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Abstract. We define a new property of a Borel group action on a Lebesgue measure
space, which we call approximate transitivity. Our main results are (i) a type III,
hyperfinite factor is ITPFI if and only if its flow of weights is approximately transitive,
and (ii) for ergodic transformations preserving a finite measure, approximate transi-
tivity implies zero entropy.

0. Introduction

von Neumann algebras are the non-commutative analogue of measure theory spaces.
The product measures of measures on finite sets give rise to a class of factors called
ITPFI factors (see terminology). However, in the classification problem the most
natural class turned out to be the approximately type I factors [4] (those factors
which are well-approximated by finite-dimensional ones - see terminology). It is
trivial that ITPFI implies approximately type I, but the converse is false and
non-trivial [12], [2], [6]. (Since all non-atomic standard Borel measures are Borel
isomorphic, the corresponding problem does not arise in measure theory.) The
ITPFI factors are certainly the most natural subclass of the approximately type 1
factors. Their exact position among the approximately type I factors (up to isomorph-
ism of factors) has remained an interesting mystery for some time. In particular,
there is still no direct spatial construction of a non-ITPFI approximately type 1
factor. The crucial existential step is always carried out in the flow of weights (an
ergodic flow which is naturally defined as an invariant of the factor). The problem
only arises for factors of type III; or III,. The known examples of non-ITPFI
approximately type I factors are all of type Ill, In this paper we completely
characterize the ITPFI factors among the type 111, approximately type I factors by
a new ergodic property of their complete invariant, the flow of weights, which we
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call approximate transitivity. Of course this transfers the original problem to under-
standing approximate transitivity for ergodic flows. Our second major result is that
for finite measure preserving flows, approximate transitivity implies zero entropy.

Approximate transitivity is a new and apparently interesting notion in ergodic
theory. Our proof that ITPFI implies approximate transitivity is rather straightfor-
ward (lemma 8.1) and is, in fact, how this property was discovered. Our proof of
the converse is of particular interest because it is obtained by attempting directly
to ‘invert the flow of weights arrow’. The argument is quite similar to the Murray-von
Neumann proof of the uniqueness of the hyperfinite 1I, factor [15]. They embed a
finite-dimensional algebra in a finite type I factor in a very precise manner relative
to the trace. For type Il factors no trace exists and, instead of only comparing
minimal projections inside the finite-dimensional algebra, we compare such minimal
projections together with the restriction of a state to these projections. This com-
parison directly yields measure theoretical objects on the flow of weights, and (except
in the III, case) is non-trivial even though the comparison of projections is trivial.
Our paper is intended to illustrate this technique. In fact an alternate proof of
Krieger’s theorem, not using the cohomological technique of Krieger, can be based
on the original Murray-von Neumann proof of the uniqueness of the hyperfinite
I1, together with the above refined comparison of projections. (Krieger’s theorem
[13] states, in part, that the flow of weights considered as a mapping from type 11,
Krieger factors with algebraic isomorphism as the equivalence relation, to strictly
ergodic flows with conjugacy as the equivalence relation, is one-to-one and onto
between equivalence classes.)

It is easy to translate our proof to the purely ergodic setting of non-singular
transformations. Our result would then follow from Krieger’s theorem (our proof
does not use Krieger’s theorem). However, as mentioned above, part of our goal
was to exhibit the flow of weights as a useful technique. Indeed we present more
of the comparison theory of finite weights than is needed for our proof.

§ 1 contains some terminology. In § 2 we define approximate transitivity (hereafter
referred to as AT) for Borel group actions and give some elementary properties. In
§ 3 we prove that for finite measure preserving transformations, AT implies zero
entropy. In § 4 we give three different constructions of the flow of weights which
will be used later. § 5 contains a comparison theory for finite periodic weights, and
§ 6 gives the comparison theory for finite (not necessarily periodic) weights. In § 7
we introduce a ‘product property’ which is equivalent to being ITPFI. In § 8 we
prove the equivalence of the ITPFI and AT properties.

1. Terminology
A von Neumann algebra M is said to be approximately type 1 if it is of the form

where M, < M,,, for each n, and each M, is a finite-dimensional matrix algebra
(the names approximately finite, hyperfinite, approximately finite dimensional, and
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matricial have all been used in the literature for this concept). A factor M is said
to be ITPFI if it is of the form M =®‘:,°=, (M, ¢,,) where each M, is a finite type
I factor ([1],[21]). A factor M is called a Krieger factor if it can be obtained from
an ergodic action of Z by the Murray-von Neumann group measure space construc-
tion. (It is straightforward that ITPFI=>Krieger=>approximately type 1.)

For a detailed explanation of the following standard terminology see, for example
[20]. The term weight always means a normal semi-finite weight. If ¢ is a weight
on the von Neumann algebra M then o is the modular automorphism group. The
invariant T(M) is the set of all ¢ such that ¢? is inner. M, denotes the predual of
M, and My is then the set of all finite weights. If ¢ € M} then s(¢) denotes the
support of ¢. The flow of weights of M is an ergodic action of R* on some measure
space (X, pa). The construction of [5] gives not that measure space, but the
measure algebra whose elements are equivalence classes [®] of integrable weights
® of infinite multiplicity. The flow is then defined by F./[®]=[t®]. It is sometimes
convenient to consider the flow as an action of R, in which case it is written FM = ¥
(if M is understood, it is usually omitted).

If f is a function on a measure space (X, w) then | f]] denotes the L'-norm of f.
If u, v are finite measures on X then || — »|| is the L'-norm defined by ||du/do —
dv/do| where u, v<o. If x is a finite weight or operator then | x| denotes the
usual norm.

2. AT actions-elementary properties
We define approximate transitivity of a Borel group action on a Lebesgue measure
space, and establish some elementary properties.

Definition 2.1. Let G be a Borel group, (X, v) a Lebesgue measure space, and
a: G- Aut (X, v) a Borel homomorphism. We say that the action is approximately

transitive (AT) if given n <oo, finite measures pu,, ..., g, < v, and &£ >0, there exists
a finite measure w <v, g;,...,8» € G for some m<oo, and Ay =0, k=1,..., m
such that

p.j—kz Apag ull < e, j=1,...,n 2.1)
gl

If G=7Z and « is AT, then we say that T=a(1) is AT.

Remark 2.2. There are a number of elementary variations on this definition.

(i) The index k need not be restricted to a finite set. Typically we will take ke Z
and consider A, as a function A; € €4(Z).

(ii) One can demand that ||u||=1 and | A=Y, A= |-

(iii) By taking ||u| sufficiently small, one can take the A; to be integers.

(iv) It is sufficient to ask that eq. (2.1) hold for n=2. (If u' approximates
M, -« ., Mn-y in the sense of eq. (2.1), choose u to approximate ' and u,).

(v) For continuous actions of a locally compact group, the A; can be replaced
by functions A; € L}(G, dg) such that

=g, j=1,...,n (2.2)

M~ IG dg Aj(g)agl"
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To show that eq. (2.2) implies eq. (2.1), approximate the A;(g) by simple functions.
To prove the converse, write the sum as an integral over delta functions 6(gg;'))\,-k
and then approximate by functions in L\(G, dg).

(vi) The equation h = do/dv gives a one-to-one correspondence between func-
tions he LY(X, v) and finite measures o < v. We have

d(a,o)/dv = pa,(do/dv),
where p, = d(a,v)/dv. Then
(B )(x)=f(g™"'x)py(x) (2.3)
defines a homomorphism 8 from G into the invertible isometries on L'(X, »). It is

therefore equivalent to ask that for any f,,..., f,€ LL(X, v) and £> 0, there exist
feLi(X,v), gi,---,8n€ G and Ay =0 such that

fi= Z AiBo S j=lL...,n (2.4)

If a,v=v for all ge G, then B =a.

LEMMA 2.3. An AT action is ergodic.

Proof. Let B< X, v(B)>0, »(X\\B)>0, and «,B = B for all ge G. Choose B,< B
and B,< X\ B such that 0<w(B;)<o0, j=1,2. Let u;=v|s. Then eq. (2.1) for
j=2 implies that u(B) <e. If ¢ <iv(B,) this contradicts eq. (2.1) for j=1. O

Remark 2.4. Let (X, B, v, G, a) be a Borel group action, v(X)<co. Let %, be a
sub-o-algebra of the o-algebra % of Borel subsets of X, such that a,%,= %, for
all g e G. Then the restriction (X, By, v, G, ) is called a factor action of the given
action. If o is any finite measure on (X, B) we have ||o| (xa,= || xs) Hence
any factor action of an AT action is again AT.

The base and ceiling function construction of a flow is particularly useful when the
ceiling function is constant. In this situation one naturally expects that the flow will
have a certain property if and only if the base transformation has the corresponding
property.

