2 − 1) arcsin e)2

+ 105πe3(12 − 17e2 + 24e4)(arcsin e)2

315(−e
√

1 − e2 + (1 + 2e2) arcsin e)(e
√

1 − e2 + (2e2 − 1) arcsin e)2
. (2.16)

Figure 3 shows the shape function varying with aspect ratio λ. According to (2.14), the
shape function reflects the strength of the torque. Figure 3 shows that the strength of
the fluid inertial torque on oblate spheroids monotonically increases as the eccentricity
increases (the corresponding aspect ratio decreases). The corresponding Fλ reaches
limλ→0 Fλ = 38

9 − 17 216/945π2 ≈ 2.38 when λ→ 0 and the corresponding eccentricity
reaches one, while the strength of the inertial torque on prolate spheroids reaches a peak
at λ ≈ 1.88 and Fλ ≈ −0.96. In addition, it is clear that the torque strength of oblate
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spheroids is larger than that of prolate spheroids with the same eccentricity e according to
figure 3.

Nevertheless, the model of the fluid inertial torque (Dabade et al. 2015) is deduced in a
uniform flow in the absence of shear. The validation of this model performed by Jiang et al.
(2021) is also in a uniform flow with the fixed inclination angle of the spheroid relative to
the flow. However, the flow near the wall has a strong shear, and it is a concern whether
the model of the fluid inertial torque is still valid in a strong shear flow. To qualitatively
verify the analytical expression of fluid inertial torque in a shear flow, an assessment is
performed by simulating a single particle freely rotating in a linear shear flow by the IBM
in Appendix A. The results show that the fluid inertial torque model also works in a flow
with strong shear.

2.3. Direct numerical simulations of fluid and particles
In the current study, we performed DNSs of spheroidal particles in a TCF by using the
Eulerian–Lagrangian method. The carrier fluid is computed in the Eulerian frame, the
flow is incompressible and isothermal and is governed by the Navier–Stokes equation and
continuity equation as follows:

∂u
∂t

+ (u · ∇)u = −∇p
ρf

+ ν∇2u, (2.17a)

∇ · u = 0. (2.17b)

Here, u is the fluid velocity, p is the pressure, ρf is the density of the fluid and ν is
the kinematic viscosity of the fluid. We set x̂, ŷ and ẑ as the streamwise, wall-normal
and spanwise directions, respectively. The domain size is 4πh × 2h × 2πh and the
corresponding mesh size is 192 × 128 × 192, where h is the half-height of the channel.
Periodic boundary conditions are applied in the spanwise and streamwise directions, while
no-slip boundary conditions are applied at both walls. A pseudo-spectral method is used
in the streamwise (x̂) and the spanwise (ẑ) directions and second-order finite-difference
discretization is used in the wall-normal direction (ŷ). The Reynolds number Reb based on
the bulk velocity of fluid Ub, i.e. Reb = Ubh/ν, is 2820, while the corresponding frictional
Reynolds number Reτ based on the friction velocity on the wall uτ , i.e. Reτ = uτ h/ν,
is 180. Here, the friction velocity on the wall is defined by uτ = √

τw/ρf , where τw
is the wall shear stress. In two homogeneous directions, i.e. x̂ and ẑ, the meshes are
uniform with 
x+ = 11.78 and 
z+ = 5.89. For the wall-normal direction, the mesh is
stretched by a hyperbolic tangent function with the stretching factor sk = 1.5. The size
of mesh near the wall is 
y+

min ∼ 0.8. The time integration is achieved by means of an
explicit second-order Adams–Bashforth scheme, and the time step 
t+ = 0.068. In the
present fully developed TCF, there are several distinct regions divided in the wall-normal
direction such as the viscous sublayer (y+ < 5), buffer layer (5 < y+ < 30), logarithm
layer (y+ > 30, y/h < 0.3), core region (y+ > 50) and near-wall region (y+ < 50) (Pope
2000). In this study, the near-wall region includes the viscous sublayer, buffer layer and
part of the logarithm layer, where the viscous contribution to the shear stress is significant
(Pope 2000).

For the particles, the motions are governed by (2.4) and (2.9). A second-order
Lagrangian interpolation is utilized to obtain the local fluid velocity and velocity gradient
tensor at the particle’s location from the neighbouring grids. The time-integrated scheme
for the particle is the same as the fluid integration. The particle–wall collision is fully
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Group A Group B

λ St = 1 St = 5 St = 30 λ St = 30 St = 100

50 610.63 3053.13 — 50 18318.75 61062.50
10 314.20 1570.99 9425.96 10 — 31419.87
3 222.52 1112.61 6675.67 3 — 22252.22
1 200.00 1000.00 6000.00 1 — 20000.00
0.33 223.49 1117.47 6704.80 0.33 — 22349.32
0.1 291.82 1459.12 8754.75 0.1 — 29182.49
0.02 474.32 2371.58 — 0.02 14229.47 47431.57

Table 2. Density ratio of particles. Note that the volume equivalent radius for all particles is r̃+ ≈ 0.15.

Half-height Kinematic viscosity Density
Groups h (cm) ν (m2 s−1) ρf (kg m−3)

A 2.0 1.48 × 10−5 1.21
B 5.0 1.17 × 10−4 0.17

Table 3. Different flow configurations of groups A and B (air and helium).

elastic, and the rebound is detected by the volume equivalent radius r̃ = λ1/3a. Note that
only the wall-normal particle velocity is reversed and the particle orientation remains the
same after a collision. The same computational method has been widely employed in our
previous studies (Challabotla et al. 2015a; Cui et al. 2020b, 2021; Cui & Zhao 2022; Jie
et al. 2022). In this study, we tracked swarms of 300 000 spheroids of each case with
the aspect ratio ranging from 0.02 to 50, and Stokes number ranging from 1 to 100. The
corresponding values of the shape function Fλ are shown in the stem plot in figure 3.
Considering that the effect of fluid inertial torque increases as particle inertia grows, it is of
interest to explore how spheroids behave with significant particle inertia, which can only be
realized by increasing the density ratio with the constraint of small particle size to satisfy
the PP assumption. In this study, we change the particle-to-fluid density ratios and fix the
volume equivalent radius r̃+ ≈ 0.15 for all types of particles to vary the Stokes number
as listed in table 2. The particles are split into two groups with different configurations, as
depicted in table 3. In group A, the gas is air and the half-height of the channel h = 2 cm,
where the particle-to-fluid density ratio is O(103). In group B, the particles have very large
particle-to-fluid density ratio with λ = 50 and λ = 0.02 at St = 30 as well as for all aspect
ratios at St = 100, as depicted in table 2. These large particle-to-fluid density ratios in
group B can be found in some realistic applications, such as the nuclear (Molyneaux et al.
2017) and lithography (Hyman et al. 1982) industries, where helium is one of the important
protected gases. Therefore, in group B, we set the gas as helium and the corresponding
half-height is h = 5 cm.

