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In this paper, we propose an efficient method for generating turbulent inflow conditions
based on deep neural networks. We utilise the combination of a multiscale convolutional
auto-encoder with a subpixel convolution layer (MSCsp-AE) and a long short-term
memory (LSTM) model. Physical constraints represented by the flow gradient, Reynolds
stress tensor and spectral content of the flow are embedded in the loss function of
the MSCgp-AE to enable the model to generate realistic turbulent inflow conditions
with accurate statistics and spectra, as compared with the ground truth data. Direct
numerical simulation (DNS) data of turbulent channel flow at two friction Reynolds
numbers Re; = 180 and 550 are used to assess the performance of the model obtained
from the combination of the MSCgsp-AE and the LSTM model. The model exhibits a
commendable ability to predict instantaneous flow fields with detailed fluctuations and
produces turbulence statistics and spectral content similar to those obtained from the
DNS. The effects of changing various salient components in the model are thoroughly
investigated. Furthermore, the impact of performing transfer learning (TL) using different
amounts of training data on the training process and the model performance is examined
by using the weights of the model trained on data of the flow at Re; = 180 to initialise the
weights for training the model with data of the flow at Re; = 550. The results show that
by using only 25 % of the full training data, the time that is required for successful training
can be reduced by a factor of approximately 80 % without affecting the performance
of the model for the spanwise velocity, wall-normal velocity and pressure, and with an
improvement of the model performance for the streamwise velocity. The results also
indicate that using physics-guided deep-learning-based models can be efficient in terms
of predicting the dynamics of turbulent flows with relatively low computational cost.
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1. Introduction

In DNS, large eddy simulation (LES), and hybrid Reynolds-averaged Navier—Stokes
(RANS)-LES, one of the most important factors is the choice of suitable inflow boundary
conditions for wall-bounded turbulent flows which can have a significant effect on the
precise accuracy of the simulation. The formation of realistic inflow boundary conditions
is a crucial task because the flow should possess the correct mean value, satisfy
the continuity and momentum equations and feature appropriate spatial and temporal
correlations. Various methods have been applied to generate turbulent inflow conditions
(Wu 2017). The most straightforward method is to impose infinitesimal perturbations
on the laminar mean velocity profile at the inlet section of the numerical domain
and allow the boundary layer to be developed until it reaches a fully turbulent state.
Although this method produces a realistic turbulent boundary layer, it requires a long
computational domain, which can significantly increase the computational cost of the
simulation.

For the past three decades, the recycling method has been considered as the most
well-known method for fully developed turbulent inflow generation. It can be carried
out by running an auxiliary simulation with periodic boundary conditions and using the
fields in a plane normal to the streamwise direction as inflow conditions for the main
simulation. A modified version of the Spalart (1988) method was introduced by Lund,
Wu & Squires (1998) for spatially developing turbulent boundary layers. Here the velocity
fields in the auxiliary simulation are rescaled before being reintroduced at the inlet plane.
This method is also able to successfully produce a turbulent flow with accurate temporal
and spatial statistics. Nevertheless, it also incurs a high computational cost. Furthermore,
the streamwise periodicity effect, caused by the recycling of the flow within a limited
domain size, can lead to physically unrealistic streamwise-repetitive features in the flow
fields (Wu 2017).

Several studies have been conducted to effectively produce turbulent inflow conditions
by adding random fluctuations based on the turbulence statistics. This approach is usually
called synthetic inflow turbulence generation. Several models, namely the synthetic
random Fourier method (Le, Moin & Kim 1997), the synthetic digital filtering method
(Klein, Sadiki & Janicka 2003), the synthetic coherent eddy method (Jarrin er al. 2006),
the synthetic vortex method (Sergent 2020; Mathey et al. 2006; Yousif & Lim 2021) and
the synthetic volume force method (Schlatter & Orlii 2012; Spille-Kohoff & Kaltenbach
2001) have been introduced as alternatives to the recycling method, featuring a faster
generation of turbulent flows and reasonable accuracy. However, these approaches require
an additional distance downstream in the numerical domain that can guarantee the
recovery of the boundary layer from the unphysical random fluctuations of the generated
velocity fields, which can result in a high computational cost.

Relatively accepted results have been achieved by using proper orthogonal
decomposition (POD) and applying Galerkin projection to derive the dynamical system
of the flow and generate turbulent inflow conditions using the most energetic eddies
(Johansson & Andersson 2004). Experimental studies (Druault et al. 2004; Perret et al.
2008) have been conducted to reconstruct the turbulent inflow velocity fields from hot-wire
probes and particle image velocimetry (PIV) with the aid of POD and linear stochastic
estimation (LSE). Although this approach has shown commendable accuracy in terms
of turbulence statistics and spectra, it is considered to be significantly costly because an
experimental set-up is required to generate the turbulent inflow data.

Over the last 10 years, considerable developments in machine learning and deep learning
have been witnessed, accompanied by a noticeable improvement in computational power.