LemMa 2.5. Let (X, v, F;) be a flow built over the base transformation (B, vg, T)
with a ceiling function with constant height H. Then F; is AT if and only if T is AT.

Proof. We can write X = BXI where the interval I=[0, H) carries Lebesgue
measure. We have

F,(b,t)=(T"b, u), (2.5)
where st+t=nH+u, neZ, 0<u<H.

Assume that T is AT. Let p, ..., p, < ¥, u;{X) <00, and € > 0. Since rectangles
generate the measure algebra, it follows by a straighforward but tedious argument
that one can approximate the u; by a sum of product measures. More precisely,
there exists an integer L and measures wy, k=0,..., L—1 on B such that

L1

l“’j—kz /‘ijxmk <£’ j:1,"'an (2'6)
=0
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where m, is the restriction of Lebesgue measure to the interval L,=
[kH/L,(k+1)H/L). Since T is AT there exist o5 < vg and Ay € €(Z) such that

i — 2 Ap(q)Tiop <eL™\ 2.7)
qeZ
Define
o=0XmM, (2.8)
and
A(gL+ k)= Au(q), qeZ,k=0,..., L—1. 2.9)
Then
L-1
wi— Y A Fy ol <e+ ¥ (:u’jkxek— 2 Aj(")Frl-I/LO')
reZ k=0 reZ BxI;
L-1
=e+ Y lup— 2 Aw(qg)Tiog|| <2e. (2.10)
k=0 qeZ

Thus F, is AT.

Now assume that F, is AT. Let u,,..., s, <vp u;(B)=1, and 0<e<j.
Let J, =[kH/6,(k+1)H/6), k=0,1,...,5, and let m* denote the restriction of
Lebesgue measure to J;. Let

G=pxm’,  j=1,...,n 2.1
Then there exist w < v, |u||=1 and A;€ €1(Z), ||A;]| =1, and s, €R, ke Z such that

wi— 2 A(k)F | <e/6, j=1,...,n (2.12)
keZ
In particular we have
( z A,-(k)Fsku) <e/6. (2.13)
keZ BxJ}

In order to produce the desired measure o on B and A;e€ €.(Z) it is necessary to
restrict the supports of A; and u somewhat. Since ||| =1 there is some 0= K <5
such that

”MleJK ”Z%- (2.14)

By shifting the s, and shifting u under F, (if necessary) we can assume that K =4.
Let

Y={keZ:0=s,<iH (mod H)}. (2.15)

Then k¢ Y implies that (F, (u|gx;,))(B XJ3) =0. It now follows from egs. (2.13)
and (2.14) that

Y A(k)<e, (2.16)
keyY
and thus
Y A(k)>1~¢, j=1,...,n (2.17)

keY
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Write u = u'+u” where
(2.18)

2
" __
p'=3 p .
k=0 BxJy

If ke Y then (F, u")(B xJ;)}=0, and egs. (2.13) and (2.17) imply that
[l <(1-¢)"'e/6<3e. (2.19)
Egs. (2.17) and (2.19) imply that

<3e. (2.20)

L A(k)Fopu—~ Y A(k)Fop'
keZ keY

Let P,o denote the canonical projection of the finite measure o on X = BxI onto

B. We have
Pyji;=(H/6)p, (2.21)
and
P F,u'=T"(P,u') (2.22)
if s, € Y, where
Y,={ke Y:pH=s5,<(p+3)H}. (2.23)
(It is eq. (2.22) that depends crucially on the support properties.) Let
Ai(p)= kZY A (k). (2.24)
Since P, is norm decreasing, eqs. (2.12), (2.20) and (2.21)-(2.24) give
pi— Y A(p)TPo|| <8H g, (2.25)
peZ
where 0 =6H 'P,u’". O

The tower construction of a single transformation (see for example [9]) is the
analogue of the base and ceiling function construction of a flow.

CoOROLLARY 2.6. Let the transformation (X, v, S) be constructed as a tower over
(B, v, T) with constant height H. Then S is AT if and only if T is AT.

Proof. The flow F; built over (X, », S) with constant height one is obviously a
flow built over (B, vg, T) with constant height H. The result now follows from
lemma 2.5. O

Recall that a finite measure preserving transformation is said to have rank one if
there is a sequence of Rohlin towers which approximate the measure algebra. More
precisely one asks that given f;, ..., f, € L'(x, v) and £ > 0, there exist Bc X, m <o,
and Ay €R such that B, TB,..., T"B are disjoint and

<e, j=1,...,n (2.26)

f;' - Z AijT"B
k=0

(Note that if f;=0 we can require that Ay =0.) A slightly weaker condition, called
Junny rank one, is obtained by replacing the sequence B, TB,..., T"B by the sets
T™B, T"B, ..., T"B where {n;} is an arbitrary sequence (depending on f,,..., f,
and &}.
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LEMMA 2.7. Given (X, T, v) with Tv = v, v(X) = 1. Then funny rank one implies AT.

Proof. Tt is convenient here to use the AT condition on functions in LL(X, ») (see
remark 2.2 (iv)). Let f1, ..., f. € LL(X, »), € > 0. Then there exist B < X, a sequence
{nk}k___o ‘‘‘‘‘ m and /\jk SUCh that

f} - kz AijT"kB > €. (227)
=1
Let
A if A =0,
}k={ e (2.28)
0 if Ay <O0.
Since the T"«B are disjoint, we have
16=Z AT ™Al =fi-X AuT ™f], (2.29)
where f= yg. (]
CoRrOLLARY 2.8. If (X, T, v) has pure point spectrum then T is AT.
Proof. Pure point spectrum implies rank one [11]. 0

COROLLARY 2.9. A pure point spectrum flow is AT.

Proof. Such a flow can be built over a pure point base transformation with a constant
ceiling function. The result now folllows from corollary 2.8 and lemma 2.5. O

It is also known that certain diffeomorphisms of the circle are AT [10].

3. AT transformations and entropy
In this section we prove that if (X, u, T) is a finite measure preserving transformation,
then AT implies that T has zero entropy (theorem 3.5).

In ahalyzing the implications of the AT condition one immediately observes that
an expression of the form

T(A)f =YX AT, 3.1)

where A €€4(Z) and fe LL.(X, ), is in effect a convolution, and ‘convolutions
spread functions out’. This spreading can present some difficulties when one tries
to satisfy the AT condition for functions f, = xa,, f> = xa, Where A,, A,< X. In order
to give a precise meaning to the idea that T(A)f is ‘less concentrated’ than f, we
define upper and lower truncations of L' functions (definition 3.1). The upper
truncation is used to measure the concentration of f (see eq. (3.5)), and lemma 3.2
then gives a precise meaning to the statement that convolutions spread. We give a
‘spectral analysis’ of L' functions, which allows one to handle the difficulties that
arise in an argument when L' functions take on either very large or very small values.

Lemmas 3.3 and 3.4 are technical lemmas required for the proof of theorem 3.5.
(Hint: read the proof of theorem 3.5 before reading lemmas 3.3 and 3.4.) The basic
idea of the argument is as follows. One applies the AT condition to f; = x4 for some
Ac X, a second function f,, and some &>0. This gives functions A;, A, and f
satisfying || T(A,)f—fill=<e, i=1,2. Since convolutions spread, choosing f, very
concentrated relative to the set A forces f to be very concentrated relative to f,.
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This in turn forces A, to be very ‘spread out’ (lemma 3.3). However A, being very
spread out makes it difficult to keep the support of T(A,)f close to A, which it must
approximate, and simultaneously to keep T(A;)f small on A, In particular, when
the partition (A, X\ A) moves independently under T, this becomes impossible
(theorem 3.5). In order to make this argument precise, one must replace A, and f
by functions A = A, and g = f with better support properties. This is done in lemma
3.4 by a technical application of the spectral analysis for L' functions. The condition
that T(A)g be small on A° then forces the support of T(A)g to be too small to
approximate A. In particular, the proof seems somewhat stronger than the statement
of the theorem. It suffices that ku(B)—=0 (see egs. (3.30), (3.31), (3.41), (3.42),
(3.52), (3.53)).

