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New orbit-averaged equations for low collisionality neoclassical fluxes in large aspect
ratio stellarators with mirror ratios close to unity are derived. The equations retain finite
orbit width effects by employing the second adiabatic invariant J as a velocity-space
coordinate and they have been implemented in the orbit-averaged neoclassical code
KNOSOS (Velasco et al., J. Comput. Phys., vol. 418, 2020, 109512; Velasco et al., Nucl.
Fusion, vol. 61, 2021, 116013). The equations are used to study the 1/v regime and the
lower collisionality regimes. For generic large aspect ratio stellarators with mirror ratios
close to unity, as the collision frequency decreases, the 1/v regime transitions directly
into the v regime, without passing through a /v regime. An explicit formula for the
neoclassical fluxes in the v regime is obtained. The formula includes the effect of particles
that transition between different types of wells. While these transitions produce stochastic
scattering independent of the value of the collision frequency in velocity space, the
diffusion in real space remains proportional to the collision frequency. The /v regime
is only recovered in large aspect ratio stellarators close to omnigeneity: large aspect
ratio stellarators with large mirror ratios and optimized large aspect ratio stellarators
with mirror ratios close to unity. Neoclassical transport in large aspect ratio stellarators
with large mirror ratios can be calculated with the orbit-averaged equations derived by
Calvo et al. (Plasma Phys. Control. Fusion, vol. 59, 2017, 055014). In these stellarators,
the /v regime exists in the collisionality interval (a/R) In(R/a) < viRa/p;jv; < R/a. In
optimized large aspect ratio stellarators with mirror ratios close to unity, the /v regime
occurs in an interval of collisionality that depends on the deviation from omnigeneity §:
82|1n 8| < viRa/pjv,; < 1. Here, v; is the ion—ion collision frequency, p; and v, are the
ion gyroradius and thermal speed, and a and R are the minor and major radii.

Key words: fusion plasma, plasma confinement

1. Introduction

In stellarators, trapped particles can move a significant distance away from their initial
flux surface even in the absence of collisions or turbulent fluctuations. Due to these large
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orbits, stellarator collisional transport at low collision frequencies (Kovrizhnykh 1984) is
of the order of or larger than the turbulent transport, dominating energy transport in the
core (Dinklage et al. 2013, 2018).

The width of the trapped-particle orbits is of the order of the size of the stellarator
unless the stellarator is (i) optimized (Calvo et al. 2017), i.e. close to omnigeneous (Cary
& Shasharina 1997a,b; Parra et al. 2015), or (ii) the stellarator has a small inverse aspect
ratio € := a/R < 1 (Ho & Kulsrud 1987), where R and a are the characteristic values of
the major and minor radii of the stellarator, respectively.

In the case of large aspect ratio stellarators, the ion orbit width is determined by the
balance between the component of the E x B drift that is tangential to the flux surface,
and the component of the ion curvature and VB drifts that is perpendicular to the flux
surface — the large E x B drift is mostly parallel to flux surfaces and its small radial
component is comparable to or smaller than the average radial component of the curvature
and VB drifts (Calvo et al. 2017).

To estimate the width of the ion orbits, we assume that the electric field is the gradient
of an electric potential, and that the potential has a variation of order 7;/e across the minor
radius a, where 7 is the ion temperature and e is the proton charge. The lowest-order value
of the radial electric field is set by the need to maintain ambipolarity. The E x B drift is
of order

VE ~ P Vs (1.1)

whereas the curvature and VB drifts are smaller by a factor of € because they are
proportional to the gradient of the magnetic field B, |VB| ~ B/R,

Vi ™~ €Pis Uy (1.2)

Here
Pix 1= % <1 (1.3)

is the normalized ion gyroradius, p; := v,;/$2; is the ion gyroradius, v; := +/27T;/m; is the
ion thermal speed, £2; := Z;eB/m;c is the ion gyrofrequency, B := |B] is the magnitude of
the magnetic field, Z;e and m; are the ion charge and mass, respectively, and c is the speed
of light. The radial motion due to the drifts is not secular because it averages out once the
E x B drift has moved the particle several times around the stellarator. The typical length
of the orbit parallel to the flux surfaces is of order a, giving a characteristic orbital time of
the order of

—_—~ (1.4)
Vgl Pix Vri
During this time interval, the radial component of the curvature and VB drifts (and, in
some cases, the E x B drift) leads to an orbit width of order

a
w~ ——|vy| ~ ea, (1.5)
vl

that is, the width of these orbits is smaller than the characteristic size of the stellarator,
although it is much larger than the typical width of orbits in tokamaks, of order p;.

For small collision frequencies (see (1.6) for a precise ordering for the collision
frequency), the large width of the trapped-particle orbits has called into question
the validity of local models for neoclassical transport. Here, ‘local’ refers to models
that calculate neoclassical fluxes through a surface of interest using only the electric
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field, the magnetic field and certain radial gradients of the magnetic field at that flux
surface, whereas ‘global’ codes need the electric and magnetic field of the flux surfaces
neighbouring the flux surface of interest. The most naive way to obtain a local model
is to zero out the radial component of the drifts in certain terms of the drift kinetic
equation (Sugama et al. 2016; Paul er al. 2017), but it has been noted that there are different
ways in which this could be done, none of them necessarily consistent (Paul ez al. 2017).
Moreover, global neoclassical codes (Satake er al. 2006) have shown that neoclassical
fluxes depend on parameters that do not appear in simplified drift kinetic models without
radial drifts, such as the magnetic shear (Matsuoka et al. 2015; Huang et al. 2017). Calvo
et al. (2017) used closeness to omnigeneity to derive local orbit-averaged equations without
having to artificially zero out the radial magnetic drifts. In this article, we use another
expansion parameter, the inverse aspect ratio, to derive a different set of self-consistent
local orbit-averaged equations that is valid for a wide class of stellarators: large aspect ratio
stellarators with a mirror ratio close to unity. In our derivation, we do not start by assuming
that the distribution function is Maxwellian or that the problem can be solved using a local
equation, but we derive these properties from the expansion. The equations presented in
this article coincide with the low collisionality limit of the equations in the DKES code
(Hirshman et al. 1986) to lowest order in the small inverse aspect ratio expansion, but
differ to higher order. The radial energy flux derived from the new equations in this paper,
calculated using a modified version of the code KNOSOS (Velasco et al. 2020, 2021), has
been shown to be close to the energy flux calculated by DKES in several experimentally
relevant configurations (Velasco et al. 2021).

There is a subtlety in the derivation of the orbit-averaged equations for large aspect ratio
stellarators with mirror ratios close to unity. Given the smallness of the orbit width in e, it
is tempting to neglect the radial drifts when calculating the lowest-order particle motion.
However, in large aspect ratio stellarators with mirror ratios close to unity, the radial
displacement of the particles is sufficiently large to affect the trapped-particle motion to
lowest order. Indeed, trapped particles in this type of large aspect ratio stellarators have
very small parallel velocities of order /ev,, and small changes in energy of order €7;
affect their trajectories, causing trapped particles to become passing and vice versa. Radial
displacements of order ea are small compared with the size of the stellarator, but they lead
to changes in energy of order €7; due to the work done by the radial electric field. Our
new equations keep the necessary finite orbit width effects by using the second adiabatic
invariant as a velocity-space coordinate.

Our derivation of a local model is valid for collisionalities as small as

Vie ~ i L 1, (1.6)
where
Rv;;
Vi 1= (L.7)
Vs

is the collisionality,

4 Z%*n:In A
by = 4ym ZietniIn A (1.8)
3 "

l l

is the ion—ion collision frequency (Braginskii 1958), n; is the ion density and In A is the
Coulomb logarithm. We analyse the behaviour of our new equations for large aspect ratio
stellarators with mirror ratios close to unity in the limit v > p;,, in which we recover the
1/v regime (Ho & Kulsrud 1987), and in the limit v, < p;,. Surprisingly, for v;, < pj,
a rigorous expansion of our equations does not lead to the /v regime (Galeev er al.
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1969) for generic large aspect ratio stellarators with mirror ratio close to unity. Instead,
the limit v, < p;. gives the v regime (Mynick 1983). In this regime, particles follow their
collisionless orbits for long times, moving away from their initial flux surface a distance of
order €a, as explained above. Particles can only move to a flux surface further away than
€a by having several collisions interrupt their orbits, thus leading to a radial flux that is
proportional to the collision frequency. Importantly, trapped particles remain a distance of
order ea away from their initial flux surface even when they undergo transitions between
different types of wells and these transitions make their motion stochastic (Beidler,
Hitchon & Shohet 1987). To treat these transitions between different types of wells, we
do not need to introduce in the equations the transition probabilities calculated by Cary,
Escande & Tennyson (1986).

There is a class of stellarators for which the /v regime exists for v, < p;,: stellarators
close to omnigeneity (Calvo et al. 2017). In stellarators far from omnigeneity, the
transitions between different types of wells of certain trapped particles smear out the /v
velocity-space boundary layer (Mynick 1983). We show that large aspect ratio stellarators
with large mirror ratios are close to omnigeneity and hence neoclassical transport in them
can be calculated using the equations derived by Calvo et al. (2017). We also consider
large aspect ratio stellarators with mirror ratios close to unity that are close to omnigeneity,
finding results that are consistent with our previous work on this area (Calvo et al. 2018).

Throughout the paper we focus on ion transport. In § 2 we remind the reader of the
kinetic equations for a general stellarator in the limit v;, ~ p; << 1. In § 3 we discuss the
MagnetoHydroDynamic (MHD) equilibrium equations for € < 1, making a distinction
between large aspect ratio stellarators with mirror ratios close to unity and large aspect
ratio stellarators with large mirror ratios. Most of the rest of the paper is dedicated to
large aspect ratio stellarators with mirror ratios close to unity, with the only exception
being § 8.1. In §4 we propose a new set of velocity-space coordinates that are necessary
to simplify the expansion in € < 1 for large aspect ratio stellarators with mirror ratios
close to unity, and in § 5 we finally perform the expansion in € for the ion distribution
function and the electric potential in this type of large aspect ratio stellarators. In §§ 6 and
7 we study the cases v, > pi and v, K p;, for large aspect ratio stellarators with mirror
ratios close to unity. In § 8 we consider large aspect ratio stellarators close to omnigeneity.
We divide our discussion of large aspect ratio stellarators close to omnigeneity into two
parts: in one we show that large aspect ratio stellarators with large mirror ratios are close
to omnigeneity, and in the other, we study optimized large aspect ratio stellarators with
mirror ratios close to unity. We conclude in § 9.

2. Drift kinetic equation for ions in a generic stellarator

We assume a ~ R in this section, but we keep the distinction between a and R in our
estimates in preparation for the expansion in small inverse aspect ratio in §§ 3, 4, 5 and 8.

