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TWO APPLICATIONS OF HOMOLOGY 
DECOMPOSITIONS 

GRAHAM HILTON TOOMER 

We show that a map of rational spaces (see Definition 1) induces a map of 
homology sections at each stage, and that the ^'-invariants are mapped natural­
ly. This is used to characterize rational spaces in which all (matric) Massey 
products vanish as wedges of rational spheres, and yields the precise Eckmann-
Hilton dual of a result of M. Dyer [7]. Berstein's result on co-H spaces [3] is 
also deduced. These results form a part of the author's doctoral dissertation at 
Cornell University written under Professor I. Berstein, to whom I express my 
sincere thanks for his patient help and encouragement. Extensions and 
counterexamples will appear in a future paper. 

The proof is dual to Kahn's corresponding result for Postnikov systems. 
Since fundamental classes are not uniquely defined in our case, some care is 
called for. For these reasons, we only show that the ^'-invariants are mapped 
nicely. Complete details may be found in [17]. 

In [5], an example of a space X is given such that (a) H*(X, Z) has torsion 
and (b) X admits two homology decompositions, the sections of which do not 
have the same homotopy type. 

Definition 1. A rational space will denote a pointed, simply connected, con­
nected space having the homotopy type of a CW complex, and such that 
Hn(X, Z) is a finite dimensional vector space over Q, the rationals, for each 
n > 0. 

For example the rationalization (in the sense of Sullivan [16]) of a simply 
connected CW complex of finite type is a rational space. 

Let G be an abelian group. Recall that a Moore space K'(G, n) denotes 
a space with abelian fundamental group and with a single non-vanishing 
homology group viz. G in dimension n. We can take K'(G, n) to be a CW com­
plex, and the homotopy type of Kf(G, n) is uniquely determined for n ^ 2. 
Notice that ZK'tG, n — 1) is also a K'(G, n) and thus K'(G, n) is a co-H space 
for w ^ 2 . 

Definition 2 [8]. Let n ^ 2 be an integer. The nth homotopy group of any 
pointed space X with coefficients in G is defined by 

7rn(G,Z) = [2K'(G,n- 1), X]. 

(Based homotopy classes are understood.) We refer the reader to [8] for the 
definition of relative homotopy groups irn(G\ X, A). 
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THEOREM 3 [8]. There is a natural exact sequence 

0 -> Ext (G, 7rn+i(Z, A) -> 7rn(G;Z, ,4)) ^>Horn (G, TTW(Z, 4 ) ) -> 0 

where *?([/]) w /fee composite 

Hn{K'(G, n)) A_> 7rn(#'(G, *)) - ^ *»(*). 
wheref§ denotes the map induced by [f] Ç 7rn(G; X, 4̂ ) and fe denotes a Hurewicz 

homomorphism. 

It follows easily from Theorem 3 that a homomorphism cp:G —> Gf induces 
a map <p:K'(G, n)—>Kf(G', n) and thus a "coefficient homomorphism" 
(pc:Tn(G',X) —» 7rn(G, X) for any space X. Further if G is a vector space over Q, 
then 7} induces an isomorphism 

Tn(G;X, A) - = ^ Horn (G, TTW(X, A)). 

We recall from [8] that a simply connected CTF complex admits a homology 
decomposition. In the next result, we do not need the fact that Hn(Xy Z) is 
finite dimensional for each n. 

THEOREM 4. Letf:X —> Y be a (based) map of rational spaces and let homology 
decompositions {Xr, k/(X)}, { YT, kr'(F)} be given. Then there are diagrams: 

(a) 

> Y 

such that each rectangle is strictly commutative, and each outer triangle is homo-
topy commutative; 

( b ) K'(Hr(X), r - 1) kr'(X)>xr-i 

K'(Hr(Y), r - 1) * r ' ( 7 ) ) Y'-1 

which is homotopy commutative, written fT~l#kT'(X) = f*ekr'(Y). 
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Proof. We content ourselves with proving (b). Since X/Xp is ^-connected, 
it has a fundamental class ./'(-̂ O £ -KV+I(HP+I(X), X/X"). Choose £(X) so that 
t\k{X) = j(X) and let kp'(X) = d£(X) as in the following diagram: 

j(X) 6 wp+1(Hp+1(X), X/Xp) J±- wp+1(Hp+1(X) ; X, X") - ^ TTP(HP+1(X), X>) 

(f/f)f (f,f,)t f* 

Tp+1(Hp+i(X) , Y/YP) < 7T p + l (HP+1(X); Y, YP)-^TP(HP+1(X), Y") 

/ • f*° / • ' 

j(Y) € x ^ x t f W F ) , 17F») ^ - x,+ 1(Hp + 1(F); F, F") _ i > x,(tfp+1(F), F P ) . 

