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We study global-in-time dynamics of the stochastic nonlinear beam equations
(SNLB) with an additive space-time white noise, posed on the four-dimensional
torus. The roughness of the noise leads us to introducing a time-dependent
renormalization, after which we show that SNLB is pathwise locally well-posed in all
subcritical and most of the critical regimes. For the (renormalized) defocusing cubic
SNLB, we establish pathwise global well-posedness below the energy space, by
adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the
I -method with a Gronwall-type argument. Lastly, we show almost sure global
well-posedness and invariance of the Gibbs measure for the stochastic damped
nonlinear beam equations in the defocusing case.
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2 A. Chapouto, G. Li and R. Liu

1. Introduction

We consider the stochastic nonlinear beam equation (SNLB) on T4 = (R/Z)4 with
additive space-time white noise:

∂2
t u+∆2u± uk = ξ,

(u, ∂tu)|t=0 = (u0, u1) ∈ Hs(T4),
(1.1)

where u : R+ × T4 → R, ∆2 denotes the bi-harmonic operator, k ≥ 2 is
a natural number, ξ is a space-time white-noise on R+ × T4, and Hs(T4) =
Hs(T4) × Hs−2(T4). We refer to the Eq. (1.1) with ‘+’ as defocusing and with
‘−’ as focusing.

The deterministic beam equation appears in the literature under various names,
such as the fourth-order wave equation, the extensible beam/plate equation, and
the Bretherton equation. In the one-dimensional setting, it was first derived by
Bretherton in [8] to describe the weak interaction between dispersive waves and
it has a variety of applications in physics and mechanics; see [50] and references
therein. We also refer to the non-local model derived by Woinowsky-Krieger [57] to
describe the vibration of a clamped extensible beam.

Our main goal is to establish low regularity well-posedness of (1.1) on T4 with
space-time white-noise, which is of analytical interest due to the roughness of the
noise. This study on Td for d = 1, 2, 3 was pursued in [38, 53, 54]. We also mention
the results in [9, 10, 13] for a non-local version of (1.1) with multiplicative noises.
For the study of the deterministic nonlinear beam equation, we refer the interested
readers to [31, 48, 49] and references therein.

The main difficulty in studying (1.1) on T4 comes from the roughness of the noise
ξ. To illustrate this, we first consider the mild formulation of (1.1):

u(t) = S(t)(u0, u1)∓
∫ t

0

sin((t− t′)∆)

∆
uk(t′) dt′ +Ψ(t), (1.2)

where S (t) denotes the linear propagator

S(t)(u0, u1) = cos(t∆)u0 +
sin(t∆)

∆
u1, (1.3)

with the understanding that sin(t·0)
0 = t, and Ψ is the stochastic convolution which

solves the linear stochastic beam equation on T4:

∂2
tΨ+∆2Ψ = ξ. (1.4)
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Global dynamics for the stochastic nonlinear beam equations 3

More precisely, Ψ is given by

Ψ(t) =

∫ t

0

sin((t− t′)∆)

∆
dW (t′), (1.5)

where W denotes a cylindrical Wiener process on L2(T4):

W (t, x)
def
=
∑
n∈Z4

βn(t)en(x), (1.6)

with1. en(x) = e2πin·x, and {βn}n∈Z4 a family of mutually independent complex-

valued Brownian motions conditioned to β−n = βn, n ∈ Z4, with variance
Var(βn(t)) = t. One can show that W lies almost surely in2. Cα(R+;H

−2−ε(T4))
for any α < 1

2 and ε> 0. Therefore, due to the two degrees of spatial smoothing of
the linear beam equation, it follows that Ψ(t) ∈ H−ε(T4) \ L2(T4) almost surely,
for any ε> 0, thus it is merely a distribution. Consequently, we expect the solu-
tion u to (1.2) to also only be a distribution and thus the product uk is classically
ill-defined. To overcome this difficulty, we closely follow the work of Gubinelli-Koch-
Oh [22] for wave equations (see also [47]), and construct solutions u = Ψ+ v which
solve a suitably renormalized version of (1.1).

We now detail this renormalization procedure. We first smooth the noise ξ in (1.1)
via Fourier truncation and consider the truncated stochastic convolution ΨN given
by

ΨN (t, x) = πNΨ(t, x) =
∑
n∈Z4
|n|≤N

en(x)

∫ t

0

sin((t− t′)|n|2)
|n|2

dβn(t
′),

where πN denotes the frequency truncation onto {|n| ≤ N}. Then, for each fixed
x ∈ T4 and t ≥ 0, it follows from the Ito isometry that the random variable ΨN (t, x)
is a mean-zero real-valued Gaussian random variable with variance

σN (t) = E
[
Ψ2

N (t, x)
]
∼ t logN, (1.7)

which is independent of x ∈ T4.
Let uN be the solution to SNLB (1.1) with the regularized noise πNξ, which

satisfies the mild formulation (1.2) with the truncated stochastic convolution ΨN .
Motivated by (1.2), we introduce the first order expansion [6, 17, 36]:

uN = ΨN + vN , (1.8)

where the remainder vN solves the following nonlinear beam equation:

∂2
t vN +∆2vN ±

k∑
`=0

(
k

`

)
Ψ`

Nvk−`
N = 0. (1.9)

1.Here and after, we drop the harmless factor of 2π.
2.In general, we have W ∈ C

1
2
−(R+;W− d

2
−,∞) for d ≥ 1, which follows by Kolmogorov’s

continuity criterion and [23, Lemma 2.6]. Here W s,r(T4) denotes the usual Lr-based Sobolev
spaces defined via the norm in (2.1).
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4 A. Chapouto, G. Li and R. Liu

Unfortunately, due to (1.7), the monomials Ψ`
N in (1.9) do not have good limiting

behavior as N → ∞. Instead, we define the Wick-ordered power Wσ(Ψ
`
N ) as

Wσ(Ψ
`
N (t, x))

def
= H`(ΨN (t, x);σN (t)), (1.10)

where H`(x;σ) is the Hermite polynomial of degree `, which can be shown to
converge to a limit Wσ(Ψ

`) in Lp(Ω;C([0, T ];W−ε,∞(T4))), for any 1 ≤ p < ∞
and ε> 0 as N → ∞; see § 2.2. We then consider the Wick renormalized version
of (1.9)

∂2
t vN +∆2vN ±

k∑
`=0

(
k

`

)
Wσ(Ψ

`
N )vk−`

N = 0, (1.11)

which converges, as N → ∞, to the following equation:

∂2
t v +∆2v ±

k∑
`=0

(
k

`

)
Wσ(Ψ

`)vk−` = 0. (1.12)

Lastly, from (1.8) and (2.3) below, we can define the Wick-ordered nonlinearity
Wσ(u

k
N ) as

Wσ(u
k
N (t, x))

def
= Hk(uN (t, x);σN (t)) =

k∑
`=0

(
k

`

)
Wσ(Ψ

`
N (t, x))vk−`

N (t, x).

Consequently, if vN solves (1.11), then uN = ΨN + vN satisfies the following
truncated Wick renormalized SNLB:

∂2
t uN +∆2uN ±Wσ(u

k
N ) = πNξ. (1.13)

Similarly, with u = Ψ + v for some suitable v, we define the Wick-ordered
nonlinearity as

Wσ(u
k)

def
=

k∑
`=0

(
k

`

)
Wσ(Ψ

`)vk−`, (1.14)

and so if v solves (1.12), then u = Ψ + v solves the following Wick renormalized
SNLB:

∂2
t u+∆2u±Wσ(u

k) = ξ. (1.15)

Before stating our first main result on local well-posedness of (1.15), let us dis-
cuss the scaling critical regularity associated to the deterministic nonlinear beam
equation (NLB):

∂2
t u+∆2u± uk = 0. (1.16)

On R4, (1.16) enjoys the following scaling symmetry: if u is a solution to (1.16)

then uλ(t, x)
def
= λ

4
k−1u(λ2t, λx) is also a solution to (1.16). This induces the scaling
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critical Sobolev index sscaling = 2 − 4
k−1 , i.e., the homogeneous Sobolev Ḣs(R4)-

norm with s = sscaling is invariant under the scaling. Moreover, for a given integer
k ≥ 2, we define scrit by

scrit
def
= max(sscaling, 0) = max

(
2− 4

k − 1
, 0

)
, (1.17)

where the restriction scrit ≥ 0 appears in making sense of the powers of u. Although
the scaling symmetry does not extend to T4, the numerology still plays an important
role in predicting local well-posedness issues. In particular, our aim is to show that
the SNLB (1.1) is locally well-posed in the scaling (sub)critical Sobolev spaces
Hs(T4) with s ≥ scrit. In fact, we show pathwise local well-posedness of (1.15) in
the subcritical regime for s > scrit and all order nonlinearities k ≥ 2, and also in
the critical case (s = scrit) for k ≥ 4.

Theorem 1.1 Given an integer k ≥ 2, let scrit be as in (1.17). Then, the Wick
renormalized SNLB (1.15) is pathwise locally well-posed in Hs(T4) for

(i) k ≥ 4 : s ≥ scrit or (ii) k = 2, 3 : s > scrit.

More precisely, given any (u0, u1) ∈ Hs(T4), there exists an almost surely positive
stopping time T = T (ω, u0, u1) > 0 such that there exists a unique solution u to
(1.15) on [0, T ] with (u, ∂tu)|t=0 = (u0, u1) and

u ∈ Ψ+ C([0, T ];Hs′(T4)) ⊂ C([0, T ];H−ε(T4))

for any ε> 0, where s′ = min(s, 2− ε).

The solution u in Theorem 1.1 is understood as u = Ψ + v where we construct
(v, ∂tv) ∈ C([0, T ];Hs′(T4)) with v solving the following Duhamel formulation:

v(t) = S(t)(u0, u1)∓
∫ t

0

sin((t− t′)∆)

∆
Wσ(u

k(t′))dt′, (1.18)

for Wσ(u
k) and S (t) as in (1.14) and (1.3), respectively. The main ingredient in

proving Theorem 1.1 in the (almost) critical regime are the Strichartz estimates for
the beam equation. In the Euclidean setting, by exploiting the formal decomposition

∂2
t +∆2 = (i∂t +∆)(−i∂t +∆),

which sheds light on the relation between the beam equation and the Schrödinger
equation, and the analysis of oscillatory integrals, Pausader [48, 49] established
Strichartz estimates for the beam equation. However, in contrast to the wave equa-
tion, the lack of finite speed of propagation poses difficulties in transferring these
estimates from the Euclidean to the periodic setting. Instead, we exploit the connec-
tion between the operator S (t) in (1.3) appearing in (1.18) and the free Schrödinger
operators e±it∆ via the periodic Schrödinger Strichartz estimates in [7, 27] from
the `2-decoupling theory. See § 3 for details.
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Remark 1.2.

(i) In Theorem 1.1, we cannot reach the critical regularity s = scrit = 0 for
the quadratic and cubic SNLB (1.15), k = 2, 3. This restriction comes from
the sharp Strichartz estimates for Schrödinger (see Lemma 3.1), where the
endpoint p=3 is not included, which is needed for our argument in the
critical setting for k = 2, 3. Strichartz estimates for p=3 are known to only
hold with a derivative loss [4, 7], which prevents us from taking s =0. Thus
our result is sharp with respect to the method. It may be possible to reach
the critical regularity in these cases by using the Up-Vp spaces introduced
in [28].