Let (X, u) be a Lebesgue measure space. Then (X, w) is isomorphic to Lebesgue
measure on [0, 1]. Let fe LL(X, n). Then one can choose the isomorphism so that
the (transformed) function f is monotone decreasing. The upper (resp. lower)
truncation of f is a function whose graph is identical to the graph of f, except that
the upper left hand corner (resp. lower right hand corner) has been ‘chopped off’.
More precisely we have:

Definition 3.1. Let fe LL(X, u), a>0. We define the upper truncation of f at a by

w2 iffx)=a,
fH(x) { . iff(x)>a (3.2)
and the lower truncation of f at a by
_Jfx)y  if(x)=za,
f[a](x)- {0 iff(x)<a, (33)

The continuity of upper truncations is expressed by the condition
If-gl=e=l1"-g"=<e, (3.4)
which follows immediately from eq. (3.2). It should be noted that eq. (3.4) does

not hold for lower truncations.
Consider the inequality

1= 0= -, (3.5)
where a, n>0. If 5 is small compared to || f||, this inequality forces most of the
contribution to the L' norm of f to come from that part of the graph of f lying
above a. If in addition a is large compared to | f], it then forces most of f (in the
sense of L' norm) to be supported on a set of small measure. It can therefore be
used as a measure of the ‘concentration’ of a function. The following lemma now
gives a precise meaning to the statement that ‘convolutions spread’.

LemMma 3.2. Given (X, u, T), A€€4(Z), A =1, and fe L\(X, 1), then

ITOf = (TN = |l f . (3.6)
Proof. If f;, ¥ A;f;€ Li(X, p) then it follows directly from eq. (3.2) that
E L) = LI (). (3.7)

Since || f =N = 1A= 1Y, and | T(A)f] = | 1, eq. (3.6) follows immediately. (O]
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We now proceed to the spectral analysis of L' functions. This analysis is, in effect,
a consequence of considering [ fdu in terms of horizontal slices of the graph of f.
Let fe LY(X, u). For each a >0 we define a function E,(f) on X by

1 if f(x)=a.

(Eu(N)(x)= {O )< (3.8)
;’\: g;ﬁne a measure »; on R, absolutely continuous with respect to Lebsgue measure
(dvy/da)(a) = I E,(f) dp. (3.9)
It follows that a.e. we have
f(x)=Jw(Ea(f))(X) da=Iw EL(f) dv(a), (3.10)
where 0 0
0 iija(f) dp =0,
El(f)= i (3.11)
E.(f) [ J E.(f) d,;] otherwise.
We then have
”f”zjlfd/-":Jde d,uE;(f)=Jdv,, (3.12)
If=rt= wdvf(a’), (3.13)
and a
1 ~sial= [ "o (3.14)

(Equality in eq. (3.14) holds only when f =0.) These equations indicate the signifi-
cance of the measure vy

LEmMA 3.3. Given (X, u, T), wo T=p, fie LA(X, u), | fill =1 and £ > 0, then there
exists fye Ly(X, n), | foll =1, such that for any fe L\(X, w), | fl=1, and A,, A, €
€4(Z), IMl=1, 2]l =1 satisfying

TN ~fillse,  i=1,2 (3.15)
we have
SupA;;=6e. (3.16)
jeZ

Proof. The proof of this lemma consists of a long sequence of inequalities. Neverthe-
less it is a completely straightforward and obvious application of the above ideas.
Choose a <0 such that

IAi-fil=e (3.17)
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Choose fre€ LL(X, u), | £2 =1, such that

A= =1~ (3.18)
It follows from egs. (3.4) and (3.15) that
175 = (T <. (3.19)
Egs. (3.15), (3.18) and (3.19) give
1T} = (TN =136, (3.20)
Eq. (3.20) and lemma 3.2 give
If=rl=" Y =1-3e (3.21)
Let
A={x:f(x)=ac"'}. (3.22)
Since || f]l=1 we have
w(A)=a's. (3.23)

Eq. (3.15) gives for each jeZ,

ez|fi-X Alejf“ EJ' A x Alejf‘fl) du

-
= J ATf~1) du. (3.24)
TA
Egs. (3.21) and (3.22) give
T7'A

Eqgs. (3.17) and (3.23) give

J fidu=2e. (3.26)
T7A
Eqgs. (3.24)-(3.26) give (1 ~3¢)A,; =3¢ and hence

Ay =3e(1+1,,)=<6e 0

Since convolutions preserve L' norms and | f| =1, it follows from eq. (3.15) that
Al = ||fi]] — & Thus if £ is very small, eq. (3.16) forces the support of A, to be very

large.
LEMMA 3.4. Given (X, pu, T), Ac X, fe LL.(X, n), A,€€%(Z) and € >0 such that
| T(AD)Sf —xall=e, (3.27)
then there exist ge LY(X, u), A € €.(Z) such that
I/ - gll=4e?, (3.28)
A=Al =e2, (3.29)
and
u(S)=ku(B), (3.30)
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where S is the support of T(A)g, k is the number of elements in the support K of A, and

B={xeX: Kty XAc(zj)<4l}. (3.31)
JjeK
Proof. Eq. (3.27) implies that
J T(A)fdu=e. (3.32)
Ac
It follows from eq. (3.10) that
T(Ay) =J dv, (a) T(E,(A))). (3.33)
Let
pla)= I T(E.(A))f dp. (3.34)
Ac
Egs. (3.32)-(3.34) give
j dv,(a)p(a) =<, (3.35)
and hence
nfa: p(a)> 5%} < gl (3.36)
It follows from egs. (3.34)-(3.36) that there exists b >0 such that
p(b)<et (3.37)
and
b 1
J' dv, (a)= e (3.38)
0

It follows that A = (i), satisfies eq. (3.29). Since K is also the support of E,(A),
eq. (3.37) becomes

e%zj duk™' Y Tf=k' ¥ J duf
Ac T—IAC

jekK jekK
=J dp [k_' % XAC(zj)]f(x)- (3.39)
x jek
Egs. (3.31) and (3.39) give
j du f=<4el. (3.40)
BC
It follows that g(x) = xs(x)f(x) satisfies eq. (3.28). Eq. (3.30) is satisfied by construc-

tion. O

THEOREM 3.5. Let (X, u, T) be an AT transformation, u(X)=1, and po T = p.
Then the entropy h(T)=0.

Proof. Assume that h(T)>0. By a well-known result of Sinai there is a partition
{A, A°} of X that moves independently under T (see for example [18, p. 43]). We
can assume that 0<u(A) =<3 Consider the set B given by lemma 3.4 (where ¢, f,
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and A, will be chosen below). Then u(B) depends only on the number k of elements
in K, and can be calculated directly from the binomial coefficients. Since the special
case u(A) =3 dominates, one easily obtains the inequality

w(B)<27% (3.41)
Choose k, sufficiently large that
ko2 R =1u(A), (3.42)
and choose ¢ > 0 sufficiently small that
e+5et=lu(A) (3.43)
and
12eko= pu(A). (3.44)

Now let fi(x) = xa(x). By lemma 3.3 there exists f€ LL(X, u), ||£2]| =1, such that
eq. (3.16) is satisfied. Since T is AT there exists fe LL(X, u), [[fl =1 and A,, A,€
¢4(2), x| =1, such that
ITA)f-fill<e, i=12. (3.45)
By lemma 3.4 there exist A and g = ygf satisfying egs. (3.28)~(3.30). Egs. (3.28)-
(3.29) and (3.43) give
IT(A)g = xall =3p(A), (3.46)
and hence
n(S)=3u(A), (3.47)
where S is the support of T(A)g. Since ||g|| = [|f|| =1 and convolutions preserve L'
norms, it alsq follows from eq. (3.46) that

Al =34(A). (3.48)
Since A = (A,)p3, €q. (3.16) implies that we also have
sug A(j)=6e. (3.49)
Eqgs. (3.48)-(3.49) give I
6ek=1u(A), (3.50)
where k is the number of elements in the support K of A. Eqs. (3.44) and (3.50) give
k= k. (3.51)
Egs. (3.51), (3.41) and (3.42) give
ku(B) <3u(A). (3.52)
Eq. (3.30), which was obtained from the requirement that T(A,)f is small on AS,
now gives
n(S) <3u(A) (3.53)
which contradicts eq. (3.47). O

4. Constructions of the flow of weights
In order to make our exposition reasonably self-contained, we give here three
different constructions of the flow of weights, each of which will be used at some
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point in our argument. We also construct some measures on the resulting spaces.
For the proofs of all statements in this section, see [5].
Discrete construction. Let M be a type IlI, factor acting on the Hilbert space H,
with Te T(M), T>0. (If T(M)={0} one is then forced to use one of the following
two constructions.) Let ¢ be a faithful state on M, o%=1. Let (e,),.z be the
canonical orthonormal basis for #%(Z), and define
Sen = €nts (41)
Prén = A "e,,, (42)

where ne Z and A =exp (—2m/ T). The equation w,(x) = Trace p,x defines a faithful
semifinite normal weight w, on £(¢%*(Z)). We have

o (S)=piSpi"=A"S, (4.3)

and
w, (SAS*) = Aw, (A). (4.4)

Let
H=¢X2)®H, (4.5)
M=%(4Z)®M, (4.6)
b=, ®¢, (a.7)
S=S®1. (4.8)

Then 0',- =0 ®o? and it follows from eq. (4.3) that the automorphism 6 = Ad S
leaves the centralizer N = M ; invariant. Eqgs. (4.4), (4.7) and (4.8) give

$°0=24. (4.9)

The centre C of N is isomorphic to L™(B, vz) where (B, vg) is a Lebesgue measure
space. 6 then defines an automorphism, which we shall also denote by 6, of (B, vg).
The flow of weights for M is the flow (X, v, F,) built over the base transformation
(B, vg, 8) with a ceiling function of constant height 27/ T. Furthermore

®
N=J N(b) dvg(b), (4.10)

B

where the N(b) are type Il factors. If M is injective then the N(b) are all
(isomorphic to) the unique injective Il factor R, (see [4]). One can then write

@
N=R0’|®LOO(B, VB)=J RO,I dVB(b), (411)
B
and
N ®
¢=T®VB=J 7 dvg(b), (4.12)

where 7 is a trace on Ry, and 7, is a trace on N(b).

