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DESCENDINGLY INCOMPLETE ULTRAFILTERS AND
THE CARDINALITY OF ULTRAPOWERS

ANDREW ADLER AND MURRAY JORGENSEN

Let D be an ultrafilter on I, and let « be a cardinal. D is said to be k-descend-
ingly incomplete (k-d.i.) if there exists a chain X, : @ < « of elements of D such
that @« < 8 — X, € X and X, = ¢. Such a chain will be called a «-chain
for D. The notion of k-descending incompleteness is due to Chang [3].

In this paper we explore the relationship between the cardinality of the
ultrapower x?/D and the existence of certain chains on D. Since we deal so
much with questions of size, we do not ordinarily make a notational distinction
between a set and its cardinality. Where such a distinction is useful, the
cardinality of a set 4 will be denoted by |4].

The cardinal « has a natural well-ordering which we denote by <. In the
usual way, < induces an order on /D, which we also denote by <. There
is a natural (order-preserving) embedding of « into x?/D. We make the usual
identification and assume that x C «!/D.

The following result is already implicit in Chang [3].

LeMMA 1. « is bounded above in k?/D with respect to < if and only if D is
k-d.1.

Proof. Suppose that « is bounded in x?/D, and let f/D € «¥/D be an upper
bound for k. For any a < «,let X, = {7 | f(Z) > a}. Itisclear that {X, : & <k}
is a k-chain for D.

Conversely, let { X, : & < «} be a k-chain for D. Define f: I >k by f(z) = a
if and only if 7 € Xy — Xey1. Then f/D is an upper bound for « in «?/D.

For ultrafilters D which are not x-d.i., we obtain a representation for x/D
in terms of ultrapowers of smaller objects.

LemwMaA 2. If D is not x-d.1., then
[«"/D| = sup |a|"/D.
a<k

Proof. For any a < «, let C, = { f/D | f/D < a}. By Lemma 1, « is confinal
in /D with respect to <, and so we have the representation «’/D = Us<(Ca.
But from the definition of C,, |C.| = |a|%/D.

It is well-known that if D is regular and «-d.i., then «?/D > «. This is
essentially a restatement of the fact that if |[I] = « and D is uniform, then
kI/D > k. The main result of this paper is a partial converse of this theorem.
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If 2¢ is the nth successor of « for some integer 7, a converse essentially as
strong as can be expected will follow.

Let f: I > A. Put i if f(i) = f(&'). The relation « partitions I. This
partition will be called the partition induced by f. If II is any partition of I,
define g : I — Il by g(#) = C, where C € II is the cell to which 7 belongs. Let
D be an ultrafilter on I. We can now define an ultrafilter E on II by putting
X € E if and only if g71(X) € D. E will be called the image of D on II. In
this situatior , there is for at'y 4 a naturel embedding of A"/E in A7/D. For
to any f/E € AU/E there corresponds an object f/D € AT/D, where
F@G) = £(C) for any cell C and any i € C. AT/E will be treated as a subset
of AT/D.

For any ultrafilter D, let th (D) (the thickness of D) be the smallest cardinal u
such that there exists X € D with |X| = u. The following small observation
will be needed in the proof of the main result:

LEMMA 3. Let I, : o < p be a sequence of partitions of I such that if « < 8, I,
is a proper refinement of o Then for any ordinal n, |11,| = |n|.

Proof. We define a sequence C, of subsets of I such that for any «, C, meets
a cell of II, in at most one point. Let Cy = ¢. For any a, Cop1 = C, \J {p}
where p is in a cell of II,4;1 to which no element of C, belongs. This is possible
since I,y is a proper refinement of II.. For a a limit ordinal,

Then clearly |IL,| = |C,] = [4]-
We have now:

THEOREM 1. Let «k¥/D > k. Let \ be the smallest cardinal such that ¥ > k.
Then D is u-d.i. for some p with X\ = u < max(x, 2V).

Proof. If we can show that the ultrafilter D has an image E such that
th(E) = u, then D is u-d.i. For any non-principal ultrafilter E is th(E)-d.i.,
and since E is an image of D, from any p-chain in E it is easy to construct a
p-chain in D.

Let f./D : a < «* be a sequence of «* distinct elements of «?/D. For each «,
the partition induced by f, has cardinality =«. Indeed without loss of generality
we may assume that for each « the partition induced by f, has cardinality <A\.
For if the cardinality of the smallest partition induced by a representative of
f/D is u, then D has an image of thickness g, and hence a p-chain.

We now define a sequence II, of partitions of I. Let II, be the one cell
partition. For any a, let Il,4; be the common refinement of II, and the partition
induced by fs, where fg/D is the first element of our sequence which does not
have a representative constant on the cells of IL,. If « is a limit ordinal, let II,
be the common refinement of all the IIg with 8 < «. For some ordinal < «¥,
every fg/D has representative constant on the cells of II,, and the process of
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choosing the II, terminates. For a < 7, let D, be the image of D on II,. It is
clear that (under our identification) f./D € «Ty/D, for all @ < «*. If n < A,
we are through. For since I, ; divides any cell of II, into <X pieces, |II,| < 2.
But since «%y/D, = «*, th(D,) = A, and so

\ < th(D,) < |I,| < 2

But then D is u-d.i. for some g with A £ p < 2N,

If » = A, we show that already th(D,) = \. Since th(D)) = 2*, this will
complete the argument. Let th(D,) = p, and let IL* be an element of D, of
cardinality p. For any a we have a natural projection map ¢, : II, — Il,. Let
I* = ¢ (IL*). We show that for any e < X, II*,44 refines IL* properly.