(ii) The proof of Theorem 1.1 can be easily adapted to show local well-posedness
of the truncated Wick-ordered SNLB (1.13), uniformly in N. In fact, it
follows that for (u0, u1) ∈ Hs(T4), there exists an almost surely positive
stopping time T = T (ω, u0, u1) > 0 independent of N and a unique solution

uN ∈ ΨN + C([0, T ];Hs′(T4)) to (1.13). Moreover, we can show that uN
converges to the corresponding solution u to (1.15). We note that although
this seems to depend on regularizing by πN, one can consider a different reg-
ularization procedure, such as mollification. Indeed, one can show that the
Wick-ordered monomials Wσ(Ψ

k) are independent of the choice of mollifier,
and thus so is the renormalized nonlinearity (1.14). See [22, Remark 1.2] for
further discussion.

Our next goal is to extend the solutions constructed in Theorem 1.1 globally-
in-time. We restrict our attention to the defocusing case (‘+’ sign in (1.1)) and
odd-ordered nonlinearities, as the energies corresponding to the deterministic NLB
equation are sign definite in this setting. First, we construct pathwise global-in-
time solutions for the cubic defocusing Wick-ordered (1.15) by adapting the hybrid
method of Gubinelli-Koch-Oh-Tolomeo [24] to the beam equation. Then, we use
Bourgain’s invariant measure argument to show almost sure global well-posedness
and invariance of the Gibbs measure for the defocusing damped Wick renormalized
SNLB with odd-power nonlinearities.

We first consider the cubic Wick renormalized SNLB (1.15) in the defocusing
case, with k =3 and ‘+’ sign. In Theorem 1.1, for s > 0 we constructed a solution
u = Ψ+ v where the remainder v solves

∂2
t v +∆2v +Wσ(u

3) = 0, (1.19)

and Wσ(u
3) is given in (1.14). A consequence of the (deterministic) contraction

argument used to show Theorem 1.1 is the following (almost sure) blow-up alter-
native: either the solution v exists globally in time or there exists some finite time
T∗ = T∗(ω) > 0 such that

lim
t↗T∗

‖~v(t)‖Hs′ = ∞, (1.20)

where ~v = (v, ∂tv) and s′ = min(s, 2− ε) for any small ε> 0.
To globalize solutions, we must control the growth of the norm in (1.20). In

the parabolic setting, there are various results where deterministic arguments have
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been adapted to the stochastic setting to directly control the growth of norms of
solutions; see [21, 37, 39, 40]. Unfortunately, for (1.15), due to the lack of a strong
smoothing effect, such arguments do not apply. Instead, even in the deterministic
setting, we must consider conservation laws. For the deterministic cubic nonlinear
beam equation (NLB):

∂2
t v +∆2v + v3 = 0,

the associated energy

E(~v) =
1

2

∫
T4
(∆v)2dx+

1

2

∫
T4
(∂tv)

2dx+
1

4

∫
T4

v4dx, (1.21)

gives control over theH2(T4)-norm of ~v, as this quantity is conserved for sufficiently
regular solutions. Unfortunately, when adding noise to the equation and considering
a solution v to (1.19), two problems arise: (i) the energy E(~v) is not conserved under

the dynamics of (1.19), and (ii) since ~v ∈ Hs′(T4) \ H2(T4) for s′ = min(s, 2 − ε)
for any ε> 0, the energy E(~v) is actually infinite.

In the context of the two-dimensional cubic stochastic nonlinear wave equa-
tion, Gubinelli-Koch-Oh-Tolomeo [24] introduced a new hybrid method to overcome
these difficulties, by combining the I -method of Colliander-Keel-Staffilani-Takaoka-
Tao [15, 16] and the Gronwall-type globalization argument by Burq-Tzvetkov [12].
See also [19, 55] for other instances of this method. To establish our next main
result, we adapt this argument to show pathwise global well-posedness of (1.19).

Theorem 1.3 Let s > 7
4 . Then, the defocusing cubic Wick renormalized SNLB

(1.19) is globally well-posed in Hs(T4). More precisely, given any (u0, u1) ∈
Hs(T4), the solution v to the equation (1.19) exists globally in time and (v, ∂tv) ∈
C(R+;Hs′(T4)), almost surely, for s′ = min(s, 2− ε) for any small ε> 0.

We briefly detail the ideas of the proof of Theorem 1.3. For simplicity, let 7
4 <

s < 2 so that s′ = s. In view of the blow-up alternative (1.20), our main goal is to
control the Hs(T4)-norm of the solution v to (1.19), where the conservation of E(~v)
is not useful. Instead, the I -method is based on studying the growth of a modified
energy obtained from E(~v) which controls the Hs(T4)-norm of v. In particular, for
N ∈ N, we consider E(I~v) where I = IN denotes the I -operator, a Fourier operator
with a smooth, radially symmetric, non-increasing multiplier mN given by

mN (ξ) =

1, if |ξ| ≤ N,(
N
|ξ|

)2−s

, if |ξ| ≥ 2N.
(1.22)

Note that If ∈ H2(T4) if and only if f ∈ Hs(T4); see (4.1)-(4.2).
To study the growth of E(I~v), we consider the following I -SNLB:

∂2
t Iv +∆2Iv + IWσ(u

3) = 0,
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where Wσ(u
3) is as in (1.14). Unfortunately, the modified energy E(I~v) is not

conserved under the flow of I -SNLB, and by direct computation we obtain

E(I~v)(t2)− E(I~v)(t1) =

∫ t2

t1

∫
T4
(∂tIv)

{
− I(v3) + (Iv)3

}
dxdt′

− 3

∫ t2

t1

∫
T4
(∂tIv)

{
I(v2Ψ) + I(vWσ(Ψ

2))
}
dxdt′

−
∫ t2

t1

∫
T4
(∂tIv)I(Wσ(Ψ

3))dxdt′,

(1.23)

for 0 ≤ t1 < t2. The first term, due to the I -operator, requires a certain (deter-
ministic) commutator estimate; see Lemma 4.1. The difficulty in the remaining
contributions comes from the roughness of Ψ, which is handled by exploiting a finer
regularity property of IΨ combined with commutator estimates and a Gronwall-
type argument. Finally, due to the growth of the modified energy E(IN~v), we
iterate the argument above over time-intervals of fixed size, but with an increas-
ing sequence Nk of parameters for the I -operator, extending the solution to (1.19)
globally-in-time. See § 4 for details.

Remark 1.4.

(i) There is a gap between the global well-posedness result for the Wick-ordered
cubic SNLB (1.19) in Theorem 1.3 for s > 7

4 and the local well-posedness
threshold s > 0 from Theorem 1.1. The technical assumption of s > 7

4 comes
from controlling the growth of the energy (Proposition 4.5) and that of the
chosen sequence of parameters Nk in a way that allows for an iterative
argument (see (4.38) and (4.40)). We do not believe this restriction to be
sharp, and it may be possible to improve it by refining the I -method part
of the argument. However, we do not pursue this issue in this paper.

(ii) At this point, we do not know how to extend pathwise global well-posedness
of the Wick ordered defocusing SNLB (1.15) to a (super-)quintic nonlinear-
ity. As mentioned earlier, the method of proof for Theorem 1.3 is partially
based on the Gronwall-type globalization argument by Burq-Tzvetkov [12],
which only applies to the cubic case. Indeed, the main restriction comes
from the term ∫

T4
(∂tv)(v

2Ψ)dx,

appearing on the second contribution on the right-hand side of (1.23), where
we dropped the I -operator for simplicity. In order to estimate this contribu-
tion by a power of the energy E(~v) in (1.21), by Cauchy-Schwarz inequality,
we must place ∂tv in L2(T4), which implies that v2Ψ is also in L2(T4).
Consequently, we obtain the L4-norm of v, which is also controlled by the
energy E(~v). However, one can see that the same argument fails for the anal-
ogous term for higher order nonlinearities; see, for example, the case-by-case
analysis in [33, Section 5]. To deal with a (super-)quintic nonlinearity, one
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needs to exploit some other ideas such as those in [30, 43], but we choose
not to pursue this issue in this paper.

(iii) A standard application of the I -method results in a polynomial growth
bound (in time) on the Sobolev norm of a solution. See, for example, [16,
Section 6]. The hybrid argument used for Theorem 1.3 yields a double
exponential growth bound on the Hs-norm of the solution; see Remark
4.6 below. It may be possible to improve this double exponential bound,
but we expect that one can obtain at best a polynomial growth bound
for SNLB (1.19) due to the polynomial growth (in time) of the stochastic
convolution Ψ. One can compare this situation with the damped case in the
next subsection, where the invariant measure argument yields a logarithmic
growth bound; see remark 1.7(i) below.

Lastly, we restrict our attention to the following (defocusing) stochastic damped
nonlinear beam equation (SdNLB):

∂2
t u+ ∂tu+ (1−∆)2u+ uk =

√
2ξ, (1.24)

for k ∈ 2N + 1. By modifying the proof of Theorem 1.3, we can show global well-
posedness for the damped dynamics (1.24) when k =3, after renormalization, but
we do not know how to extend this deterministic argument to higher nonlinearities.
Instead, we consider a probabilistic approach and establish almost sure global well-
posedness of (1.24) and invariance of the Gibbs measure ~ρ via Bourgain’s invariant
measure argument [5, 6], where ~ρ is formally given by

“d~ρ(u, ∂tu) = Z−1e−E(u,∂tu)du d(∂tu)”. (1.25)

Here, E(u, ∂tu) denotes the energy (or Hamiltonian) of the deterministic undamped
defocusing NLB (1.16):

E(u, ∂tu) =
1

2

∫
T4
[(1−∆)u]2dx+

1

2

∫
T4
(∂tu)

2dx+
1

k + 1

∫
T4

uk+1dx. (1.26)

We can understand SdNLB (1.24) as a superposition of the defocusing NLB
dynamics (1.16) and the Ornstein-Uhlenbeck dynamics (for the component ∂tu):

∂t(∂tu) = −∂tu+
√
2dW.

The latter leaves the Gibbs measure ~ρ invariant, which is also expected to hold
under the dynamics of NLB (1.16) due to its Hamiltonian structure; see [45] and
[58, Chapter 3]. Therefore, we expect ~ρ to also be invariant under SdNLB (1.24).