936 A21-2


https://doi.org/10.1017/jfm.2022.61

https://doi.org/10.1017/jfm.2022.61 Published online by Cambridge University Press

Physics-guided DL for generating turbulent inflow conditions

This has led to the application of machine learning and deep learning in fluid mechanics
(Brunton, Noack & Koumoutsakos 2020).

In terms of turbulence generation, Fukami et al. (2019) proposed a model of a
synthetic inflow generator comprising a convolutional auto-encoder (CAE) with a
multilayer perceptron (MLP). Although they demonstrated a remarkable reduction in
the computational cost compared with the recycling method, the turbulence statistics
showed a deviation from the actual turbulence; they attempted to reduce this deviation
by subtracting the mean of the fluctuation flow fields generated by their model. Kim
& Lee (2020) presented an unsupervised learning-based turbulent inflow generator for
various Reynolds numbers using a generative adversarial network (GAN) and a recurrent
neural network (RNN). Their results showed that the RNN-GAN model could successfully
generate instantaneous flow fields at a certain range of Reynolds numbers, with a
commendable agreement with the DNS data. However, they reported a relatively high
training computational cost for the model.

In the study of Fukami et al. (2019), a black-box model was used without considering
the physics involved in the flow during the training process, while the spanwise energy
spectrum was used in Kim & Lee (2020) study as a statistical physical constraint.
Furthermore, in both studies, the spatial distribution of the flow was considered to be
uniform in both directions of the selected plane, which is not the case for the wall-normal
direction.

In this study, we present a model that consists of a multiscale convolutional auto-encoder
with a subpixel convolutional layer (MSCsp-AE) combined with a long short-term
memory (LSTM) model to generate turbulent inflow conditions. We use the gradient of the
flow, the Reynolds stress tensor and the spectral content of the flow as physical constraints
in the loss function of the MSCgp-AE.

The remainder of this paper is organised as follows. In § 2, the generation of the data
sets using DNS is explained. The proposed deep-learning model is presented in § 3. In
§ 4, the results from testing the proposed model are discussed. The effect of performing
transfer learning (TL) and the computational cost of the presented model are examined in
§ 5. Finally, the conclusions of this study are presented in § 6.

2. Generation of the data sets

The DNS of a fully developed incompressible turbulent channel flow at Re; = 180 and

550 are performed to generate the training and testing datasets. The governing equations

are the incompressible momentum and continuity equations, which can be expressed as
ou

1
o “Vu=-V Viu, 2.1
o7 +u-Vu p—l—Ret u 2.1

V.eu=0, 2.2)

where u, t and p are the non-dimensionalised velocity, time and pressure, respectively. All
the quantities are non-dimensionalised using the channel half-width &, friction velocity
u; and density p. The friction Reynolds number is expressed as Re; = u6/v, where v is
the kinematic viscosity, and u, v and w are the streamwise, wall-normal and spanwise
components of u, respectively. The open-source computational fluid dynamics (CFD)
finite-volume code OpenFOAM-5.0x is used to perform the DNS. The statistics obtained
from the simulations have been validated using DNS data obtained by Moser, Kim &
Mansour (1999).

The dimensions of the computational domain for both the simulations are 47§, 2§
and 27§ in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively.
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Re; Ny x Ny x N, Axt Azt Ay AyF At
180 256 x 128 x 256 8.831 4.415 0.630 4.680 0.113
550 512 x 336 x 512 13.492 6.746 0.401 5.995 0.030

Table 1. Grid size, spatial spacing and time step of each simulation. Here N is the number of grid points. The
superscript ‘+ indicates that the quantity is made dimensionless using u; and v. Here Ay, and Ay are the
spacing in the wall-normal direction near the wall and at the centre of the channel, respectively.

The other parameters of the simulations are summarised in table 1. The grid points
have a uniform distribution in the streamwise and spanwise directions and a non-uniform
distribution in the wall-normal direction. The periodic boundary condition is assigned to
the streamwise and spanwise directions, whereas the no-slip condition is applied to the
upper and lower walls. The pressure implicit split operator (PISO) algorithm is employed
to solve the coupled pressure momentum system. The convective fluxes are discretised
with a second-order accurate linear upwind scheme, and all the other discretisation
schemes used in the simulation have second-order accuracy.

The DNS data of the velocity components and pressure are collected from a single (y—z)
plane in the domain. The DNS data of the flow at Re; = 550 are interpolated to match the
grid size of the data obtained from the DNS of the flow at Re; = 180. Hence, the same
grid size obtained from the simulation of the flow at Re; = 180 is used to train the model
for both Re; = 180 and Re; = 550. This procedure allows performing TL by using the
model weights of the flow at Re; = 180 to initialise those of the flow at Re; = 550.