Meanwhile, the size of the particles with different aspect ratios is shown in table 4. For
the most elongated particle with λ = 50, the maximum length l+ in wall units is around
4 and with a corresponding diameter in wall units of the cross-section d+ around 0.08.
In this study, the Kolmogorov length scale η+ ranges from 1.54 at the wall to 3.68 at the
centre of the channel. Therefore, the ratio l+/η+ of the prolate spheroids with λ = 50 is
from 1.106 to 2.644. Ravnik, Marchioli & Soldati (2018) proposed an empirical formula
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Symmetry axis Equatorial axis Range of the maximum length
λ (l+) (d+) max(l+, d+)/η+

50 4.072 0.081 [1.106, 2.644]
10 1.392 0.139 [0.378, 0.904]
3 0.624 0.208 [0.170, 0.405]
1 0.300 0.300 [0.082, 0.195]
0.33 0.143 0.434 [0.118, 0.282]
0.1 0.065 0.646 [0.175, 0.420]
0.02 0.022 1.105 [0.300, 0.718]

Table 4. Parameters of particle size. Here, the Kolmogorov length scale η+ ranges from 1.54 (close to the
wall) to 3.68 (at the centre of the channel).

Group A Group B

St = 1 St = 5 St = 30 St = 30 St = 100
Frp 254.3 50.9 8.5 Frp 33.9 10.2

Table 5. Froude number of particles Frp for different Stokes numbers.

Cases Force Torque Legend

S-J Stokes Jeffery Symbols
S-JI Stokes Jeffery+Inertial Dashed lines
SI-JI Stokes+Inertial Jeffery+Inertial Solid lines

Table 6. The particle models for different cases.

to evaluate the calculation error of the Jeffery torque with large aspect ratios in a TCF, i.e.
Err ≈ 0.041St−0.34(l+/η+)1.44, where l+/η+ < 8. According to this formula, for the case
with λ = 50, we have 4 %–16 % error at St = 1, 2.7 %–9.4 % error at St = 5, 1.5 %–5 %
error at St = 30 and 1 %–3.4 % error at St = 100, indicating that the error decreases as
the Stokes number increases. Besides, the effect of the fluid inertial torque becomes more
significant as the Stokes number increases. The errors of the Jeffery torque for the current
settings are acceptable for making a meaningful comparison with the fluid inertial torque.

The gravity effect is normally ignored when the particle Froude number Frp =
Ub/(gτp) = Re2

τ Rebν
2/(Stgh3), i.e. the ratio between the Stokes drag and gravity, is larger

than one (Sardina et al. 2012; Milici et al. 2014), indicating that particles are mainly driven
by the flows rather than the gravity. Here, g is the gravitational acceleration, τp is the
response time of the particles and St is the Stokes number based on the viscous time scale
of the fluid tν . Accordingly, gτp represents the settling velocity of a particle, while Ub is
the characteristic velocity of particle translation due to |u − v| ∼ Ub. The particle Froude
numbers in the present study are much larger than one, as shown in table 5, indicating that
the effect of gravity is negligible.

Specifically, to explore the effect of fluid inertia, we consider three cases with different
particle models, as shown table 6. In the case S-J, the force and torque acting on the
spheroids are both within the Stokes flow regime, where the fluid inertial effects are
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neglected, i.e. K I = 0 and T I = 0. In the case S-JI, only the additional fluid inertial torque
is considered, and the fluid inertial force is still neglected, i.e. K I = 0, compared with the
case S-J. The additional fluid inertial force and torque are both considered in the case
SI-JI. In the earlier studies, the PP-DNSs of spheroidal particles were performed without
any fluid inertial models (Zhang et al. 2001; Marchioli et al. 2010, 2016; Marchioli &
Soldati 2013; Zhao & van Wachem 2013; Zhao et al. 2014, 2015; Challabotla et al. 2015a).
Therefore, the case S-J is included as a reference. The cases S-JI and SI-JI are used to
illustrate the effects of fluid inertial torque. The comparison between the cases S-JI and
SI-JI explains the effect of the fluid inertial force.

In this study, the number of particles of each case is around 300 000. The corresponding
volume fraction of each case is approximately 4 × 10−6 and the maximum mass loading
is 0.27, indicating that the feedback of particles onto the fluid phase is weak (Zhou
et al. 2020), which justifies the one-way coupling approach adopted in the present study
(Elgobashi 2006). The statistics are obtained within a time window from t+ = 6800 to
10 200, where t+ = 0 represents the time when particles are initially injected into the
fully developed TCFs. Meanwhile, in this time window, the orientation and rotation of
spheroidal particles have reached a statistically steady state to ensure reliable statistics
(Marchioli et al. 2010; Zhao et al. 2014; Challabotla et al. 2015a).

3. Results and discussion

3.1. Particle Reynolds numbers
At first, we examine the particle Reynolds number in the whole channel. In figure 4,
the particle Reynolds number Rep for all cases is below 0.5, which guarantees that our
simulation satisfies the condition Rep � 1. Meanwhile, according to the results in figure 4,
it is obvious that Rep increases as the Stokes number increases. In this study, Rep is defined
as r̃|u − v|/ν, where r̃ is the volume equivalent radius and is set as 0.15 viscous scales
for all particle types. Therefore, the statistics of Rep are calculated directly through the
averaged difference |u − v|, multiplying by a constant r̃. Note that the averaged difference
|u − v| refers to the norm of the slip velocity. It means that figure 4 also reflects the slip
velocity with different models of the hydrodynamics or aspect ratios of the particles. As
shown in figure 4, the regions with the large slip velocity are primarily located in the
buffer layer, while the regions with the smallest slip velocity are in the vicinity of the wall.
Meanwhile, the largest discrepancies in the results for different cases with large Stokes
numbers are observed in the buffer layer. The differences in the norm of the slip velocity
between the particles with different aspect ratios in the case S-J are quite small, but become
obvious in cases S-JI and SI-JI, particularly in the case SI-JI. These discrepancies increase
as the Stokes number grows. More importantly, this reflects that the fluid inertial resistance
can significantly impact the slip velocity.

3.2. Tumbling and spinning rates of spheroids
In this section, we explore how the fluid inertial torque affects particle rotation. In general,
there are two distinct rotation modes for spheroids, i.e. tumbling and spinning. Here,
the tumbling motion represents spheroid rotation about a non-symmetry axis, and the
spinning motion represents spheroid rotation about the symmetry axis. Note that the
tumbling and spinning rates of spheroids are independent of the frame. In the particle
frame, the tumbling and spinning rates are computed by ω′

x
2 + ω′

y
2 and ω′

zω
′
z, respectively,

where the prime indicates that the variables are depicted in the particle frame and the
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Figure 4. The Reynolds number of a particle Rep based on the volume equivalent radius, i.e. r̃ = aλ1/3, with
different Stokes numbers and particle models for whether considering fluid inertia or not. The Stokes numbers
from (a) to (d) are 1, 5, 30 and 100, respectively. Symbols, dashed lines and solid lines represent the results for
S-J, S-JI and SI-JI, respectively.

z′-axis is the symmetry axis in the present study. In a Eulerian frame, the tumbling rate
is ṅiṅi = ωiωi − ωiniωjnj, while the spinning rate is expressed as ωiniωjnj. Therefore, the
tumbling and spinning rates can be obtained either in the particle frame or Eulerian frame.
In the present numerical solver (Zhao et al. 2015; Jie et al. 2019a), the particle angular
dynamics is solved in the particle frame and therefore it is more convenient for us to
compute tumbling and spinning rates in the particle frame. To further explore the effect of
fluid inertial torque on particle rotation in wall turbulence, we discuss prolate and oblate
spheroids separately.