Moreover, this invariance is also inferred from the stochastic quantization view-
point. In fact, (1.24) is the so-called canonical stochastic quantization equation of
the Φk+1

4 -model; see [51]. We thus refer to (1.24) as the hyperbolic Φk+1
4 -model,

which is of importance in constructive quantum field theory. The invariance of the
Gibbs measure is also related to other applications in physics such as the study of
equilibrium states, couplings of fields, and scattering of particles; see [1–3, 18, 20,
25, 52] and references therein. See also [22, 24, 35, 44, 54] for further results on
wave-like Φk+1

d -models.
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Our first step is to rigorously construct the measure ~ρ, since the expression in
(1.25) is only formal. We want to define ~ρ as a weighted Gaussian measure of the
form

“d~ρ(u, ∂tu) = Z−1e
− 1

k+1

∫
T4 uk+1dx

d~µ2(u, ∂tu)”, (1.27)

where ~µ2 = µ2 ⊗ µ0 and µs denotes a Gaussian measure on periodic distributions
given by

dµs = Z−1
s e−

1
2‖u‖

2
Hsdu = Z−1

s

∏
n∈Z4

e−
1
2 〈n〉

2s|û(n)|2dû(n), (1.28)

for s ∈ R. Note that µ0 corresponds to the white noise measure. More precisely,
~µ2 is defined as the induced probability measure under the map ω ∈ Ω 7−→
(X1(ω), X2(ω)), where X1(ω) and X2(ω) are given by

X1(ω) =
∑
n∈Z4

gn(ω)

〈n〉2
en and X2(ω) =

∑
n∈Z4

hn(ω)en. (1.29)

Here, {gn, hn}n∈Z4 denotes a family of independent standard complex-valued

Gaussian random variables conditioned so that gn = g−n and hn = h−n, n ∈ Z4.
The main difficulty in making sense of (1.27) comes from the rough support of
the base Gaussian measure ~µ2, namely H−ε(T4) \ H0(T4) for any ε> 0; see [11,
Lemma B.1]. Since the typical element in the support of ~µ2 is merely a distribu-
tion, the term

∫
T4 u

k+1 dx in (1.27) is ill-defined and a renormalization is needed
in rigorously constructing ~ρ.

Similarly to the local theory for SNLB (1.1), where we introduced a renormal-
ization based on the logarithmically diverging variance of Ψ in (1.7), here the same
difficulty appears due to the roughness of the support of ~µ2. In fact, for N ∈ N,
the typical element X 1 in the support of µ2 satisfies

αN
def
= E

[(
πNX1(x)

)2]
=
∑
n∈Z4
|n|≤N

1

〈n〉4
∼ logN, (1.30)

which is independent of both t ∈ R+ and x ∈ T4. We then define the Wick
renormalized truncated potential energy

RN (u) =
1

k + 1

∫
T4

Wα((πNu)k+1)dx, (1.31)

where the Wick-ordered power Wα((πNu)k+1) is defined by

Wα((πNu)k+1(t, x))
def
= Hk+1(πNu(t, x);αN ). (1.32)
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One can show that {RN}N∈N forms a Cauchy sequence in Lp(µ2) for any finite
p ≥ 1, from which we conclude that there exists a limiting random variable R(u)
given by

lim
N→∞

RN (u)
def
= R(u) =

1

k + 1

∫
T4

Wα(u
k+1(x))dx. (1.33)

See [46, Proposition 1.1] and [32, Proposition 3.4] for details. We then construct
the Gibbs measure ~ρ as the limit of the following truncated Gibbs measures

d~ρN (u, ∂tu) = Z−1
N e−RN (u)d~µ2(u, ∂tu). (1.34)

Proposition 1.5. Given any 1 ≤ p < ∞, we have

lim
N→∞

e−RN (u) = e−R(u) in Lp(µ2). (1.35)

Consequently, the truncated Gibbs measure ~ρN in (1.34) converges, in the sense of
(1.35), to a limiting Gibbs measure ~ρ given by

d~ρ(u, ∂tu) = Z−1e−R(u)d~µ2(u, ∂tu). (1.36)

We now sketch the proof of Proposition 1.5. From an application of Nelson’s
estimate, we obtain uniform in N integrability of the truncated density; for any
1 ≤ p < ∞,

sup
N∈N

∥∥e−RN (u)
∥∥
Lp(µ2)

< ∞. (1.37)

See, for example, [46, Proposition 1.2] and [32, Proposition 3.6]. Combining the
uniform bound (1.37) with a convergence in measure deduced from (1.33), we obtain
(1.35); see, for example, [56, Remark 3.8] and [32, (3.32)]. This allows us to construct
the Gibbs measure ~ρ in (1.36), which is mutually absolutely continuous with respect
to the base Gaussian measure ~µ2.

We can now consider the dynamical problem for the Φk+1
4 -model (1.24). In

particular, we consider the following truncated Wick renormalized SdNLB

∂2
t uN + ∂tuN + (1−∆)2uN + πN

(
Wα((πNu)k)

)
=

√
2ξ, (1.38)

and show almost sure global well-posedness and invariance of the Gibbs measure ~ρ
for the limiting equation:

∂2
t u+ ∂tu+ (1−∆)2u+Wα(u

k) =
√
2ξ. (1.39)

Theorem 1.6 Let k ∈ 2N + 1. The Wick renormalized SdNLB (1.39) is almost
surely globally well-posed with respect to the Gibbs measure ~ρ in (1.36) and the Gibbs
measure ~ρ is invariant under the dynamics. More precisely, there exists a non-
trivial stochastic process (u, ∂tu) ∈ C(R+;H−ε(T4)) for any ε> 0 such that, given
any T> 0, the solution (uN , ∂tuN ) to the renormalized truncated SdNLB (1.38)
with random initial data (uN , ∂tuN )|t=0 distributed according to the truncated Gibbs
measure ~ρN in (1.34), converges in probability to some stochastic process (u, ∂tu) in
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C([0, T ];H−ε(T4)). Moreover, the law of (u(t), ∂tu(t)) is given by the renormalized
Gibbs measure ~ρ in (1.36) for any t ≥ 0.

By using Bourgain’s invariant measure argument, due to the convergence of ~ρN
to ~ρ, Theorem 1.6 follows once we construct the limiting process (u, ∂tu) locally-
in-time with a good approximation property for the solution uN to (1.38) and
establish invariance of the truncated measures ~ρN under (1.38). The former follows
from adapting the proof of Theorem 1.1 to the damped models (1.38)-(1.39), while
the latter exploits the Hamiltonian structure of the truncated system (1.38). See
§ 5 for details.

Remark 1.7.

(i) Let (u, ∂tu) be the limiting process constructed in Theorem 1.3. Then, as a
consequence of Bourgain’s invariant measure argument, one can obtain the
following logarithmic growth bound (in time):

‖(u(t), ∂tu(t))‖H−ε ≤ C(ω)
(
log(1 + t)

)k
2 ,

for any t ≥ 0. For details, see [44].
(ii) The local well-posedness in Theorem 1.1 can be easily adapted to the Wick

renormalized SNLB with damped massive linear part ∂2
t u+∂tu+(1−∆)2u,

which we detail in § 5. We choose to consider the massive linear part (1−∆)2

instead of ∆2 to avoid a problem at the zero-th frequency when constructing
the Gibbs measure ~ρ, as in [24, 46].

(iii) The Gaussian measure µ2 is the log-correlated Gaussian free field on T4

studied in [45], and thus the SdNLB dynamics (1.24) are associated with
this log-correlated Gibbs measure. Our construction of ~ρ in (1.36) is valid
for k ∈ 2N + 1 and with a plus sign in front of the potential energy in
(1.26). However, in the case of a focusing quartic interaction (i.e., with a
minus sign in front of the potential energy and k =3 in (1.26)), the authors
in [45] obtained a non-normalizability result for the corresponding measure
and established its exact divergence rate; see [45, Theorem 1.4].

2. Preliminaries

In this section, we introduce notations and recall basic lemmas. For a, b > 0, we use
a . b to denote that there exists a constant C > 0 such that a ≤ Cb. We write a ∼ b
if a . b and b . a. When writing the norm of a space-time function, we usually
use short-hand notation, such as Lq

IL
r
x = Lq(I;Lr(T4)) for a given time interval

I ⊂ R+. We will also use the notation Lq
TL

r
x = Lq([0, T ];Lr(T4)) for T > 0.

2.1. Deterministic tools

We first introduce some function spaces. For s ∈ R, we define the L2-based Sobolev
space Hs(T4) via the norm:

‖f‖Hs =
∥∥〈n〉sf̂(n)∥∥

`2n
,
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where 〈·〉 = (1 + | · |2)
1
2 and f̂ denotes the spatial Fourier transform of f. For

1 ≤ p ≤ ∞, we define the Lp-based Sobolev space W s,p(T4) via the norm:

‖f‖Ws,p =
∥∥F−1

(
〈n〉sf̂(n)

)∥∥
Lp , (2.1)

where F−1 denotes the inverse Fourier transform. Note that Hs(T4) = W s,2(T4).
We now introduce notation for Littlewood-Paley projections. Let φ : R → [0, 1]

be a smooth bump function with suppφ ⊂ [−8
5 ,

8
5 ] and φ ≡ 1 on [− 5

4 ,
5
4 ]. For ξ ∈ R4,

we define

ϕ1(ξ) = φ(|ξ|) and ϕN (ξ) = φ
( |ξ|
N

)
− φ

(2|ξ|
N

)
,

for N ≥ 2 a dyadic number. For a dyadic number N ≥ 1, we define the Littlewood-
Paley projector PN as the Fourier multiplier operator with the symbol ϕN. Then,

f =
∑

N≥1 dyadic

PNf.

We also write

P≤Nf =
∑

1≤M≤N dyadic

PMf.

Next, we recall the following Christ–Kiselev lemma. For a proof, see [14, 26].

Lemma 2.1. Let X,Y be Banach spaces and K(s, t) : X → Y be an operator-valued
kernel from X to Y. Suppose that we have the estimate

∥∥∥∥ ∫ t0

−∞
K(s, t)f(s) ds

∥∥∥∥
Lq([t0,∞);Y )

. ‖f‖Lp(R;X),

for some 1 ≤ p < q ≤ ∞, all t0 ∈ R, and all f ∈ Lp
(
(−∞, t0);X

)
. Then, we have

∥∥∥∥∫ t

−∞
K(s, t)f(s) ds

∥∥
Lq(R;Y )

. ‖f‖Lp(R;X).

Note that the assumption in the above lemma is satisfied in particular if we have∥∥∥∥∫
R
K(s, t)f(s) ds

∥∥∥∥
Lq(R;Y )

. ‖f‖Lp(R;X).

Lastly, we recall the following product estimates. See for example [22, Lemma
3.4].
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Lemma 2.2. Let 0 ≤ s ≤ 1.
(i) Suppose that 1 < pj , qj , r < ∞, 1

pj
+ 1

qj
= 1

r , j = 1, 2. Then, we have

‖〈∇〉−s(fg)‖Lr(T4) . ‖f‖Lp1(T4)‖〈∇〉s(g)‖Lq1(T4)

+ ‖〈∇〉−s(f)‖Lp2(T4)‖g‖‖〈∇〉−s(fg)‖Lq2(T4).

(ii) Suppose that 1 < p, q, r < ∞ satisfy the scaling condition 1
p +

1
q = 1

r +
s
4 . Then,

we have

‖〈∇〉−s(fg)‖Lr(T4) . ‖〈∇〉−sf‖Lp(T4)‖〈∇〉sg‖Lq(T4).

2.2. Tools from stochastic analysis

In the following, we first review some basic facts on Hermite polynomials. See, for
example, [29, 41]. We define the kth Hermite polynomial Hk(x;σ) with variance
σ> 0 via the following generating function:

etx−
1
2σt

2
=

∞∑
k=0

tk

k!
Hk(x;σ), (2.2)

for t, x ∈ R. We list the first few Hermite polynomials for readers’ convenience:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ,

H3(x;σ) = x3 − 3σx, H4(x;σ) = x4 − 6σx2 + 3σ2.