A time series of 10000 snapshots is used to train the model for each Re;, with 80 %
used as training data and 20 % used as validation data. The interval between the collected
snapshots of the flow fields is equal to 10 simulation time steps, corresponding to At =
1.134 and 0.300 for the flow at Re; = 180 and 550, respectively. To prepare the datasets
for training, the mean values are first subtracted, and then the fluctuations are normalised
using the min-max normalisation function to produce values between 0 and 1.

3. Deep-learning model
3.1. Multiscale convolutional-subpixel auto-encoder

Owing to its characteristics, the convolutional neural network (CNN) (LeCun et al.
1998) is capable of effectively addressing problems in which the information is spatially
distributed, such as image recognition, classification and segmentation. This has led to
its application in various fluid dynamics problems (Guo, Li & Iorio 2016; Razizadeh &
Yakovenko 2020; Nakamura et al. 2021).

The convolution process in two dimensions can be represented as

Fi,j = Z Zlifm,janm,m (31)
m n

where [ represents the two-dimensional input data, K is the two-dimensional trainable
kernel (spatial filter) and F is the feature map.

Typically, a CNN consists of a combination of convolution and pooling or upsampling
layers (Goodfellow, Bengio & Courville 2016). Each convolution process is followed
by a nonlinear activation function. The CAE is a convolution neural network that first
compresses the high-dimensional data to a latent space through a series of convolution
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and pooling processes and then reconstructs the high-dimensional data using convolution
and upsampling processes.

The objective of the present study is to generate instantaneous turbulent flow fields with
a high spatial resolution. The first step is to compress the high-dimensional flow fields
data to a latent space that can be used to predict the temporal evolution of the flow fields
using the LSTM model. To achieve this, a combination of three branches of CNN with
different filter sizes and subpixel convolutional layer (Shi et al. 2016) is used to build
the MSCsp-AE. The network is trained to learn an end-to-end mapping function F4g to
reconstruct flow fields 72/ that should be the same as the input flow fields 7", such that

19 = Fap(I™, Wag), (3.2)

where Wyug represents the trainable parameters of the MSCgsp-AE, that is, the weights
of the auto-encoder. The architecture of the MSCgsp-AE is shown in figure 1(a), where the
input is a series of snapshots of the three velocity components and pressure fields. The data
are first passed through a series of convolution and downsampling layers in the encoder of
each branch in the MSCgp-AE. The data are then compressed to a latent space that contains
the main features of the flow fields. The size of the latent space is carefully selected,
considering the study of Nakamura ef al. (2021) and the results obtained from the test
reported in § 4.5. In the decoder, the data are reconstructed back to the high-dimensional
flow fields.

The decoder is divided into two stages. In the first stage, the convolution-upsampling
process is applied to all the branches in the decoder. In the second stage, the outputs from
all the branches are combined and passed through another convolution layer, and finally
fed to a subpixel convolution layer. The reason for using the subpixel convolution layer
at the end of the auto-encoder is because this layer provides trainable upsampling filters
that can significantly improve the resolution of the output from the auto-encoder. If H,
W and C are the height, width and number of channels of the data before taking the last
upsampling process, then the shape of the datais H x W x C. In the subpixel convolution
layer, the data are transformed by a scale factor r to the final high-resolution data through
the periodic shuffling operator, such that the elements of H x W x C x r? are rearranged
to rH x rW x C, as shown in the magnified part of figure 1(a). The effect of using the
subpixel convolution layer in the auto-encoder is investigated in § 4.3. A skip connection
(He et al. 2015) is used in both the encoder and the decoder to overcome the vanishing
gradient issue, which can result from the use of a deep neural network. The activation
functions used in the MSCgsp-AE are the rectified linear unit (ReLU), tanh and sigmoid.

The loss function of the MSCgsp-AE (L4f) is a combination of five different loss terms,
and it can be expressed as follows:

£AE = Lpixel + Lperceptual + Lgradient + LReynolds stress Lspectmm’ (33)

where Ly is the pixel-based error of the reconstructed flow fields (u, v, w and p), and
Lperceprual T€presents the error obtained from the extracted features of the velocity fields.
The pretrained CNN VGG-19 (Simonyan & Zisserman 2015) is used to extract the features.
Here Lgyadiens 1s the error calculated from the gradient of the flow; Lgeynoids stress 15 the
Reynolds stress error, which is accounted for using the difference in the Reynolds stress
tensor of the velocity fields; and Lgpeesum represents the error of the spectral content of the
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Figure 1. Architecture of (a) the MSCgsp-AE and (b) the LSTM model.
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where ||-||; and ||-||> are the L; and L, norms, respectively; Fygg represents the feature
extraction using VGG-19; T is the Reynolds stress tensor; E(k;) represents the spanwise
energy spectrum of each flow field; and k; is the spanwise wavenumber. In addition, the
subscript  represents the index of every time step; and B1, B2, 83, B4, PBs are the coefficients
used to balance the different loss terms, which are empirically set to 200, 0.002, 5, 100 and
1073, respectively.