3.2.1. Prolate spheroids: λ > 1
Figure 5 shows the tumbling rates of prolate spheroids with y+. When the Stokes number
is small (St = 1), the tumbling rates of the prolate spheroids are similar to the inertialess
prolate spheroids reported in Challabotla et al. (2015b). Therefore, we observe that the
tumbling rates of the prolate spheroids with large aspect ratios are lower than those of the
spherical particles near the wall. That is because the strong shear rate near the wall makes
their symmetry axes align with the streamwise direction. Meanwhile, at small Stokes
number, where fluid inertia and particle inertia are both weak, the discrepancies in the
results for different models are quite small. As the Stokes number increases, the tumbling
rate of the prolate spheroids increases and becomes even larger than the tumbling rate of
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Figure 5. Tumbling rates of prolate spheroids with (a) St = 1, (b) St = 5, (c) St = 30 and (d) St = 100.
Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

spherical particles near the wall. This is because prolate spheroids tend to rotate about the
axis with the maximum particle inertial moment in the strong shear plane, i.e. tumbling
in the shear plane for prolate spheroids. Away from the wall, the tumbling rates of prolate
spheroids are smaller than those of spherical spheroids. Nevertheless, when comparing
the results of the three different cases, namely cases S-J, S-JI and SI-JI, as particle inertia
increases, the tumbling rates of the cases S-JI and SI-JI are larger than those of case S-J
in the core region, but smaller in the near-wall region. This reflects the significant effect
of fluid inertial torque on spheroid rotation throughout the channel. Moreover, the effect
of fluid inertial torque is against with the effect of particle inertia and increases as particle
inertia grows, as shown in Appendix A. These differences induced by fluid inertial torque
become obvious as the Stokes number increases.

As for the spinning rates, as shown in figure 6, with increasing Stokes number, the
spinning rates of prolate spheroids decrease and fall below the spinning rates of spherical
ones near the wall, but their spinning rates are larger than those of spheres close to the
centre of the channel. These observations are contrary to the trend observed for tumbling
rates. Nevertheless, compared with the results of case S-J, the spinning rates of cases S-JI
and SI-JI are larger near the wall. However, in the core region, there are no discrepancies
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Figure 6. Spinning rates of prolate spheroids with (a) St = 1, (b) St = 5, (c) St = 30 and (d) St = 100.
Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

of the results of the different cases with different models, reflecting that the fluid inertial
effect on the spinning rates of prolate spheroids is weak in the core region. According
to the results in the near-wall region, as depicted in figures 5 and 6, we conclude that
the fluid inertial torque could attenuate the tumbling rate but enhance the spinning rate
of prolate spheroids because the torque could make prolate spheroids rotate away from
the shear plane, i.e. the x−y plane in this study. Another possible explanation is that
the presence of the fluid inertial torque may weaken the effect of particle inertia, which
corresponds to a decreasing local Stokes number of rotation. However, in the core region,
fluid inertial torque mainly enhances the tumbling rates of prolate spheroids but has little
influence on the spinning rates of prolate spheroids. Obviously, there are two distinct
mechanisms of the effect of fluid inertial torque on prolate spheroid rotations. In the
near-wall region, the strong shear rate dominates the rotations of prolate spheroids, and the
variations of the orientation distributions of prolate spheroids with respect to the velocity
gradients influenced by the fluid inertial torque attenuate the tumbling rate but enhance the
spinning rates. Far away from the wall, i.e. near the channel centre, the fluid inertial torque
directly contributes to the rotation about the asymmetry axis of the spheroid, resulting in
strengthened tumbling rates.
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Figure 7. Tumbling rates of oblate spheroids with (a) St = 1, (b) St = 5, (c) St = 30 and (d) St = 100.
Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

3.2.2. Oblate spheroids: 0 < λ < 1
As for the oblate spheroids, depicted in figures 7 and 8, the spinning rotation is dominant
near the wall. That is because the moment of inertia of oblate spheroids reaches the
maximum when the particle rotates about its symmetry axis. However, in the core region,
the tumbling rotation pattern of oblate spheroids is predominant compared with the sphere.
In the strong shear flow, the fluid inertial torque can make oblate spheroids depart from
the spinning mode and enhance their tumbling rates in strong shear flow, which has been
demonstrated by the simulations of oblate spheroids rotating in a simple shear flow, as
depicted in Appendix A. This implies that the orientation of oblate spheroids relative
to the strong shear plane near the wall has a significant effect on the rotation of oblate
spheroids, which is similar to prolate spheroids. According to figure 7(b) for St = 5, in the
range of y+ = 2 ∼ 10, the tumbling rates of oblate spheroids in cases S-JI and SI-JI with
λ = 0.33 and 0.1 are slightly stronger compared with the results of case S-J, while there
are no prominent differences in other regions. This means that the tumbling mode of oblate
spheroids is sensitive to the particle inertia because the maximum norm of the slip velocity
appears in this region. As St increases to 30 and 100, the range of y+ with the enhanced
tumbling rates of oblate spheroids in cases S-JI and SI-JI are extended from the wall to
the core region, as depicted in figure 7(c,d). The possible explanation is that fluid inertial
torque mainly contributes to the rotation about the asymmetry axis of a spheroid, which

977 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.942


Z. Cui, J. Qiu, X. Jiang and L. Zhao

0.02

0.1
0.33
1

10–3

10–4

10–2

10–1

10–3

10–4

10–2

10–1

〈ω
′ zω

′ z〉+

10–3
10–3

10–4

10–2
10–2

10–1
10–1

〈ω
′ zω

′ z〉+

50 100 150 50 100 150

50 100

y +

150 50 100

y +

150

St = 30 St = 100

St = 1 St = 5

λ

0

0.1

0.2

0.3

〈ω
′ zω

′ z〉+
0

0.1

0.2

0.3

〈ω
′ zω

′ z〉+

0

0.1

0.2

0.3

〈ω
′ zω

′ z〉+

0

0.1

0.2

0.3

〈ω
′ zω

′ z〉+
100 102

y+ 100 102

y+

100 102

y+100 102

y+

(a) (b)

(c) (d )

Figure 8. Spinning rates of oblate spheroids with (a) St = 1, (b) St = 5, (c) St = 30 and (d) St = 100.
Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

increases the tumbling rate. This trend becomes more and more prominent as the Stokes
number increases. With regard to the spinning rate of the oblate spheroids, at St = 1,
there are no differences in the results for the three cases. As the Stokes number increases,
the effect of fluid inertial torque becomes non-negligible in the near-wall region, which
attenuates the spinning rate of the oblate spheroids obviously compared with the case S-J.
However, close to the centre of the channel, the discrepancies of the spinning rate of the
oblate spheroids between different cases are quite small. This indicates that fluid inertial
torques mainly affect the tumbling rates of oblate spheroids in channel flow. Similar to
prolate spheroid, the reduction of the spinning rate of the oblate ones corresponds to the
increase of the tumbling rate near the wall. Meanwhile, as the effect of the fluid inertial
torque increases, the effect of the particle inertia of oblate spheroids decreases.