We assume that the magnetic field B is constant in time and hence the electric field E
satisfies E(x, t) = —V¢(x, t). The electric potential ¢ is of order T;/e, has a characteristic
length scale of the order of the minor radius a, and is determined by the quasineutrality
equation

Z,./ﬁ(x, v, d’ = /fe(x, v, 1) d’v, 2.1)

where fi(x, v, ) and f,(x, v, ) are the distribution functions of ions and electrons, x and
v are the particle’s Cartesian position and velocity, and ¢ is time. Throughout the paper,
we assume that the electrons can be modelled with the modified Maxwell-Boltzmann
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response

(2.2)

ffE(x’ v, 1) d'v = A (r(x), 1) exP( o )

T.(rx), 1)

where T,(r, t) is the temperature of the electrons and 7, (r, t) is the density of electrons
in the absence of ¢. Note that n, and T, are flux functions that only depend on the flux
surface label r(x). We define r more carefully below.

We use the drift kinetic equation (Hazeltine 1973) to obtain the ion distribution function.
To describe velocity space, we choose the coordinates {€, i, o, ¢}, where & := v?/2 +
Ziedp/m; is the total energy per unit mass, p := v /2B is the magnetic moment, o is the
sign of the parallel velocity and ¢ is the gyrophase, defined such that

zi = &,(x, ) 1= cO8 ¢ &, (x) + sin ¢ &5(x). 2.3)
1

Here, v, is the component of v perpendicular to the magnetic field, v, := |v, | and e, (x)
and e, (x) are two unit vectors that form an orthonormal basis with the unit vector parallel
to the magnetic field l;(x) = B/B and satisfy e, x e, = b. In the coordinates {E, 1,0, 0},
the velocity-space volume element is

d€ dpd B
£dudy — Z d€dudy, (2.4)

v = =
[(V,E x Vyu) - Vgl |y

where

Zie¢(X)) 2.5)

L

v (x, &, 1, 0) = o\/Z (5 — uB(x) —

is the parallel velocity.
The distribution function can be split into its gyroaverage, f; := (27)~" fozn fi;dg, and

the gyrophase-dependent piece fi :=f; — f.. The gyrophase-dependent piece is of order
pixf; and can be neglected in the limit p;, ~ v;, because the fluxes of particles and energy
depend to lowest order on the much larger gyroaveraged piece f;, unlike the fluxes in
the neoclassical regimes of moderate collisionality (v, ~ 1) in which the piece of the
gyroaveraged distribution function that matters for transport is small in p; (see the
discussion at the end of this section for more details). Since the ion—electron collisions
can be neglected within an expansion in the electron-to-ion mass ratio, the equation for

fiis
Ofi + X + Vi + £ 0cfi + 11 9,f; = Calli. 11 + O(02) + Si(1 + O(pin)).- (2.6)

Here, S is a source term representing fuelling and heating, and S; is the gyroaverage of S;.
The particle motion can be split into parallel motion and perpendicular drifts,

. micit » 2 >
x:=|y+ ~ bV xb|)b+ vy +ve+ O(p;vi), 2.7)

1
where

1.
Vi = 5b x (v} k + WVB) (2.8)
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A A

are the curvature and VB drifts, collectively known as magnetic drift, ¥ := b - Vb is the
curvature of the magnetic field lines and

C A
pi= b x Vo 2.9)

is the E x B drift. The time derivative of the total energy is

. Z 3
¢=Zs10 <p,.iﬂ) | (2.10)
m a

i

The time derivative of the magnetic moment is
s HM ) Vs
pni=uvyb-V b Vxb|+0 o —L B (2.11)

The ion—ion collision operator C; is a Fokker—Planck collision operator,

Cillfa: o] == viVy « (Vo VL HIf,] - Vofa — VLI f3]) (2.12)

where y; :=2nZ'e¢*In A/m?, and the Rosenbluth potentials H and L (Rosenbluth,
MacDonald & Judd 1957) are the functionals

H[f](v) := / f@Hv—v'[d* (2.13)
and
LIfl(v) =2 J@) d*v'. (2.14)
lv — v

Note that, in our notation, the first argument of C; refers to the distribution function
that is evaluated at the velocity v of interest, whereas the second argument refers to
the distribution function that is integrated to obtain the Rosenbluth potentials. In the
coordinates {&, i, o, ¢}, the Fokker—Planck collision operator is given by

1
Ciil fas o] = viilvy| 0 |:| ol

1
+viilv| 8, [| ”|( uelfol Oefa + Hyuplfol 0ufa — L [ﬁ]ﬁz)]a (2.15)

(Heelfy) 0sfu + Heplfy) 0,fu — Le[fb]fa)]

where we have used the fact that f, does not depend on the gyrophase ¢, and we have
defined H,,[f] := V,p - V,V,H[f] - V,qand L,[f] := V,p- V,L[f], withp = &, n and
g =&, u. Note that, in (2.7), (2.10), (2.11) and on the right-hand side of (2.6), we
have indicated the size of terms associated with the gyrophase-dependent piece of the
distribution function f; ~ p,f; that we have neglected — the errors in the collision operator
C;; are smaller than expected due to its gyrotropy.

Instead of the Cartesian coordinates x, it is convenient to use spatial coordinates that
conform to the shape of the magnetic field. From here on, we use {r, «, [}, where r is a flux
surface label with units of length and of the order of the minor radius a, « is a poloidal
angle that labels magnetic field lines on a given flux surface and [/ is the arc length of
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the magnetic field line and is used to determine the position along the field line. In these
coordinates, the magnetic field can be written as

B=V/(r)Vr x Va, (2.16)

where ¥,(r) is the toroidal magnetic flux within the flux surface r divided by 27, and
Y/ := d¥,/dr. In these coordinates, the unit vector b is given by

b= ox, (2.17)

and the element of volume is

drde dl v’
reo — 2t drdadl (2.18)

dx = =
[(Vr x Va) - V| B

The equations for general stellarators with v, ~ p;, were derived in § 3.1 of Calvo
et al. (2017). Here, we generalize the work done in Calvo et al. (2017), and change the
presentation in places to make the derivation of the large aspect ratio stellarator equations
easier. We remind the reader that in this section we assume € ~ 1, but that we will perform
a subsidiary expansion in € < 1 in the rest of the paper. We expand the drift kinetic system
of equations in p;, < 1 assuming v;, ~ p;, and

Si Uy

&~ﬁ~w~m§. (219)
Our assumption for the size of the time derivative and the source S; might be surprising, but
it is justified by the fact that the final equation is consistent. Physically, these estimates are
the result of the particle orbits being comparable to the size of the device. Thus, the time
derivative and the source must compensate for both direct particle losses (3, ~ S;/f; ~
PixVii/R) and, for particles in confined orbits, losses due to collisions (0, ~ S;/f; ~ vj).
With these assumptions, we can write f; as

=470+, (2.20)
with £ ~ pr £ To lowest order in p;,, (2.6) gives
v 3 = 0. (2.21)

To solve this equation, we need to distinguish between passing and trapped particles. The
function

Ur,a,l, u, t) := uB(r,a,l) +

Ziep(r,a,l, 1) (2.22)

1

is an effective potential for the motion parallel to the magnetic field line. If £ is larger
than the maximum of U on a flux surface, Uy (r, i, t), the parallel velocity in (2.5) never
vanishes and the particle is a passing particle. If £ is smaller than Uy (r, u, 1), the parallel
velocity vanishes at least at two bounce points, [y, w(r, o, €, u, t) and L w(r, o, &, 1, 1),
defined by €& — U(r, o, Ly w, b, 1) = 0=E — U(r, «, lyg.w, i, t) (the subscripts L and R
refer to ‘left’” and ‘right’, respectively; see figure 1). Note that, for given values of £ and wu,
a trapped particle can be located inside several different U wells. We will use the discrete
index W to distinguish between these wells, where W takes Roman numeral values (see
figure 1).
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Z@G@‘

U=uB+

A m;

111
Ees Jerrr

lbL,I = lbL,lll le,I = lbL,lI le,]] = le,m l

FIGURE 1. Sketch of the effective potential U := uB + Zje¢/m; as a function of /.

On an ergodic flux surface where a single field line connects any two points, (2.21)
implies that fi(o) must be independent of « for passing particles. For trapped particles, due
to continuity at the bounce points /,; w and [,  and (2.21), ];i«)) cannot depend on o. Using
these conditions, we writefi(o) as

‘]7;(0) — {gi,W(r3 o, 59 Mv t)v for g S UM(r7 /-’l" t)v (2.23)

hi(r,E, w,o,1), for & > Uy(r, ., 1),

where g;  is defined only in the trapped-particle region, & < Uy (r, u, 1), and h; is defined
only in the passing-particle region, £ > Uy(r, i, t). In most of this article, we will
consider stellarators in which the effective potential U only reaches the maximum value
Uy (r, 1, t) at a finite number of points on the flux surface r (the exception is § 8, where we
discuss a case with contours U = Uy, that are lines that wrap around the flux surface: the
omnigeneous stellarator). In an ergodic flux surface where the value Uy, is only reached
at a finite number of points, there is one barely trapped particle orbit with £ = Uy, that
covers the entire flux surface between its two bounce points (except for possibly a subset of
points that has no area, i.e. a segment of magnetic field line of finite length might connect
two of the maxima of U, but not all of them). If a surface-covering barely-trapped-particle
orbit did not exist, we would be able to join all the points with U = U,, with a single
magnetic field line that closes on itself, contradicting the initial assumption that the surface
is ergodic. We denote the well index of this surface-covering barely trapped particle as Wy.
For W = Wy, and £ = Uy, g;w does not depend on «, and we can impose the boundary
conditions

gi,Wbl(ra o, UM(rv M, t)a M, t) = hi(rv UM(rv M, t)a Mu, o, t) (224)
and
aggi,Wb((ra o, UM(r7 M, t)a M, t) = aghi(r7 UM(r7 M, t)a ", o, t) (225)

These conditions imply that 4; cannot depend on o at £ = Uy,.
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To next order in p;,, (2.6) gives

- V)L 4 A - Zie -
v, (f,.‘” + bV x bawo’) + 0/ + "o o],

i i

+ (g + o) - (Va 3,/ 0 + Vrof9) = GlIEO, 21 + 5. (2.26)

We proceed to eliminate fi“) from the equation. For trapped particles, we divide
equation (2.26) by |v;|, sum over the two possible values of o and integrate over / between
bounce points to obtain

Z,-e
0igiw + p— (0:9) . w 0giw + (Ve + Vag) - V) o w 0u&iiw

]

+ ((vg +vpi) - VF)ew 0,8iw = <Cii[gi,W’f,‘(0)]>r,W + (Si>r,W9 (2.27)

where we have used the transit average

1 lrw (...
(o dew = — Z/ €y, (2.28)
[/

Tw = bW |UH|

and
Iorw d/
Ty =2 / (2.29)
Iy,

R
LW |U|||

is the period of a trapped-particle orbit. For passing particles, we divide equation (2.26)
by |v;| and we integrate over / and « to find

B Ze | B B ~(0) B -
—) Ohi+ —(—0,¢) Och; +{—Cylhi, f;71) ={—3S:) , (2.30)
vl /g mi \lvgl " [ vy s\l /g

where we have defined the flux surface average

1 124

21 L(r,a)
CRENT v, 01/0 B () (2.31)

Here, L(r, @) is the length along the magnetic field line between the two points where the
magnetic field line crosses the curve defined by / = 0, and