Each loss term contributes to the loss function and is used to improve the model output
from a certain perspective. Using Lgagien: helps the network to deal with the non-uniform
grid distribution in the wall-normal direction and also helps with Lyeceprua t0 oOvercome
the blurry output from the CNN (Lee & You 2019). Here Lgeynolds stress and Lgpectrum are
used to impose physical constraints on the training process to obtain a better prediction
of the Reynolds stress components and the energy spectra of the flow fields. The adaptive
moment estimation (Adam) optimisation algorithm (Kingma & Ba 2017) is applied to
update the weights. The training data are divided into minibatches, and the size of each
minibatch is set to 40. The early stopping regulation technique is used to stop the training.

3.2. Long short-term memory model

The LSTM neural network (Hochreiter & Schmidhuber 1997) is a type of RNN. It
is designed to tackle the stability issues and limitations of traditional RNNs, such as
exploding or vanishing gradients. Owing to its architecture, the LSTM has been widely
used in various fields, such as speech recognition, language translation and time-series
prediction. The layer in the LSTM consists of an LSTM cell, as shown in the magnified
part of figure 1(b). The cell receives input x; and generates an output /;, where # is called
the hidden state. The hidden state is updated based on the cell input and the information
from previous time steps. This information is represented by the previous hidden state and
the cell state (C). The LSTM cell contains three gates: input gate (i), output gate (0) and
forget gate (f). The LSTM cell changes the flow of the training information according to
these gates. The input gate controls the flow of the information input to the LSTM cell,
the forget gate filters the information from the previous time steps by determining which
information should be discarded or retained and the output gate controls the flow of the
LSTM cell output. In the figure, C represents the updated cell state.
The transition equations of the LSTM cell can be expressed as follows:

iy = sigmoid (Wix; + Uih;—1 + b;) , 3.9
fi = sigmoid (Wyx; + Uph— + by) (3.10)
C, tanh (Wexy + Uchi—1 + be) , (3.11)
936 A21-7
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CG=i® 6t +ft ® Ci—1, (3'12)
oy = sigmoid (Wox; + Uyhy—1 + by) , (3.13)
h[ =0 ® tanh(Ct), (314)

where W, U and b are the weights of the input, the weights related to the hidden state of
the cell in the previous time step and the bias, respectively.

In this study, the LSTM model is applied to predict the dynamics of the flow fields
represented by the latent space obtained from the MSCgp-AE. The model, as shown in
figure 1(b), is decomposed into branches, each containing parallel stacked LSTM layers
with different numbers of hidden units arranged in a similar way to that of the parallel
LSTM layers in the study of Nakamura et al. (2021). The final output of the model
is the summation of the outputs of the branches passing through a dense layer. This
architecture of the LSTM model affords a remarkable improvement in performance in
terms of prediction accuracy and the ability to predict the dynamics of the flow fields for a
long period of time. The effect of the branches number on the LSTM model performance is
investigated in § 4.4. The input data of the LSTM model contain information from several
previous time steps (five time steps are used in this study), which is used to predict the
output data of a single future time step.

(Output); = Frstm(Input, Wrstar), (3.15)

where Frsty is the mapping function that represents the LSTM model, and Wysry
represents the weights of the model. Here Input represents the true data of the latent space
obtained from the MSCgsp-AE for time interval of [(r — Ar), (t — 2A1), (t — 3A1), (t —
4A1), (t — 5A1)]; Output is the prediction of the model at a time step (7).

The square of the L, norm error is chosen as a loss function, such that

N
1
Lrstn =+ 3 1 Outpun), = S113, (3.16)

=1

where S represents true latent space data obtained from the MSCgp-AE at a specific time
step. Similar to the MSCgsp-AE, the Adam optimisation algorithm is applied to the LSTM
model. The size of the minibatch is set to 100.

3.3. Physics-guided deep learning (PGDL)

This study aims to build a PGDL model that can generate realistic turbulent datasets using
a combination of the MSCgp-AE and the LSTM model. Figure 2 illustrates the PGDL
model. After training the model, the MSCgsp-AE can learn to map the flow fields obtained
from the DNS to the latent space and reconstruct the flow fields back to the original
resolution. On the other hand, the LSTM model can learn to predict the temporal evolution
of the low-dimensional data, i.e. the latent space by feeding back the output from the model
to the input and recursively predicting the flow at future time steps. Finally, the output from
the LSTM model is applied to the decoder of the MSCgsp-AE and the temporal evolution
of the flow fields is predicted with the same spatial resolution of the ground truth data.
In this study, the open-source library TensorFlow 2.4.0 (Abadi et al. 2016) is used for the
implementation of the model. A sample Python code for the presented model is available
on the following web page: https://fluids.pusan.ac.kr/fluids/65416/subview.dot.
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Figure 2. Schematic of turbulent inflow generation using the proposed PGDL model.