3.3. Orientations of spheroids
Compared with spherical particles, the orientational dynamics of spheroidal particles is
more complicated. According to (2.9), the orientation of particles is affected not only
by the physical properties of the particles, e.g. aspect ratio and density, but also by the
surrounding fluid field, such as the fluid velocity and fluid-velocity gradients. In the
earlier studies, only the Stokes resistance and torque are taken into account (Marchioli
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et al. 2010, 2016; Marchioli & Soldati 2013; Challabotla et al. 2015a). Therefore, in the
vicinity of the wall, prolate spheroids tumble but oblate spheroids tend to spin like a wheel
in the streamwise–wall-normal plane. In the centre of the channel, the orientations are
approximately random due to the quasi-isotropic turbulence. These distinctive rotations
and orientation patterns are associated with the different characteristics of the flow in the
different regions in the channel, such as the strong mean shear rate near the wall and the
quasi-isotropic flow near the centre (Zhao et al. 2015). However, the role of fluid inertial
torque at small particle Reynolds numbers in wall turbulence has received little attention
to date. It is unclear how the distribution of the particle orientation or rotation is affected
by the fluid inertial torque in wall turbulence. According to the aforementioned analysis
conducted on the slip velocity of particles in the TCF, the slip velocities of particles
are large in the buffer layer and channel centre, where the effect of the fluid inertial
torque is significant. Unlike the anisotropic orientations of settling particles in HIT, in
which gravity causes a large slip velocity (Gustavsson et al. 2019; Sheikh et al. 2020), the
settling velocity of the gravity effect is neglected in the current study. Instead, the large
slip velocity is induced by the turbulent structures in wall turbulence. According to the
study of the inertial torque (Gustavsson et al. 2019; Anand et al. 2020; Sheikh et al. 2020),
the angular dynamics of spheroids in wall turbulence could also be changed by the fluid
inertial torque due to the prominent slip velocity. To better understand these effects on the
orientations of particles, we discuss the results of prolate and oblate spheroids separately
in the following sections.

3.3.1. Prolate spheroids: λ > 1
Figure 9 shows the correlations of particle orientation relative to the streamwise,
wall-normal and spanwise directions, denoted as 〈| cos θi|〉(i = x, y, z). Note that
〈| cos θi|〉 = 0.5 represents an isotropic distribution of orientation. For the Stokes number
St = 1, the statistics of particle orientation are nearly independent of the models used in the
different cases (see figure 9a–c). The reason is that the slip velocity is too small to induce
any significant effects of the fluid inertial torque and fluid inertial resistance. At this small
Stokes number St = 1, prolate spheroids tend to align with the streamwise direction in the
near-wall region as the aspect ratio λ increases. Moreover, these preferential alignments
with streamwise direction slightly decrease in the viscous sublayer. Meanwhile, as the
aspect ratio λ increases, the orientations of prolate spheroids tend to distribute in the x − z
plane with the position close to the wall. As the Stokes number increases to 5, as shown in
figure 9(d– f ), the results of cases S-JI and SI-JI, in which the fluid inertial torque is taken
into account, exhibit slight differences from case S-J primarily in the buffer layer. But
there is no discrepancy of the results between cases S-JI and SI-JI, reflecting a negligible
effect of fluid inertial resistance. Away from the wall, the results show no discrepancy
for the different models. For this Stokes number St = 5, it is prominent that fluid inertial
torque enhances the tendency of prolate spheroids with high aspect ratio to align to the
streamwise direction in the buffer layer, except for the spheroids with λ = 3. When the
Stokes number further increases to St = 30 and 100, the discrepancies between the case
S-J with the case S-JI or SI-JI are enlarged from the buffer layer to the core region, as
shown in figure 9(g–l). The orientation patterns of particles change when the fluid inertial
torque is considered compared with the case S-J. Nevertheless, this difference is negligible
close to the wall. According to the statistics 〈| cos θz|〉 in figure 9, as the Stokes number
increases near the wall, the orientation of a prolate spheroid tends to be normal to the
spanwise direction, indicating that prolate spheroid has a strong tendency to tumble with
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Figure 9. Orientations of prolate spheroids 〈| cos θi|〉(i = x, y, z) with (a–c) St = 1, (d– f ) St = 5, (g–i) St =
30 and ( j–l) St = 100; the three columns of panels from left to right correspond to the x, y and z components,
respectively. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

its symmetry axis rotating in the x–y plane. Since the strong shear and vorticity of the fluid
are in the x−y plane near the wall, the prolate spheroid at large Stokes number exhibits
a prominent tumbling rate. However, this strong-tumbling region of prolate spheroid is
confined to the wall when the fluid inertial torque is considered. For cases S-JI and SI-JI,
the prolate spheroids tend to orient isotopically in the buffer layer, whereas the prolate
spheroids exhibit a slight tendency to be normal to the streamwise direction in the core
region. Furthermore, the tendency of the prolate spheroid to be normal to the streamwise
direction decreases as the aspect ratio increases. This reflects the weaker effect of fluid
inertial torque on the extremely slender prolate spheroids than that on the spheroids with
moderate aspect ratio. This can be interpreted via the non-monotonic variation of the fluid
inertial torque with the aspect ratio of prolate spheroids (see figure 3).
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Figure 10. Orientation fluctuations of prolate spheroids | cos θi|∗RMS(i = x, y, z) with (a–c) St = 1, (d– f ) St =
5, (g–i) St = 30 and ( j–l) St = 100. The three columns of panels from left to right correspond to the x, y and
z components, respectively. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI,
respectively.

The alignment of spheroids can be decomposed into | cos θi| = 〈| cos θi|〉 + | cos θi|∗,
where i = x, y and z. Here, | cos θi|∗(i = x, y, z) are the fluctuations of the alignment
of spheroids. The root-mean-squares (RMSs) of the alignment fluctuations of prolate
spheroids are depicted in figure 10. For spherical particles, the alignment fluctuations are
equal to 0.29. Approaching the core region, the alignment fluctuations for all kinds of
spheroids are close to the fluctuations of spherical particles. However, close to the wall,
the alignment fluctuations of spheroids vary with shape, Stokes number and fluid inertial
model. At low Stokes number, prolate spheroids have preferential alignments near the wall,
but we can observe smaller alignment fluctuations in the wall-normal direction, reflecting
that prolate spheroids tend to tumble or oscillate in the streamwise–spanwise plane.
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Figure 11. The cosine values of the relative angles φ between symmetry axes of prolate spheroids and
directions of slip velocity of particles compared with the local fluid velocity with (a) St = 1, (b) St = 5,
(c) St = 30 and (d) St = 100. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and
SI-JI, respectively.

At large Stokes number, prolate spheroids exhibit smaller alignment fluctuations in the
spanwise direction, referring to a strong tumbling in the streamwise–wall-normal plane.
When the fluid inertial torque is considered, the alignment fluctuations of cases S-JI and
Si-JI in the streamwise and spanwise directions are larger than those of case S-J near the
wall. This reflects that the presence of fluid inertial torque weakens spheroid preferential
alignments near the wall, which is consistent with the results shown in figure 9.