The diagram commutes by naturality and ei is onto (see [8, Chapter 7]). We 
claim «i is an isomorphism: since Ext (Hp+i(X), G) = 0 for any group G, we 
get a commutative diagram (in which the upper vertical homomorphisms are 
isomorphisms by Theorem 3) 

irp+1(Hp+1(X); Y, Yv) _ ! U irP+1(Hp+1(X), Y/Y*) 

Horn (Hp+l(X), T ^ . I ( F , Yv)) .Horn (HP+1(X), x p + 1(F/F p)) 

Ai 

Horn ( ^ + 1 ( Z ) , i ^ + 1 ( F , F * ) ) ^ » H o m ( 2 W * ) . * W * 7 n ) 
and since H r ( F , Y") = 0 if r ^ />, and F and Fp are simply connected, &i is 
an isomorphism. Also Hr(Y/Yp) = 0 for r S P and F/F» ~ F U CY"/CYP ~ 
F U CFP since Y" is a subcomplex of F and CF" is contractible. Now 
f i ( F U CF») = 0sincexi(K) = 0 = xi(C7») = n ( K n CYP) = x ^ F ^ a n d 
so by van Kampen's theorem, F / F p is simply connected and so hi is an iso­
morphism. By naturality, so is «i. 

Assume for the moment that /* c i (F) = (f/fp)tj(X). Then 

MfhtiX) = (f/f)fj(X) =Ucj{Y) =UUit(Y) = êif^(Y) 

and so (f,fp)#ti(X) =fSi(Y). Therefore, 

fp
tk'(X) =SPM(X) = d(f,f)d(X) = dUt(Y) = Ucdii(X) = Uck'{Y) 

as required. 
Finally, f*cj(Y) and (f/fp)fj(X) are represented by 

K' (Hp+1 {X/X') ,p + l)-* X/X" -> Y/ Y» and 

K'(HP+1(X), p + 1)^K'(HP+1(Y), /> + ! ) - > Y/Yp 

https://doi.org/10.4153/CJM-1975-039-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-039-1


326 GRAHAM HILTON TOOMER 

respectively, inducing (f/fp)* and/* in homology. Since 

HP+1(X)-^HP+1(Y) 

HV+1{X/X*)^HP+1(Y/Y*) 

commutes, applying [15, 3.1], we get the desired equality. 

It follows from Theorem 4 that the homology decomposition of a rational 
space is well-defined (up to homotopy type). 

We proceed to show that if X is a rational space, then 2ŒX is (up to homo­
topy) a wedge of rational spheres. 

PROPOSITION 5. / / X is a rational space, so is 212X. 

Proof. Since X has the homotopy of a CW complex, so does Î2X[12], and 
hence 2ŒX has the homotopy of a CW complex; further, SIX is connected and 
hence by [14, 8.5.3], 2ttX is simply connected. It follows from [1] that SIX 
has finite type if X has finite type and so we need only see that Hn(I,ÇlXy Z) 
is a vector space over Q. Now, we have the usual fibration SIX ^ PX —> X 
and X is simply connected. Hence by [16, 1.8], UX has rational homology and 
we are done using the suspension homomorphism. 

LEMMA 6. Let X be a rational space. There is a simply connected CW complex Y 
with integral homology of finite type, and a map f:Y —> X inducing an isomor­
phism or rational homology. 

Proof. The proof is suggested by the construction in Theorem 2.2 of [16]. 
We may assume that X is a CW complex. If dim X = 2, 

Xc^W So2 (where S0
n denotes K'(Q,n)) 

a 

and we may take Y = V« S2 and f:Y —> X to be the ''localization" map (in­
duced by the inclusion Z —» 0 ) on each summand. 

Suppose now that the statement is true for rational spaces of dimension ^ n 
and dim X = n + 1. Then X is the cofibre of V/s Son —» Xn and by the inductive 
construction we have a cellular map 

Vn :Z_» Vn 

We seek to fill in the diagram 

V SnJ->Yn 

f" r 
V s0

n^xn 
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where / " is the obvious map. Now by the inductive hypothesis and [16, 
Theorem 2.1], we have isomorphisms 

Tn(Y
n) ® 0 - = - > 1Tn(Yon) -ÇQU Tn(X

n) 

where/o' denotes the localization of/'—see [15]), and so if ip denotes the restric­
tion of i to a rational sphere [ip] = (fo')§([jp] ® 1) for some jp'.S" —> P*. It 
follows that if 7: V Sn —» Yn is the obvious map, then f'j o^ if" and hence if 
Y = Yn \Jj CÇs/fiS"), that we can extend/ " to a map/ : F —• X. It is clear that 
Y has finite type, and the fact t h a t / induces isomorphisms of rational homo­
logy is proved in [16]. If X is infinite, take Y = US=2 Fw where Fn is constructed 
for Xn and X = U~=2 X». 

THEOREM 7. If X is a rational space, 2&X has the homotopy type of a wedge of 
rational spheres. 