4. Results and discussion
4.1. Instantaneous predictions and turbulence statistics

Primarily, we examine the general capability of the proposed PGDL model to predict the
flow fields. Figures 3 and 4 show the predicted instantaneous velocity fields at Re; = 180
and 550, respectively. Here the values of r* in each figure correspond to training time
steps = 10010, 10 100 and 11 000, respectively. It can be observed that the PGDL model
can predict the instantaneous velocity fields at Re; = 180 with a commendable agreement
with the DNS data, in terms of both the main flow structure and the fluctuations. Although
the prediction of the flow fields at Re; = 550 shows fewer details about the fluctuations, it
reveals a relatively good agreement with the DNS data.

Our primitive studies revealed that using only the pixel content as a loss function results
in the flow fields suffering from a lack of fluctuation details in the outer region of the
boundary layer. Furthermore, by using the auto-encoder without the subpixel convolution
layer, the results showed less accurate flow fields as reported in § 4.3.

As shown in figures 5 and 6, the probability density function (p.d.f.) plots of the
generated velocity components and pressure for both Re; = 180 and 550 reveal a
commendable agreement with the results obtained from the DNS data, thus indicating
the ability of the model to predict the instantaneous flow fields.

The capability of the model to generate velocity fields with accurate spatial distribution
is examined using two-dimensional cross-correlation (Ryq (Ay, Az)) plots of the velocity
components as shown in figures 7 and 8, where « represents the velocity component. It can
be observed from the figures that the correlation plots are generally in good agreement with
those obtained from the DNS data, indicating the ability of the PGDL model to generate
instantaneous flow fields with an accurate spatial distribution for both Reynolds numbers.

To further validate the PGDL model, the statistics of 20000 generated flow fields are
compared to the turbulence statistics obtained from the DNS of the flow at Re; = 180
and 550 in figures 9 and 10, respectively. As shown in figure 9(a), the mean streamwise
velocity profile of the generated data shows excellent agreement with the profile obtained
from the DNS within all of the linear viscous sublayer, buffer layer and logarithmic region.
The root-mean-square (r.m.s.) profiles of the velocity components (s, Urms and wympg)
are shown in figure 9(b). The comparison reveals good agreement with the results obtained
from the DNS. The mean Reynolds shear stress (—u/v’) profile shows excellent agreement
over the entire range of the wall distance, as shown in figure 9(c). The r.m.s. profile of the
streamwise vorticity (w,ns) is shown in figure 9(d). Although the profile of the generated
data shows a good agreement with the profile from the DNS, this agreement is slightly
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Figure 3. Instantaneous velocity fields at Re; = 180. (a) Streamwise velocity. (b) Wall-normal velocity. (¢)
Spanwise velocity.

different from those in the aforementioned figures. The turbulence statistics of the flow at
Re; = 550 show similar accuracy to those of the flow at Re; = 180 as shown in figure 10.
However, the —u/v’ profile slightly deviates from the profile obtained from the DNS for
the region where the maximum shear stress occurs. Furthermore, the w,,s profile shows
more deviation compared with the flow at Re; = 180.

One of the most important factors for evaluating the turbulent inflow generator is
the capability to produce a realistic spectral content for the flow fields; otherwise,
the generated turbulence would be dissipated within a short distance from the inlet
of the domain. Figures 11 and 12 show the spanwise energy spectra (Eyqy(k;)) of the
velocity components at three different wall distances for the flow at Re; = 180 and 550,
respectively. It can be observed from figure 11 that the spectra of the flow at Re; = 180 are
generally in good agreement with the spectra obtained from the DNS. However, a slight
deviation can be observed at high wavenumbers; we believe that this deviation would be
corrected in the main simulation domain after a short distance from the inlet. Despite the
higher friction Reynolds number, the spectra of the flow at Re; = 550 show a reasonable
accuracy as shown in figure 12. It is worth mentioning here that the temporal correlation
plots (Ryq (t)) of the generated flow exhibit a trend similar to that of the results reported
by Kim & Lee (2020) and Fukami et al. (2019) as they are free of spurious periodicity,
as shown in figures 13 and 14. This is one of the advantages of using machine learning
to generate turbulent inflow conditions over the aforementioned recycling method, which
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Figure 4. Instantaneous velocity fields at Re; = 550. (a) Streamwise velocity. (b) Wall-normal velocity. (c)
Spanwise velocity.

suffers from spurious periodicity due to the periodic boundary condition and the limited
domain size. It is also worth noting that we have tested the model with time steps up to
60 000, and the results have shown that the model still can predict the instantaneous flow
fields, and reproduce turbulent statistics and spectra with commendable accuracy.