) . 27 L(r,a) %
Vi(r) := do d/ (2.32)
0 0 B

is the derivative with respect to r of the volume V(r) contained within the flux surface r.
To obtain (2.30), we have written the radial component of the drifts as (vg 4 vy;) -« Vr =

(v)/2:)V « (v;b x Vr) to find

<£(UE+vMi)-Vr> _o. (2.33)
vy | fs

Equation (2.27) cannot be used at values of £ that are junctures of three or more types
of wells. We show an example of such a value of £ in figure 1. At these junctures, particles
can and, in most cases, will transition from one type of well to another. In general, the
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value of & at which several types of well coincide, & = E.(r, a, i, ), depends on r, «,
and ¢. Around these values of £, there are boundary layers, thin in £, where the dependence
of f; on [ cannot be neglected (see, for example, Nemov et al. 1999; Calvo et al. 2014).
These boundary layers impose continuity in g; w across these junctures. The derivatives
of g;w with respect £ and u are not necessarily continuous. The derivatives of g; w with
respect to £ and p on the different wells of a juncture are related to each other by two
conditions: the combination 9, &, d¢g; w + 9,8 w is continuous across a juncture, and the
collisional flux in velocity space across a juncture must be conserved. The combination
0,E: 0sgiw + 0,8.w is continuous at £ = E.(r, a, |, t) because g;w is continuous at
E=E&(r,a, u, ). In the example of figure 1, continuity of g;w at &€ = E.(r, a, u, 1)
imposes

gi,l(r’ o, gc(r’ o, U, t)’ W, t) = gi,”(r’ o, Ec(r, o, U, t)’ M, t)
=gim(r,a, E(r,a, ju, 1), i, 1). (2.34)

for all . Differentiating this expression with respect to w, we find

a/tgc‘(ra o, /’La t) 8€gi,l(ra o, (E‘C(I”, o, Ma t)a /’L’ Z‘) + augi,l(ra o, gc(ra o, I‘La t)a /’Ly t)
= aﬂgc(r7 o, l»'lu t) aggi,”(rv o, gc(rv o, Mv t)v /vl/’ t) + augi,]](r’ a, gc(}’, o, l’l’? t)? /'l” t)

= au.gc(rs o, W, t) 85gi.111(r7 o, gc(rv o, UL, t)’ M, t) + 8u.gi,111(ra o, gc(ra o, U, t)a M, t)?
(2.35)

that is, the combination 9,&. d¢g;w + 0,8 w is continuous. The other condition for the
derivatives of g; w at £ = E.(r, @, 1, 1) is conservation of particle number in phase space.
For example, for the case represented in figure 1, one needs to calculate the particles that
are leaving wells 7 and II due to collisions, and then enforce that they enter well /1.
This velocity-space flux continuity condition is manipulated in Appendix A to give the
following relation between the derivatives of g; w with respect of £ on different sides of
the juncture:

Ul HeelF "N es — 2(He [ ") 00 8,Ec + (HouulF O es (0,102
+ tul(Hee [ﬁ(O)Dr,H - 2<HS;L[]?,'(0)])1:,H 0.& + <Hp,u.[fi(0)])t,11 (3u5c)2]a£8i,11
= tul(HeelFON e — 2(He "V e 0,6 + (HouulF "V e (0,10 81 (2.36)

The relation between the derivatives 9, g; w on each side of the juncture can be obtained
from (2.36) by using the fact that the combination 9,&. d¢g; w + 9,,8:,w is continuous.

Equations (2.1), (2.2), (2.27), (2.30) and (2.36) are the same as (31), (33) and (37) of
Calvo et al. (2017) but for the inclusion of sources and time derivatives, and a different
treatment of the split of fi(o) between trapped and passing particles. These equations are
radially non-local and lead to very large transport and to a non-Maxwellian distribution
function. In Calvo et al. (2017), closeness to omnigeneity was employed to derive radially
local equations for a near-Maxwellian distribution function, but here we will use an
expansion in the small inverse aspect ratio €.

Equations (2.1), (2.2), (2.27), (2.30) and (2.36) are noticeably different from the usual
neoclassical equations (Hinton & Hazeltine 1976), derived assuming v;, ~ 1. In the limit
Vi ~ 1, to lowest order in p;,, the gyroaveraged ion distribution is a stationary Maxwellian
with density n; and temperature 7; that only depend on the flux label r, fi(o) = fui, and the
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electrostatic potential is a flux function to lowest order in p,, ¢(r, a, [, 1) = ¢O(r, 1) +
¢V (r, a,l, 1) + - - - The next-order corrections in pj,, fi(l) and ¢, are determined by

v 3" — CLF Y = —vpi - Vi o (2.37)

and the quasineutrality equation, respectively. Here, CY, is the linearized collision operator,
discussed further in §5.2. The density and temperature in the Maxwellian f; are
calculated using particle and energy conservation equations. The neoclassical fluxes in
these conservation equations are integrals of fi(l) vy + Vr, and hence scale as p2. These
neoclassical fluxes give a typical time scale for changes in density and temperature of
0, ~ ,ol.z*vii. For comparison, in a generic stellarator with v, ~ pu, (2.1), (2.2), (2.27),
(2.30) and (2.36) show that the distribution function need not be close to a Maxwellian,
and the typical time scale for transport is 9, ~ v; ~ p;v,;/R. The difference between the
orderings v, ~ 1 and v;, ~ p;, is due to the typical radial separation between the position
of a particle and the flux surface r that the particle started at. For v, ~ 1, particles collide
often, and hence the radial drift does not have time to act and move the particle away from
its initial radial position more than a distance of the order of the ion gyroradius p; between
collisions. For smaller collision frequencies (p;, << v, < 1), particles in a stellarator drift
out distances of order p;/v;, (Ho & Kulsrud 1987), giving higher and higher transport as
the collision frequency decreases until eventually, for v, ~ p;,., the separation between the
initial radial position of the particle and its typical position becomes of the order of the
minor radius of the device, a. In this regime, orbits are as large as the device, and transport
occurs by either direct losses, giving the typical time scale 9, ~ p;v,;/R, or, for particles
in confined orbits, by collisions, giving d, ~ v;. By expanding in closeness to omnigeneity
(Calvo et al. 2017) or in the small inverse aspect ratio (this article), one can recover that
the distribution function is close to a Maxwellian, and that the radial flux of particles and
energy is determined by a higher-order correction to that Maxwellian. The equations for
these higher corrections in general look similar to (2.37), but the parallel streaming term is
replaced by the drift in the «-direction. The correction to the Maxwellian in this case does
not scale with p;, as the expansion parameter is not p;, but closeness to omnigeneity or
the inverse aspect ratio. One can devise equations for the correction to the Maxwellian that
recover both orderings v;, ~ 1 and v;, ~ p;, by including both parallel streaming and drifts
in the a-direction — we show in Appendix G that the equations in DKES are an example
of this, recovering both the v, ~ 1 and v, ~ p;, limits for large aspect ratio stellarators.

3. MHD equilibria in large aspect ratio stellarators

In the coordinates {r, «, [}, a large aspect ratio stellarator shape is
x(roa, ) =xo() +x1(r,a, ) +x2(r, 0, ) + -+, (3.1

where xy(/) ~ R is the magnetic axis, and x,,(r, «, [) ~ €"R. We assume that

arN_, aaN19 8['\’

1 3.2
a R (3-2)

Note that the expansion in (3.1) is not the Garren & Boozer (1991) polynomial expansion
because we are not assuming that x,(r, «, /) is proportional to . The Garren & Boozer
(1991) expansion is a particular case of the expansion used here.
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The values that x(r, «, /) can take are constrained by the definition of arc length,
0] =1, (3.3)
and by the MHD force balance equation,

B? B*. _.
V., |P+— ) =—b-Vb, (3.4)
81 47

where V| := V — bb - Visthe projection of the gradient in the plane perpendicular to the
magnetic field, and P(r) is the total plasma pressure, which is a flux function. We project
equation (3.4) on d,x and d,x to obtain

B B B
P+, <§> -9 <§> dx + 0,x = Ha,ix - 9,x (3.5
and
B B B
By (8—) — 9 (8—) QX + Dyxt = 4—a§x- X, (3.6)
T T T

where P’ := dP/dr. To solve these equations, we need to obtain the magnitude of the
magnetic field B from x(r, «, [). Using (2.18), we find that the magnitude of the magnetic
field is given by
!
= (3.7)
(0,x X 9yx) « 0ix
We expand the MHD equilibrium equations in € < 1 by assuming that the plasma
pressure is sufficiently small to satisfy

8P
ﬂ:=7§e<<1. (3.8)
We are particularly interested in the magnitude of the magnetic field, given by
B(V,Ol,l)=B0(r,0l,l)+B](r,0(,l)+"', (39)

where B, ~ €"By < 1. To lowest order in ¢, (3.5) and (3.6) become 8,(83/811) =0 and
aa(B%/Srt) = 0. The solution to these equations is that By(/) can only be a function
of [. As a result, the lowest-order version of (3.7),

v/ ()

3,x1 X 0gx1) + by =
(9,x1 X 04x1) * by Bo(D)

(3.10)

cannot depend on «. Here, by (1) := dxg /dl is the unit vector parallel to the magnetic axis.
Note that condition (3.10) implies that

¥/ ~ Bya. (3.11)

Condition (3.10) limits the choice of x,(r, «, [). The function x; (r, v, [) must satisfy two
constraints in addition to satisfying (3.10): the first-order correction to (3.3) and the
conservation of electric current. These two extra constraints will not be needed for rest
of the article, but we give them in Appendix B for completeness. For the rest of this paper,
we only need to know that the three scalar constraints discussed above can be satisfied by
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choosing the three components of x; (r, «, [) wisely, i.e. the large aspect ratio expansion is
self-consistent.

The first-order correction B can be calculated using MHD force balance. Keeping only
the first order terms in € in (3.5) and (3.6), we find

BO B() dB() A~ Bg d2X0
P+ —0B ———by-0,x,=—— -0, 3.12
FaR O T a0 O = g O (312)
and
BO Bo dBo A B% d'2"‘:0
—9,B] — — ——by - 0yx; = 2 —— - 3,x). 3.13
A PN T g 0N T g a0 (3-13)
Equations (3.12) and (3.13) can be integrated to find
dBy(]) » 47P
B (r,a,l) = Bo(Dio(l) - x,(r, a, I) + 0()bo(l)-xl(r, a,l) — z (r), (3.14)
dl By(D)

where k((l) := d’x,/d[? is the curvature of the magnetic axis.
For a given x;, we can calculate the components of the drifts that we need to solve
(2.27). In a general stellarator, the radial and o components of the magnetic drift are

m;c

Vi e V= ~Zew (V00 + 95 + 11 0B — 11 0B 0o + 3yx) (3.15)
and
m;c
vy - Va = Zow (vjox - 9yx + 1 8,B — 14 3B 0,x - 9jx) , (3.16)

t

and the same components of the E x B drift are

vp - Vr = —5 (0 — 016b Dt - D) (3.17)

1

and
vp - Va = q/i (0,6 — ip B, - D)) . (3.18)
t

To lowest order in € < 1, the expressions for the magnetic drift become

m,-c(vﬁ + uBy) dBy »
i Vi =—————0,| Bl — —by - O(€2pis Vi) ~ €PisVy 3.19
Ui+ Vr ZieBoW] ( 1= o x1>+ (€7 pisvi) ~ €pivy  (3.19)
and
mc (v + uBo) dBy » 4mum;cP'v;
Vi = - —_ —b - X + _—
Mi r 1 0 1 >
Z,-eBolI/t’ d/ Z,-eBOlI/,’
+ 0ot ) ~ ept, (3.20)
a a

where we have used (3.14) to write the magnetic drift components as derivatives of B;.
Similarly, the radial and &« components of the E x B drift are

c
vg-Vr= —anz(lS + O (al0;In @| pixvi) ~ PisVsi (3.21)
t
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and

ti

c v
vg-Va = Jargb + O (19, In@|pisvsi) ~ Pi*z, (3.22)

t

to lowest order in € < 1. For the E x B drift, we have emphasized that the size of the
first-order corrections in € is proportional to the derivative of ¢ with respect to I. The fact
that the next-order corrections only depend on 9;¢ is important because we show in § 4
that the potential is a flux function to lowest order, making these corrections even smaller
than first order in €.