From (2.2), we obtain the following identities for any k ∈ N and x, y ∈ R:

Hk(x+ y;σ) =
k∑

`=0

(
k

`

)
xk−`H`(y;σ). (2.3)

We now recall the regularities of the stochastic convolutions and their Wick-
powers introduced in § 1. Let Ψ be the stochastic convolution defined in (1.5)
and Ψd be the stochastic convolution associated with SdNLB (1.24), namely the
solution to the linear stochastic damped beam equation:∂2

tΨ
d + ∂tΨ

d + (1−∆)2Ψd =
√
2ξ

(Ψd, ∂tΨ
d)|t=0 = (uω

0 , u
ω
1 ),

(2.4)

with initial data with law L(uω
0 , u

ω
1 ) = ~µ2. See § 5 for further details on Ψd. Then,

using standard stochastic analysis with the Wiener chaos estimate, we have the
following regularity and convergence result. For an analogous proof, we refer the
readers to [34, Lemma 2.1]. See also [22, 24].

Lemma 2.3. Let Z = Ψ or Ψd, ` ∈ N, T> 0, and 1 ≤ p < ∞. For W(Z`
N ) =

W((πNZ)`) denoting the truncated Wick power defined in (1.10) or (1.32), respec-
tively. Then, {W(Z`

N )}N∈N is a Cauchy sequence in Lp
(
Ω;C([0, T ];W−ε,∞(T4))

)
.
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Moreover, denoting the limit by W(Z`), we have W(Z`) ∈ C
(
[0, T ];W−ε,∞(T4)

)
almost surely, with the following tail estimate for any 1 ≤ q < ∞, T ≥ 1, and
λ> 0:

P
(
‖W(Z`)‖

L
q
T
W

−ε,∞
x

> λ
)
≤ C exp

(
− c

λ
2
`

T
1+ 2

q`

)
.

When q = ∞, we also have the following tail estimate:

P
(
‖W(Z`)‖

L∞([j,j+1];W
−ε,∞
x )

> λ
)
≤ C exp

(
− c

λ
2
`

j + 1

)
(2.5)

for any j ∈ Z≥0 and λ> 0.

In order to prove Theorem 1.3, we need the following finer regularity property
of Ψ. For a proof, see [24, Lemma 2.4].

Lemma 2.4. Let Ψ be as in (1.5) and fix 0 < s < 2. Then, given any x ∈ T4 and
t ∈ R+, IΨ(t, x) is a mean-zero Gaussian random variable with variance bounded
by C0t logN , where the constant C0 is independent of x ∈ T4 and t ∈ R+.

3. Local well-posedness of SNLB

In this section, we show pathwise local well-posedness of the Wick renormalized
SNLB (1.15) in Theorem 1.1. In § 3.1, we show homogeneous and inhomogeneous
Strichartz estimates for the linear beam operators appearing in the mild formulation
(1.18). We then apply these in § 3.2 to show Theorem 1.1 via a contraction mapping
argument.

3.1. Strichartz estimates

To obtain Strichartz estimates for the beam equation, we need the following sharp
Strichartz estimates for the linear Schrödinger propagator e±it∆ due to Bourgain-
Demeter [7] and Killip-Vişan [27].

Lemma 3.1. Let 3 < p ≤ ∞ and N ≥ 1 be a dyadic integer. Then, we have

∥∥e±it∆P≤Nf‖Lp
t,x([0,1]×T4) . N2− 6

p ‖f‖L2
x(T4)

.

For 1 ≤ q, r < ∞, we define the index sq,r as follows

sq,r
def
= 2− 2

q − 4
r . (3.1)

We then obtain the following estimate.
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Lemma 3.2. For 3 < q ≤ r < ∞ and sq,r in (3.1), we have

‖e±it∆f‖Lq
t ([0,1];L

r
x(T4))

. ‖f‖Hsq,r (T4).

Proof. Let I = [0, 1]. We start by writing f =
∑

N PNf from Littlewood-Paley
decomposition. From Bernstein’s inequality and Lemma 3.1, we have

‖e±it∆PNf‖Lq
I
Lr
x
. N

4
q−

4
r ‖e±it∆P≤2N (PNf)‖Lq

I
L
q
x
. N2−2

q−
4
r ‖PNf‖L2

x
.

Using the Littlewood-Paley theorem, Minkowski’s inequality, and the above
estimate, we obtain

‖e±it∆f‖Lq
I
Lr
x
.

( ∑
N≥1 dyadic

‖e±it∆PNf‖2
L
q
I
Lr
x

)1/2

.

( ∑
N≥1 dyadic

N2sq,r‖PNf‖2
L2
x

)1/2

∼ ‖f‖Hsq,r .

as desired. �

From the definition of the linear beam operator S (t) in (1.3), the fact that e±it∆

are isometries in Hs(T4) for any s ∈ R, and Lemma 3.2, we obtain the following
homogeneous Strichartz estimates for the linear beam operator.

Lemma 3.3. Let S(t) be the linear operator in (1.3), 0 < T ≤ 1, 3 < q ≤ r < ∞,
and s ≥ sq,r. Then, we have

‖S(t)(u0, u1)‖L∞
T

Hs
x
+ ‖S(t)(u0, u1)‖Lq

T
Lr
x
. ‖(u0, u1)‖Hs .

We now establish the following inhomogeneous Strichartz estimate, using a TT ∗-
argument.

Lemma 3.4. For 3 < q ≤ r < ∞ and sq,r as in (3.1), we have∥∥∥∥ ∫ t

0

sin((t− t′)∆)

∆
F (t′)dt′

∥∥∥∥
L
q
t ([0,1];L

r
x(T4))

. ‖F‖
L1
t H

sq,r−2
x ([0,1]×T4)

.

Proof. Note that the zero-th frequency of F can be estimated easily, and so we can
assume that F has mean zero below. Let I = [0, 1]. First note that∥∥∥∥ ∫ t

0

sin((t− t′)∆)

∆
F (t′) dt′

∥∥∥∥
L
q
I
Lr
x

.

∥∥∥∥∫ t

0

ei(t−t′)∆

∆
F (t′) dt′

∥∥∥∥
L
q
I
Lr
x

+

∥∥∥∥ ∫ t

0

e−i(t−t′)∆

∆
F (t′) dt′

∥∥∥∥
L
q
I
Lr
x

.

Thus, we focus on estimating the first term, as the estimate for the second term
follows from an analogous strategy. The operator T defined by Tu0 = eit∆u0 is a
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bounded operator T : Hsq,r → Lq
IL

r
x from Lemma 3.2. Note that we have

〈Tu0, G〉t,x =

∫ 1

0

∫
T4

eit∆u0(x)G(t, x) dx dt

=
∑
n∈Z4

û0(n)

∫ 1

0

e−it|n|2Ĝ(t, n) dt = 〈u0, T
∗G〉x,

where the dual operator T ∗ is given by

T ∗G =

∫ 1

0

e−it∆G(t, ·) dt,

which in turn is bounded from Lq′
I Lr′

x to H
−sq,r
x . From the trivial boundness of

T : Hs
x → L∞

I Hs
x for any s ∈ R, we conclude that T ∗ : L1

IH
sq,r
x → H

sq,r
x is also

bounded. Consequently, we have that TT ∗ : L1
IH

sq,r
x → Lq

tL
r
x and

TT ∗G =

∫ 1

0

ei(t−t′)∆G(t′, ·) dt′.

From the Christ–Kiselev lemma (Lemma 2.1), we get that∥∥∥∥∫ t

0

ei(t−t′)∆G(t′, ·) dt′
∥∥∥∥
L
q
I
Lr
x

. ‖G‖
L1
I
H

sq,r
x

,

and by choosing G = 1
∆F , we obtain the intended result. �

3.2. Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by constructing a solution u = Ψ+v where
Ψ denotes the stochastic convolution solving (1.4) and the remainder v solves (1.12).
In particular, we consider the following mild formulation for v :

v(t) = S(t)(u0, u1)∓
∫ t

0

sin((t− t′)∆)

∆

k∑
`=0

(
k

`

)
Ξ` v

k−`(t′)dt′ (3.2)

for given initial data (u0, u1) and a source (Ξ0,Ξ1, . . . ,Ξk) with the understanding
that Ξ0 ≡ 1, where S (t) is the linear propagator as defined in (1.3). Given s, ε ∈
R, we define the space X s,ε(T4) = Hs(T4) ×

(
C([0, 1];W−ε,∞(T4))

)⊗k
with the

following norm for ΞΞΞ = (u0, u1,Ξ1, . . . ,Ξk) ∈ X s,ε(T4):

‖ΞΞΞ‖Xs,ε = ‖(u0, u1)‖Hs +
k∑

j=1

‖Ξj‖C([0,1];W−ε,∞).

Moreover, we introduce our solution space Xs,q,r(T ) for s ∈ R and 1 ≤ q, r ≤ ∞:

Xs,q,r(T )
def
= C([0, T ];Hs(T4)) ∩ Lq([0, T ];Lr(T4)).
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The local well-posedness in Theorem 1.1 follows from local well-posedness
of (3.2) and Lemma 2.3, which states that the random enhanced data set
(u0, u1,Ψ,Wσ(Ψ

2), . . . ,Wσ(Ψ
k)) almost surely belongs to X s,ε(T4) for any ε> 0.

We then show the following deterministic result for (3.2).

Proposition 3.5. Given an integer k ≥ 2, let scrit be as defined in (1.17). Then,
the mild formulation (3.2) is locally well-posed in X s,ε(T4) for

(i) k ≥ 4 : s ≥ scrit or (ii) k = 2, 3 : s > scrit,

and ε> 0 sufficiently small. More precisely, given an enhanced data set

ΞΞΞ = (u0, u1,Ξ1, . . . ,Ξk) ∈ X s,ε(T4),

there exist T = T (ΞΞΞ) ∈ (0, 1] and a unique solution v to the mild formulation (3.2)

in the class Xs′,q,r(T ) for s′ = min(s, 2−ε) and for some appropriate 1 ≤ q, r ≤ ∞.