4.2. Effect of loss terms in MSCsp-AE loss function

In order to select the optimum coefficient of each loss term, the model was first trained
with just Lp;xe;, and the magnitude of the loss after successful training was recorded. The
training was repeated with the other loss terms individually and the magnitude of each of
them was recorded. After that, in order to avoid any bias during the training process,
the order of the loss term coefficient was set to a suitable value. Finally, the training
was repeated multiple times using all the loss terms with variations in the values of the
coefficients in every training to achieve the most stable training and optimum performance.
As mentioned in § 3.1, each term in the loss function positively affects the output of the
MSCsp-AE. The effect of Lgyagiens and Lperceprual €an be seen in figure 15. Here case 1
and case 2 represent the results from the MSCgsp-AE with and without using Lgadien
and Lperceprual, TESpeEctively. As can be observed from the figure, the blurry output from
the MSCgp-AE can be remarkably mitigated by using Lgadiens and Lperceprual- Figure 16
shows the effect of Lgeynoids siress- Here case 1 and case 2 represent the results from
the MSCgsp-AE with and without using Lgeynoids stress> Tespectively. The impact of the
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Figure 5. Probability density function plots of the velocity components and pressure at Re; = 180.

Reynolds stress constraint on the turbulence statistics can be observed from the figure,
especially for the region where the maximum shear stress occurs. As shown in figure 17,
the spectra of the velocity components can be remarkably improved by using Lgpectrum
(case 1) in the loss function compared with case 2, i.e. without using Lgpecrrum. These
results indicate that the loss terms that are combined with Ly, can effectively improve
the performance of the MSCgp-AE.

4.3. Effect of subpixel convolution layer

The effect of the subpixel convolution layer on the MSCgsp-AE performance is investigated
in this section. Three cases are considered to examine the impact of the subpixel
convolution layer: case 1, where the MSCgp-AE is used; case 2, where two convolution
layers are added after the last upsampling layer (which is used instead of the subpixel
convolution layer) with 16 and 4 filters, respectively; and case 3, where two convolution
layers each with four filters are added after the last upsampling layer. In both cases 2 and
3, the convolution layer before the last upsampling layer has 16 filters, whereas in case 1,
the convolution layer before the subpixel convolution layer has just four filters. Figure 18
shows the reconstructed instantaneous velocity fields for all three cases. Here it can be
seen clearly that case 1 shows more flow details with accurate values compared with case
2. Furthermore, it is obvious that the auto-encoder in case 3 failed to reconstruct realistic
instantaneous velocity fields due to the few filters that extract features from the flow fields
before the last convolution layer.

The root-mean-square error (RMSE) plots for the reconstructed velocity components
and pressure using the auto-encoders in the three cases are plotted along the range of the
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Figure 6. Probability density function plots of the velocity components and pressure at Re; = 550.
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Figure 8. Two-dimensional cross-correlation plots of the velocity components at Re; = 550.
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profiles of the velocity components. (¢) Mean Reynolds shear stress profile. (d) R.m.s. profile of the streamwise

vorticity.

wall distance in figure 19. Here it can be seen that the error shows higher values in case 2
compared with the error in case 1, and as expected, shows a rapid increase in the values
in case 3. This indicates that the subpixel convolution layer outperformed the combination
of the upsampling-convolution layers even with adding more filters to the convolution
layers before and after the upsampling layer. Note that in case 2, the number of trainable
parameters is more than the number of trainable parameters in case 1 due to the additional
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Figure 10. Turbulence statistics of the flow at Re; = 550. (@) Mean streamwise velocity profile. (b) The
r.m.s. profiles of the velocity components. (¢) Mean Reynolds shear stress profile. (d) The r.m.s. profile of
the streamwise vorticity.
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Figure 11. Spanwise energy spectra of the velocity components at Re; = 550.

filters, and this results in a noticeable increase in the training time. Hence, the subpixel
convolution layer which can remarkably improve the resolution of the flow fields can also
help in reducing the training time of the auto-encoder.

4.4. Effect of the number of LSTM branches

As shown in figure 1(b), a parallel stacked LSTM layers-based model is used in this
study for modelling the temporal evolution of the latent space. Here the function of
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Figure 18. Instantaneous velocity fields at Re; = 180; case 1, case 2 and case 3 represent the results
from MSCgsp-AE, auto-encoder having convolution layer with 16 filters after the last upsampling layer and
auto-encoder having convolution layer with four filters after the last upsampling layer, respectively. (a)
Streamwise velocity. (b) Wall-normal velocity. (¢) Spanwise velocity.

the parallelisation of the stacked LSTM layers is to decompose the latent space into
different groups of features and model the temporal evolution of each group separately
before obtaining the final output represented by the summation of all the branches passing
through a dense layer. The optimum architecture of the LSTM model is selected based
on the results obtained from using different numbers of branches of the LSTM model.
Figure 20 shows the RMSE of the predicted latent space by the LSTM model using
different numbers of branches. As can be observed from the figure, the error values
decrease as the number of branches increases. Nevertheless, adding more branches results
in an increase in the computational cost of the model, i.e. the training time. Furthermore,
it can be observed that even with increasing the number of the LSTM branches to four, the
RMSE value does not decrease significantly compared with the value when three branches
are used. Note that the results obtained in this test are based on latent space of size = 512.
Here the performance of the LSTM model is highly affected by the size of the latent space
which also affects the reconstruction accuracy of the MSCgp-AE.