For most of this article (§§ 4-7 and § 8.2), we will focus on large aspect ratio stellarators
with constant By, that is, dBy/dl = 0. According to (3.10), stellarators with constant B
must have flux surfaces such that the area of a cut of a flux surface r through a plane
perpendicular to the magnetic axis cannot depend on the position along the magnetic axis.
Indeed, this area is given by

' ’ o ’ ’ 7 27[11/[(1‘)
A(r,D = [ dr da [0,x1(r, o, 1) X 3,x1(r e, )] - bo(]) = — - (23
0 0 0

From here on, we refer to these large aspect ratio stellarators as stellarators with mirror
ratios close to unity because the ratio between the maximum and the minimum of B on
a flux surface (mirror ratio) is 1 + O(e) >~ 1. We focus on large aspect ratio stellarators
with mirror ratios close to unity for two reasons: (i) their description requires careful
analysis and an unintuitive choice of velocity-space coordinates, and (ii) these stellarators
with mirror ratio close to unity are extremely common — see, for example, the maps of
magnetic field magnitude B in Beidler et al. (2011) that show mirror ratios in the interval
1.05-1.2.

To have a mirror ratio significantly different from unity in a large aspect ratio stellarator,
By must depend on /. In this case, the mirror ratio is By /By, ., Where By and By, are
the maximum and minimum of By(/), respectively. We are not aware of any large aspect
ratio stellarators with mirror ratios significantly different from unity that have been built.
Despite this fact, we will study large aspect ratio stellarators with mirror ratios significantly
different from unity (from here on, ‘with large mirror ratios’ for short) in § 8.1, where we
will consider By(/) to be a general function of /. This type of stellarator is always close
to omnigeneous and hence one can use the formalism developed by Calvo et al. (2017) to
calculate neoclassical transport in them.

4. New velocity-space coordinates for large aspect ratio stellarators with mirror ratios
close to unity

We first consider the possibility of the potential ¢ (x, f) being very different from a flux
function, that is, d,¢ # 0 and d;¢ # 0. We show that this is not possible in a large aspect
ratio stellarator with mirror ratios close to unity, that is, large aspect ratio stellarators with
constant By. If ¢ is not a flux function, the variation of v within a flux surface is dominated
by the variation of ¢,

m;

Y, :a\/Z <£—MBO— M) 4.1)

Thus, for a general ¢, trapped particles satisfy & < Uy >~ uBy + Ziepy (r, t)/m;, where
¢y (r, 1) 1s the maximum of ¢ on the flux surface. The parallel velocity of trapped particles
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is of order v, and the fraction of trapped particles is of order unity. In this case, the
quasineutrality equation (2.1) becomes

WBo+Z; e¢M/m, By Z
4T[Z / dM/ gi.W(ra o, ga M, [)
Bo+Zied /mi; \/2(5 — uBy — Ziep /m;) =1,

Bhi9’a7t
+2n22/ du/ ohir &, 1, 0,1
n

BO+Z€¢M/W’I \/2(5 — uBy — Zie¢/mi)

= 7.(r, 1) exp (T Z:b t)) , 4.2)

to lowest order in €. The function g; y is defined for £ < Uy, but it is zero for the values of
& outside of well W (in the example of figure 1, g; ; and g; ;; are zero for £ > &, and g; 7 is
zero for £ < &£.). Then, the sum of g; w over the well index W gives a continuous function
of £. Note that the sum over W is performed over a subset VV of all possible wells. Set VW
depends on the location where the quasineutrality is being evaluated because any well W
has a limited range of values of /. In the example in figure 1, [ in well / is between [y ;
and /g 7, and [ in well 11 is between [, ;; and [,z ;. When the ion density is evaluated for
1 € [lpr.1, lpr.1], set VW should include wells / and /11, but exclude well /. Note that set WV is
independent of / in a finite region of / around most points in the stellarator (e.g. in the case
of figure 1, set VV includes wells [ and III for [ € [ly 4, Iz ;]). Thus, the quasineutrality
equation (4.2) only depends on ¢, r and « around most spatial points, giving a solution ¢
that can only depend on r and «, that is, 9;,¢p = 0. As we are considering only ergodic flux
surfaces, d;¢p = 0 implies that d,¢ = 0, and hence ¢ is a flux function, ¢ = ¢ (). Note that
this is an arbitrary flux function because we can choose it at will using the free function
ne(r, t).
Since the electric potential is a flux function to lowest order in €, we write it as

¢(rv o, l7 [):¢0(r9 t)+¢3/2(7", o, l’ t)+ ) (43)

where ¢o(r, 1) ~ Ti/e is a flux function, and ¢s»(r, , [, 1) ~ €*/*T;/e. We show that the
correction to the lowest-order flux function is small in €¥/2 in § 5.2. Due to expansion (4.3),
(4.1) is a bad approximation for trapped particles. Instead, we need to use

v = o\/z (51 — uB(r o, ]) — M)[l + 0], (4.4)

i

where the quantity & := & — uBy — Ziedy(r, t)/m; must be of order evfi for trapped
particles — otherwise, v, would not vanish. Thus, the characteristic size of the parallel
velocity of trapped particles is v, ~ 4/€v,, and the fraction of trapped particles is of
order J/e.

Before expanding the ion distribution function in €, we need new velocity-space
coordinates for trapped and passing particles. We discuss the velocity-space coordinates
for trapped and passing particles in §§ 4.1 and 4.2, respectively.

4.1. Velocity-space coordinates for trapped particles

Due to the smallness of v; and to the expansion in (4.3), the magnetic and E x B drifts in
(3.19), (3.20), (3.21) and (3.22) simplify to

(Ve + o) - Vr = — e

0B+ L) + 0 () 4.5)
ZielI/[/ e m; a¥3/2 € PixVij €PixVyi )
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.
U=uB+ =00
m;

'y 3

particles initially
considered

[l .
C, i constant e==-
! .

>

l
FIGURE 2. Trajectories of trapped particles in a given U well in the (£, /) plane when one moves
from a given flux surface to a neighbouring one keeping either J or £ constant. The shape of the
U well does not change much whereas the whole well moves up and down due to the change in
potential ¢.

and

(e + o) - Va = (1 4+ 0(e)] ~ p, 2, (4.6)
24 a
for trapped particles. Here ¢, := 9,¢,.
Since the radial component of the drifts is small in €, it is tempting to neglect the
term proportional to the radial drift in (2.27). Unfortunately, this term cannot be neglected
because the radial derivative of g; y is very large,

1
O Ingw(r o, &, ju,t) ~ —. (4.7
ea

In order to understand estimate (4.7), one has to keep in mind that the potential changes
significantly with radius. Indeed, the change in potential due to radial displacement Ar ~
€a is Ar¢) ~ €T;/e, and this change in potential energy means that v, has to change
by /ZieAr ¢, /m; ~ Jev,; if we keep £ constant when varying r. Hence, surprisingly,
trapped particles with the same value of £ and separated only by Ar ~ €a occupy very
different heights with respect to the minimum of the U well. This situation is represented
in figure 2. The difference in the height of the particle with respect to the minimum of the
U well leads to the large radial derivative in (4.7). Note that the characteristic length of
giw, Ar ~ €a, is of the order of the width w of the particle orbits in (1.5), indicating that
we need to keep the radial drifts in (2.27).

Importantly, the radial derivative of g; is very large because we are holding £ fixed
and, as a result, the radial derivative of g, is related to the radial derivative of ¢y. In
contrast with the electric potential, the magnitude of the magnetic field does not change
much if 7 is changed by Ar ~ €a because its characteristic length of variation is R. Indeed,
the change in B is Ard,B >~ Ard,B, ~ €*B. The lack of rapid variation in B suggests
using velocity-space coordinates that, when held constant, do not change the height of the
trapped particle with respect to the minimum of the B well. The coordinates v and

2
Y
vZB

(4.8)
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are often used because the variation of v along a orbit is small in € and A is equal to 1/B
at the bounce points. To see that v does not change much during an orbit, note that in a
large aspect ratio stellarator, the parallel velocity of a trapped particle is very small, giving
v~ v >~ /2uBy, where By is constant. Conversely, A is not constant along trajectories.
Writing A as
M M
/l == =
E—Zep/m; &€ —Zepo/m;

shows that A changes by an amount of order € /B, along the orbit because of the variation
of ¢y. Changes of order € /B in A are important for trapped particles because the interval
of A values where we find trapped particles, A € [B},', B;'], has a length of order ¢/B,.
Here B,,(r) and By, (r) are the minimum and maximum of B on flux surface r, respectively.

Instead of the usual coordinates v and A, we propose two other coordinates. In § 5,
we will discover that v is not constant to a sufficiently high order in € for one of
the calculations that we perform: v = \/2(€ — Z;e¢p/m;) causes problems because it
introduces dependence on / through ¢s,,. Due to this limitation, we choose

S J (& - Zetutr0) @10

m;

[1 4+ 0(¥%)] (4.9)

to be one of our velocity-space coordinates. Regarding A, using it as a velocity-space
coordinate is inconvenient because it is not constant in time. Fortunately, there is another
quantity that gives the same information as A and is constant in time: the second adiabatic
invariant

lor.w
JMK%&MJ%ZZ/ oyl dl

IpLw

Ibr,w .
- 2/ \/2 (5 — uB(r,a,l) — M) dl. @.11)
Iorw i

m;

We use the second adiabatic invariant as a velocity-space coordinate for trapped particles.
Employing dsJw = tw ~ € '/?R/v,; and 8, Jyw = —tw(B)..w ~ € /*ByR/v;; to find

7 <B>7.',W
VU.IW = 8gJW va + 8#JW VUM = er”b +1|1- B w0V, (412)

we can calculate the velocity-space volume element,

dvdJd iB ;
YW - Y didJdp = —— didJ dg [1 + O()].
|(Vvv X VU‘IW) * Vv§0| TW|UII|<B>t,W

Tw|vy|
(4.13)

v =

Note that we use the symbol Jy when the second adiabatic invariant is considered a
function of r, &, &, i, t and the type of well W, whereas we employ the symbol J without
the subscript W when the second adiabatic invariant is a coordinate.