To better understand the relationship between particle alignment and slip velocity,
we examine the correlations between the directions of the prolate spheroids and the
corresponding slip velocity, as shown in figure 11. The correlation | cos φ| is defined as

| cos φ| = |n · (u − v)|
|u − v| . (3.1)

Here, n is the orientation vector of a spheroid. At small Stokes number St = 1, as aspect
ratio increases, the tendency of prolate spheroids to align in the direction of slip velocity
becomes pronounced in the vicinity of the wall. As the position y+ far away from the wall,
the alignments of prolate spheroids with the direction of slip velocity become weaker.
As Stokes number increases, 〈| cos φ|〉 becomes smaller than 0.5, reflecting a tendency
of particles to align normal to the slip velocity, in the core region when the fluid inertial
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Figure 12. Probability distribution functions of | cos φ| of the relative angle between the symmetry axes of
prolate spheroids with λ = 10 and directions of slip velocity of particles compared with the local fluid velocity
for different Stokes numbers at (a) y+ = 3, (b) y+ = 13, (c) y+ = 30 and (d) y+ = 180. Symbols, dashed lines
and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

torque is taken into consideration. This tendency is weak close to the wall because of
the predominant viscous torque on the particles, namely the Jeffery torque induced by
the near-wall shear rate. According to figures 9 and 11, the small discrepancies observed
between cases S-JI and SI-JI are ascribed to the fluid inertial resistance. The presence of
fluid inertial resistance increases the resistant coefficient and attenuates the slip velocity,
which accordingly reduces the magnitude of the fluid inertial torque.

Figure 12 displays the probability density distributions of the correlations between
the directions of prolate spheroids and the slip velocity at different positions of the
channel. According to figure 12, there are two typical alignment modes. One is the
prolate spheroid tending to align in the slip velocity direction. While the other one is
that the symmetry axis of a prolate spheroid preferentially orients normal to the slip
velocity direction. At different positions and Stokes number, spheroids exhibit different
alignment modes. First, for the case S-J, where the fluid inertial torque is absent, there
is a pronounced align-to-slip-velocity mode from St = 1 to 100. Near the wall, this mode
is diminished as the Stokes number increases, which is attributed to the attenuation of
preferential alignment of prolate spheroid by the particle inertia. At y+ = 30 and 180, the
distribution of the align-to-slip-velocity mode is weakly associated with Stokes number.
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Second, for the cases S-JI and SI-JI, where the fluid inertial torque is considered, the
align-to-slip-velocity mode is still observed at y+ = 3 and 13. But, as the Stokes number
increases, this preferential alignment becomes less obvious due to the effect of particle
inertia. However, at y+ = 30 and 180, where the mean shear gradually vanishes, the effect
of fluid inertial torque becomes significant and drives the prolate spheroids with large
Stokes number (St = 30 and 100) to align normal to the slip velocity. These alignment
modes of prolate spheroids are consistent with the statistics depicted in figures 9 and 11,
reflecting the significance of the fluid inertial torque to spheroid orientation.

3.3.2. Oblate spheroids: 0 < λ < 1
Compared with the prolate spheroids with the same eccentricity, the preferential
orientations of the oblate spheroids are more susceptible to the fluid inertial torque due to
the differences in the shape functions for the fluid inertial torque. According to figure 3, the
shape function of the oblate spheroid approaches a constant as the aspect ratio λ→ 0 or
eccentricity e → 1, while it tends to zero as the aspect ratio λ→ ∞ or eccentricity e → 1
for the prolate spheroid. According to (2.14), the effect of fluid inertial torque on oblate
spheroids is enhanced as the aspect ratio decreases to zero. In this study, figure 13 shows
the orientations of the symmetry axis of the oblate spheroids in TCF. In figure 13(a–c),
where St = 1, the lines for the different computational cases (S-J, S-JI and SI-JI) coincide,
indicating that the influence of the fluid inertial torque is negligible when the Stokes
number is small enough. Therefore, oblate spheroids with St = 1 tend to align in the
wall-normal direction near the wall. While approaching the channel centre, the orientation
of oblate spheroids gradually becomes isotropic. Note that the baseline of cosine value
around 0.5 of spherical particles indicates an isotropic distribution of orientation. As
for the case with St = 1, the particle inertial effect is weak and results in a negligible
slip velocity and fluid inertial torque. By increasing the Stokes number to St = 5 (see
figure 13d– f ), the obvious differences between the case S-J with the case S-JI or SI-JI
are observed in the buffer layer, and more apparent than those of the prolate spheroids in
figure 9(d– f ), which can be explained by the different particle shape dependence in the
shape function of fluid inertial torque (see figure 3). In the buffer layer, the oblate spheroids
of the cases S-JI and SI-JI have prominent alignments with the wall-normal direction
compared with the results of the case S-J. In the core region, there are no discrepancies
for the different models. As the Stokes number continually increases to St = 30 or 100,
the discrepancies of the oblate spheroids of the cases S-JI and SI-JI relative to the case S-J
are enlarged in both the buffer layer and the core region, as shown in figure 13(g–l). At the
same time, the oblate spheroids preferentially align to the streamwise directions near the
channel centre when the fluid inertial torque is considered (case S-JI or SI-JI), while the
symmetry axes of oblate spheroids of the cases S-JI and SI-JI depart from the spanwise
direction and the x–y plane in the buffer layer compared with the case S-J. In the viscous
sublayer, the effect of fluid inertial torque on the particles is quite weak. These indicate
that, as the Stokes number increases, the effect of fluid inertial torque is obvious in the
buffer layer and then affects the behaviours of spheroids in the core region.

Akin to the prolate spheroids, the alignment of oblate spheroids can be decomposed to
mean orientations and fluctuations. The alignment fluctuations of the oblate spheroids,
denoted as | cos θi|∗RMS(i = x, y, z), are displayed in figure 14. We observe that the
alignment fluctuations of oblate spheroids in three different directions are all close to the
alignment fluctuations of spherical ones near the channel centre. In the near-wall region,
there are pronounced differences of the alignment fluctuations with different shape, Stokes
number and fluid inertial model. In the vicinity of the wall, the alignment fluctuations
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Figure 13. Orientations of oblate spheroids 〈| cos θi|〉(i = x, y, z) with (a–c) St = 1, (d– f ) St = 5, (g–i) St =
30 and ( j–l) St = 100. The three columns of panels from left to right correspond to the x, y and z components,
respectively. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

in the streamwise direction are decreasing as the aspect ratio λ decreases to 0.02 at
low Stokes numbers (St = 1 and 5). As the Stokes number increases to St = 100, the
alignment fluctuations along the wall-normal and spanwise directions decrease in the
viscous sublayer. It is obvious that the presence of the fluid inertial torque enhances the
alignment fluctuations in all three directions with increasing Stokes number in the buffer
layer. This implies that fluid inertial torque can further weaken the spinning mode of oblate
spheroids in the near-wall region and make the region, where oblate spheroids spin in x–y
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Figure 14. Orientation fluctuations of oblate spheroids | cos θi|∗RMS(i = x, y, z) with (a–c) St = 1, (d– f ) St =
5, (g–i) St = 30 and ( j–l) St = 100. The three columns of panels from left to right correspond to the x, y and
z components, respectively. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and SI-JI,
respectively.

plane, confined to a thinner region close to the wall, compared with the results without
fluid inertial torque.