4.5. Effect of latent space size

The size of the latent space in the MSCgp-AE is an important factor in designing the
presented PGDL model, since changing the size of the latent space can affect both the
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Figure 19. Profiles of RMSE for the reconstructed velocity components and pressure at Re; = 180; case
1, case 2 and case 3 represent the results from MSCgp-AE, auto-encoder having convolution layer with 16
filters after the last upsampling layer and auto-encoder having convolution layer with four filters after the last
upsampling layer, respectively. (a) Streamwise velocity. (b) Wall-normal velocity. (¢) Spanwise velocity. (d)
Pressure.
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Figure 20. RMSE of the predicted latent space by the LSTM model using different numbers of LSTM
branches; Re; = 180.

MSCsgp-AE and the LSTM model performance. As mentioned in § 3.1, the size of the
latent space is carefully selected to obtain the optimum latent space that can guarantee the
reconstruction accuracy of the MSCgp-AE and the ability of the LSTM model to predict
the flow dynamics. Nakamura et al. (2021) showed that using latent space with a very
small size can make the auto-encoder fail to reconstruct the details of the flow fields which
can result in inaccurate turbulence statistics. Here we test the PGDL model using three
different latent space sizes, i.e. 128, 512 and 2048.

Figure 21 shows the RMSE plots for the velocity components and pressure predicted by
the PGDL model along the range of the wall distance using the three latent space sizes.
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Figure 21. Profiles of RMSE for the predicted velocity components and pressure at Re; = 180; here 128, 512
and 2048 represent the sizes of the latent space. (a) Streamwise velocity. (b) Wall-normal velocity. (¢) Spanwise
velocity. (d) Pressure.

It is clearly shown that there is a noticeable difference between the error values for the
cases of latent space size = 128 and 512 due to the limited information on the flow fields
when the latent space of size = 128 is used, while no significant difference can be seen
between the latent space of size = 512 and 2048, indicating that the latent space with
size = 512 is sufficient for representing the low-dimensional data in the MSCgsp-AE that
can be modelled using the LSTM model.

Furthermore, in order to examine the capability of the PGDL model with different latent
space sizes to predict the dynamics of the flow, the largest Lyapunov exponent (A7) is
obtained from the predicted velocity data at different wall distances. The largest Lyapunov
exponent can be calculated from the average rate of the exponential divergence between
infinitely close trajectories in phase space. The positive Lyapunov exponent determines
that the attractor has a chaotic behaviour. In this study, we use the method proposed by
Rosenstein, Collins & De Luca (1993) to calculate A1, which is robust to changes in the
embedding dimension, the size of the data and the reconstruction delay. Here the largest
Lyapunov exponent can be calculated as a least-square fit to the line defined by

1
(i) = E(ln d;(i)), 4.1)

where d;(i) is the distance of the jth pair of nearest neighbours, as a function of subsequent
time steps. The angle brackets represent the averaging process over all the values of j.
Figure 22 shows the plots of the average divergence rate of instantaneous velocity
components at different wall distances using the three sizes of latent space. As shown in
the figure, by using the smallest latent space, the plots show a noticeable deviation from the
results obtained from the DNS data which results in noticeably different largest Lyapunov
exponent values, whereas the plots obtained from the predicted velocity components using
the latent spaces of size = 512 and 2048 show a similar trend with Lyapunov exponent
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Figure 22. Plots of the average divergence rate of instantaneous velocity components at Re; = 180 using the
three sizes of latent space (128, 512 and 2048). (a) Streamwise velocity. (b) Wall-normal velocity. (¢) Spanwise
velocity.

values close to those obtained from the DNS data. These results indicate that the presented
PGDL model with a latent space of size 512 can successfully model the dynamics of the
flow parameters with commendable accuracy.

5. Transfer learning and computational cost

The availability of the training data and the computational cost represented by the training
time are crucial factors in deep-learning-based models. One of the approaches that can
remarkably help in reducing the amount of training data and the time required for training
is applying TL. Transfer learning is a technique that allows reusing the weights of a
pretrained model for training another model rather than initialising the model with random
values of the weights.

Guastoni et al. (2021) reported the possibility of applying TL to a CNN-based model
used to predict the flow fields of turbulent channel flow from wall quantities at Re; = 180
and 550. We recently (Yousif, Yu & Lim 2021) showed that TL can effectively help in
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Figure 23. Profiles of RMSE for the predicted velocity components and pressure at Re; = 550 without and
with TL using different percentages of the full training data. (a) Streamwise velocity. (b) Wall-normal velocity.
(c) Spanwise velocity. (d) Pressure.

decreasing the amount of the training data and training time by applying it to a GAN-based
model used for reconstructing high-resolution velocity fields of turbulent channel flow at
Re; = 180 and 550 from extremely low-resolution data.