Previous work (Hazeltine & Catto 1981; Calvo et al. 2017) has used J as a coordinate, but
as a replacement for the radial coordinate r instead of as a replacement for the pitch-angle
variable A. Note that the three quantities £, u and J are all desirable coordinates because
they are constant along particle trajectories. One of the three variables works as a proxy
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for the radial position of the particle, whereas the other two represent velocity space. In
three-dimensional magnetic fields close to omnigeneity (Hazeltine & Catto 1981; Calvo
et al. 2017), J is a flux function to lowest order and hence it can be used to replace r.
For trapped particles in large aspect ratio stellarators with mirror ratios close to unity,
the kinetic energy associated with the parallel velocity is negligible compared with the
perpendicular kinetic energy uB >~ uBy, giving € >~ uBy + Ziepo(r, t)/m;. As a result,
the total energy determines the radial position 7 for a given p through the potential energy
Ziegy(r, t)/m;, and p and J are the velocity-space coordinates — note that v >~ /2uB,. We
make the relation between the total energy and the radial position obvious in § 5.4, where
we discuss the motion of the deeply trapped particles to demonstrate the advantages of our
formulation.

We remind the reader that we are changing from the coordinates £ and p to the
coordinates v and J to reduce the size of the derivative d,Ing; from (ea)™' to a~'.
We will not be able to show that the derivative of g; » with respect to r holding v and
J constant is small in € until § 5.2, but we can now show that if

1
o,Ing;w(r,a,v,J,t) ~ —, (4.14)
a

the derivative of g; w with respect to r holding £ and u fixed is as large as estimated in
(4.7). Indeed, by using the chain rule, we find

o, Ing;w(r,o, &, u, 1) =0, Ing; w(r,a,v,J, 1) + 0,0(r, £, 1) O Ing; w(r, o, v,J,1)

+ar‘]W(r’ o, g’ lu" t) a./lngi,W(r’ o, 1_)7‘]7 [) (415)
Noting that
Zi A i
55— 2% i (4.16)
m;v a
)] /
bRW arB Zi ar ; Zi .
amwra/ noB+Ziedp/mi o _Ziehotw Vi 4.17)
liw oyl m; €32
_ 1
O Ingw(r o, v,J,0) ~ — (4.18)
Vi
and
1

oyIngw(r,a,v,J,1) ~ (4.19)

ev;R’

we obtain estimate (4.7).

4.2. Velocity-space coordinates for passing particles

For passing particles, the variable J cannot be defined. For most passing particles, v =~
V= \/ 2(&E — Ziegpo/m;) and v = o\/ 2(E — uBy — Ziey/m;) are approximate constants
of the motion. For this reason, we use the coordinates v and & := v;/v for passing
particles. The velocity-space volume element in these variables is

do d& dg
[(V,0 x V,§) - V0

d*v = = vvdo dé dp = v* dv d& de[1 + O(e¥?)]. (4.20)

For the few passing particles with || ~ /e < 1, & is not approximately constant, but
we show in Appendix D that this region of phase space can be treated as a boundary
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condition for the passing-particle distribution function /; at § = 0. Appendix D should be
read after having gone through §§ 5.1 and 5.2 and Appendix C.

5. Ion distribution function and potential in low collisionality large aspect ratio
stellarators with mirror ratios close to unity

We proceed to expand equations (2.27), (2.30) and (2.36) in the inverse aspect ratio
€ < 1 assuming that By is independent of / and that p;, ~ v;,. Based on estimates (4.5)
and (4.6) for the components of the E x B and magnetic drifts, we will show in § 5.3 that
we need to order the time derivative and the source as

32

3~ 2~ Py, (5.1)

This estimate is the result of a subsidiary expansion in € < 1 of the radially global
equations for generic stellarators in § 2. Note that it is consistent with assumption (2.19) in
§2 when € ~ 1.

We expand g; w and /; in € < 1 assuming that p;. ~ v;. and using the estimates in (5.1).
For g; w, we find

giw = giow + 81w+ 8izpw + Gizw: -, (5.2)

where g; , w ~ €"g;0.w. For h;, the expansion gives
hi=hio+hizp+---, (5.3)

where h;,, ~ €"h; . The corrections g; 3, w, 2w and h;3,, are important because their
size determines the boundary conditions for g;; w, but in the end we do not need to
calculate them.

We need to consider half-integer powers of € in our expansion for two reasons: (i) the
size of the trapped-particle region in velocity space is small by a factor of order /€, and
(i1) boundary condition (2.25) introduces these half-integer powers naturally, as we will
see shortly.

We organize the calculation as follows. In § 5.1 we argue that the lowest-order solution is
a Maxwellian. In § 5.2 we obtain the equation and boundary conditions for g; ; . Finally,
in § 5.3 we obtain the transport equations for the ion density and temperature. In § 5.4, we
summarize the equations, we compared them with those implemented in DKES (Hirshman
et al. 1986) and we illustrate how they work by discussing the behaviour of deeply trapped
particles.

5.1. Lowest-order ion distribution function

The proof that the distribution is a stationary Maxwellian to lowest order in € does not
follow the derivation used in standard neoclassical theory — for examples of the usual
procedure, see § V.4 of Hinton & Hazeltine (1976) or § 3.1 of Calvo et al. (2017). In the
typical derivation, the radial drifts are small and can be neglected in the lowest-order
kinetic equation. By calculating a certain moment of this simplified lowest-order kinetic
equation, one obtains an entropy equation for an infinitesimal volume between two flux
surfaces close to each other. In this equation, the entropy production due to collisions
within the infinitesimal volume cannot be compensated by any outward flow of entropy
because the radial drifts are negligible. Consequently, in steady state, the average entropy
production must vanish to lowest order, leading to a distribution function close to
Maxwellian. In large aspect ratio stellarators with mirror ratios close to unity, we cannot
follow this procedure because, for v, ~ p;., the typical frequency associated with the
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radial drift, ((vg + vy;) « Vr)ow/a ~ pivi/R, is comparable to the collision frequency
v;. As a result, trapped particles move a significant radial distance in the time that the
distribution function evolves towards a Maxwellian. This motion can, in principle, disrupt
the natural evolution of the distribution function towards a Maxwellian.

We proceed to argue that the distribution function is close to a Maxwellian in large
aspect ratio stellarator with mirror ratios close to unity even though the trapped-particle
radial drifts are large. Collisions can drive the distribution function close to a Maxwellian
because only trapped particles drift off flux surfaces. The number of trapped particles
is small by /€ and, for this reason, despite the considerable radial displacements of
trapped particles, the radial flux of entropy due to trapped particles is not sufficient to
compensate for the large entropy production associated with a distribution function far
from Maxwellian. Moreover, trapped particles themselves are close to Maxwellian despite
their large displacements because they exchange momentum and energy with passing
particles much faster than the ion—ion collision frequency v; would suggest. Indeed, due to
the small parallel velocity of trapped particles, v ~ /€v,;, grazing collisions can detrap
them, leading to an effective collision frequency v;;/€ > pivii/R.

Appendix C contains the calculations that show that the lowest-order distribution
function is Maxwellian. In this appendix, we first argue that collisions force the
lowest-order trapped-particle distribution function g; o w(r, «, v, J, f) to be independent
of o and J. Continuity at the trapped—passing-particle boundary then imposes that
the trapped-particle distribution function be the passing-particle distribution function
hio(r, 0, &, 1) at small pitch angles & ~ /e < 1,

gi,O,W(r’avl_)7J’ t) :h’i,o(r, 670? t) (54)

When we examine the barely-passing-particle region of velocity space, we find that,
to the order of interest, the collisional flux from the trapped-particle region to the
passing-particle region is negligible. Thus, passing particles collide with each other
without exchanging significant momentum and energy with trapped particles and as a
result their distribution function #; o becomes Maxwellian. The trapped particles, however,
have a role to play. The lack of collisional flux imposes that the derivative of h; o(r, v, &, 1)
with respect to & at small values of & ~ /e < 1 must be close to zero. Thus, the
Maxwellian must have zero average flow, that is, the friction between trapped and passing
particles damps the average flow to subsonic levels. Finally, noting that the passing-particle
distribution function #4;, cannot depend on « or /, we find that 4, ¢ is a Maxwellian with
density n; and temperature 7; that are flux functions,

e -
hio(r, B, €, 1) = fos(r, B, 1) 1= mi(r, 1) (hTL(”)) exp (—%) .55

The lowest-order trapped-particle distribution function g; o w is also a Maxwellian because

of (5.4),
giow(ra,v,J, 1) = fui(r, v, 1). (5.6)
5.2. Corrections to the lowest-order solutions for the ion distribution function and the
electric potential

Since the lowest-order distribution function is a Maxwellian, from here on we need
to use the linearized collision operator Cﬁ[ f1:= Culf, fuil + Cil fui, f1. The linearized
Fokker—Planck collision operator is composed of two terms: a differential part Cﬁ p and
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an integral part C*

i,
Cilf1 = Ci plf1+ Ci 111, (5.7)

The differential part of the linearized collision operator is
Cﬁ‘D[f] =V, W’_W(UZI —w) -V, [— )+ 2= Vi, ”fMl vv - V, i , (5.8)
’ 4 Mi 2 Mi

where I is the unit matrix,

3V 2111),, ”

y” = [ rf(v/v;) — X(U/Un)] (5.9

Vi1 (r, v, 1) := ——0,H[fy;] =

is the pitch-angle scattering frequency and

2%1

3V 27y n
2

is the energy diffusion frequency. Here, the function H[ fy;;](r, v, t) only depends on the
velocity through its magnitude v, erf(x) := (2/4/m) fox exp(—s?) ds is the error function

x (v/vi) (5.10)

Vi (r,v, 1) = H[sz] =

and
2x
¥ (@) = — o3 [erf(x) - ﬁexp( xz)j| (5.11)
The integral part of the collision operator is
Ciitlf1 =iV - (VoVLHIfT - Vifui = fu Vo LLFD) - (5.12)

Using the linearized collision operator, we proceed to obtain an equation and boundary
conditions for g; ;. w, to discuss the equation for the passing-particle distribution function,
and to show that the correction to the lowest-order potential ¢,(r) is of order €*/2T;/e.