Proof. We define the map Γ by

Γ[v](t)
def
= S(t)(u0, u1)∓

∫ t

0

sin((t− t′)∆)

∆

k∑
`=0

(
k

`

)
(Ξ`v

k−`)(t′)dt′

def
= S(t)(u0, u1)∓

k∑
`=0

(
k

`

)
I
(
Ξ`v

k−`
)
(t),

(3.3)

and consider the following three cases.
Case 1: k ≥ 4 and s > scrit.
Let ε> 0 sufficiently small and (q, r) = (k − 1 + θ, 2k − 2) for θ > 0 such that
s′ ≥ sq,r > scrit for sq,r in (3.1). For ` = 0, by Lemma 3.4, Sobolev’s inequality and
Hölder’s inequality, we obtain

∥∥I(vk)∥∥
Xs′,q,r(T )

. ‖vk‖
L1
T
Hs′−2
x

. ‖vk‖
L1
T
L

4
4−s′
x

. ‖v‖
L∞
T

L

4
2−s′
x

‖vk−1‖L1
T
L2
x

. ‖v‖
L∞
T

Hs′
x
‖v‖k−1

Lk−1
T

L2k−2
x

. T η‖v‖k
Xs′,q,r(T )

(3.4)
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for some η > 0. For 1 ≤ ` ≤ k − 1, proceeding as before, with Lemma 2.2 (ii) and
Lemma 2.2 (i) repetitively, we obtain∥∥I(Ξ`v

k−`
)∥∥

Xs′,q,r(T )
=
∥∥〈∇〉−ε(Ξ`v

k−`)
∥∥
L1
T
Hs′−2+ε
x

.
∥∥〈∇〉−ε(Ξ`v

k−`)
∥∥
L1
T
L

4
4−s′−ε
x

. ‖〈∇〉−εΞ`‖
L∞
T

L
4
ε
x

∥∥〈∇〉εvk−`
∥∥
L1
T
L

4
4−s′−ε
x

. ‖Ξ`‖L∞
T

W
−ε,∞
x

‖〈∇〉εv‖
L∞
T

L

4
2−s′+ε
x

‖v‖k−`−1

Lk−`−1
T

L

2(k−`−1)
1−ε

x

. ‖Ξ`‖L∞
T

W
−ε,∞
x

‖v‖
L∞
T

Hs′
x
T η‖v‖k−`−1

L
q
T
Lr
x

. T η‖Ξ`‖L∞
T

W
−ε,∞
x

‖v‖k−`

Xs′,q,r(T )
(3.5)

for some η > 0 and ε> 0 sufficiently small. Lastly, for ` = k, by Lemma 3.4, since
s′ < 2, we have∥∥I(Ξk)

∥∥
Xs′,q,r(T )

. ‖Ξk‖
L1
T
Hs′−2
x

. T‖Ξk‖L∞
T

W
−ε,∞
x

. (3.6)

By Lemma 3.3, (3.3), (3.4), (3.5), and (3.6), we have

‖Γ[v]‖
Xs′,q,r(T )

. ‖ΞΞΞ‖Xs,ε + T η
[
‖ΞΞΞ‖kXs,ε + ‖v‖k

Xs′,q,r(T )

]
.

A straightforward modification of the above steps yields the following difference
estimate:

‖Γ[v1]− Γ[v2]‖Xs′,q,r(T )
. T η

[
‖ΞΞΞ‖kXs,ε + ‖v1 − v2‖Xs′,q,r(T )(

‖v1‖k−1

Xs′,q,r(T )
+ ‖v2‖k−1

Xs′,q,r(T )

)]
.

Then, by T = T (‖ΞΞΞ‖Xs,ε) > 0 sufficiently small, the local well-posedness of (3.2)
on [0, T ] follows from a contraction mapping argument.
Case 2: k = 2, 3 and s > scrit = 0.

In this case, we take (q, r) = (3 + θ, 3 + θ) for 0 < θ ≤ 3s′
2−s′ which guarantees that

s′ ≥ sq,r. For ` = 0, proceeding as in (3.4), we have∥∥I(vk)∥∥
Xs′,q,r(T )

. ‖vk‖
L1
T
Hs′−2
x

. ‖vk‖
L1
T
L

4
4−s′
x

. ‖v‖
Lk
T
L

4k
4−s′
x

. T η‖v‖
Xs′,q,r(T )

, (3.7)
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for some η > 0, since 4k
4−s′ ≤ 6

2−s′ for k = 2, 3. For 1 ≤ ` ≤ k − 1, noticing that
2(k−`−1)

1−ε < 3 + θ for k ≤ 3 and ε> 0 sufficiently small, we proceed as in (3.5) to
obtain ∥∥I(Ξ`v

k−`
)∥∥

Xs′,q,r(T )
= T η‖Ξ`‖L∞

T
W

−ε,∞
x

‖v‖k−`

Xs′,q,r(T )
(3.8)

for some η > 0. By Lemma 3.3, (3.3), (3.7), (3.8), and (3.6), we have

‖Γ[v]‖
Xs′,q,r(T )

. ‖ΞΞΞ‖Xs,ε + T η‖ΞΞΞ‖kXs,ε + T η‖v‖k
Xs′,q,r(T )

.

Similar steps yield a difference estimate and we conclude the argument as in Case 1.
Case 3: k ≥ 4 and s = scrit.

In this case, we take (q, r) = (k, 2k(k−1)
k+1 ) so that s′ = s = scrit = sq,r and q, r > 3.

By proceeding as in Case 1, the estimates (3.5) and (3.6) hold, but we can only
show (3.4) without the gain of T η on the right-hand side. Thus, we have

‖Γ[v]‖
L∞
T

Hs′
x

≤ C‖(u0, u1)‖Hs + CT η‖ΞΞΞ‖Xs,ε‖v‖
L∞
T

Hs′
x

k−2∑
`=0

‖v‖`
L
q
T
Lr
x

+ CT‖ΞΞΞ‖Xs,ε + C‖v‖k
L
q
T
Lr
x
, (3.9)

‖Γ[v]‖Lq
T
Lr
x
≤ C‖S(t)(u0, u1)‖Lq

T
Lr
x
+ CT η‖ΞΞΞ‖Xs,ε‖v‖

L∞
T

Hs′
x

k−2∑
`=0

‖v‖`
L
q
T
Lr
x

+ CT‖ΞΞΞ‖Xs,ε + C‖v‖k
L
q
T
Lr
x
, (3.10)

for some C > 0 and η > 0. We now define the set Ba,b,T as

Ba,b,T
def
=
{
v ∈ Xs′,q,r(T ) : ‖v‖

L∞
T

Hs′
x

≤ a and ‖v‖Lq
T
Lr
x
≤ b
}
.

Suppose that ‖(u0, u1)‖Hs ≤ A for some A> 0. We let a = 4CA and 0 < b ≤ 1
small enough such that

Cbk ≤ min(a4 ,
b
4 ). (3.11)

By dominated convergence theorem, we can let T = T (u0, u1) > 0 be small enough
so that

‖S(t)(u0, u1)‖Lq
T
Lr
x
≤ b

4C . (3.12)

Choosing T smaller, if necessary, we also assume that

CT η(k − 1)‖ΞΞΞ‖Xs,ε ≤ min( 1
4a ,

1
4b ) and CT‖ΞΞΞ‖Xs,ε ≤ min(a4 ,

b
4 ) (3.13)
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Combining (3.9), (3.10), (3.11), (3.12), and (3.13), we know that for v ∈ Ba,b,T , we
have

‖Γ[v]‖
L∞
T

Hs′
x

≤ a and ‖Γ[v]‖Lq
T
Lr
x
≤ b,

so that Γ maps Ba,b,T to Ba,b,T . By further shrinking b and T if necessary, we can
use similar steps to obtain

‖Γ[v1]− Γ[v2]‖Xs′,q,r(T )
≤ 1

2‖v1 − v2‖Xs′,q,r(T )
,

so that Γ is a contraction map on Ba,b,T . We can then conclude the proof of local
well-posedness of (3.2). �

Remark 3.6. Note that in Case 3 above, to extend the argument to cover the
critical regularity s =0 for k = 2, 3 (even without the noise terms), we would need
to find suitable q, r such that sq,r = 0 with sq,r in (3.1). However, we can easily
see that this requires that q > 3 which implies that r < 3 and vice-versa, thus the
Strichartz estimates in Lemmas 3.3–3.4 do not apply. Moreover, since these are
derived from the sharp Strichartz estimates in Lemma 3.1 which are known to
fail at the endpoint p=3 [4], the argument above is insufficient to reach critical
regularity for quadratic and cubic nonlinearities.

4. Pathwise global well-posedness of the cubic SNLB

In this section, we show pathwise global well-posedness of the Wick-ordered cubic
SNLB (1.19) via the hybrid argument in [24]. We restrict our attention to 0 < s < 2,
since the result for s ≥ 2 follows from the same argument. In § 4.1, we first show
some preliminary estimates involving the I -operator, and establish commutator
estimates to control (1.23). We then prove Theorem 1.3 in § 4.2.

4.1. Commutator estimates and other preliminaries

We recall the definition of the I -operator with Fourier multiplier mN in (1.22).
In the following, we fix N ∈ N. From the definition of the I -operator and the
Littlewood-Paley theorem, we have that

‖f‖Hs . ‖If‖H2 . N2−s‖f‖Hs , (4.1)

‖If‖
Ws0+s1,p . Ns1‖f‖Ws0,p , (4.2)

for any s0 ∈ R, 0 ≤ s1 ≤ 2 − s, and 1 < p < ∞. For simplicity, we will use the
notations

f.N
def
= πN

3
f and f&N

def
= π⊥

N
3
f

def
= f − f.N , (4.3)

where πN denotes the projection onto frequencies {|n| ≤ N}.
We first go over some basic commutator estimates in the following lemmas.
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Lemma 4.1. Let 4
3 ≤ s < 2. Then, for k = 1, 2, 3, we have

‖(If)k − I(fk)‖L2 . N−2+k(2−s)‖If‖k
H2 .

Proof. By the definition of the I -operator and (4.3), we have I(fk
.N ) = fk

.N for

k = 1, 2, 3. Thus, we obtain

(If)k − I(fk) =
(
I(f.N + f&N )

)k − I
(
(f.N + f&N )k

)
=
(
f.N + I(f&N )

)k − I
(
(f.N + f&N )k

)
= fk

.N − I
(
fk
.N

)
+

k−1∑
j=0

(
k

j

)(
f j
.N

(If&N )k−j − I
(
f j
.N

fk−j
&N

))

=
k−1∑
j=0

(
k

j

)(
f j
.N

(If&N )k−j − I
(
f j
.N

fk−j
&N

))
. (4.4)

We first consider the case when 1 ≤ j ≤ k − 1. We let 1 < q < ∞ sufficiently
large and δ > 0 small such that 1

2 = j
q + 1

2+δ . Then, by Hölder’s and Sobolev’s
inequalities, we have

‖f j
.N

(If&N )k−j‖L2 ≤ ‖f.N‖jLq‖If&N‖k−j

L(2+δ)(k−j)

. ‖f.N‖j
H2‖If&N‖k−j

H
2− 4

(2+δ)(k−j)

. N
− 4

2+δ ‖If‖k
H2 .

(4.5)

Similarly, using the boundedness of the multiplier mN and (4.1), we have

∥∥I(f j
.N

fk−j
&N

)∥∥
L2 . ‖f j

.N
fk−j
&N

‖L2

≤ ‖f.N‖jLq‖f&N‖k−j

L(2+δ)(k−j)

. ‖If.N‖j
H2‖f&N‖k−j

H
2− 4

(2+δ)(k−j)

. N
(k−j)(2−s)− 4

2+δ ‖If.N‖j
H2‖f&N‖k−j

Hs

. N−2+k(2−s)‖If‖k
H2 .

(4.6)

Here, we have used the fact that 2 − 4
(2+δ)(k−j) ≤ s, which is guaranteed by 4

3 ≤
s < 2. When j =0, similar estimates to (4.5) and (4.6) hold with q = ∞ and δ=0.
Therefore, the desired estimate follows from (4.4), (4.5), and (4.6). �

Lemma 4.2. Let 0 < s < 2 and 0 < γ < 1. Given δ = δ(s) > 0 sufficiently small,
there exist small γ0 = γ0(δ) > 0 and large p = p(δ) � 1 such that
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‖(If)(Ig)− I(fg)‖L2 . N− 1−γ
2 +δ‖f‖H2−γ‖g‖W−γ0,p

for any sufficiently large N � 1.