The statistical relative angle between the orientation of oblate spheroids and the
direction of slip velocity is shown in figure 15. Regarding the case S-J, in the buffer layer,
oblate spheroids tend to be perpendicular to the slip velocity, while in the core region the
alignment of oblate spheroids relative to slip velocity is nearly random. However, for the
cases S-JI and SI-JI, as the Stokes number increases, the oblate spheroids tend to align
in the direction of slip velocity in the core region. In addition, the tendency of alignment
to the slip velocity in case S-JI is more significant than that in case SI-JI. This is due to
the inclusion of the additional fluid inertial resistance in case SI-JI, which attenuates the
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(c) St = 30 and (d) St = 100. Symbols, dashed lines and solid lines represent the results for S-J, S-JI and
SI-JI, respectively.

amplitude of the slip velocity and indirectly affects the fluid inertial torque on the particles.
Moreover, the preferential alignment normal to the direction of the slip velocity is confined
to the vicinity of the wall as the Stokes number increases, indicating that the fluid inertial
effect becomes significant as particle inertia grows in near-wall region.

To compare the distributions of the oblate alignment of the different cases (S-J,
S-JI and SI-JI) at different regions in the channel, we examine the probability density
functions of the absolute cosine values of the relative angle between the symmetry
axis of the oblate spheroids and the direction of the slip velocity (defined in (3.1))
at y+ = 3, 13, 30 and 180 in figure 16. At y+ = 3, where the shear rate is strong, the
distributions of case S-J (symbols) show that the oblate spheroids tend to be normal
to the slip velocity at St = 1. For the cases with St = 5, 30 and 100, the alignment
distributions shown in figure 16 are bimodal, i.e. there exist align-to-slip-velocity and
perpendicular-to-slip-velocity modes simultaneously. In the viscous sublayer of y+ < 5,
the shear is strong and drives the weak inertial (St = 1) oblate spheroids to align with the
wall-normal direction, which is perpendicular to the direction of the slip velocity. With a
large St, the symmetry axis of oblate spheroids tends to align in the spanwise direction,
which is also perpendicular to the slip velocity. However, at an intermediate St = 5, the
effect of particle inertia moves the oblate spheroid orientation away from the wall-normal
direction, but the effect of particle inertia is not strong enough to align the oblate spheroid
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Figure 16. Probability distribution functions of | cos φ| of relative angle between the symmetry axes of oblate
spheroids with λ = 0.1 and directions of slip velocity of particles compared with the local fluid velocity for
different Stokes numbers at (a) y+ = 3, (b) y+ = 13, (c) y+ = 30 and (d) y+ = 180. Symbols, dashed lines
and solid lines represent the results for S-J, S-JI and SI-JI, respectively.

in the spanwise direction. Therefore, we can observe a non-monotonic relationship of the
perpendicular-to-slip-velocity mode with Stokes number. Nevertheless, the fluid inertial
torque makes the align-to-slip-velocity mode more prominent at large Stokes numbers
(see solid and dashed lines). These observations indicate that fluid inertial torque has a
significant effect on oblate spheroids, competing with the Jeffery torque near the wall.
The results at y+ = 13 and 30 show that the oblate spheroids of the case S-J (symbols)
tend to align normal to the slip velocity, independent of Stokes number. While the oblate
spheroids of the cases S-JI (dashed lines) and SI-JI (solid lines) tend to align perpendicular
to the slip velocity with small Stokes numbers (St = 1 and 5), but preferentially align to
the slip velocity direction with large Stokes numbers (St = 30 and 100). In the core region,
as shown in figure 16(d) (y+ = 180), the oblate spheroids of the cases S-JI and SI-JI with
St = 30 and 100 have preferential alignments with the slip velocity due to the effect of
fluid inertial torque.

3.4. The dimensionless parameter R
In the current study, the principal torque acting on particles is obtained by linearly adding
the Jeffery torque as well as the fluid inertial torque. The competition between these
two torques could affect the rotation behaviours of the particles. To estimate the relative
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and (d) St = 100. Dashed lines and solid lines represent the results of cases S-JI and SI-JI, respectively.

strengths of these two torques, Sheikh et al. (2020) defined a dimensionless parameter
R to estimate the relative importance of the fluid inertial effects on angular dynamics of
particles. The dimensionless parameter R is defined by

R = 〈|u − v|2〉
ν〈|Ω − ω|〉 , (3.2)

where u is the fluid velocity, Ω is the angular velocity of the fluid, v is the particle velocity,
ω is the particle angular velocity and ν is the kinetic viscosity of the fluid.

Sheikh et al. (2020) proposed 〈|T I|〉/〈|T J|〉 ∼ R. When R � 1, the fluid inertial torque
dominates, and the spheroids tend to align their broad side normal to the slip velocity. If
R � 1, the effect of fluid inertial torque is negligible. Besides, in the formula of R (see
(3.2)), the slip angular velocity of the particle |Ω − ω| has the same order as the local
fluid strain |S|. Therefore, R can be similar to the ratio R ∼ Re2

p/Res. This indicates that
the fluid inertial torque can be ignored when particles Reynolds number Rep � √

Res but
it is crucial when Rep � √

Res. To understand the relative importance of fluid inertial
torque and Jeffery torque, figure 17 shows the value of R as function of position y+ for
different inertia and shape aspect ratios of the particles. At a small Stokes number St = 1,
as shown in figure 17(a), the values of R are all below one. It is safe to neglect fluid inertial
torque for particles with small inertia according to Sheikh et al. (2020). This illustrates why
the results of spheroids at St = 1 have no obvious discrepancies between different cases.
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Figure 18. (a) Value of Re vs Stokes number St. Symbols represent the cases that consider fluid inertia,
and the solid line represents function R = 0.31St1.38. The red pentagram symbol represents the point R ≈ 1
and St ≈ 2.3. (b–d) The deviations of particle rotations and orientations between the cases S-J and SI-JI, i.e.
(b) tumbling rate Dtumble( y+), (c) spinning rate Dspin( y+) and (d) orientation Dorient( y+). Here, the red dashed
line represents Stc ≈ 2.

Furthermore, figure 17(b–d) reflects that the regions for R over one are extended from the
centre of the channel to the wall as particle inertia increases. It is obvious that R reaches
a peak in the buffer layer and logarithm layer, and falls down in the core region as the
distance to the wall increases. This is consistent with the results reported in figures 9 and
13. Therefore, we can observe the differences in the results of different cases first appear in
the buffer layer with increasing particle inertia. To estimate when the fluid inertial torque
is important in TCFs, the relationship between the peak values R of each case and particles
inertia is shown in figure 18(a). For spheroids with different aspect ratios, the peak values
Rmax are different. If we use Rmax ≈ 1 as a criterion suggested by Sheikh et al. (2020),
the corresponding critical Stokes numbers Stc for different particles range from 1.9 to
2.9. Nevertheless, R is a relatively rough parameter to quantify the effect of fluid inertial
torque. To be convenient, we choose Stc ≈ 2 as a critical Stokes number to determine
whether fluid inertial torque should be considered in the TCF at Reτ ≈ 180. It indicates
that ignoring fluid inertial torque in the simulation for St � 2 is safe. When St � 2, e.g.
St = 10 and 30, the fluid inertial torque on spheroidal particles cannot be ignored in TCF.
To verify this critical number Stc ≈ 2, we calculate the maximum deviations at different
y+ of the tumbling rate Dtumble( y+), spinning rate Dspin( y+) and orientation Dorient( y+)

of spheroids between cases S-J and SI-JI, as shown in figure 18(b–d). The formulas of
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corresponding deviation are defined as

