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1. Introduction

Most known homology theories (e.g. the homology of modules, rings, groups,
sheaves,.. .) have been found to be special cases of a general theory proposed by
M. Barr and J. Beck [1 ], [2]. The aim of this paper is to show that the cohomology
of a local group, as defined by W. T. van Est [4], also fits the scheme of Barr and
Beck. At the same time it will be shown that local group cohomology is a relative
derived functor in the sense of S. Eilenberg and J. C. Moore [3].

W. T. van Est's definition ([4], p. 396) runs as follows. Given are: a group G,
a (left) G-module X and V <= G, a subset such that 1 e V and V = V'1 (i.e.
v'1 e V whenever ve V). A sequence (vl, • • •, vn) is called a (F, «)-tuple if
vtvi+1 • • • v, e V for every 1 ^ i ^ / S n. For n = 1, 2, • • • denote the set of
(V, «)-tuples by F(n). A mapping/: F(n) -> X is called a (V, n)-cochain and its
coboundary is the (V, n + l)-cochain/(5n : F( n + 1 ) -> X denned by

( » ! , - • •, vn+l)(fS") = Vl((v2,- • ; vn + 1)f)

+ Z (-l)i(v1,--;vivi+1,--;vn+l)f+(-iy+1(vl,--;vn)f.
ISign

The (V, 0)-cochains are, by definition, the elements of X, and (v^xS0) = v^x — x
for each xe X. For n = 0, 1, 2, • • • the group of (V, «)-cochains (under value-
addition in X) contains the subgroup of (V, «)-cocycles (cochains satisfying
fd" = 0) and the latter contains the subgroup of (V, «)-coboundaries (cochains of
the form gS"~l). H"(V, X) is denned to be the quotient of these two subgroups
(i.e. cocycles modulo coboundaries).

2. Generalizations of van Est's definition

The first generalization is immediate: it is not necessary to have a subset of a
group, a local group Fwill suffice. Recall that by a local group is meant [7] a set V
such that for certain pairs (v, w) e Fx F there is denned a product vw e Fand the
following axioms hold:
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LG1. There is a 1 e Vsuch that l r = ul = v for every v.

LG2. For every v there exists a v'1 such that vv'1 = v~lv = 1.

LG3. Ifvw is defined, then so is w~1v~1.

LG4. / / vw and wz are defined, then any of the products (vw)z, v(wz) is defined iff
the other is defined, and they are equal, when defined.

Call an abelian group Xa F-module if V operates from the left on the elements
of X so that IJC = x, vO = 0, v(x+y) = vx + vy and (wv)x = w(vx) whenever wv
is defined in V.

One can repeat now van Est's definition of H"(V, X), introducing the slight
modification that (F, «)-tuples should be those sequences (vt, • • •, vn) for which all
products vivi+i • • • vt; (1 ^ i 5= / ^ n), for all possible ways of inserting the
brackets, are denned.

But in the sequel neither the existence of inverses, nor an associativity law as
stated in LG4 will be needed. This leads to the final generalization.

By a partial monoid we shall mean a set- V such that for certain pairs (v, w)
e VxV there is defined a product vw e V with the properties:

PM1. There is a 1 e V such that Iv = vl = v for every v.

PM2. If vw, wz and (vw)z are defined, then v(wz) is defined and equal to (vw)z.

We generalize the notion of a F-module to that of a partial V-module by which
we shall mean an abelian group X such that for certain pairs (v, x)e VxX a
product vx e X is defined and the following axioms hold.

PVM1. lx = xfor every x and vO = Ofor every v.

PVM2. Ifvx, vy are defined, then v(x±y) is defined and equal to vx±vy.

PVM3. Ifvw, wx and (vw)x are defined for v, w e V; x e X, then v(wx) is defined
and equal to (vw)x.

If vx is defined, we shall call v a multiplier of x. We define now the set V(n) of
(V, «)-tuples as before but limit the concept of a {V, n)-cochain to include precisely
those mappings/ : Vin) -> X which have the property that v((vt, • • •, vn)f) is de-
fined (in X) whenever (v, v1, • • •, vn) e F ( n + 1 ) . Thus the (F, 0)-cochains are those
elements of X which can be multiplied by each v e V. Taking X a partial F-module
and using the cochain concept in the restricted sense we still may repeat van Est's
definition. The resulting cohomology H"( V, X) is the one we wish to discuss below.