We now assign to certain positive operators in N, measures w on B, u < vp. Let

®
A=J A(b) dvg(b)e N, (4.13)

B
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be such that

<5(A)=J 7(A(b)) dvg(b) < 0. (4.14)
B
The equation
pa(c)= $(Ac), ceC (4.15)
defines a finite measure w4 < vg. It follows from egs. (4.14) and (4.15) that
(dua/dvg)(b) = 7,(A(D)). (4.16)

It follows from eq. (4.16) that if, e, f are H-finite projections in N, then u, = pu, if
and only if e~f in N. Since N(b)~ N(b)® R, one can construct families of
projections e,(a)e N(b), a >0 such that
mie(a)) =q, (4.17)
and e,(f(b)) is a vp-measurable family of projections for any fe LY(B, vg). It
follows that every finite measure u < vy occurs as u, for some e, namely
®
e= J. eb(d/.L/dVB) dVB. (418)
B
Continuous construction. Let M be a type 11l factor acting on the Hilbert space H,
¢ a faithful state on M. On L*(R) we define
(V.N()=f(1=s), (4.19)
and
(pf)(1) = e'f(1). (4.20)
The equation w(x)=Trace px defines a faithful semifinite normal weight » on
£(L*(R)). We have

or(V)=e ™V, (4.21)

and
w(VAV¥) =e'w(A). (4.22)

Let
H=I*R)®H, (4.23)
M=%(L*R)®M, (4.24)
6=0®d, (4.25)
W,=V.®1. (4.26)

Then 6,N8;'= N where N = M and 6, = Ad W,. We have

®

N =J' N(x) dv(x), (4.27)
). ¢

where the N(x) are type Il factors, and the centre C of N is isomorphic to

L¥(X, v) where (X, v) is a Lebesgue measure space. The automorphisms 6, define

a flow F, on (X, ») which is the flow of weights for M. If M is injective then
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N(x)~ Ry, [4], and one can write

@
N = R0’1®Lw(X, V) = J RO,I dV(x) (4.28)
X
and
®
d=7®v=J Tdv (4.29)
where 7 is a trace on R, ;.

The construction of measures in the continuous construction is quite analogous
to the discrete case, except that they occur on the flow space X rather than the base

space B. Let
@
A= j A(x) dv(x)e N, (4.30)
X
be such that
o(A)= I 7.(A(x)) dv(x) <o, (4.31)
X
Then the equation
ralc)=w(Ac), ceC (4.32)
defines a finite measure w4 < v such that
(dpa/dv)(x) = 7,(A(x)). (4.33)

If e, f are w-finite projections in N, then u, = u, if and only if e~f in N. As in
the discrete case, every finite measure w < v occurs as u, for some projection e. We
shall need the following lemma.

LemMMA 4.1. Let (Y, o) be a measure space, and let e, be a o-measurable family of
w@-finite positive operators in N such that

e=J e, do(y) (434)
is w-finite. Then
Be= L e, do (). (4.35)
Proof. We have
®
e= J. e(x) dv(x) (4.36)
and
<]
e, = J e, dv(x). (4.37)
X
Egs. (4.34), (4.36) and (4.37) imply that
e(x) =J e,(x) do(y) (a.e. v). (4.38)
Eq. (4.38) implies eq. (4.35). O
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Lacunary construction. Let M be a factor of type IIl,, ¢ a faithful lacunary weight
of infinite multiplicity on M (lacunary means that 1 is an isolated point in Sp A,).
Then
®
M, = J M(b) dvg(b), (4.39)

B
where the M(b) are type Il factors, and the centre C, of the centralizer M, is
isomorphic to L*(B, vg) where (B, vg) is a Lebesgue measure space. If M is injective
then M(b)~ R,,. There exists pe C4, 0<p=A, for some A,<1, and a unitary
U € M such that

d(UxU*) = ¢(px), xeM, (4.40)
M ={M,, U}", (4.41)

and
UM U* =M, (4.42)

Then #= Ad U defines an automorphism, which we also denote by 6, of (B, vg).
The flow of weights for M is the flow (X, », %, s €R¥) built over (B, v, 0) with
the ceiling function p, where

X ={(b,t): be B,1=1t> p(b)} (4.43)

and F.(b, 1) =(b, e °1)if 1= e °t> p(b) with the obvious extension to other values
of s.

We again construct certain measures on the flow space X. Let ¢y € M. Then there
exists h € M, such that s(h)p <h =1, 1 — h is non-singular, and there exists a unitary
u€ M such that

(x) = ¢(hE (uxu™*)), (4.44)
where E is the conditional expectation from M onto M,. We have
h= Jea h, dvg(b) (4.45)
B
where s(h,)p(b)=<h,=<1. Let fe L™(X, v). Then the operator
hf(h) = E) hy fo(hy) dve(b), (4.46)

where f, (1) =f(b, t), is well-defined. The equation
ro(f) = ¢ (hf(h)) (4.47)

defines a measure u, on the flow space X (which we will sometimes write as wy,).
(Egs. (4.47) and (4.32) are related as follows. Let ¢y =@,, ec M;. Then u, =pu,.)
Some terminology is helpful at this point.

Definition 4.2. Let (X, v, F,) be a flow. We call the measure w on X smooth if u <,
and smoothable if

f*,U~=J dtf(t)Fu (4.48)

—00

is smooth for all fe LL(R, dt).
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The finite weight ¢ is integrable if and only if w, is smooth. The smoothable
measures are precisely the measures of the form | u, dvg(b) with respect to some
base and ceiling function construction of the flow. It is then obvious from egs.
(4.45)-(4.47) that given any smoothable measure u, one can choose h,, be B so
that ¢(hf(h))=u(f), fe L*(X, v). Le. every smoothable measure u is of the form
wy for some e M.

5. Comparison of finite periodic weights

Let M be a type III, factor with Te T(M) for some 0< T <00, and let ¢ be a
faithful state on M, o%=1. Let A, M, ¢, S, M 3, C, 6, B, v be as in egs. (4.1)-(4.12).
To each finite weight ¢ € M + (see definition 5.1) we associate a finite measure u,,
on B, u, < vz We establish a number of properties of the map ¢ - u,. In particular
lemmas 5.7, 5.8 and 5.9 are required for the proof that AT implies ITPFI in the
discrete case T(M) # {0} (see lemma 8.2).