Dtumble( y+) = m̃ax|tumbling rate of SI-JI − tumbling rate of S-J|,
Dspin( y+) = m̃ax|spinning rate of SI-JI − spinning rate of S-J|,

Dorient( y+) = m̃ax[(〈| cos θx|〉S-J − 〈| cos θx|〉SI-JI)
2

+ (〈| cos θy|〉S-J − 〈| cos θy|〉SI-JI)
2

+ (〈| cos θz|〉S-J − 〈| cos θz|〉SI-JI)
2]1/2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Here, m̃ax represents a function to find the maximum value of the results of spheroids
with different aspect ratios. Figure 18(b–d) demonstrates that Stc ≈ 2 in the current study
can clearly distinguish the St-region where the fluid inertial torque should be considered
or not. However, in the most PP-DNS studies of inertial spheroidal particles in TCF, the
Stokes numbers of most particle cases based on the viscous time scale are over Stc ≈ 2.
Therefore, the importance of fluid inertial torque should be emphasized when considering
inertial spheroidal particles in wall turbulence. Moreover, note that the critical Stc ≈ 2 is
obtained at Reτ = 180. For the turbulent flows with higher Reynolds numbers, the critical
Stokes number could vary with Reynolds number of the fluids. According to the recent
studies of inertial spheroids in the TCF with Reτ up to 1000 (Michel & Arcen 2023),
the Reτ -dependence of the statistics of the translation velocities of spheroids is the same
as the Reτ -dependence of the statistics of the fluid velocities. Therefore, the maximum
norm of the slip velocity of particles in the buffer layer could slightly increase as Reτ

grows up. Meanwhile, R ∼ Re2
p/Res, which can be expressed as R ∼ |u+

s |2/s+ in channel
flow. The mean shear rate s+ in wall units is nearly independent of Reτ . Consequently, Re
could slightly grow with increasing Reτ . Therefore, as Reτ increases, the corresponding
critical Stokes number should be smaller if we still use R ≈ 1 as a criterion. It means
that for high-Reynolds-number TCFs, the fluid inertial torque could be important for the
orientational dynamics of spheroids even at a smaller Stokes number compared with the
results in low-Reynolds-number flows.

4. Concluding remarks

This study systematically investigates the effect of fluid inertial torque on the orientation
and rotation of tiny inertial spheroids in a TCF via the PP-DNS. In contrast to the
earlier studies, where only a Stokesian hydrodynamic force and torque are considered,
our findings reveal that the slip-induced fluid inertial torque derived by Dabade et al.
(2015) significantly affects the rotational and orientational dynamics of particles over a
wide range of Stokes numbers. This indicates that the fluid inertial torque is significant
when modelling the dynamics of tiny spheroids in wall turbulence. Notably, the region
where the fluid inertial torque is non-negligible in almost the entire channel.

In the TCF, the variations of the rotation and orientation of spheroids with y+ are the
results of the competitions between fluid inertial torque and Jeffery torque in different
layers. In the viscous sublayer, the shear rate is the strongest but the slip velocity is quite
small, indicating that the fluid inertial torque is negligible. Therefore, the rotation and
orientation of spheroids in this region are the same as the results in the earlier studies
without fluid inertial torque. For example, weak inertial prolate (oblate) spheroids tend
to align their symmetry axes with the streamwise (wall-normal) direction; large inertial
prolate (oblate) spheroids have a tendency to tumble (spin) in the strong gradient–vorticity
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plane, i.e. streamwise–wall-normal plane. Away from the wall, in the buffer layer, the
shear rate and slip velocity are both pronounced. The strong flow shear drives the inertial
spheroids to rotate with their longest axis in the streamwise–wall-normal plane, but the
presence of the fluid inertial torque hinders this tendency and confines these motions to
a thinner region close to the wall. Therefore, in the buffer layer, the fluid inertial torque
makes the orientation of spheroids close to an isotropic distribution. Approaching the core
region, the flow shear gradually vanishes and the effect of the fluid inertial torque becomes
predominant, driving the particle to have its broad side facing the streamwise direction.
That is because the pronounced component of the slip velocity is in the streamwise
direction, and spheroids tend to align their broad side normal to the slip velocity direction,
i.e. the orientation of prolate (oblate) spheroids has a tendency to be perpendicular
(parallel) to the slip velocity. Besides, the presence of fluid inertial torque enhances the
tumbling rate of spheroids in the core regions.

Moreover, the effect of fluid inertial torque becomes significant as the Stokes number
increases. To estimate when the effect of fluid inertial torque is significant, a dimensionless
parameter Re is used to reflect the relative importance between fluid inertial torque and
the Jeffery torque in wall turbulence (Sheikh et al. 2020). By analysing the relationship
between Re and St as well as the deviations of rotation and orientation between the case
SI-JI and case S-J, we propose a critical value Stc ≈ 2 in the TCF at Reτ = 180. When
the Stokes number is much larger than this critical value, the fluid inertial torque has a
non-negligible influence on the angular dynamics of inertial spheroids.

Meanwhile, we only consider the fluid inertial torque derived by Dabade et al. (2015)
and the fluid inertial force derived by Brenner (1961). Close to the wall, the particle
Reynolds number and the shear Reynolds number may satisfy Rep � √

Res � 1, where
the

√
Res-order shear-induced fluid inertial force, such as the Saffman lift force for

spheroids (Harper & Chang 1968), may play a significant role in the translational dynamics
of particles in the vicinity of the wall. Therefore, a shortcoming of this study is to neglect
the shear-induced fluid inertial lift force on spheroids, but this lift force has limited
influence on the spheroids far away from the wall. Recently, some improved shear-induced
lift models of rods in shear flow were proposed by Cui et al. (2019, 2020a), which can
be taken into consideration in future studies. Besides, the gravity effect, Reynolds-number
effect as well as the effects of the high-order fluid inertial models, such as Res-order fluid
inertial torques (Einarsson et al. 2015; Dabade et al. 2016) could be considered in future
works. Meanwhile, it is worth noting that the density ratio at St = 100 is indeed large in
the present study and confined to some special applications in reality (Hyman et al. 1982;
Molyneaux et al. 2017). It is of interest to keep a common density ratio but to change the
spheroid size to realize different Stokes numbers in fully resolved simulations in future
work, in which the effect of fluid inertia and the particle-size effect can be explored.
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x
y

z u = κy + Us

u1 =  κy

= +

u2 = Us

Figure 19. Schematic of a spheroid rotating in a shear flow.

Appendix A. Rotation of a spheroidal particle in a linear shear flow

The fluid inertial torque derived by Dabade et al. (2015) should satisfy
√

Res � Rep � 1.
However, in the current study, it is difficult to satisfy this condition when the particle
is close to the wall, where shear is strong but slip velocity approaches zero. At the
same time, the shear Reynolds number Res is independent of Stokes number but not of
Reynolds number Rep when particle shape and size remain constant. This implies that
the particles with small Stokes numbers could easily exceed the aforementioned range of
Reynolds numbers. To validate the formula of fluid inertial torque on spheroid particles
when Reynolds numbers do not satisfy

√
Res � Rep � 1, we use the IBM to study the

rotation of a spheroid in a linear shear flow and compare it with the results computed from
the PP model.