In this study, the TL approach is further extended to be applied to both the spatial
mapping represented by the MSCgp-AE and the temporal mapping represented by the
LSTM model by means of initialising the PGDL model of the flow at Re; = 550 with the
weights obtained from training the model on data of the flow at Re; = 180.

Here the learning rate is reduced by a factor of 20 % to prevent the optimiser from
rapidly diverging from the initialised weights. The RMSE for the PGDL model output
using TL with different percentages of the full training data is plotted against the range of
the wall distance in figure 23. It can be observed from the figure that by using just 25 % of
the full training data with the aid of TL, the errors for the wall-normal velocity, spanwise
velocity and pressure show values that are similar to those when the model is trained with
the full data without TL for all of the wall distance range. Furthermore, when TL is used,
the error for the streamwise velocity shows lower values for most of the wall distance range
with a noticeable reduction in the values near the wall, regardless of the amount of training
data. This indicates that TL can also improve the performance of the model, considering
the transferred knowledge from the flow at Re; = 180.

Finally, the computational cost of the proposed PGDL model should be noted. The total
number of trainable parameters of the model is approximately 130 million (when a latent
space of size = 512 is used in the MSCgp-AE and three LSTM branches are used in the
LSTM model). The training of the MSCgp-AE on a machine with a single NVIDIA TITAN
RTX graphics processing unit (GPU) requires approximately 20 h, whereas the training of
the LSTM model requires approximately 4 h. Hence, the total training time of the PGDL
model is approximately 24 h.
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MSCsp-AE LSTM model

No. of trainable parameters (million) 49.85 81
Training time (h) without TL 100 % 20 4
with TL100 % 15 4
with TL 50 % 7.6 2.3
with TL 25 % 3.6 1.1

Table 2. Number of trainable parameters and computational cost of the PGDL model.

The computational cost of the model can be remarkably decreased by utilising TL as
reported in table 2. Here the time required for training the model is reduced by a factor of
80 % when 25 % of the full training data are used with TL. These results indicate that TL
is an efficient approach that can be utilised to transfer the knowledge of turbulent flow at
different Reynolds numbers, which can overcome the main drawback of deep learning, i.e.
the amount of training data that are needed to obtain successful training and the time that
is required for the training process.

6. Conclusions

This paper presented an efficient method for generating turbulent inflow conditions using
an MSCgsp-AE and an LSTM model. The physical constraints represented by the gradient
of the flow, Reynolds stress tensor and spectral content were combined with the pixel
information and the features extracted using VGG-19 to form the loss function of the
MSCsp-AE. The PGDL model was trained using DNS data extracted from a plane
normal to the streamwise direction (y—z plane) of turbulent channel flow at Re; = 180 and
550. First, the MSCgp-AE was trained to compress the high-dimensional instantaneous
turbulence to a latent space and then reconstruct the flow fields with the same spatial
resolution of the ground truth data. The LSTM model was subsequently trained to model
the temporal evolution of the latent space. Finally, the predicted low-dimensional data
were decoded using the decoder of the MSCgp-AE to reconstruct the instantaneous flow
fields. The proposed PGDL model accurately reconstructed the instantaneous flow fields
and successfully reproduced the turbulence statistics with commendable accuracy for both
Re; = 180 and 550. Furthermore, the spectra of the velocity components were favourably
reproduced by the model, with a slight deviation from the spectra obtained from the DNS
data at high wavenumbers for the flow at Re; = 180 and this deviation increased for the
flow at Re; = 550.

The examination of each loss-term effect in the MSCgsp-AE loss function revealed that
each loss term can improve the performance of the MSCgsp-AE in a certain direction.
The use of the subpixel convolution layer showed a remarkable improvement in the
performance of the MSCgp-AE in terms of the resolution of the flow fields compared
with the use of the equivalent convolution and upsampling layers. The LSTM model
performance was also investigated in terms of the effect of the number of branches. The
results showed that a number of three branches can be optimum in terms of prediction
accuracy and computational cost. The ability of the PGDL model to model the flow
dynamics using different latent space sizes was examined through the RMSE of the
predicted flow and Lyapunov exponent. Here the model was able to model the flow
dynamics using a latent space of size = 512 with well-accepted precision.
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Furthermore, the possibility of performing TL using different amounts of training data
was examined by using the weights of the model trained on data of the flow at Re; = 180
to initialise the weights for training the model with data of the flow at Re; = 550. The
results revealed that by using only 25 % of the full training data, the time required for
successful training can be reduced by a factor of approximately 80 % with a noticeable
decrease in the RMSE values for the streamwise velocity component compared with the
values when the full data were used without TL.

The results obtained from the present study suggest that the proposed model is efficient
in terms of accuracy and computational cost. The present study showed that CNN has
the capability to deal with the spatial mapping of turbulent flow fields; with the aid
of a suitable physics-based loss function, CNN-based models can serve as an efficient
data-driven method that can be utilised in the turbulence research area.
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