If ¢ is a weight on M such that 0% =1, then (Dy: D$)r = e“*s(¢) where 0= a <
2m, and (Dy: Do), t€R is the cocyle Radon-Nikodym derivative (see [5, pp. 478-
479]). The weight 8 = y@® ¢ will satisfy %=1 if and only if @ =0. Note that for
B >0 we have

(D(BY): D$)r =B (Dy: D)1, (5.1)
so that for some A <8 =1 we have (D(B¢): Do)+ = s(¢).
Definition 5.1. Let w be a faithful weight on the von Neumann algebra o such that
g% =1 for some 0< T<oo. Then # denotes the set of all finite weights ¢ on &
such that (Dy: D)+ = s(). If u is a partial isometry in & with uu* € o, then the
equation (x) = w(uxu*), xc o, defines a weight  with support u*u. We write
V=w,
Definition 5.2. Let w and ¢ be weights on a von Neumann algebra &/. We say that
w and ¢ are equivalent and write w ~ ¢ if there exists a partial isometry u € &f such
that uu™* =s(w), u*u=s(¢) and ¢ = w,.
LEmMMA 5.3. Let M, T, ¢, M, d; be as above. Let § € M 5. Then there exists a projection
ec 1\71,,; such that  ~ d;e. If e, f are projections in 1\714; then $e ~¢sifand only ife~f
in M.
Proof. The assertion ¢, ~ d;f if and only if e~ f in 1\714; is lemma 1.4(d) of [5]. To
prove the first assertion, consider the weight 8 defined on P= M ® F, by

9 (él xi,@e,.j) = G (x1y) + P (x0). (5.2)
From ([2, lemma 1.2.2]) and ([5, pp. 478-9]) we have
ol (x®e) = 0¥ (x)®ey, (5.3)
ol (s(P)®ey) =u ey, (5.4)
and
al(xQeyp) =¥ (x)Dey (5.5)

for all x€ M, where u, =(Dy: Dd;),, teR. By [5, lemma 1.4(b)]) we have l/l"'d;e
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for some e if and only if
s(P)@en<1®e (Py), (5.6)

(i.e. s(¢)®e,, is equivalent in the centralizer P, to a sub-projection of 1®e,,).
Since M ; is properly infinite (see eq. (4.10)), there exist projections g€ M & Jjel
such that g;e, =0if j # k, ¢, ~ e, and I ¢; = 1. It follows from eq. (5.3) that e;® e, € P,,
e®e, ~ex®e(Pp), and hence that 1®e,, =Y, ,¢®e is a properly infinite
projection in P,. Hence to prove eq. (5.6) it suffices to show that given any projection
f=s(y), f#0, fe 1\71.,, there exists y € P, such that

(f®exn)y(1®e,)#0. (5.7)
Since g% =1 it follows from eq. (5.4) that u, is periodic with period T and hence
u =3y uk i2mk/T (5.8)
kez
where .
uP®e,, =—;—_ J dtol(s(P)® ey, ) e 2™/ T (5.9)
Now °
0# 0?(f® €)= 0'?((f® ) (s(¥)®ey))
= fu,®e,, (5.10)
and hence fu'®’# 0 for some K € Z. Eq. (5.9) gives
U ®ey) =™ Ty Re,,. (5.11)
It follows from eq. (4.3) that the unitary S defined by eq. (4.8) satisfies
o?(§)=e 7§, (5.12)
since A" = e 2™/T, Define
y=u®®e) (S *®e,). (5.13)
Egs. (5.11)-(5.13) give o?(y) =y, hence y € P,. Since S is unitary and fu® #0, eq.
(5.7) is satisfied. O

Definition 5.4. Let M, q§ be as above, y € M L. We define the measure u, associated
with ¢ as the measure u. defined by eq. (4.15) where ¢ ~ $e.

LemMMA 5.5. Let ¢, Y€ Mg. Then p,, = p,, if and only if , ~

Proof. The lemma follows immediately from lemma 5.3 and the fact that u, = u, if
and only if e~ f in M ; (see eq. (4.16)). O
LEMMA 5.6. Let Y, Y, € 1\715 be such that s(¢,)s(,) =0. Then pwy 1y, =y, + py,

Proof. Note that eq. (4.16) implies that if e—e,+e2 where e, e, &€ Md,, then
Me = pte, T pie,. By lemma 5.3 we have ¢; = d:,, , J=1,2 where, since Mg & is properly
infinite, we can choose u; and u, such that e,e, =0 where ¢; = u}u; 'I'hen u=u,+u,
is a partlal isometry such that ¢, + ¢, = ¢>,,, and u®*u= e, +e,. Since ¢,, ¢,,. and
¢ ¢e the result follows. O

LemMma 5.7. Let ¢ € Md-,. Let m,,...,m, be measures on B such that p,=
L,-1 u; Then there exist orthogonal projections e, ... ., e, such that s(¢) =Y]_, ¢; and

o, = K
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Proof. Since every u < v occurs as u, for some pe M I (see eq. (4 33)) there exist
mutually orthogonal projections f,,..., f, € M and PlyeeesPn€ mI ¢ such that

s(p)=f; (5.14)

and
My =p,  j=1,...,n. (5.15)
By lemma 5.5 and 5.6, p=Y p;~¢. Hence there is a partial isometry u with
u*u=s(p)=Y f, uwu*=s(y), and ¢y=p, Then e;=uf; are the desired pro-
jections. 0

LEMMA 5.8. Let yc ML, ¢~ &,. Then
Opy = Apa-ty = At g(e)-
Proof. We have u,, = u.. Let ce C;. Using egs. (4.9) and (4.15) we have
(B1,)(c) = (67" (c)) = B(e87'(c))
= (¢ 8)(8(e)c) = Ab(8(€)C) = A g(ey(C). (5.16)
It remains only to prove that u,, = pe-'(.). Let u be a partial isometry in M such
that ¢ = &, and uu* = e. Then
AP)(x) = Ad(uxu*) = (6™ (uxu*)), xeM. (5.17)
Since 8= Ad § we get
(A)(x) = &(Suxu*$*) = 5,(x). (5.18)
But ¢, ~ ¢~ and Suu*S$*=0""(e). 0O
LEMMA 5.9, Let ¢y, € Md,, U, #0, and €>0. Let u,#0 be a finite measure on B,
o< vy Then there exists Y5, € Md, such that
(1) s(¢2)=s(y);
(i) py,= po; and
(iii) ¢y = dall = |y, — peall + &
Froof. Write u,=pu,, and f;=du;/dvg, j=1,2. By a routine argument one can
choose a family of projections e(a)e R, ;, 0< a <00 such that
e(a)e(B)=e(a) ifa<pB (5.19)
and
7(e(a))=a (5.20)
where T is the trace on R, such that d; =r®vp (see eqs. (4.11) and (4.12)). Then
Mj = fe, j=1,2 where

€= J:B e(f;(b)) dvg(b). (5.21)
Let

B, ={b: f(b)> fi(b)}, (5.22)

B_={b: f,(b) < f,(b)}, (5.23)

B, ={b: f2(b) = £i(b)}. (5.24)
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Then
g =e.t+e_+e, (5.25)

where

[S]
€+ = I e(£;(b)) dvg(b) (5.26)

B
etc. Let u be a partial isometry in M such that ¢, = ¢, where uu* = e,, u*u = s(¢,).
Case (i). vg(B,)=vg(B_)=0. Take ¢, =,.

Case (ii). vg(B.), vg(B_)>0. Let @ be a partial isometry in M mapping the
non-zero projection e,, — e,, onto the non-zero projection e,_— e,_. Define ¢, = ¢,

where
U=beter-err T (Bermer ) (5.27)
Then ¢ ~ ¢,, so that u, = u,. Furthermore s(¢) =e,, s(¢,) = u*u=s(y,), and
g2 = vl =1l = &I (5.28)
We have
U= G0=(ber-er.)o = be . - (5.29)

Since |||l = $(f) = us(B) we obtain
o=l <N ber, eI+ ber—enll

= (2= p)(By) + (1 — p2)(B) = {1 — pa. (5.30)
Case (iii). vg(B.)=0, vg(B_)#0. Choose g(b), b€ B such that
0=g(b)=f,(b) (5.31)
and
O<J g(b) dvg(b) <je. (5.32)
B
Let
®
g= J e(g(b)) dvg(b). (5.33)
B
Let w be a partial isometry in M such that w*w = g, ww* = e, — e,+ g. Define ¢, = ¢,
where
V=gt (dp)o. (5.34)
Then ¢ ~ d;ez so that u,, = u,. Furthermore s(¢) = e, so that s(¢,) = u™u = s(y,), and
2~ vl = 1o — eI (5.35)
Since
‘zel_djzd;.g_‘-(;el—ez_((;g)w (536)
and
el = b(g) =J g(b)dvy <ie (5.37)

we obtain ||, — || = ||y — paf| + &
Case (iv). vg(B,)#0, vg(B_)=0. The argument is similar to case (iii). d
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6. Comparison of finite weights: the general case

We extend the results of § 5 to the general case. This is straightforward except for
lemma 5.9, where we now use the lacunary construction (see lemma 6.4). In this
section M is a type 11l factor, and we follow the notation of § 4.

LEMMAG6.1. Letye My, thenp,, = AF i, If by, Y€ M5, thenh ~ 4, py, = py,
and Kty =My, T By, if s(y)s(y,) =0.

Proof: This is corollary 1.13 (ii) of [5]. O
LEMMA 6.2. Let ye My, wu,=Y"_, u. Then there exist orthogonal projections
e,..., e, such that s(Y)=Y'_ ¢ and y =Y, ., where ., =p;

Proof. Since every smoothable measure occurs as u, for some y (see eq. (4.48) et
seq.) the proof of lemma 5.7 holds verbatim. O

The next lemma is a technical result needed in the proof of lemma 6.4.