3. The theorem

We fix the partial monoid F.We denote by"^ the category of partial F-mod-
ules where by a morphism in ^ we mean a m a p / : X -> Y which is additive (i.e.
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such that (x + x')f = xf+x'f) and multiplicative in the sense that v(xf) is denned
and equal to (vx)f whenever vx is denned.

LEMMA. <€ is an additive category.

Indeed, horr% (X, Y) is easily seen to be an abelian group under addition in-
duced from Y. The zero object for <€ is the one-element group {0} with vO = 0 for
all v e V. If X, Y e <S, denote by X 0 Y the sum of abelian groups and give it a
partial K-module structure by postulating that v(x, y) is denned iff vx, vy are
defined, and v(x, y) = (vx, vy), when denned. Then X 0 Y is a product and co-
product in '&.

In the sequel the notation of M. Barr and J. Beck [2] will be adopted. We
refer to [2] for the basic properties of the Barr-Beck cohomology functors

H " ( - , £ ) c :<«?-> 21; n = 0, 1, 2, • • • „

associated to any given contravariant functor E : <€ -> 21 (where 21 is an abelian
category), and any given cotriad G on *€. (We use the name 'triad' suggested by
Saunders MacLane in preference to the name 'triple' used in [2]).

THEOREM. There is a cotriad G on <€ such that for every

H"(V, X) = Hn(Z, h o m , ( - , X))G; n = 0, 1, 2, • • •

where Z is the trivial partial V-module in which vz = z for every v e V and every
integer z.

Recall that, given a cotriad 6 on f, a sequence in #

• j r . ! - * , , - * ! - > • • • ( * )

is called G-exact if the composite of any two consecutive morphisms is zero, and
for every Y e ^

• • • hom^(GY, *_,) -Vhor%(Gy, Xo) -> homG(GY, Xj ->• • • •

is an exact sequence of abelian groups. Let $ denote the class of G-exact sequences.
As shown in [2], § 4, the functor //"( — , E)G is the nth derived functor of E, relative
to S, in the sense of Eilenberg and Moore [3]. In particular, if E = hom^ ( —, X),
then our theorem implies the

COROLLARY H"(V, X) = ExtJ(Z, X); n = 0, 1, 2, • • •.
It can be seen from our construction that $ is the class of those sequences (*)

which are exact, as sequences of abelian groups and have the property that for
every xeXn which is in the image oiXn^l there is a y e Xn-± which is mapped in x
and has precisely the same multipliers as x.

4. Proof of the theorem: construction of a cotriad

Recall ([2], § 4) that if G = (G, e, d) is a cotriad on # with natural transforms-
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tions E : G -* <€, b : G -» GG then an object P e *& is termed G-projective if there is
a morphism 51: P -»• PG such that 5 • Pg = P. A G-exact sequence 0 <- AT <- Zo <-
Xx <- • • • in which A"o, A\, • • • are G-projective is called a G-resolution of A' and
the cohomology of 0 -»• X0E -> Ht E-* • • • is H"{X, E)G.

In view of this, the theorem will be proved if we find a cotriad G on *€ and a
G-resolution 0 «- Z <- Af0 «- • • • such that the cohomology groups of

0 ->• hoi%(JV0, X) -> hom^(A'1, X) -• • • •

coincide with H"(V, X).
The cotriad will be obtained from an adjoint pair of functors. U: & -> sf

will be a functor that, when applied to an X e <€, 'forgets' everything but the under-
lying set of X and, for each xe X, its multipliers. Accordingly define <s/ to be the
category such that A is an object in <sf if A is a set together with a mapping
A -> 2V which assigns to each a e A a subset Va c V containing 1. A morphism
f: A -> A' in J>/ is a set map such that Fa c Fy(0) for every a e A. Then we have
the forgetful functor U : <€ -»• jaf.

Given ,4 € J / , let /*F be the abelian group freely generated by all the formal
products via} where ae A,ve Va. This is made into a partial F-module by postu-
ating that J>0 = 0 for all v e V and if 0 ^ x = £ i g ig n /W(tfj<a,-> (reduced sum;
w; e Z) then we is defined iff ro; is defined and belongs to Vat, for / = 1, • • •, n.
When defined,

we = £ m,.(ro,.)<a,>.
l g i S n

The PVM axioms in § 2 are readily checked. A morphism/: A -> A' in s/ induces
the unique morphismfF: AF -»^4'Ffor which (a}(fF) = <a/> (we identify l<a>
with -(a)). This defines a functor F: s/ -* c&.