For suppose that II*,.; = IL* and let fz be any function constant on the
cells of M,y1. We define a function gg : I — k. Let C be any cell of II,, and K
be the collection of ¢ € C which belong to some cell of II\*. Suppose there is
some 7 € K. If ¢ € C, let gg(z) = fg(3). If K = ¢, let gg be constant on C.

Now if 7 € K, since IT*,;; = IL* ¢ and 7, must belong to the same cell of
II.,1, and so gg(z) = f5(2). So fs and gs agree on an element of D, and hence
fs/D has a respresentative constant on the cells of II,, contradicting the choice
for M,y1. It follows that IT*,,, is a proper refinement of II.*.

But now it follows immediately from Lemma 3 that th(D)) = |IL¥| = A,
and so Theorem 1 is proved.

It seems plausible that the upper bound for u obtained in Theorem 1 can
be improved to k. This would yield a best possible result, since for any u, if D
is a regular ultrafilter on u, |k*/D| = k*. If x and X are as in the statement of
Theorem 1, and 2* < k, then Theorem 1 yields a best possible upper bound
directly. Lemma 2 can be used together with Theorem 1 to deal with other
rather special cardinals k, but we have no generally valid argument that will
improve our upper estimate in all cases.

If 2% is the nth successor of k for some integer #, then the upper bound for u
can indeed be improved to «. This is a routine application of the main result
of [6]. So in particular we have:

CoroLrrLarY 1 (G.C.H.). Let « be regular. If k*/D > «, then D is k-d.i.

For « singular, assuming the G.C.H., it is tempting to believe that if
kI/D > «, D is ci(x)-d.i. However, if we assume the existence of measurable
cardinals, a counterexample can be exhibited using ideas similar to those of [1].

CoroLLARY 2 (G.C.H.). If « is regular, and «*/D > «, then |(xI/D)| =
|k?/D).

Proof. Chang [3] has shown that if

K=ZK5,

o<y

and D is y-d.i., then |(k!/D)Y| = |«?/D|. By Corollary 1, Chang’s condition is
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fulfilled with v = k. From Keisler's inequality (*)!/D < (xI/D)* [4] one can
only conclude that cf(|«?/D|) = .

Cororrary 3 (C.G.H.). Let « be regular. Then « is confinal in «*/D if and only
if [k1/D| = «.

Proof. The proof follows by Lemma 1.

From the proof of Theorem 4, it is easy to see that (assuming 2¢ is the
nth successor of k for some #) if |kI/D| = «, there is an ultrafilter E on a set J
with |J| < & such that «?/D ~«’/E. So if we think of x as being equipped
with its full structure (all relations and functions on «), x7/D is a simple
extension of k [2]. It is natural to ask here whether in the proof of this purely
algebraic result special assumptions about exponentiation of cardinals can be
eliminated. It is also reasonable to expect that if [k!/D| < 2%, there is an
ultrafilter E on a set J with |J| = « such that x?/D ~ «//E. At this moment
these questions remain open.

Define a function f from ordinals to cardinals by putting f(0) = o,
fle+ 1) = |(f()?/D|, and for limit ordinals B, f(B) = supe<sf(e). The

function f reaches a maximum u =< |27].

CoROLLARY 4 (G.C.H.). u is the smallest cardinal such that D is not u-d.i.
In particular, if |w?/D| = |w!|, then D s k-d.i. for all infinite x < |I|.

In the proof of the next result, we need the fact that if (2¢)Z/D > 2x, then
k!/D > k. Without any additional trouble we can prove the slightly stronger

LEMMA 4. (43)1/D = (41/D)®"/P,

Proof.t Any second order existential sentence true in a model % is true in
every ultrapower of %. Consider the model % = (47, 4, B,R) where
R(a, b, f) if and only if f(b) = a. In the model € 7/D we have

(4%)T/D < (47/D)*5"/P
with the obvious identification induced by R?/D.

Lemma 4 quickly yields that if (2¢)f/D > 2%, then «?/D > k. For let
A =2, B =« Then (2¢)7/D £ 2/ and so if (2%)7/D > 2%, we must have
kI/D > «.

Our final result gives a very weak estimate for the cardinality of «?/D
when « is a limit cardinal in terms of cardinalities of ultrapowers of cardinals
smaller than «.

TaeOREM 2 (G.C.H.). Let « be a limit cardinal. Suppose there is a sequence \q
of regular cardinals such that e — & and N\o*/D > No. Then «'/D > k.

TWe thank the referee for suggesting this simple proof.
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Proof. By Corollary 1, D has a A\,-chain for all @. From a chain {Xg : 8 < Ao}

one obtains a partition II, of I whose cells are the sets Xg,1 — Xj. Since we
have a A,-chain and A, is regular, the image E, of D on II, is uniform. Let II
be the common refinement ot the partitions I, and let E be the image of D
on II. |I| < 2% = «¢t. Since each E, is an image of E, and th(E,) = A,
th(E) 2 «. If th(E) =«, E is k-d.i., so «I/D > «x. If th(E) = «t = 2¥
(2)7/D > 2%, and so k’/D > «.
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