5.2.1. Equation for g;  w

We first rewrite (2.27) using the coordinates v and J, and the fact that g; o w = fi; and
hio = fui- We neglect the time derivatives and the source S; because of the estimates
in (5.1). We also use the fact that the derivatives with respect to J, 9 ~ € Y2 /u,R, are
larger by € ~'/? than the derivatives with respect to v, d; ~ v;'. This difference in size is
particularly important for the linearized collision operator that can be approximated by

Clplginw] = Vodw - 0, | (2@ = w0 + Zhov) - Vody dygin ] (13)

Finally, we take into account that, according to (4.5) and (4.6), the component of the drifts
in the radial direction is much smaller than the component in the « direction. With all
these considerations, to lowest order in ¢, (2.27) becomes

((ve +vy) - Vayow (008i1,w + 0w 95801,w)
+ ((vg + vp) « V) ow (Ofai + 0,0 0yfas + 0w 0581, w)

= <VUJW < 0y [(%(UZ’ — o) + ;H ) -V, Jw 8Jgi,1,w]> v’ (5.14)

where the derivatives of g; y with respect to r and « are performed holding v and J fixed,
whereas the derivatives of v and Jy with respect to the same variables are performed
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holding £ and u constant. To simplify (5.14), we need to use the fact that J is an adiabatic
invariant. Employing the exact expressions (3.15) and (3.17), we find

((ve+vm) - Vr)ow = m 0o ws (5.15)
similarly, using (3.16) and (3.18), we obtain
(e + vas) - Va) ey = ‘z:;—cw .. (5.16)
Thus, the second adiabatic invariant satisfies
((ve +vm) - Va)ow dedw + (Ve + vp) « V1) w 0, Jw = 0. (5.17)

Employing the lowest-order expression (4.5), we find

oy | Ze 02
((vg +vu) » Vr)ew o0 = = =081 + — 0,032 [1+ O(e)] ~ €pix—.
v/ \2B, m; oW a
(5.18)

With this result, (5.17) and employing the fact that V,Jy =~ rwv”l; for trapped particles
(see (4.12)), (5.14) can be rewritten as

C¢(/) l_)zvii J_(ra l_)’ t) mic¢(/)l_)2
—8a i - 8 Ja i - aaB T T i 519
7 8iLw ) (twd 958i1.w) 2Z,eBo ¥ (0aB1).w Tifm (5.19)
where
_ n,  Zeg, mv> 3\ T/
Yi(r,v,t) i =+ 4+ —— — = =] =, 5.20
(r,v,1) o + T + ( T 2) T, (5.20)

and the quantities n; and 7 are d,n; and 9,7}, respectively. Importantly, note that r only
appears as a parameter in (5.14), and hence, the derivative of g;; y with respect to r
is determined by the variation of the coefficients in (5.14), giving 9, Ing; 1w ~ a’', as
announced in §4.1.

We can rewrite (5.19) in a more convenient form. Using the variable

A € ) = e _aro(<D)), (5.21)
E — Ziego(r, 1)/ m; By
the coordinate J can be expressed as
I
_ bR.O.W _ B , s l
Tw(r, o, 5, 1) ~ 20 \/1 — 1B, — % dl (5.22)
IpLo.w 0

to lowest order in €. Here, Iy 0 w(r, o, A) and lyg o w(r, o, A) are the approximate bounce
points, determined by the equations B (r, &, ly.0,w)/Bo = 1 — ABy = B, (r, &, ly,0,w)/Bo.
We can invert (5.22) to obtain Aw(r, o, v, J, t) as a function of r, «, v, J and the well
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index W. We can also calculate 3,1y by differentiating equation (5.22) with respect to o
holding r, v and J constant,

Ipr.0.w Bal 9,8, _ Ipr.0.w 1
0~ — - dl — By 0,y — dl.
heow /1 — AwBo — By /By bow /1 —AwBo — By /By
(5.23)
This expression gives
(3B1) ¢y = —B 3, Ay (5.24)
We can use this result to rewrite (5.19) as
C¢/ 1_121)1»1-, (rv l_)a t) C¢/
—?3agi,1,w - 9, (twd 9,81,1,w) = __?aari,l,WTifMi’ (5.25)
2 4 4
where
miBODZ

ri,l.W(rv o, l_)i ‘I7 t) = [/_lW(rv o, 1_)7 ‘Ia t) - j]lm /_]'Wb((ri o, l_)a J» t)] ~ea

(5.26)

2Zieq(r, 1)

is the lowest-order radial displacement of the particle. We have defined r;; y such that it
goes to zero atJ — o0. This limit corresponds to the surface-filling barely trapped particle
with & = Uy(r, i, t) and W = Wy,. Note that Ay (r, o, v, J, ) does not depend on « for
J — oo.

In addition to (5.25), we need the conditions to be imposed in junctures of several types
of wells. With the new variables v and J, these junctures of different types of wells happen
at particular values of J, J = J,. w(r, «, v, t), which depend on r, «, v, t and the type of well
W. Note, for example, the juncture in figure 1: the value of J for the juncture is different
for each type of well. These values of J are related by

Jer(roo,v,0) +Jep(roo, v, ) =Jo(r, o, v, 1). (5.27)

As we noted in § 2, the function g; y is continuous across the juncture, but the derivatives
dggiw and 0,g;w are discontinuous. There are two conditions that we use to relate
the discontinuous derivatives on different sides of the juncture. On the one hand,
the combination 9, &, d¢g; w + 9,8 w. Which is the derivative along the boundary & =
E.(r,a, u, 1), is continuous. On the other hand, the discontinuous derivatives dgg; w
around the juncture are related to each other by (2.36). In the new variables v and J, the
derivative along the boundary J = J, w(r, @, v, ) is 958;1.w + 05Jc.w 9,8:1.w, and hence
this combination of 9;g; 1w and 9,g;1 w is continuous across the juncture. To finish our
discussion of the junctures, we need to rewrite (2.36) in the new coordinates v and J. We
first note that expression (2.36) vanishes to lowest order in € because g; o w and h; o are
Maxwellians. Thus, (2.36) becomes

T [<H££ i) e — 2<H£p.[fMi]>r,I 3M5c + (Huu[fMi])r,I (3M5(,-)2] 0cgir
+ T [(H&E'[fMi])r,ll - Z(HE/L[fMi])r,II augc + <H//.//.[fMi]>r,ll (aung] af,'gi,l,ll
= T [(HES[fMiDT,III - 2<HS/J,[fMi]>1:,III augc + <H;Lp.[fMi]>r,III (ap_gc)z] 8f,'gi,l,[l]- (528)

Note that the perturbations due to H,,[h;3/,] and H,,[g;1 w] can be neglected because
they are small in € — in the case of H,,[g; 1 w] because the integral that gives H,,[g; 1 w]
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is over a region of velocity space small by /€. Using the definitions (5.9) and (5.10),
we find Hee = va N VUVUH[fMi] . va =v? ava[fMi] = v4vii,ll/2yiia HS/L = va °
V.,V H[fyil - Voo = (v1/B) 32 Hfui] = v*vivi/2yiBand H,, = Vi« V,V H[fis] +

n = (Uﬁvi/lﬁBz) O H [ fuil + (Ui/vzl?z) 831)H[fM_i] = vﬁvivii,i/“'yiiBz + v viiy /2yiB*.
Moreover, E.(r, «, i, t) for the example in figure 1 is given by

Zied)() (r7 t)

1

Eclrya, p, 1) = uBy (r, o) + + 0(e?vyp) (5.29)

to lowest order in €. Here, By (r, o) is the local maximum of B on magnetic field line
(r, @) on which the juncture occurs. Then, 3,E. = By + O(¢*?By). As a result of all
these considerations, we find

2,2 R2
UH ULBleii,J-
4yuB?

Vit | By 2
i, 2 2

Note that v, ~ /€v,; and that 1 — Byy,/B ~ €. Then, expression (5.30) simplifies to

Heelfuil — 2He,[fuil 9,.Ec + Hw[fMi](augc)z =

ViRV L (7, U, 1)

Heelfuil — 2He,u[fui 3,60 + H,u[fui (0,E.)* = 47,

[1+0(@)]. (5.31)

With this result and the fact that tW(vﬁ),,W = J, we can simplify (5.28) to

-2
U™Vii 1
4y;i

. . 1_)2Viu .
(Jc,ljlir}:l 8$gi,1,1+JC,IIJE5r1 3585,1,11) = ' Jc,llljhgn Oggiim-  (5.32)

.11 Yii —>Jen

To obtain a final expression, we need to rewrite degi 1 w(r, o, &, 1, 1) as a
linear combination of the derivatives of g w(r,a,v,J,f) with respect to v
and J. Using 8gg,»,1,w = 851_) 8ﬁgi,1,w + 85JW 81gi,1,w, 851_) = 1_)_1 ~ Un_-l, ag.,w =Ty ™~
€ 2R/vy, 358w ~ Gi1w/vi and 3,81 w ~ € 2g;i1w/viR, we can approximate
Oc8it.w = Tw 0;8.1.w to lowest order in e. This approximation might seem to be in
contradiction with the fact that the two terms in the combination 9;g; 1.w + 93Jc.w 0,8i.1.w
are of the same order, a property that we have used earlier in this paragraph. Note, however,
that the function J, w(r, o, v, ) does not have a large derivative with respect to v —
indeed, when ¢, is neglected, J,w is simply proportional to v, giving 9;J.w ~ €'/*R,
which should be compared with the scaling with € of dgJy = Ty ~ € />R/v;. Using
Ocgitw == Tw 0,8i.1.w» (5.32) finally becomes

Jer lim 7 05811+ Jen lim 7 0581 = Jem lim 7 078i1.111- (5.33)
J—Jes J—1, J—J,

ol —>Jen

This equation gives the relationship among the derivatives 9;g;;.w on different sides
of the juncture. The orbit periods ty diverge at junctures because particles spend a
logarithmically large time at local maxima of U, where the velocity v, vanishes. For this
reason, we have to consider the discontinuities of the combination ty d;g; 1w instead of
the discontinuities of 9,g; 1 w.
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Condition (2.24) determines the boundary condition for g; ; w at J/ — 0o. According to
expansion (5.3), there is no correction to 4; ¢ of order €fy;, and as a result, the boundary
condition for g; ; w is

jhm g,»,l,wm(r, o, 6,.], t) =0. (534)
We discuss this boundary condition in more detail in Appendix D.

5.2.2. Correction to the passing-particle distribution function

To obtain boundary condition (5.34), we had to use the fact that the first correction to 4;
is h;3/>. Indeed, had there been a correction to the passing-particle distribution function of
order €f);;, we could not have imposed condition (5.34).

We proceed to show that expansion (5.3) is consistent and that, indeed, the largest
correction to h; is of order €3?h; ». The correction to h;o can be driven by the integral
contribution of the trapped-particle distribution function g; ; w to the linearized collision
operator, by the time derivatives of n; and 7;, by the source S; and by boundary
condition (2.25) that requires that the derivatives of g; and h; with respect to v are
continuous at the trapped—passing boundary. The contribution of g; ; w to the integral piece
of the linearized collision operator is Cf, 8wl ~ €3/2v;fyi because gi.1.w is defined in a
region of velocity space small by /€. As a result, along with the time derivatives of n; and
T; and the source S;, C}; ,[g:1,w] drives a piece of h; that is of order €*/*fy;, as demonstrated
by the expansion of (2.30) in € < 1,

on;  oT; (mv> 3 -
Cllh; Ct g | — === i = (Si)ss, 5.35
ilhise] + (G lginwles + [ o + T T > i = (Si)s (5.35)

where we have used B ~ By and the fact that v is independent of o and / for most
passing particles. Recall that the time derivatives in (2.30) are performed holding £ and p
fixed, and that £ in the term ((B/|v;|)Ciilhi, f”1)s in (2.30) includes both the passing-
and trapped-particle distribution functions 4; and g;w. Thus, the integral collisional
contribution (Cfiy,[gi,],w])fs is a result of the term ((B/|v |)C,-,»[h,-,fi(0)])fS in (2.30).