Let Ae £?, Xetf and \tt f: A ->• ATf/ be in .s/. Assign to / the morphism
AF -* X given by

It is easy to see that this defines a natural equivalence of functors

4> : hom«(AF, X) lihom^A, XU),

i.e. an adjunction <j> of F to C/.
Let r\ : s/ -* FU, s : UF -* ^ be the unit and counit of the adjunction. The

required cotriad G = (G, e, 5) is now given by G = £/Fand <5 = Ur\F f(8], Intro-
duction).

5. Proof continued: a standard resolution

Call / : X -* X' in # a/«// morphism if for every element x' belonging to the
image A/there is an x e X which has precisely the same multipliers as x' and such
that x' = xf.
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LEMMA 1. A sequence • • • -> X_ t ~f Xo ~£ Xl ->• • • • is G-exact if and only if
every morphism is full and the underlying sequence of abelian groups is exact.

We shall prove the ' if part only, since only this part will be needed below.
The non-trivial portion of the argument consists in showing that if a given
h : XG -* Xo satisfies hg = 0, then there exists an h' : XG -> X_x such that
h'f = h. Let h : XU -• X0U correspond to h by the adjointness of (F, U). Then the
diagrams

XG = XUF XU

are equivalent to each other, whence it will suffice to find a morphism XU -> X'_ x U
which makes the second diagram commute. By assumption ah(gU) = 0 for every
a e XU, whence aE = £a(fU) for some £ae X-tU due to the exactness of the under-
lying sequence of abelian groups. Since / is full, £,„ may be chosen so that Via =
Vai. Thus a -> £a defines a morphism which makes the second triangle commute.

Call an object in % free if it is of the form AF, where A e =s/.

LEMMA 2. Every free object is G-projective.
Indeed, we have AnF: AF -> AFUF = AFG and the standard identity Ar\F.

AFs = AF([6], p. 60).
Let K(0) be a one-element set {e}, made into an object of sf by Ve = V. Make

the set V(n); {n~Z. 1) of all (V, n)-tuples into an object of sf by

If w ̂  1, define a morphism dn + i : K(n+1) -> V(n)FU by

(where <• • •> stands for <(• • •)> and addition is in V(n)F).
Define further dx : K

(1) -» F^'FE/ by ( ^ ^ i = vx(/y-{ey and 3 0 : V
(0) ->

ZC/ by e30 = 1. By the adjointness of (F, U) there corresponds to 3n a morphism
^ 1 and rf0 : F(0).F-> Zifw = 0.

LEMMA 3. 0 <- Z • - V(0)F <- F ( 1 ) f <- • • • is a G-resolution.
OQ d\ U2

By Lemma 2, V(0)F, V(1)F, • • • are G-projective. It remains to verify the con-
ditions of Lemma 1. Define morphisms of abelian groups /i_! : Z -* V(0)F,
hn : V(n)F-* V(n+1)F,n = 0, 1, 2, • • • by prescribing their values on the free genera-
tors:

!/?_! = <£>, v(e}h0 = <i;>, v(vt, • • •, vn}hn = (v, vlt • • ; vn}.
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A straightforward calculation gives

fc-tdo = Z and dnhn.1 + hndn + 1 = VMF.

Thus dn + ldn = 0 (n = 0, 1, 2, • • •) by induction on n (see [5], p. 115). Moreover,
the underlying sequence of abelian groups is exact. Finally, dn is a full morphism
since xhn^l has the same multipliers as x, and xhn-ldn = x whenever x e V(n)Fdn

Observe now that hom^ (V(n), XU) is precisely the set of (V, «)-cochains; and
if an additive structure is introduced in it from X (the same one as in the beginning
of this paper), then the adjointness

<j> : hom^(V(n)F, X) -> hom^(F(n), XU)

is an isomorphism of abelian groups.
We assert now that <j> is an isomorphism of chain complexes

/(0)0 - hom^(F(0) , XV)—^ hom^F ( 1 ) , XV)—f • • •,

where the upper complex is obtained by applying the hom¥ ( —, X) functor to the
resolution in Lemma 3 and the lower one is that which was used in §§ 1, 2 to define
H"(V,X).

Indeed, l e t / : F(n) -* XU be a (V, «)-cochain and suppose/ = g<j>. Then gd"
is given by the first of the diagrams

and the second diagram (which follows from the first by the naturality of <p) gives
gd"cf>. The definition of dn+l implies now that gd"<f> coincides with the coboundary
fS" of § 1. Thus the cohomology of the upper complex is H"( V, X). The aim pro-
posed at the beginning of § 4 has been achieved.
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