LEMMA 6.3. Let oy, 0, be non-atomic measures on I =0, 1],0,(I) = o0,(I)<oo. Let
F(x)=0;([0, x]), and let

Sj={xe I F(y) = F(x) implies y = x},
j=1,2. Then o;(I\S;) =0 and the equation F,(y(x))= F,(x) defines a monotonic
bijection y: S, S, satisfying

1

J Sf(y(1)) doy (1) =J S(1) doy(1)

0
for all fe L'(I, o). Furthermore

1
"0'1_0'2”2L [t —y(1)] doy(1). (6.1)
Proof. To prove eq. (6.1) consider the function f defined by
+1 if t>y(1)
()= 0 if t=1y(1), (6.2)
-1 if t < (1),
and f(0) =0. Since || f|l~=1 we have

o= a2l =)o (f) — a2 (f))
= U L) = f(y ()] do (1)

=I [t —y(t)| doy(2). (6.3)

All other properties are obvious. O

LEMMA 6.4. Let ¢, be a finite integrable weight on M, and let 1, be a smooth measure
on X (i.e. u, <, see definition 4.2). Then there exists y,€ M, such that:

(i) s(2)=s(y);

(i) py,=p,; and

(iii) [l¢) — ol = 5|l s, — pa|l-
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Proof. We use the lacunary state construction of the flow of weights (eqgs. (4.39)-
(4.48)) where we choose the lacunary state ¢ so that 3=p<1. We have

¢1(x) = ¢ (h, E(uxu*)), (6.4)
where h, € M}, so that
® 1g
hl = '[ dVB(b) J‘ tdO'I,b(t), (65)
B p(b)
where we can choose the measures o, , so that for fe L'(X, u,) we have
1
Ih(f)‘—'J de(b)J tf(b, 1) doy (1) (6.6)
B p(b)
where w, = u,,. By the remark following definition 4.2, we can choose measures o
such that
1
)= J dvg(b) j tf(b, t) do, ,(1). (6.7)
B p(b)
We begin by altering the measures slightly so that lemma 6.3 can be used. Let
B, ={be B: g,,([p(b), 1) = 02,,([p()), 1]}, (6.8)
and
B_= B\ B,.. (6.9)
For be B, define t,, =1 and
tip=sup{p(b)=t=1:0,,([p(d), t]) = o2, ([p(b), 1]}, (6.10)
and for be B_ define ¢, , =1 and
Ly =sup{p(b)=t=1:0,,([p(d), 1]) = o\ ,([p(b), 1])}. (6.11)
Define u}, 3 by
(dll'}/d“j)(ba t) = X[p(b),';_h](t)' (612)

Then
ller = il = i (xge, 1)

=vg©° 0'1(X[:L,,,1]) =(vg° oy —vg° d;3)(xs,)

=|vgeo—vgo oyl =2|p—p,, (6.13)
where the last inequality follows from the fact that du;/dvg ° g; =t =3. Similarly
|2 — pdll = 2| ey — peall- (6.14)
We can now write u;=vg° o}, j=1,2 where
ais([p(b), 1) =03 ,4([p(b),1]), beB. (6.15)
By lemma 6.3 there exists a measurable function y(b, t) such that forall fe L'(X, n})
we have
1 1
J y(b, 1)f(b, (b, 1)) doy ,(t) = I tf(b, t) do) p(1), (6.16)
p(b) p(b)
for a.e. be B. We define
® 1g
h;=J' duB(b)J‘ tdo} (1) (6.17)
B p(b)
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® 1g
h§=‘[ dvg(b) I (b, t) doi (1), (6.18)
B p(b)
and
¥j(x)=¢(hjE(uxu*)), j=1,2. (6.19)
Using eq. (6.13) we obtain
=il = (1 = hiD = lliwr — il = 2| 11 — pa]l. (6.20)

We also have

i —wall = ¢ (ki —hil)
= J dvp(b) j |t —y(b, 1) do (1)

< [ @Dt otal =i~ il (621)

where the last inequality follows from lemma 6.3.
Case (i). pi=p, and u3 = u,. Then ¥, =} satisfies the lemma.

Case (ii). p,# p; and u, # ph. Let by = h, — h}. Then s(h)s(h})=0 and s(h})#0.
Construct h3 such that s(h;)=s(h{) and p,;= p,—pu5. Let h,= h5+ h3 and define

¥, = ¢(h,E(uxu*)). (6.22)
By construction puy, = u, and s(¢,) = s(¢,). We have ¢, = 5+ ¢; where
sl = @(hsD) = llme — w2l = 2| 1 — ol (6.23)
(see eq. (6.14)). Egs. (6.20), (6.21) and (6.23) give
41— dall = Sl 1 — peal- (6.24)
Case (iii). u,=pu] and u,# uj Choose a projection e € M such that 0 < e < s(h)),
and
@(ehy) =l — p. (6.25)
Choose h5 such that s(h3) =e and
Moy = o~ 12+ fon (6.26)
Then egs. (6.14) and (6.25) give
Nt nsll =3l o1 — 2. (6.27)
Define
¥a(x) = d((h3 + (1 — e)h3) E (uxu™*)). (6.28)
By construction pu,, =, and s(¢,) = s(¢,). Egs. (6.25) and (6.27) give
2= ol =4l — ol (6.29)
Since ¢, = ¢}, eq. (6.21) now gives
ey — wall = 51 — pea]l. (6.30)
Case (iv). u,# pand u, = pj. Choose a projection ec M such that 0<e <s(hj) =
s(hj) and
B(ehs) =|lp,— pol|. (6.31)
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Choose hj such that s(hy)=s(h,)—s(h})+e and
M= Moehse (6.32)

Define ¢, by eq. (6.28). By construction u,, = u, and s(¢,) =s(¢,). Egs. (6.31),
(6.32) and (6.28) give

2= 3]l = 2| ey — pal).- (6.33)

Egs. (6.20) and (6.21) now give
1= ol =5 e — pol- (6.34)
O

7. Product property and ITPFI factors

We introduce the ‘product property’ (definition 7.1) which is a variation of Stgrmer’s
property of being ‘asymptotically a product state’ [19]. This is a technical property
which is equivalent to ITPFI (corollary 7.4 and lemma 7.6). Its purpose is to simplify
the task of verifying the ITPFI property by eliminating the iterative part of the
argument.

Definition 7.1. Let M be a von Neumann algebra. A finite weight ¢ on M is said
to have the product property if given £ >0, a strong neighbourhood V of 0, and
X1, ..., X, € M, there exists a finite type I factor K = M and finite weights ¢,, ¢,
on K, K= K'n M respectively such that:

(i) ;¢ K+V,j=1,...,n, and

(i) ¢ - 1@l <e
If M has a faithful finite weight with the product property, then M is said to have
the product property.

Remark 7.2. Tt follows immediately from the above definition that the product
property implies approximately type I (see [8]). Clearly one can require that ¢, and
¢, are faithful, and (ii) can be replaced by

(i) ¢ -l ®dlx-]| <e

If one were to study von Neumann algebras of the form &, (., ¢,) where the o,
are finite-dimensional matrix algebras, the appropriate product property would be
to require only that K be a finite-dimensional subalgebra.

In order to prove that an ITPFI factor has the product property we will use the
following martingale condition, which was introduced by Araki and Woods
([1, lemma 6.10]).

Lemma 7.3. Let M =®),_, (M,, i) be an 1TPFI factor. For each n€ XN there is a
conditional expectation E,: M > M =X, _, M, such that

(i) E,(x)—> x strongly for all xe M ;

(i) E,(M,)=Myh where ¢ =R);_, dr anddp'™” =X _, ¢i; and

(iii) E.E,,=E, ifn<m.
Proof. Define E, by the equation

(E,,(x)a,ﬁ)=<x<a®<ké Qk)),ﬁ®<ké ®k)> (7.1)

=n+1 =n+l
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for all xe M, a, Be X, _, H, where M, acts on H, and ¢,(y) = (y®,, ®,) for all
y€ M,. That E, is a conditional expectation and properties (i) and (iii) follow
directly from eq. (7.1) (compare [1, lemma 6.10}). Condition (ii) follows from

a?"(Ea(x)) = E.(o?(x)) (7.2)

which in turn follows from the observation that
B =847BA@,x,. 60 (7.3)
and a routine calculation using eq. (7.1). O

CoRroLLARY 7.4. Any ITPFI factor has the product property.
Proof. Lemma 7.3 implies that any product state & ¢, has the product property. [

LEMMA 7.5. Let M be a von Neumann algebra with the product property. Then any
finite weight s has the product property.