To finish our discussion of the correction to the passing-particle distribution function,
we need to consider the boundary condition (2.25). This condition establishes that the
derivatives with respect to v of the trapped- and passing-particle distribution functions
must be continuous across the trapped—passing boundary. It can also be viewed as a
flux continuity condition: the collisional flux driven by the trapped-particle distribution
function across the trapped—passing boundary must be the flux into the passing-particle
region, driving a correction to the passing-particle distribution. The collisional flux across
the trapped—passing boundary J — oo driven by g;;w is, according to the collision
operator in (5.25), —(v?v;1/2) twJ 3;gi1.w for J — oo. If this flux were different
from zero, it would drive a correction to the passing-particle distribution function of
order €'/*f;;, We can obtain this result by imposing continuity of derivatives across
the trapped—passing boundary. Due to v ~ /€v;, V,gi1.w ~ ~/€fui/vs. This gradient
must be equal to the gradient of the correction to the passing-particle distribution
function, V,(h; — fi) ~ (hi — fui)/vsi, giving the incorrect estimate h; — fi ~ /€fuis
as announced. This estimate is invalid because there is no net collisional flux across
the trapped—passing boundary due to g; ;. w, a property that we prove below. Moreover,
we will see that there is no flux due to g;3,,w and hence the collisional flux across
the trapped—passing boundary is due to the gradients in velocity space of g, w. Since
V.8izw ~ €*fyi/ v, the correction to the passing-particle distribution function is indeed
hi3/2 (see Appendix D for more detail on how the flux continuity condition across the
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barely-passing-particle region leads to this result). These arguments show that boundary
condition (5.34) for g; 1w is justified because the largest correction to the passing-particle
distribution function is indeed of order €*?f;;. We proceed to show that Ty J 9,8, 1w
and ty J 0,8; 32w vanish at the trapped—passing boundary J — oo, that is, that neither
8w Nor gi3nw drive a collisional flux from the trapped-particle region into the
passing-particle region.

We start by showing

jhm TWb[-I ajg,-,l,wm(r, o, 17, J, t) =0. (536)

We first integrate equation (5.25) over the region in J where orbits in well W with given
values of « and v exist, J € [J,,.w(r, o, v, 1), Jyw(r, a, v, )],

C¢(’J Ju.w
0 (gi,l,W + riw TifMi) dJ
l]/[ Jnw

P} _ _
- _OanM,W [gi,l,W(ra o, v, JM,Wa t) + ri,l,W(r’ o, v, JM,Wy t) TLfMl]

124
coy _ _
+ Waa*]m.w [giiw(r, o, 0, Jyw, O) + riaw(r, &, 0, Jyw, ©) Vifui]
t
>
V7V . .
Y (JM,W Jllzr;w Tw 581w — Imw Jlg?w Ty 8Jgi,1,W> =0. (5.37)

The second and third terms in this equation are included to cancel the derivatives with
respect to o of the limits of the integral in the first term. The values of J,, w and Jy, y are
either 0, co or values at which there is a juncture between different wells. We proceed
to integrate equation (5.37) for all the values of « allowed in well W for a given v. The
interval [o w(r, v, 1), agw(r, v, 1)] is the region in « where orbits in well W with a given
value of v exist. The limits o7y and ag w exist for two different reasons:

(1) either well W closes at o w and ag w because J,, w = Jyw; or
(i) well W extends to all values of « and hence o = 0 and ag y = 2.

In figure 3, we give an example in which one of the wells, well IV, disappears (J,, ;v =
Ju.v at @ = agy) and a new well, well VI, appears (J,,.v; # Ju.vr for @ > ag v). Not all
cases in which a well disappears are as straightforward as the example in figure 3. We
discuss a pathological example in Appendix E, where we also show that choices can be
made such that either J,, v = Jyw or the distribution function is periodic at oz w and og .
In either case, integrating equation (5.37) over «, we find

)
v/

_aajin,W (gl',lA,W(ra o, I_)a Jm,Wv t) + riﬁl,W(ra o, ﬁv Jm,Wa t) TLfMl)] da

/ [anM,W (gi,l,W(ra o, 1_)’ JM,W? t) + ri,l,W(ra o, 1_)9 JM,Wa t) TlfMl)

oL w

4 J=>JIuw —>Jmw

=0. (5.38)

2 aRw
V™V, 1 ’ . .
— JM,W lim TWani,l,W_Jm,W lim Twajgi’l,w dO[
oL.w

Summing over all possible well indices W, and using the fact that, at the juncture of several
wells, g; 1w is continuous and ty d;g; 1w satisfies (5.33), several terms cancel and we
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Zeq Zieq .
efo U=;13+f—00 U=uB+
m, m;
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N EANAY Uvas

a<agyy=aLyr R a=0gy = ALy R a > ag gy =ay; R

l l 1

FIGURE 3. Example of limits oy, w and ag w. Well IV disappears at @ = g jv, and at that
same value of «, a new well VI appears, giving oy, v = ag 1v.

Ziedy
my

find the result in (5.36). To illustrate the different cancellations that lead to (5.36), we
consider the juncture of wells /, II and IV in figure 3, characterized by J,.;, J.; and J,. jy =
Jeq+J.y. For well I, we find J,,; =0 and Jy,; = J.;. Similarly, for well II, we have
I = 0 and Jy y = J. . For well IV we only know the minimum value J,, ;v = J.;v. In
the sum of (5.38) over all wells, the terms proportional to J,, ;, J,,; and their derivatives
with respect to « vanish. The contributions from the juncture of wells /, Il and IV in
figure 3 are then

e
24

+ / 0o .11 (gi,l,u(”, o, U, e, ) + rign(r, o, v, e, 1) TifMi) da

oL

ORI
/ 8(X‘IC,] (gi.],[(r9 o, l_]y Jc,l’ t) + ri,l.[(ra o, 67 JC,[? t) TlfMl) da

ar g

—/ dadeav (girav(r, o, 0, Je v, ) + riyw(r,a, 0, Je v, ©) Yifu) da]

oL

Dzvii L Qg1 ) QR.11 )
- : / Jeo im 77 9;8;1, do +/ Jer im 7795811 dot
4 .y J—=Jeu L J=>Jeu
ARV
— / Jeqv lim 7y 958i1.1v da] + -
oy I=Jew
=0. (5.39)
The ellipsis points - -- here indicates that there are more terms corresponding to other

junctures that we have not included in the equation. The first three lines of (5.39) cancel
each other because of continuity of g;; w and r;; w across the juncture and the fact that
0aJe.r + 0ot = 04Jc1v. The displacement r;; w is continuous across junctures because
each juncture has a single value of A, 4 = A.(r, o, v). Lines four and five of (5.39) vanish
because of condition (5.33).

The correction g;3,,w to the trapped-particle distribution function is shown to be
independent of « and J in Appendix F. Using v instead of v is crucial to obtain this
result (see Appendix F for more details on the role of v in the derivation). By continuity
across the trapped—passing boundary, we also find that

gizpw(r,a,v,J,1) =hi3,(r,v,0,1). (5.40)

Thus, tw J 0,8;3/2,w 18 zero at the trapped—passing boundary.
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5.2.3. Electric potential ¢,

To determine the piece of the electric potential that is not a flux function, we use
quasineutrality (2.1). To calculate the integral of fi(o) over velocity space, we employ
U > v + Zeps; /m;v to perform a Taylor expansion around v, finding

gi,W(r’ o, l_)a ‘19 t) =fMi(r7 v, t) + gi,l,W(ra o, v, Jv t) + 0(63/2 Mi)’ (54])
and

Zie¢3/2(ra a, la t)

hi(r,v,&,1) = fui(r, v, 0) + hizp(r, v, €, 1) — fui(r, v, ) + O(€fu)-

Ti(r)
(5.42)
Then, the lowest-order quasineutrality equation (2.1) gives
en, Zizn,-
( T + T) G320 = Zi/ Z gi1wdy, (5.43)

wew

showing that the next-order correction to the flux function ¢, is indeed small by €¥/2, as
predicted in § 4. Here, n, > n, exp(e¢o/T,), and [ g; 1w d*v ~ €*/*n; because, again, the
region of velocity space where g; w is defined is small by /€. Note that we need not
include [ h; 3., d*v in the quasineutrality equation because this integral does not depend
on « or [ to lowest order in €, and hence can be absorbed into the definition of »;(r).

5.3. lon transport equations

We finish by integrating equations (2.27) and (2.30) to find equations for n; and 7;. Before
we integrate, we rewrite the equations in a convenient form. Using (5.15) and (5.16) and
employing Zie(0,9)..w/m; = —Tv;laz(fw(vﬁ)r,w) and 3£(TW<Uﬁ)r,W) = Ty, (2.27) can be
written as

Ziefw

1 1
— 9, (twgiw) + t—as ( (0:0) . w gi,W)
W

Tw i

1
+ T_aa (TW((UE +vmi) - Vo) ow gi,w)
W
1 _ _
+ r_ar (tw((e +va) - Vr)ew gi,w) = (Cii[gi,w,fi(o)])r,w + (Si)ew- (5.44)
W

Using Zie((B/|vy|) 0,¢)s/m; = —9,(Blvy|)ts and dg(Blvy|)ts = (B/|vy[)x, (2.30) can be
written as

(o), ) +2e G o), ) + (g cnm 1) = {i575%)
\{—) h)+0c| —(—0¢) h|+{—Culhi.f;"]) =(—S;) . (5.45)
logl [ m; \ vyl [ lvy & Mol g

Multiplying (5.44) by Ty and (5.45) by 1, integrating over «, £, u and ¢, and summing
over both signs of o and over the well index W, we find ion particle conservation equation

1 / 3
omi + 0, (vr)={| Sidv) , (5.46)

fs
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where
o0 UM B
I :=4n du/ d& — Z giw((We +vuy) - Vr)ew (5.47)
0 U
fs

is the particle flux. Note that the passing-particle piece /i; does not contribute due to
property (2.33). Using the expansion in (5.2), the integration variables v >~ v and J and
the lowest-order expression for the radial drifts in (4.5), and employing equation (5.24) to
relate the drifts to ;1 w, defined in (5.26), the particle flux becomes

__ 2megy

00 arw Ju.w
E ~ BV / dv Z/ da d]'l)giﬁ]’W Bo,ri,l,w ~ es/zpi*nivli. (548)
0 0 w YoLw I, w

To obtain the order of magnitude estimate, we have used ¢, ~ T;/ea, V' ~ Ra, J ~ JVe€viR
and r; 1w ~ €a. The order of magnitude estimate in (5.48) justifies estimates (5.1).

The estimate for the size of the particle flux in (5.48) can also be obtained from a
random walk argument. In the introduction, in (1.5), we argued that trapped particle orbits
had a radial width w ~ €a due to the smallness of the magnetic drift compared with
the E x B drift, |vy|/|ve| ~ €. These orbits are interrupted by collisions that have an
effective collision frequency v;;/€, causing a radial random walk with steps of length w
every time €/v;. The effective collision frequency v;;/€ is larger than v; because small
angle collisions can easily detrap particles with v ~ /v, by providing a small amount
of parallel momentum. Since we assume Vi, ~ Pi, Vii/€ ~ piV;/a. Thus, the random
walk diffusion coefficient associated with trapped-particle orbits is D ~ /ew?p,v;/a.
The factor of /€ in the estimate of the diffusion coefficient is due to the fact that only
trapped particles, which are a fraction of order /€ < 1 of the total number of particles,
participate in the diffusion. Using D ~ €%/?p,,.av,; and I'; ~ D|Vn;| ~ Dn;/a, we obtain
the estimate in (5.48).