Proof. By writing f = f
.N

1
2
+ f

&N
1
2
and g = g.N + g&N , we have

(If)(Ig)− I(fg) =
{
(If

.N
1
2
)(Ig.N )− I(f

.N
1
2
g.N )

}
+
{
(If

.N
1
2
)(Ig&N )− I(f

.N
1
2
g&N )

}
+ (If

&N
1
2
)(Ig)− I(f

&N
1
2
g)

=: B1 +B2 +B3 +B4.

Since the Fourier support of f
.N

1
2
g.N is contained in {|n| ≤ 2

3N}, then B1 ≡ 0.

For B2, note that for (n1, n2) ∈ Λn
def
= {(x, y) ∈ Z4 × Z4 : n = x + y, |x| ≤

N
1
2
3 , |y| > N

3 }, by considering the sub-regions |n2| ≥ 3N and |n2| < 3N , from the
mean value theorem and the definition in (1.22), we get

|mN (n1 + n2)−mN (n2)| . N2−s|n2|−3+s|n1|.

From the above, the fact that mN (n1) ≡ 1 on Λn, and Cauchy-Schwarz inequality,
we have

‖B2‖L2 =

∥∥∥∥ ∑
(n1,n2)∈Λn

(
m(n2)−m(n1 + n2)

)
f̂(n1)ĝ(n2)

∥∥∥∥
`2n

. N2−s

∥∥∥∥∥ ∑
(n1,n2)∈Λn

1

〈n1〉1−γ〈n2〉3−s−δ
〈n1〉2−γ |f̂(n1)|

|ĝ(n2)|
〈n2〉δ

∥∥∥∥∥
`2n

. N−1
2+δ‖f‖H2−γ‖g‖H−δ .

As for B3, by Hölder’s inequality, Sobolev’s embedding, and (4.2), we have

‖B3‖L2 ≤ ‖If
&N

1
2
‖L2‖Ig‖L∞ . N−1+

γ
2 ‖f‖H2−γ‖Ig‖

W5δ,δ−1

. N−1+
γ
2+6δ‖f‖H2−γ‖g‖

W−δ,δ−1

for δ = δ(s) > 0 sufficiently small.
Lastly, by (4.2) and Lemma 2.2 (ii), we have

‖B4‖L2 . N4δ‖f
&N

1
2
g‖H−4δ . N4δ‖f

&N
1
2
‖H4δ‖g‖

W−4δ,δ−1

. N−1+
γ
2+6δ‖f‖H2−γ‖g‖

W−4δ,δ−1

for δ = δ(s) > 0 sufficiently small. �
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We now show the following commutator estimate using Lemma 4.1 and Lemma
4.2.

Lemma 4.3. Let 3
2 < s < 2 and k = 1, 2. Given δ = δ(s) > 0 sufficiently small,

there exist small γ0 = γ0(δ) > 0 and p = p(δ) � 1 such that

‖I(fkg)− (If)kIg‖L2 . N−1−k(2−s)
2 +δ‖If‖k

H2‖g‖W−γ0,p

for sufficiently large N � 1.

Proof. Using triangle inequality, we have

‖I(fkg)− (If)kIg‖L2 ≤ ‖I(fkg)− I(fk)Ig‖L2 +
∥∥(I(fk)− (If)k

)
Ig
∥∥
L2

=: D1 +D2.

For D1, by Sobolev’s inequality and Lemma 2.2(i), we have

‖fk‖
H2−k(2−s) . ‖fk‖

W
s, 4

2+(k−1)(2−s)
. ‖f‖Hs‖f‖k−1

L
4

2−s
. ‖f‖kHs . (4.7)

Thus, by Lemma 4.2 with γ = k(2−s), (4.7), and (4.1), there exists δ > 0 sufficiently
small such that

‖D1‖L2 . N− 1−k(2−s)
2 +δ‖f‖kHs‖g‖W−γ0,p . N−1−k(2−s)

2 +δ‖If‖k
H2‖g‖W−γ0,p

for some small γ0 = γ0(δ) > 0 and large p = p(δ) � 1.
Lastly, by Hölder’s inequality, emma 4.1, Sobolev embedding, and (4.2), we have

‖D2‖L2 ≤ ‖I(fk)− (If)k‖L2‖Ig‖L∞

. N−2+k(2−s)‖If‖k
H2‖Ig‖W5δ,δ−1

. N−2+k(2−s)+6δ‖If‖k
H2‖g‖W−δ,δ−1

given that δ = δ(s) > 0 is sufficiently small. �

We conclude this subsection by showing the following estimates, which will be
useful in estimating the second and third terms in (1.23).

Lemma 4.4. (i) Let 0 < s < 2 and k = 0, 1. Then, for any 0 ≤ λ ≤ 2− s, we have

∣∣∣∣ ∫
T4
(∂tIv(t))(Iv(t))

kIw(t) dx

∣∣∣∣ . Nλ
(
1 +

[
E(I~v)(t)

] 3
4
)
‖w(t)‖

W
−λ,4
x

for any t ≥ 0, where E is the energy defined in (1.21).
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(ii) We have

∣∣∣∣ ∫ t2

t1

∫
T4
(∂tIv)(Iv)

2Iw dxdt

∣∣∣∣
. ‖Iw‖

L
η−1

[t1,t2]
L
η−1
x

∫ t2

t1

(
E

1+η
1−2η (I~v)(t) +

η

(t− t1)
1
2

)
dt,

uniformly in 0 < η < 1
8 and t2 ≥ t1 ≥ 0.

Proof. (i) By Hölder’s inequality, (1.21), and (4.2), we have

∣∣∣∣ ∫
T4
(∂tIv(t))(Iv(t))

kIw(t) dx

∣∣∣∣ . ‖∂tIv(t)‖L2‖Iv(t)‖kL4‖Iw(t)‖L4

. Nλ
[
E(I~v)(t)

]1
2+

k
4 ‖w(t)‖

W−λ,4 .

(ii) From Hölder’s inequality, Sobolev inequality, and (1.23), we have

∣∣∣∣ ∫ t2

t1

∫
T4
(∂tIv)(Iv)

2Iw dxdt

∣∣∣∣ ≤ ∫ t2

t1

‖∂tIv‖L2
x
‖Iv‖L4

x
‖Iv‖

L

4
1−4η
x

‖Iw‖
L
η−1
x

dt

≤
∫ t2

t1

[
E(I~v)(t)

]3
4 ‖Iv‖

L

4
1−4η
x

‖Iw‖
L
η−1
x

dt (4.8)

for η > 0. By Sobolev inequality, interpolation, and (1.21), we get

‖Iv‖
L

4
1−4η
x

. ‖Iv‖
W

8η, 4
1+4η

x

. ‖Iv‖4η
H2
x
‖Iv‖1−4η

L4−x
≤
[
E(I~v)

] 1+4η
4 , (4.9)

uniformly in 0 < η < 1
8 . From (4.8), (4.9), and Hölder’s inequality, we get

∣∣∣∣ ∫ t2

t1

∫
T4
(∂tIv)(Iv)

2Iw dxdt

∣∣∣∣ . (∫ t2

t1

[
E(I~v)

] 1+η
1−η dt

)1−η

‖Iw‖
L
η−1

[t1,t2]
L
η−1
x

. (4.10)

To estimate the first factor in (4.10), let

p =
1− η

1− 2η
, q =

1

1− 2η
, p′ =

1− η

η
, q′ =

1

2η
,
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where p′, q′ are the Hölder conjugates of p, q, respectively. By Hölder’s and Young’s
inequalities, we have

(∫ t2

t1

f(t)dt

)1−η

≤
(∫ t2

t1

|f(t)|pdt
)1−η

p

(t2 − t1)
1−η
p′

≤ 1

q

(∫ t2

t1

|f(t)|pdt
) q(1−η)

p

+
1

q′
(t2 − t1)

q′(1−η)
p′

= (1− 2η)

∫ t2

t1

|f(t)|
1−η
1−2η dt+ 2η(t2 − t1)

1
2 .

Thus, we obtain(∫ t2

t1

E
1+η
1−η (I~v)(t)dt

)1−η

.
∫ t2

t1

(
E

1+η
1−2η (I~v)(t) +

η

(t− t1)
1
2

)
dt.

Combining the above estimates gives the intended estimate. �

4.2. Proof of Theorem 1.3

In this subsection, we construct a solution to the Wick renormalized cubic SNLB
(1.19) on the time interval [0, T ] for any given T � 1. The argument is based on
that in [24].

We first fix 3
2 < s < 2, N � 1 sufficiently large, and T > 0, and establish an

estimate for the growth of the modified energy E(t) = E(IN~v)(t) on the time
interval [0, T ]. Note that by (1.21) and Hölder’s inequality, we have

‖Iv‖2
H2
x
= ‖Iv‖2

L2
x
+ ‖∆(Iv)‖2

L2
x
≤ 2E

1
2 (t) + 2E(t). (4.11)

Then, by (1.23), Cauchy-Schwarz inequality, Lemmas 4.1, 4.3–4.4, and (4.11), we
have

E(t2)− E(t1) .
∫ t2

t1

N−2+3(2−s)
(
1 + E2(t)

)
dt

+
2∑

k=1

∫ t2

t1

N−1−k(2−s)
2 +δ

(
1 + E

k+1
2 (t)

)
‖Wσ(Ψ

3−k(t))‖
W

−γ0,p
x

dt

+
3∑

k=2

∫ t2

t1

Nλ
(
1 + E

3
4 (t)

)
‖Wσ(Ψ

k(t))‖
W

−λ,4
x

dt

+

{∫ t2

t1

(
E

1+η
1−2η (t) +

η

(t− t1)
1
2

)
dt

}
‖IΨ‖

L
η−1

[t1,t2]
L
η−1
x

(4.12)

for any t2 ≥ t1 ≥ 0, where γ0 = γ0(δ) > 0 is sufficiently small, p = p(δ) � 1
sufficiently large, 0 ≤ λ ≤ 2− s, and 0 < η < 1

8 .
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Before proceeding to the iterative argument, we introduce some notations. Given
j ∈ Z≥0, we define Vj = Vj(ω) by

Vj = max
k=1,2

‖Wσ(Ψ
3−k)‖

L∞
[j,j+1]

W
−γ0,p
x

+ max
k=0,1

‖Wσ(Ψ
3−k)‖

L∞
[j,j+1]

W
−λ,4
x

and define V = V (ω) by

eV
1
3 =

∞∑
j=0

e−jKe
V

1
3
j (4.13)

for some K > 0 large enough. Note that by applying (2.5) in Lemma 2.3 and letting
K > 0 be sufficiently large, we have

E
[
eV

1
3 ] = ∞∑

j=0

e−jKE
[
e
V

1
3
j
]
≤

∞∑
j=0

e−jKec(j+1) < ∞,

so that V is almost surely finite. Also, for T > 0, we define MT = MT (ω) as follows

MT = max
k=1,2

‖Wσ(Ψ
3−k)‖

L∞
T

W
−γ0,p
x

+ max
k=0,1

‖W(Ψ3−k)‖
L∞
T

W
−λ,4
x

. (4.14)

From (4.13) we have that V
1
3
j ≤ V

1
3 + jK, and therefore

MT = max
j≤T

Vj . V +K3T 3. (4.15)

Furthermore, we define R = R(ω) by

R = 1 +
∞∑

N=1

∞∑
j=1

e−jK logN

∫ j

0

∫
T4

e|INΨ(t,x)|dxdt. (4.16)

Then, by using Lemma 2.4 and taking K > 0 possibly larger, we have

E[R] = 1 +
∞∑

N=1

∞∑
j=1

e−jK logN

∫ j

0

∫
T4

E
[
e|INΨ(t,x)|

]
dxdt

.
∞∑

N=1

∞∑
j=1

e−jK logN jecj logN < ∞.