Proof. Let £¢>0, V a strong neighbourhood of 0, and x,,...,x,€ M. Let ¢ be a
faithful finite weight on M with the product property. It follows from the Hahn-
Banach theorem that the set of all finite weights y such that y < A¢ for some A >0,
is norm-dense in M. It then follows from [17, theorem 1.24.3, p.76] that there
exists he€ M ™ such that

ly(a)— o (hah)| < ¢||a], (7.4)

for all ae M. By assumption there exist a finite type I factor K< M, ke K, and
finite weights ¢, ¢, such that

xeK+V, j=1,...,n, (7.5)
o(|h =kl =R o], (7.6)
6 —6:1® sl =ellh] 2 (7.7)
and
Ikl =|lA|. (7.8)

That one can achieve eq. (7.8) follows, as in the proof of the Kaplansky density
theorem, by approximating an element h’e M such that h =2h'(1+ (h')>)"" (see [7,
p. 44]). Since

¢(hah) = ¢(kak) + ¢((h—k)ah)+ ¢(ka(h - k)),
it follows from the Cauchy-Schwarz inequality and eq. (7.6) that
| (hah) - ¢ (kak)| =2¢] a]. (7.9)
Egs. (7.4), (7.7) and (7.9) give
| — ¢ @ | = 4e, (7.10)
where ¢,{a)= ¢,(kak), ac K, and y,(a) = ¢,(a), ac K" a

LemMa 7.6. Let M be a properly infinite von Neumann algebra with the product
property. Then M is ITPFIL.

Proof. Let ¢ be a faithful state on M. Let (x;);.n be dense in the unit ball M, of
M, let V; be a sequence of strong neighbourhoods of 0 decreasing to 0, and let
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1, >0 with
Y n.<l. (7.11)

neN
We will construct a sequence of mutually commuting finite type I factors K; and
faithful states ¢; on K; such that

xeK™+V, j=1,...,n (7.12)

where
K(")=(§"<) K,»>®l, (7.13)
i=1

and
< N (7.14)

&l km-1ye = P @t e

where (K™)=(K™)'n M. It will then follow that M ~®),_, (K, &,).

By assumption there is a finite type I factor K, and a faithful state ¢, such that
eqgs. (7.12) and (7.14) are satisfied for n=1 (use remark 7.2). Now assume that
K, ...,K, and ¢,,..., ¢, have been chosen so that egs. (7.12) and (7.14) are
satisfied. Let e\, i, j=1,..., k, be a complete set of matrix units for K, and let
e=e{". Since M is properly infinite, e ~ 1 and M, = eMe ~ M. In particular M, has
the product property. Let W be a strong neighbourhood of 0 such that the sum of
any k2 elements from W must lie in V,,_,. There exists a finite type I subfactor L, .,

of M, y\),€ Lyyy, i, j=1,..., ks, k=1,...,n+1, and a state ¢,., such that
el yiyel) — e nef e W, (7.15)

and eq. (7.14) is satisfied with n replaced by n+ 1 (where we have used the canonical
identification of M, with K). Let

krl

yi’= ¥ elyilel e K, (7.16)
ij=1

k=1,...,n+1, where K, ,, is the finite type I subfactor of M obtained from the
canonical embedding of L,,,. Then

(n)
Vi =X € Vou

so that eq. (7.12) is satisfied. Now let ¢ =&, &, It follows from egs. (7.11) and
(7.14) that ||¢ —¢||<1. Hence the representation m, of the UHF C*-algebra
o =Jjen K; induced by ¢ is unitarily equivalent to m, (see for example [16, theorem
2.7]). Eq. (7.12) implies that 7, ()" = M.
Remark 7.7. By further arguments, which we omit, one can show that in the general
case the product property implies ITPFIL.

8. ITPFI factors and AT flows

In this section we prove our major result, namely the equivalence of the ITPFI and
AT properties (theorem 8.3). The proof that ITPFI implies AT (lemma 8.1) is rather
straightforward. It follows from the known existence of a factor martingale (lemma
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7.3), together with the relationship between certain positive operators in the cen-
tralizer and finite measures on the flow space (see egs. (4.13)-(4.18) and (4.30)-
(4.33)). The converse is obtained by proving that AT of the flow of weights implies
the product property (lemma 8.2).

LEMMA 8.1. Let M be an 1TPFI factor of type 111,. Then the flow of weights for M
is AT.

Proof. Since the proof for the discrete case T(M) # {0} is much more transparent
and, furthermore, motivates the proof for the general case, we present it first.

Case (i). T(M)#{0}. Let Te T(M), T #0. Using either lemma 11.2 of [1] or results
from [2] we can write M =®7<O:1 (M, ) where o =1 for all k. We will use the
discrete construction of the flow of weights here. Let A, 1\71, q§, 6, B and vz be as in
egs. (4.1)-(4.12). We will prove that the base transformation # is AT. By lemma 2.5
this is equivalent to the flow being AT.

Let £>0,and let uy, ..., u, be finite measures on the base space B, u;, ..., u, <
vp. Using eqs. (4.15) and (4.18) we obtain projections ¢; € 1\71,; such that u, =,
j=1,..., n It follows from our lemma 7.3 and lemma 2.3 of [14] that there exist
m<co and positive operators fe M) where M™=Q" M, ¢ =w,®
(Qr-, &) and My= £(£%(Z)), such that

ble—fly=e, j=1,...,n (8.1)
Since e, f;€ M, we have the inequality

|6 =Rl =llcld(e=f), ceM,
(see for example, [7, lemma 11, p. 63]. It now follows from eqs. (8.1) and (4.15) that

||ll’ej_/“'f,“S8’ j:]',"',n' (8'2)
The proof will be completed by showing that

N
JS’ =3 7 Ciki€jkis J=1...,n, (8.3)
keZ 1=1

where ¢, =0, ey, are minimal projections in My, e~ 6e where e is a fixed
minimal projection in M, and N <o, Egs. (8.3) and (4.15) and lemma 5.8 then
give
mi=Y GA 0,  j=1,...,n (8.4)
kezZ

where ¢ =2, ¢ The AT now follows directly from egs. (8.2) and (8.4). Eq. (8.3)
will follow directly from the structure of M i,,'?'r% which we now determine.

Recall that if ¢(x)=Trace(px), x€ P is a weight on a type I factor P and p€ P,
then ! =Ad p" and hence P,={p}. Thus the determination of the structure of
M, becomes an elementary exercise in linear algebra. We have ¢™(x)=
Trace(p™x), xe M'™ where p'™e M'™ has eigenvalues [],_, A« ) Where
all ratios A, /A, are precisely some integral power of A. For k=0, each A", peZ
occurs precisely once as an eigenvalue. Hence the eigenvalues of p‘™ are of the
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form aA® where a is fixed, and each s € Z occurs precisely
N=1]] n, (8.5)
k=1

times. It follows that

MG ={p"™) = @ ez M(K), (8.6)
where M (k) = F,, and eqgs. (4.1), (4.2) and (4.8) and 6 = Ad S imply that 8(M(k)) =
M(k+1). Eq. (8.3) now results directly from diagonalizing f.
Case (ii) is the general case. We use here the continuous construction of the flow
of weights. Let M, o, 6, X and v be as in eqgs. (4.19)-(4.29). Let £>0, and let
M, - - -5 i, be finite measures on the flow space X, u,,..., u, <v. Precisely as in
case (i) there exist e;€ M such that u, = y; (see egs. (4.32), (4.33)), and positive
operators f;€ M, for some m <o, satisfying eq. (8.2). The same argument used
above shows that this time we have

®

M"?‘rl)z"’ dt M(1), (8.7)

b

where M(t)=Fy and N is again given by eq. (8.5). Let f¢€ be'f',%. Then

f®
f=1 dif(n), (8.8)
J
o
8.f= dtf(t—s), (8.9)
and
a(f)=| dte'r(f(1)), (8.10)
where 7 is the trace on Fu. Diagonalizing the positive operators fj, we obtain
N
fi= X S (8.11)
=1
where
®
5 =J dr f(1), (8.12)
and
Si(t) = cu(t)eu(t), (8.13)

where ¢;(1)=0 and e;(t) are minimal projections in M(t). Since w(f;) = p;(x) <0,
eq. (8.10) implies that ecy(t) L'(R). Since the transitive action of R on R is AT,
there exist A; € L'(R) and ¢(¢), e‘c(t) e L'(R) such that

=eN7" (8.14)
1

e'cy(t) —J dshy(s)e* e(s+1)
Let

@®
F; =J' dt cy(t)e(t), (8.15)
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where e(1) is a measurable family of minimal projections in M(z). Since e(t) ~ e;(t)
in M(t) we have F;~ f; in MY, and hence

ME, = By (8.16)
Let
®
C =j dic(t)e(t), (8.17)
and
e
Gy=| dtgi(t)e(t) (8.18)
where
gi(t)=| dsAu(s)e’c(s+1). (8.19)
Then
ql ZJ dS Ajl(s)eSOSC" (820)
Lemma 4.1 now gives
Ka, = j ds Aj(s)e’Ouc. (8.21)

Using eqs. (8.10), (8.14), (8.15), (8.18) and (8.19) we obtain

lper, = e, =I dte'|ci(1) —gu(1)| < eN~", (8.22)

The AT of 6, now follows from egs. (8.2), (8.11), (8.16), (8.21) and (8.22). O

LEMMA 8.2. Let M be a Krieger factor of type 111,. If the flow of weights is AT, then
M has the product property.