A.1. Numerical simulation of particles
The details of the numerical method of IBM for DNS can be found in Li et al.
(2018). The longest length of particle L = 1, so the length of the semi-major axis l = 0.5.
The computational domain has a range of [−2L, 6L] × [−4L, 4L] × [−4L, 4L] in the
streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. There are 256
uniform grids with 32 grids per L in each direction. The linear shear flow is generated
by moving top and bottom walls with different velocities to generate a linear shear
flow with a velocity profile u = κy + Us, where u is the streamwise velocity, κ is shear
rate, y is wall-normal position and Us is the streamwise slip velocity. Therefore, the
final flow field is a synthesis of a pure shear flow and a uniform flow. The schematic
diagram of this is shown in figure 19. We impose no-slip conditions on two walls and
periodic boundary conditions in the spanwise direction. The Dirichlet boundary condition
(u = κy + Us, v = 0, w = 0) is applied at the inlet, and the convective boundary condition
is used at the outlet. In order to investigate the rotational motion of the particle, the particle
is fixed at the origin (x = 0, y = 0, z = 0), but can rotate freely. In addition, we define
particle Reynolds number as Rep = Usl/ν, and shear Reynolds number as Res = κl2/ν.
Meanwhile, we are just concerned about the particle rotations, while their translations
are limited. Therefore, we only define the Stokes number of rotation as Str = ρp/ρrRes,
where ρf and ρp are the densities of fluid and particle, respectively. As for the PP-DNS,
we conduct the simulation via the models listed in (2.9)–(2.14) and confine the particle
translation motion.

We simulate two types of particles by both PR-DNS and PP-DNS. The one is a prolate
spheroid with an aspect ratio λ = 3, and the other one is an oblate spheroid with an aspect
ratio λ = 1/3. We computed three cases for each type of particle with the ratios Rep/

√
Res

equal to 0.1, 1 and 2. The corresponding settings of cases are listed in table 7. The particles
all orient to (1

2 ,
√

2
2 , 1

2) initially with zero angular velocities.
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κ Us ν ρp/ρf Rep Res Rep/
√

Res Str

Case A 1 0.1 1 40 0.05 0.25 0.1 10
Case B 1 1 1 40 0.5 0.25 1 10
Case C 0.25 1 1 160 0.5 0.0625 2 10

Table 7. The parameters for different cases of particles rotating in a shear flow.
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Figure 20. (a–c) Orientation of symmetry axis and (d– f ) rotation rate of prolate spheroid in shear flow by
PR-DNS (solid lines) and PP-DNS (dashed lines). From the left column to the right one, the ratios Rep/

√
Res

are equal to (a,d) 0.1, (b,e) 1 and (c, f ) 2, respectively.

A.2. Angular dynamics of spheroids
Figure 20 shows different orientation and rotation patterns of prolate spheroids in a shear
flow as the ratio Rep/

√
Res increases from 0.1 to 2. Here, cos θi (i = x, y, z) represent

cosine values of particle symmetry axis relative to the streamwise, the wall-normal and

the spanwise directions, respectively. The rotations are described by ωT =
√

ω′
x

2 + ω′
y

2

and ωS = ω′
z. When Rep/

√
Res = 0.1, the discrepancies between PR-DNS and PP-DNS

are quite small. When Rep/
√

Res =1 and 0.5, it is obvious that the results of PR-DNS lag
behind PP-DNS. These discrepancies of the orientation and rotation reflect a cumulative
error. Nevertheless, the final rotation patterns are predicted well by PP-DNS, i.e. prolate
spheroids tend to tumble at Rep/

√
Res = 0.1 but spin at Rep/

√
Res = 1 and 2. In regard

to oblate spheroids as shown in figure 21, oblate spheroids tend to spin at Rep/
√

Res =
0.1, tumble at Rep/

√
Res = 1 and incline with one fixed angle relative to the streamwise

direction at Rep/
√

Res = 2. These patterns are also well captured by PP-DNS, although
there is an unavoidable cumulative error. According to figures 20 and 21, we regard that
the model derived from Dabade et al. (2015) can quantitatively capture the main effect of
fluid inertial torque on particles angular dynamics.
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Figure 21. (a–c) Orientation of symmetry axis and (d– f ) rotation rate of oblate spheroid in shear flow by
PR-DNS (solid lines) and PP-DNS (dashed lines). From the left column to the right one, the ratios Rep/

√
Res

are equal to (a,d) 0.1, (b,e) 1 and (c, f ) 2, respectively.

A.3. Torque acting on spheroids
To further analyse the model of fluid inertial torque, the torques acting on the spheroids
in cases A–C are shown in figures 22 and 23. The fluid inertial torque is obtained through
the total torque minus Jeffery torque, which is computed directly via (2.11). To verify
the model of fluid inertial torque, we compute the total torque and fluid inertial torque
from the models in (2.10) and (2.14) by using the orientation and rotation results of
PR-DNS. Figure 22 shows that the total torque acting on the prolate spheroid is predicted
well by the model when Rep/

√
Res = 0.1 but is slightly different with the model when

Rep/
√

Res = 1 and 2. However, when the Jeffery torque is removed, the fluid inertial
torque is badly predicted by the model at Rep/

√
Res = 0.1. Contrarily, the fluid inertial

torque is consistent with the model when Rep/
√

Res = 2. These phenomena are also
observed in the results of oblate spheroids (see figure 23). Nevertheless, the magnitude
of fluid inertial torque is much smaller than the Jeffery torque when Rep/

√
Res = 0.1.

This implies that the fluid inertial torque can be neglected safely when Rep/
√

Res � 1,
although the fluid inertial torque is badly predicted by the model. Actually, according to
the study of Sheikh et al. (2020), Rep/

√
Res has the same order as O(R1/2), which has been

defined in (3.2). According to the theory of Sheikh et al. (2020), if R � 1, the importance
of fluid inertial torque can be ignored. It is the same for Rep/

√
Res � 1.

A.4. Brief summary of the validation of fluid inertial torque
In this appendix, we are concerned with whether or not the effectiveness of the fluid
inertial torque model proposed by Dabade et al. (2015) is strictly satisfied when the
condition

√
Res � Rep � 1 is satisfied. The results reflect that the model is working

reasonably well when
√

Res = O(Rep) � 1 and
√

Res � Rep � 1, but not when Rep �√
Res � 1. However, when Rep � √

Res � 1, the effect of fluid inertial torque is too
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Figure 22. (a–c) The total torque on prolate spheroid in shear flow by PR-DNS (solid lines), where dashed
lines represent the total torque computed from (2.10) by using the same orientation and rotation of particles
from PR-DNS. (d– f ) The fluid inertial torque on oblate spheroid in shear flow, where solid lines represent
the fluid inertial torque calculated from total torque minus Jeffery torque, and dashed lines represent the fluid
inertial torque computed via (2.14). From the left column to the right one, the ratios Rep/

√
Res are equal to

(a,d) 0.1, (b,e) 1 and (c, f ) 2, respectively.
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weak to be considered because the corresponding R is also much smaller than one.
Therefore, we supposed that it is safe to use the model of fluid inertial torque derived
by Dabade et al. (2015) in the flow with strong shear.
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