Therefore, 1 ≤ R(ω) < ∞ almost surely.
In the following, we fix ω ∈ Ω, where Ω is the full probability set where for all

ω ∈ Ω we have V (ω), R(ω) < ∞, and prove pathwise well-posedness of (1.19) on
Ω. We first need the following crucial result.
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Proposition 4.5. Let 3
2 < s < 2, T ≥ T0 � 1, and N ∈ N with N> 10. Let

V = V (ω) < ∞ and R = R(ω) < ∞ be as in (4.13) and (4.15). Then, there exist
0 < α ≤ 2s− 3 and 0 < β < α such that if

E(t0) ≤ Nβ (4.17)

for some 0 ≤ t0 < T , then there exists small τ = τ(s, T,K, ω) > 0 such that

E(t) ≤ Nα

for any t satisfying t0 ≤ t ≤ min(T, t0 + τ).

Proof. By replacing E (t) by E(t) + 1, we can assume that E(t) ≥ 1. Then, from
(4.12) with (4.14), we have

E(t) − E(t0) .
∫ t

t0

N−2+3(2−s)E2(t′)dt′

+MT

2∑
k=1

∫ t

t0

N−1−k(2−s)
2 +δE

k+1
2 (t′)dt′

+MT

∫ t

t0

NλE
3
4 (t′)dt′

+

{∫ t

t0

(
E1+cη(t′) +

η

(t′ − t0)
1
2

)
dt′

}
‖IΨ‖

L
η−1

[t0,t]
L
η−1
x

(4.18)

for any t ≥ t0 and for c = 3
1−2η > 0.

We assume that (4.17) holds for some 0 ≤ t0 < T . By the continuity in time of
E (t) and (4.17) with α > β, there exists t1 > t0 sufficiently close to t0 such that

max
t0≤τ≤t

E(τ) ≤ 100Nα (4.19)

for any t0 ≤ t ≤ t1, where α > β is to be determined later. Note that at this point,
t1 depends on t0. This issue will be dealt with later.

Let η = 1
n for some n ∈ N. We note from (4.16) and n! ≤ nn that

‖INΨ‖nLn
[t0,t],x

=

∫ t

t0

∫
T4

|INΨ(x, t)|ndxdt ≤ n!

∫ T

0

∫
T4

e|INΨ(x,t)|dxdt

≤ n!eKT logNR ≤ nneKT logNR.

We now choose

n ∼ KT logN + c log(100Nα) ∼ KT logN � 1,

where we may have to take K � 1 larger.
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Then, due to (4.19) and η = n−1, we can estimate the last term on the right-hand
side of (4.18) as

{∫ t

t0

(
E1+cη(t′) +

η

(t′ − t0)
1
2

)
dt′

}
‖IΨ‖

L
η−1

[t0,t]
L
η−1
x

≤
∫ t

t0

(
E(t′)ne

1
n (KT logN+c log(100Nα))R

1
n +

e
1
nKT logNR

1
n

(t′ − t0)
1
2

)
dt′

.
∫ t

t0

([
KRT logN

]
E(t′) +

R

(t′ − t0)
1
2

)
dt′,

(4.20)

where we used that R = R(ω) ≥ 1.
Next, we define F by

F (t)
def
= max

t0≤τ≤t
E(τ)− E(t0) +Nβ ≥ E(t). (4.21)

Then, by (4.19), we have

Nβ ≤ F (t) ≤ 200Nα (4.22)

for t0 ≤ t ≤ t1. In particular, we have logF (t) ∼ logN. Moreover, from (4.22), we
have


N−2+3(2−s)F 2(t) . N−αF 2(t) ≤ 200F (t),

N− 1−2(2−s)
2 +δF

3
2 (t) . N−α

2 F
3
2 (t) ≤

√
200F (t),

N− 1−(2−s)
2 +δF (t) ≤ F (t),

NλF
3
4 (t) . NλF− 1

4 (t)F (t) ≤ F (t),

(4.23)

provided that

α ≤ min(3s− 4, 2s− 3), δ ≤ min
(
2s−3−α

2 , s−1
2

)
, and λ ≤ β

4 , (4.24)

which requires that

s > max
(4
3
,
3

2

)
=

3

2
.
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Hence, by (4.21), (4.18), (4.23), (4.20), (4.22), and (4.15), we obtain

F (t)− F (t0)

= max
t0≤τ≤t

E(τ)− E(t0)

. (1 +MT )

∫ t

t0

F (t′)dt′ +

∫ t

t0

(
KRTF (t′) logF (t′) +

R

(t′ − t0)
1
2

)
dt′

. (1 + V +K3T 3)

∫ t

t0

F (t′)dt′ +

∫ t

t0

(
KRTF (t′) logF (t′) +

R

(t′ − t0)
1
2

)
dt′

. (1 + V +KRT )

∫ t

t0

F (t′)(logF (t′) +K2T 2)dt′ + 2R(t− t0)
1
2 (4.25)

for any t0 ≤ t ≤ t1 such that (4.22) holds. Denoting by C0 = C0(s) the implicit
constant in (4.25), we define G by

G(t) = F (t)− 2C0R(t− t0)
1
2 . (4.26)

Let us pick t∗(s,R) > 0 such that

2C0R(t− t0)
1
2 � 1, (4.27)

sufficiently small so that

F (t) ≤ 5
α−β
2 G(t). (4.28)

Then, from (4.26) and (4.28), we get that F (t) ∼ G(t), which combined with (4.25)
gives

G(t)−G(t0) ≤ C(1 + V +KRT )

∫ t

t0

G(t′)(logG(t′) +K2T 2)dt′ (4.29)

for any t0 ≤ t ≤ min(t1, t0 + t∗(s,R)) and some C > 0.
Now, note that the equation

∂tH(t) = C̃H(t)(logH(t) +K2T 2)

has a solution H(t) = exp
(
exp(C̃t)(logH(0) + K2T 2) − K2T 2

)
. Then, by

comparison, we deduce from (4.29) that

G(t) ≤ exp
(
eC(1+V+KRT )(t−t0)(logG(t0) +K2T 2)−K2T 2

)
, (4.30)

for some constant C > 0.
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Recall from (4.26) and (4.21) that G(t0) = Nβ . Then, if the condition

eC(1+V+KRT )(t−t0)(β logN +K2T 2) ≤ α logN +K2T 2 − α− β

2
log 5, (4.31)

holds for t0 ≤ t ≤ min(t1, t0 + t∗(s, V,R, T,K)) (where t∗(s, V,R, T,K) > 0 will be
specified later), the bound (4.30) implies

G(t) ≤ 5
β−α
2 Nα, (4.32)

for any t0 ≤ t ≤ min(t1, t0 + t∗(s, V,R, T )). Then, we conclude from (4.21), (4.26),
(4.27), and (4.28) that

E(t) ≤ F (t) ≤ Nα, (4.33)

for any t0 ≤ t ≤ min(t1, t0 + t∗(s, V,R, T,K)). This in turn guarantees that the
conditions (4.19) and (4.22) are met. Therefore, by a standard continuity argument,
we conclude that the bounds (4.32) and (4.33) hold for any t with t0 ≤ t ≤ t0 +
t∗(s, V,R, T,K) such that the condition (4.31) holds.

Finally, let us consider the condition (4.31). Let α = α(s) > β = β(s) be such
that the conditions in (4.24) hold. Since α > β, there exists t∗∗(s, V,R, T,K) such
that, for 0 ≤ τ ≤ t∗∗, we have

α− eC(1+V+R+KRT )τβ ≥ α− β

2
> 0. (4.34)

Then, since N > 10, by choosing 0 ≤ τ ≤ t∗∗ sufficiently small such that

eC(1+V+R+KRT )τ − 1 ≤
α−β
2 logN − α−β

2 log 5

K2T 2
, (4.35)

we can guarantee that the condition (4.31) is satisfied for t0 ≤ t ≤ t0+τ , and hence
so is (4.33). This concludes the proof of Proposition 4.5. �

We now present the proof of Theorem 1.3. Fix 7
4 < s < 2, T � 1, ω ∈ Ω such

that V = V (ω) < ∞ and R = R(ω) < ∞, and let the parameters α, β, τ be as in
Proposition 4.5.

Fix N0 � 1 which is to be determined later. Then, for k ∈ Z≥0, define an
increasing sequence {Nk}k∈Z≥0

by setting

Nk = Nσk

0 , (4.36)

for some σ = σ(s) > 1 sufficiently large satisfying

α � σ(β − 2(2− s)) and 2α � σβ, (4.37)

which implies

N
2(2−s)
k+1 Nα

k +N2α
k � Nβ

k+1. (4.38)
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From (4.37) and the assumptions on α, β in Proposition 4.5, we have

2(2− s) < β < α ≤ 2s− 3,

which imposes the further restriction on s:

s > max
(7
4
,
3

2

)
=

7

4
.

Suppose that for some k ∈ Z≥0 and t ≥ 0, it holds that

E(INk
~v)(t) ≤ Nα

k . (4.39)

Then, by (1.21), (4.1), Sobolev inequality, (4.39), and (4.38), we have

E(INk+1
~v)(t) . N

2(2−s)
k+1 ‖~v‖2Hs + ‖v‖4

H1
x

. N
2(2−s)
k+1 ‖INk

~v‖2H2
x
+ ‖INk

v‖4
H2
x

. N
2(2−s)
k+1 E(INk

~v)(t) + E(INk
~v)2(t)

. N
2(2−s)
k+1 Nα

k +N2α
k � Nβ

k+1.

(4.40)

We are now ready to implement an iterative argument. Given (u0, u1) ∈ Hs(T4),
choose N0 = N0(u0, u1, s) � 1 such that

E(IN0
~v)(0) ≤ Nβ

0 . (4.41)

By applying Proposition 4.5, there exists τ = τ(s, T,K, ω) > 0 such that

E(IN0
~v)(t) ≤ Nα

0 ,

for any 0 ≤ t ≤ τ . By (4.39) and (4.40), this then implies

E(IN1
~v)(τ) ≤ Nβ

1 .

Applying Proposition 4.5 once again, we in turn obtain

E(IN1
~v)(t) ≤ Nα

1 ,

for 0 ≤ t ≤ 2τ . By (4.39) and (4.40), this then implies

E(IN2
~v)(2τ) ≤ Nβ

2 .