Proof. Let £>0, x,,...,x,€ M, V a strong neighbourhood of 0 in M, and ¢ a
faithful state on M. We give first an outline of the argument. Connes’ martingale
condition [3] gives the existence of a conditional expectation E onto a finite-
dimensional subalgebra N such that ¢ o E=¢, and x,,...,x,€ N+ V. If N were
a finite type I subfactor, the condition ¢ ° E = ¢ would imply that ¢ was a product
state relative to M = N® N° and the product property would be trivially satisfied.
The strategy is to embed N in a finite type I subfactor P so that ¢ is approximately
a product state. The basic idea is to use the AT condition to construct a new state
¥ such that ||¢ — ¢|| =&, and a set of matrix units for P which are eigenvectors of
o! (which implies that ¢ is a product state relative to M = P® P¢). More precisely,
one selects a minimal projection e'* from each full matrix algebra in N. A measure
.« is associated with each e, Using the AT condition the u, can be approximated
by measures pi =7 ui. The w, determine both the desired subprojections of the
e® (which are minimal projections in P), and the state .
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We give first the argument for the discrete case T(M) # {0}. The argument for
the general case then proceeds in exactly the same way.

Case (i). There exists T e T(M), T # 0. Let ¢ be a faithful state on M suchthat o =1.

Step (i). By [3] there is a conditional expectation E: M > N where N is a finite-
dimensional subalgebra of M such that

d(E(x))=¢(x) forall xe M, (8.23)
and
E(x))e V+ux, j=14...,p. (8.24)
We have
N= ‘(6"9] N, (8.25)
where the N, are type 1, factors. Let ¢, denote the restriction of ¢ to N,. Then
& (x) =Trace pyx, xe Ny, (8.26)
where p, € N,. Choose matrix units eg- for N, such that p, is diagonal, i.e.
prel = Awesd,;, Lj=1,...,m (8.27)
and
A Z A=+ 2 Z Ay, > 0. (8.28)
Then, since o? E(E(x)) = c®(E(x)), we have
at(ey) =o't (ef) = (Au/Ay)"ej. (8.29)

Step (ii). In order to use the AT condition, we construct the flow of weights as in
§ 4, eqgs. (4.1)-(4.18). Let P, denote the projection onto the basis vector e, of £*(Z).
Let

f“=P,®e, k=1,...,n (8.30)
where e* = ef,. Since P,e £(¢%(Z))., and e* € M, (see eq. (8.29)) we have f*e M ;.
Since ¢(f*) = p(e*) <, eq. (4.15) defines measures

Bk = [, k=1,...,n, (8.31)

on the base space B such that w, < vg. Using the AT condition and a variant of
remark 2.2(iii) we obtain a measure u <wg and integers m(l), k=1,...,n,
l=—L,..., L such that

Ik —pill=3n"'mi'e,  k=1,..,n (8.32)

where the measures

+L
pi= Y m(Dr~'e'n (8.33)
I=—L

are non-zero.

Step (iii). We now modify the state ¢. We first show that ¢ is determined by its
restrictions to M .«, k=1,..., n where, in effect, it is the conditional expectation.
For xe€ M we have

E(x)=Y x}et, (8.34)
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where the numbers x}; are determined by the equation
E(efixef) = xkek.
Eqgs. (8.23), (8.26), (8.27) and (8.34) give
é(x) =% A
Since
d(efixef)) = d(eliE(x)ef)) = Aiaxi,

we get

()= T (ha/Aei)(ehixely).

233

(8.35)

(8.36)

(8.37)

(8.38)

The desired alteration of ¢ will now be obtained by changing it on M,x and using
eq. (8.38) to define the new state ¢y on M. From eq. (8.32) and lemma 5.9 we obtain

states (/;k such that
s(dh) = 1%,
K, = M,
and
1= il = n"m e,
where ¢, is defined on M+ by
S (Po®x) = i (x).
We define ¢, on M.« by
Yi(x) = i (Po®x).
We define ¢y on M by
W)= T (/A (elyxel)

Eqgs. (8.28) and (8.41)-(8.44) give
ly—dl=<e

(8.39)
(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

Step (iv). We now embed N in a type I factor P< M so that ¢ is a product state
relative to M = P® P*. Using egs. (8.33), (8.40) and lemma 5.7 we obtain non-zero

projections ff,j= l,...,q, k=1,..., n such that
K%k
ff =X,
=1

-~ W% o
=2 Yigi»
j=1
where
‘;kj = ((/;k)f‘,‘,
and integers s;; such that
g, = A WO = A" W0,
where s;; = si;—s5,,. It now follows from lemmas 5.5 and 5.8 that
(ij ~ Ask"/;n-
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Since P, is one-dimensional, we can define projections e € M by
ff=P,®ef (8.51)

and it then follows from egs. (8.44), (8.47), (8.48), (8.50), (8.51) and lemma 1.2.3(b)
of [2] that there exist partial isometries u,’-‘,l € M such that

(uf)* ,",'—e,, (8.52)
(u"l *= (8.53)
and
o?(uf) = A"oul (8.54)
j=1,...,q, k=1,..., n. We extend the range of the index j to 1,..., mq, by
defining
ur' =efull, (8.55)

where j=(I-1)q,+t, 1=t<q, I=1,..., m. Finally we obtain a complete set of
matrix units by defining
5 = ui (u)* (8.56)

where i=1,...,q,j=1,...,q, k 1=1,..., n. We can now define P to be the type
1 factor generated by the ul. Egs. (8.44) and (8.54)-(8.56) imply that the uf are
eigenvectors of o!. Hence o¥(P) = P which implies that ¢ is a product state relative
to M=P® P".
Case (ii) is the general case. The argument is virtually identical. We use here the
lacunary construction of the flow of weights. For this purpose we take ¢ to be a
faithful lacunary integrable weight of infinite multiplicity. Basically the only change
is that lemmas 5.5, 5.7, 5.8 and 5.9 are replaced by lemmas 6.1, 6.2 and 6.4.

Step (i) is identical. In step (ii) we now construct the flow of weights as in § 4,
eqs. (4.39)-(4.48). In particular eq. (4.47) defines measures

we=ne, k=1...n, (8.57)

on the flow space X, u, < v. Using the AT condition and again a variation on remark
2.2(iii) we obtain a measure u <, 4, eR*, n,(I)eZ, I=1,..., L such that

(e —pill=sn"'mi'e,  k=1,...,n, (8.58)
where the measures

=§ n (Dt~ ' Fi'p (8.59)

are non-zero.
Step (iii) is almost identical. We work directly on M and use lemma 6.4 to obtain
states ¢, on M.« satisfying

s(dn) = e, (8.60)
My, = Ml (8.61)

and
e — @il =n"'mi'e. (8.62)
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¢ is again defined by eq. (8.44) and satisfies eq. (8.45). In step (iv) we begin by
noting that the states y, defined by eq. (8.60) are integrable since the measures pj
are smooth (see eq. (4.48) et seq.). Using eqs. (8.59), (8.61) and lemma 6.2 we obtain
non-zero projections e}‘, j=1,...,q, k=1,..., n such that

9
e =71 ef (8.63)
j=1
and
9y
=2 Y, (8.64)
j=1
where ¢, = ().}, and t};€R such that
py, =€ WF L u=eWF M u, (8.65)

where #; = ti;— #,,. It now follows from lemma 6.1 that
Y~ evl"’ilfll- (8.66)

As before, it follows from egs. (8.44), (8.66) and lemma 1.2.3(b) of [2] that there
exist partial isometries uf}’ satisfying eqs. (8.52)-(8.56), and the type I factor P
generated by the uﬁj-' has the desired properties. O

THEOREM 8.3. Let M be a type 111, injective factor. Then the following are equivalent.
(i) M is ITPFI.
(ii) The flow of weights for M is approximately transitive.
(iii) M has the product property.
Proof. By [4] M is a Krieger factor. We have the following implications: (i)=>(iii),
corollary 7.4; (iii)=(i), lemma 7.6; (i)=>(ii), lemma 8.1; and (ii)=>(iii), lemma 8.2.
O
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