Proof. We induct on the length of a homology decomposition of 212X, which 
is well-defined by Theorem 4 and Proposition 5. Since the first stage is a 
wedge of 2-spheres, we may assume that the result is true for the rth stage 
Z r , where r è 3. Applying Lemma 6 and [6, Proposition 2.5] to Z r + 1 , we con­
clude that next k' invariant is zero. Thus all k' invariants of XQX are zero and 
this yields the result. 

COROLLARY 8. / / the cohomology suspension a*:H*(X) —•> H*(UX) is infective 
and X is rational, then X has the homotopy type of a wedge of rational spheres. 

Proof. Let p\\ S12X —» X be the evaluation map. Then pi* coincides with a* 
up to a sign, and pi induces maps pin(n ^ 2) of the homology sections by 
Proposition 5 and Theorem 3, and 

( K ) # W ( 2 ^ 0 = (Pi)*chW(X). 

Since pi* is injective, so is (/>i)*c and hence by Theorem 7 

i$i)*ekn+x'(X) = (PinM0) = 0, implying kH+1'(X) = 0. 

May [11] has shown that ker a* consists of all matric Massey products, and 
Berstein (unpublished) was able to show that 

THEOREM 9. If X is a rational space, <r*:H(X, Z) —» H*(ûX, Z) is injective if 
and only if all Massey products in H* {X, Z) vanish. 

Thus Corollary 8 characterizes rational spaces in which all Massey products 
vanish as wedges of rational spheres. In particular, we have the dual of [7, 4.4] : 

COROLLARY 10. If X is an (n — 1)-connected rational space and dim X ^ 
Sn — 2, X has the homotopy of a wedge of rational spheres if all cup products 
vanish. 

Proof. The hypotheses imply that ker a* is injective. 
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Example 11. Suppose n ^ 2 and let n, i2:Sw ^ 5 " V 5 n denote the obvious 
maps. Let [a] Ç 7r3w-2(5n V 5W) denote the basic Whi tehead product [iu [n, t2]]. 
I t is shown in [4] t ha t a has infinite order and hence the localization (see [16]) 

of a is non-trivial. Now (Sn V 5W)(0) is jus t Sw(0) V S*(o). Let Ci denote the 
rational space (5W

(0) V Sn(0)) Ua(0)CS3w~2(0)- Then Ci is (n — 1)-connected by 
the Hurewicz Theorem, dim C\ = 3n — 1 and all cup products vanish in 
H*(Ci, Z ) . Bu t C\ is not a wedge of rational spheres, and thus Corollary 10 is 
a "bes t possible" result. Notice also t h a t C\ has a non-zero Massey product 
[10], and so the cohomology suspension map is not injective. 

In a later paper we will prove Corollary 10 by entirely different methods , 
and generalize this corollary as follows: 

T H E O R E M 12. If X is an (n — 1)-connected rational space and dim X ^ 
(k + 2)n — 2, cat X ^ k if all cup products of length k + 1 vanish. 

We will also give further examples to show tha t this result cannot be im­
proved unless the dimensionali ty condition is weakened. 

COROLLARY 13 (Berstein [3]). Let X be a simply connected CW complex of 
finite type. Then if cat X ^ 1, X has the homotopy type of a wedge of rational 
spheres modulo the class of finite groups. 

Proof. If cat X ^ l,pi has a section by [8, p . 209] and hence pi* is injective. 
T h e result follows immediately. 

Remarks. 1. Corollary 8 arose from an equivalent conjecture and was in fact 
first proved by Berstein as follows: If pi* is injective, pi* is surjective and so 

H*(mx) ^H*(X) e A 

for some summand A. Wri te H+(X) = H*(Z), Z a wedge of spheres. Since 
2&X is a wedge of spheres by Proposition 5 and Lemma 6, we can realize the 
map H*{Z) ^ H*(2ÇIX) as a map r:Z —•> 2ŒX. Then pxr: Z —> X induces the 
ident i ty map in homology, and since X is simply connected, r is a homotopy 
equivalence. 

2. Notice t ha t the proof of Corollary 8 above combined with May ' s result 
on the kernel of the cohomology suspension map yields a quick proof of the 
well-known (but tedious to prove) fact t ha t : All (matric) Massey products 
vanish in a space of category one—see, e.g., [13]. 

3. T h e author has recently proved the dual of Theorem 9: Let X be a ra­
tional space and let 2n:Tn(X) —> 7rn + 1(SX) be the Freudentha l suspension 
homomorphism. Then 

Sn ® l0:irn(X) 0 0 -> 7rn + 1(SZ) ® Q 

is injective if and only if all (rational) higher Whi tehead products in irn(X) 
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(in the sense of [2]) vanish. It follows that a rational space is a product of 
K(Q, n)'s if and only if all rational higher Whitehead products vanish, giving 
a quick proof of [7, 4.4]. (See [18] for details.) 

4. Berstein's original proof of Corollary 13 used the Hilton-Milnor Theorem. 

Added in proof. In Remark 3 above we also need Tt(X) <g> 0 = 0 unless 
n ^ i S ±n - 3, n è 2. 
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