By iterating this argument
[
T
τ

]
+1 times, we obtain a solution v to the renormalized

cubic SNLB (1.19) on the time interval [0, T ]. Since the choice of T � 1 was
arbitrary, this proves global well-posedness of (1.19).

https://doi.org/10.1017/prm.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.87


Global dynamics for the stochastic nonlinear beam equations 33

Remark 4.6. From the argument above, we can also establish a growth bound on
the Sobolev norm of the solution v to SNLB (1.19). Namely, for T � 1 and with
the same choice of parameters, we have

‖~v(t)‖Hs .
(
1 + E(INk

~v)(t)
) 1
2 ≤ N

α
2
k

for any 0 ≤ t ≤ T such that kτ ≤ t ≤ (k + 1)τ for some k ∈ Z≥0. Then, by (4.36),
we have

‖~v(t)‖Hs . exp
(
α
2 σ

k logN0

)
≤ exp

(
α
2 logN0 · exp

( (log σ)t
τ

))
(4.42)

for 0 ≤ t ≤ T . Moreover, in view of (4.41), we choose N0 ∈ N such that 1 +

E(IN0
~v)(0) ∼ Nβ

0 , so that by (4.1) and the fact that β > 2(2− s), we have

logN0 ∼ log
(
2 + ‖~v(0)‖Hs

)
. (4.43)

In order to iteratively apply Proposition 4.5 T
τ -many times to reach the target

time T, we need to guarantee the condition (4.35). By taking

τ ∼s,V,R,K T−1, (4.44)

the condition (4.34) holds. Thus, in view of (4.36) with k ∼ T
τ , the condition (4.35)

becomes

0 < C0 ≤
α−β
2 σT2

logN0 − α−β
2 log 5

K2T 2
,

which holds true for any sufficiently large T � 1. Finally, from (4.42), (4.43), and
(4.44), we conclude the following double exponential bound for any t ≥ 0

‖~v(t)‖Hs ≤ C exp
(
c log

(
2 + ‖~v(0)‖Hs

)
· eC(ω)t2

)
.

5. Almost sure global well-posedness of the hyperbolic Φk+1
4 -model

In this section, we prove Theorem 1.6, i.e. almost sure global well-posedness of the
renormalized SdNLB (1.39) and invariance of the corresponding Gibbs measure
(1.36). Due to the convergence of ~ρN to ~ρ, the invariance of ~ρN under the trun-
cated SdNLB dynamics (1.38), and Bourgain’s invariant measure argument [5, 6],
Theorem 1.6 follows once we construct the limiting process (u, ∂tu) locally-in-time
with a good approximation property for the solution uN to (1.38). Furthermore,
since ~ρ is mutually absolutely continuous with respect to ~µ2, it suffices to study
the renormalized SdNLB (1.38) and (1.39) with the Gaussian random initial data
(uω

0 , u
ω
1 ) with L(uω

0 , u
ω
1 ) = ~µ2.

We first detail how to adapt the proof of Theorem 1.1 to show local well-posedness
of (1.38) and (1.39), uniformly in the truncation N, and then show invariance of
the truncated Gibbs measure ~ρN in (1.34) under the dynamics of the truncated
SdNLB (1.38).
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As in § 3, to construct solutions for SdNLB (1.38)-(1.39), we proceed with a first
order expansion centered around the stochastic convolution Ψd which solves (2.4).
By defining the operator D(t) as

D(t)
def
= e−

t
2
sin
(
t[[∇]]2

)
[[∇]]2

with [[∇]]
def
=
(
〈∇〉4 − 1

4

)1/4
,

the stochastic convolution Ψd which solves the stochastic damped linear beam
equation in (2.4) can be expressed as

Ψd(t) = ∂tD(t)uω
0 +D(t)(uω

0 + uω
1 ) +

√
2

∫ t

0

D(t− t′)dW (t′),

where W is a cylindrical Wiener process on L2(T4) as in (1.6). A direct but tedious
computation shows that Ψd

N = πNΨd is a mean-zero real-valued Gaussian random
variable with variance

E
[
Ψd

N (t, x)2
]
= E

[(
πNΨd(t, x)

)2]
= αN

for any t ∈ R+, x ∈ T4, and N ∈ N, where αN is as in (1.30). Unlike σN (t) in (1.7),
the variance αN is independent of time t. This is due to the fact that the massive
Gaussian free field µ2 is invariant under the dynamics of (2.4).

Let uN be the solution to (1.38) with L
(
(uN , ∂tuN )|t=0

)
= ~µ2. Then, we write

uN as

uN = vN +Ψd = (vN +Ψd
N ) + π⊥

NΨd, (5.1)

where π⊥
N = Id − πN . Note that the dynamics of the truncated Wick-ordered

SdNLB (1.38) decouple into the linear dynamics for the high frequency part given
by π⊥

NΨd and the nonlinear dynamics for the low frequency part πNuN :

∂2
t πNuN + ∂tπNuN + (1−∆)2πNuN + πN

(
Wα((πNu)k)

)
=

√
2πNξ. (5.2)

Then, by (2.3), the remainder term vN = πNuN − Ψd
N satisfies the following

equation:

∂2
t vN + ∂tvN + (1−∆)2vN +

k∑̀
=0

(
k
`

)
πN

(
Wα((Ψ

d
N )`)vk−`

N

)
= 0,

(vN , ∂tvN )|t=0 = (0, 0),

(5.3)

where the Wick power Wα((Ψ
d
N )`)

def
= H`(Ψ

d
N ;αN )

https://doi.org/10.1017/prm.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.87


Global dynamics for the stochastic nonlinear beam equations 35

converges to a limit, denoted by Wα((Ψ
d)`) , in C([0, T ];W−ε,∞(T4)) for any ε> 0

and T > 0, almost surely (and also in Lp(Ω) for any p < ∞); see emma 2.3. Thus,
we formally obtain the limiting equation:

∂2
t v + ∂tv + (1−∆)2v +

k∑̀
=0

(
k
`

)
Wα((Ψ

d)`)vk−` = 0,

(v, ∂tv)|t=0 = (0, 0).

(5.4)

We now detail how to modify the proof of Theorem 1.1 to show local well-
posedness of (5.3)–(5.4), uniformly in N ∈ N. Note that v is a solution to (5.4) if

and only if w = e
t
2 v satisfies the following equation:

∂2
tw + (1−∆)2w − 1

4
w + e

t
2

k∑
`=0

(
k

`

)
Wα((Ψ

d)`)(e−
t
2w)k−` = 0.

The terms in the mild formulation corresponding to the w -equation can be treated
as in Proposition 3.5, except for the one coming from 3

4w − 2∆w term. However,
this term can be viewed as a perturbation thanks to the two degrees of smoothing
in the integral Duhamel operator, and the analogue of Proposition 3.5 follows. The
same argument allows us to show local well-posedness of (5.3) where the time of
existence depends only on the stochastic convolution Ψd and its Wick-powers, but
not on N ∈ N.

Now, it remains to show the invariance of the truncated Gibbs measure ~ρN under
the truncated SdNLB dynamics (1.38) in the following proposition. In fact, the rest
of the proof of Theorem 1.6 follows from a standard application of Bourgain’s invari-
ant measure argument, whose details we omit. See, for example, [44] for further
details.

Proposition 5.1. Let N ∈ N. Then, the truncated SdNLB Eq (1.38) is almost
surely globally well-posed with respect to the random initial data distributed by the
truncated Gibbs measure ~ρN in (1.34). Moreover, the truncated Gibbs measure ~ρN
(1.34) is invariant under the dynamics of (1.38). More precisely, denoting by uN
the global solution to truncated SdNLB Eq (1.38), we have L(uN (t), ∂tuN (t)) = ~ρN
for any t ∈ R+.

Proof. The idea of the proof has already appeared in [24, 34, 42, 44] and so we
only sketch the key steps. Given N ∈ N, we define ~µ2,N and ~µ⊥

2,N to be the

marginal probability measures on πNH−ε(T4) and π⊥
NH−ε(T4), respectively. In

other words, recalling X 1 and X 2 in (1.29), ~µ2,N and ~µ⊥
2,N are the induced prob-

ability measures under the maps ω ∈ Ω 7→ (πNX1(ω), πNX2(ω)) and ω ∈ Ω 7→
(π⊥

NX1(ω), π⊥
NX2(ω)), respectively. Then, with ~µ2 = ~µ2,N ⊗ ~µ⊥

2,N and (1.34), we
can write

~ρN = ~νN ⊗ ~µ⊥
2,N , (5.5)
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where the measure ~νN is given by

d~νN = Z−1
N RN (u)d~µ2,N ,

with the density RN as in (1.31).
We recall the decomposition (5.1). Since the high frequency part π⊥

NuN = π⊥
NΨd

satisfies

∂2
t π

⊥
NΨd + ∂tπ

⊥
NΨd + (1−∆)2π⊥

NΨd =
√
2π⊥

Nξ, (5.6)

the dynamics of π⊥
NΨd are linear and thus we can study the evolution of each fre-

quency on the Fourier side to conclude that the Gaussian measure ~µ⊥
2,N is invariant

under the dynamics of (5.6). In fact, a tedious but direct computation shows that

E
[
|Ψ̂d(t, n)|2

]
=

1

〈n〉4
and E

[
|∂̂tΨd(t, n)|2

]
= 1,

for any t ∈ R+ and n ∈ Z4, so that L(Ψd(t), ∂tΨ
d(t)) = ~µ2 for any t ∈ R+.

We now consider the low frequency part πNuN , which solves (5.2). Denoting
(u1,N , u2,N ) = (πNuN , ∂tπNuN ), we can write (5.2) in the following Ito formulation:

d

(
u1,N

u2,N

)
+

{(
0 −1

(1−∆)2 0

)(
u1,N

u2,N

)
+

(
0

πNWα(u
k
1,N )

)}
dt

=

(
0

−u2,Ndt+
√
2πNdW

)
. (5.7)

This shows that the generator LN of the Markov semigroup for (5.7) can be writ-
ten as LN = LN

1 + LN
2 , where LN

1 corresponds to the (deterministic) NLB with
truncated nonlinearity

d

(
u1,N

u2,N

)
+

{(
0 −1

(1−∆)2 0

)(
u1,N

u2,N

)
+

(
0

πNWα(u
k
1,N )

)}
dt = 0, (5.8)

while LN
2 corresponds to the Ornstein-Uhlenbeck process:

du2,N = −u2,Ndt+
√
2πNdW. (5.9)

The invariance of ~νN under the dynamics of (5.8) follows from Liouville’s theorem
and the conservation of the Hamiltonian EN (u1,N , u2,N ) under the dynamics of
(5.8), where

EN (u1,N , u2,N ) =
1

2

∫
T4

|(1−∆)u1,N |2dx+
1

2

∫
T4
(u2,N )2dx

+
1

k + 1

∫
Wα(u

k+1
1,N ) dx.
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Hence, we have (LN
1 )∗~νN = 0, where (LN

1 )∗ denotes the adjoint of LN
1 . Regarding

(5.9), we recall that the Ornstein-Uhlenbeck process preserves the standard
Gaussian measure. Thus, ~νN is also invariant under the dynamics of (5.9), since the
measure ~νN on the second component is the white noise µ0 (see (1.28) with s =0
and projected onto the low frequencies |n| ≤ N). Hence, we have (LN

2 )∗~νN = 0,
and so

(LN )∗~νN = (LN
1 )∗~νN + (LN

2 )∗~νN = 0.

This shows invariance of ~νN under (5.7) and hence under (5.2).
Therefore, invariance of the truncated Gibbs measure ~ρN in (1.34) under the

truncated SdNLB dynamics (1.38) follows from (5.5) and the invariance of ~νN and
~µ⊥
2,N under (5.7) and (5.6) respectively. �
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