Multiplying (5.44) and (5.45) by m;€ and integrating over velocity space, we find the
ion energy conservation equation

3 1
0, (5”1'7} + Zieni¢o) + Var [V'(Qi + ZiegoI}) | = Zien;d,¢0

1
+ </ <§m,-v2 + Z,-e¢0> S; d3v> , (5.49)
fs
where

TN, ¢ / 00 R W Iuw
0~ % / dv Z/ da/ dJ U3gi,1,w ulitw ~ GS/ZPi*”iTiUﬁ (5.50)
0 w YaLw T w

ByV’

is the ion energy flux. Note that, using (5.46), (5.49) can also be written as

3 1 , , | R,
O =nT )+ =0, (VQ) = —ZepyI; +{ | =mv*S:dv) . (5.51)
2 14 2 fs
The expressions for the particle and energy fluxes given in (5.48) and (5.50) would seem
to suggest that both fluxes are proportional to the radial electric field ¢. This is, however,
not the case as r; 1 w, defined in (5.26), is inversely proportional to ¢. Thus, ¢; only enters
in the fluxes through its influence on the correction to the distribution function g; 1 .
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5.4. Summary

To summarize, for p;, ~ v, the ion distribution function is Maxwellian to lowest order.
The density and temperature of this Maxwellian can be calculated using particle and
energy conservation equations once the particle and energy fluxes in (5.48) and (5.50)
are obtained. To calculate these fluxes, we must obtain the correction g; ; w that is only
defined in the trapped-particle region. The equation for g; ; w is (5.25). This equation must
be solved along with boundary condition (5.34) and relation (5.33) for the junctures of
different types of wells.

Importantly, due to the presence of the small correction ¢3,, to the potential, we
had to use the velocity-space coordinates v and J, defined in (4.10) and (4.11), and
the approximate pitch-angle variable A, defined in (5.21). These variables were crucial
to show that boundary condition (5.34) applies, but once this is done, we can use the
approximations v >~ v and A =~ A, where A is defined in (4.8). From here on, we replace v
with v and A with A.

The same set of equations that we have obtained can be derived from the kinetic equation
implemented in DKES (Hirshman et al. 1986) in the limit given by p; ~ v, < 1 and
€ < 1. The procedure to derive (5.25), (5.33) and (5.34) from the DKES kinetic equation
1s similar to the method described in § 2 and in this section. We sketch the derivation in
Appendix G. There are three differences with our derivation that are worth mentioning.

(i) The DKES equations assume from the start that the lowest-order distribution is
Maxwellian and that the potential is an exact flux function.

(i1) We use the second adiabatic invariant as a variable because it remains constant as the
particle moves. However, the DKES kinetic equation does not ensure that the second
adiabatic invariant remains constant. Instead, the DKES kinetic equation maintains
the quantity

lor,w
JW = 2/ B|U||| d/ (552)

Iprw

constant. In the expansion in € < 1, this quantity is approximately proportional to
J,J =~ ByJ.

(iii) The perturbation to the passing-particle distribution function %; calculated by DKES
is of order €*2fy;, but unlike the physical correction A; 3>, determined by (5.35),
the DKES correction to the passing-particle distribution function is not driven by
the time derivatives of density, potential and temperature, the heating and fuelling
sources or the integral terms of the collision operator. In DKES, the perturbation to
the passing-particle distribution function is only driven by the collisional flux from
and to the trapped-particle region because DKES only evolves the perturbation to
the Maxwellian and uses a simple pitch-angle scattering operator without integral
contributions.

The three previous differences mean that, even though the DKES kinetic equation leads
to the same equations as the full kinetic equation to lowest order in p;, ~ v, < 1 and
€ K 1, the higher-order equations given by DKES will be very different from the physical
ones. The higher-order equations merit further study because they might be important
even for small values of €: for example, g; 1 w is not zero at the trapped—passing boundary,
but of order \/eg; 1w, and this boundary value is determined by the perturbation to the
passing-particle distribution function, h; — fj;, that we have neglected. DKES cannot
determine /; — fyy; in the limit given by p;, ~ v, < 1 and € < 1.
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(b) B r fixed

FIGURE 4. (a) A particle deeply trapped in well W can move across field lines along the red
line in the particular case in which the local minima of B, By, w(r, «), are independent of «.
The local minima of B in omnigeneous magnetic fields behave in this manner. (b) In the more
general case in which By, w varies with «, deeply trapped particles cannot move along the red
line to precess around the flux surface unless they are allowed to move radially as well.

Finally, to demonstrate the advantages of (5.25), (5.33) and (5.34), we consider the
deeply trapped particles. These particles were singled out as problematic for, for example,
the first version of the local orbit-averaged code KNOSOS (Velasco et al. 2020). The first
version of KNOSOS was valid only for stellarators close to omnigeneity (Calvo et al.
2017), and as a result, the radial displacement of particles is neglected to lowest order in
the expansion in closeness to omnigeneity. This approximation is valid for most particles,
but fails for deeply and barely trapped particles because these particles cannot move across
magnetic field lines within the same flux surface if they do not move simultaneously along
Vr (across flux surfaces).

We proceed to explain this problem in detail. First, we consider a particle deeply trapped
in a given magnetic well W on a given flux surface r. The deeply trapped particles have
a small J and hence must have a parallel velocity close to zero to keep J constant. Their
total energy per unit mass is, to lowest order in €,

Z,'@
8 = /’LBZm,W(r’ Ol) + ;¢0(”, t)’ (553)

where By, w(r, «) denotes the local minimum of B in well W along the magnetic field
line determined by r and «. Since the total energy £ is a constant of the motion, a deeply
trapped particle can move across magnetic field lines of the same flux surface r only if the
value of By, w remains the same while it does so, as in the case represented in figure 4(a).
In the case of omnigeneity, treated by Cary & Shasharina (1997a,b) and Parra et al. (2015),
B, w remains the same for different values of « on a given flux surface. Thus, deeply
trapped particles precess around the flux surface without moving radially.

In a generic large aspect ratio stellarator with mirror ratio close to unity, the deeply
trapped particles cannot move across magnetic field lines on a given flux surface, as shown
on figure 4(b). However, since the electric potential ¢, varies with r, it is possible for v to
be approximately equal to zero after a displacement A« if the particle moves across flux
surfaces by a distance Ar. Using (5.53), we find that Aa and Ar must satisfy

Zied\(r, t
€¢0(r )Ar

m;

0= n aozBlm,W(O(a rAa + > (5.54)
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where we have neglected the radial derivative of By, (r, o) because it is small by a factor
of € compared with the radial derivative of ¢. This is consistent with the velocities de/dt
and dr/dt obtained from the transit average drifts in (4.5) and (4.6),

d ’
do (5.55)
dr !
and
dr m;cv?
dr - 2Z,‘€Bo':pt/
where By, w(r, o) is the local minimum of B; in well W along the magnetic field line

determined by r and «. Moreover, (5.54) is also consistent with the definition of the radial
displacement r;, w given in (5.26). Indeed, to lowest order in €, 4 = B,_ml,w for deeply

trapped particles, and 1 — B,,' for J — oo, giving

aocBl,lm,W’ (556)

miv* By y(r) — By jmw(r, @)

(5.57)
2Z;e), B,

riw =

This equation is a solution to (5.55) and (5.56), and it shows how the particle moves
radially to increase and decrease its electric energy to keep its total energy constant.

We can draw the path followed by a deeply trapped particle with J = 0 on an (/, o)
plane, sketched in figure 5 for ¢, > 0 and ¥, > 0. The particle moves towards increasing o
following the local minima By, w. Simultaneously, the particle moves back and forth across
flux surfaces, increasing » when 9,B < 0 or decreasing r when 9,B > 0. It is interesting

to note that

Ar
— ~ €a, (5.58)
Ao

showing that the oscillating displacement across flux surfaces is much smaller that
the precession around it. Equation (5.25) reproduces this motion for deeply trapped
particles.

6. The 1/v regime in large aspect ratio stellarators with mirror ratios close to unity

In this section, we briefly consider the limit v, >> p;.. In this limit, we can neglect the
term (co,/¥,) 9,81, w in (5.25), giving to lowest order

v 1 (v) ey
- TL dy (TWJ ani,l,W) = —7? Oulit.w Vifui- (6.1)
t

This equation can be integrated using boundary condition (5.34) and relation (5.33) at
the junctures of several types of wells. The final result is a trapped-particle distribution
function of order g; 1. w ~ €pjsfui/Vis. Using this result in (5.48) and (5.50) for the particle
and energy fluxes, we obtain

I~ &Es/zﬂi*ﬂivn, Qi ~ &Es/zpi*niTiUﬁ- (6.2a,b)
[£3 (23
These are the typical 1/v regime order-of-magnitude estimates (Ho & Kulsrud 1987).
Estimates (6.2a,b) can be obtained using a random walk argument. For v, > pi, a
typical trapped particle moves radially due to the radial magnetic drift vy, - Vr ~ €p; vy
until a collision detraps it. As a result, particles move a distance v,; - Vr/ve between

https://doi.org/10.1017/50022377822000897 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822000897

Large aspect ratio stellarators 33

J =0 fixed

[
B By,

m

FIGURE 5. Map of the magnetic field magnitude B in an (/, o) plane. In black with arrows, we
sketch the path followed by particles with J = 0 in a stellarator with ¢, > 0 and ¥/ > 0. The
coordinate r is not constant, and its variation around its average value has the opposite sign to
the value of B = B — By, as shown in (5.57).

collisions, where v ~ v;;/€ is the effective collision frequency for trapped particles.
After each detrapping collision, a trapped particle becomes passing and moves along
the magnetic field line until another low angle collision reduces its parallel velocity
sufficiently to trap it in a different well. The magnitude and sign of v,; - Vr in the new
well will in general be different from the sign and magnitude of the radial drift in the
original well because the particle has moved a significant distance along the magnetic field
line while being a passing particle. For this reason, the radial displacement of a typical
trapped particle is similar to a random walk with a characteristic step size vy; « V7 /Vegr ~
(pix/Vix)€a < €a and a characteristic time 1/veg ~ €/v;. The corresponding diffusion
coefficientis D ~ /€ (vyg « Vr/vetr)?vesr, Wwhere 4/€ is the estimate for the trapped-particle
fraction. With D ~ €3/2p2 av,; /v, and using I'; ~ D|Vn;| ~ Dn;/a and Q; ~ n,D|VT;| ~
Dn;T;/a, we recover estimates (6.2a,b).

7. The v regime in large aspect ratio stellarators with mirror ratios close to unity
In this section, we study the limit v;, << pi.. We expand g; 1.w in v, /pi < 1,

Siw =8t elwt (7.1)

with gﬁ,"l},w ~ (Vi / pix)"€fui- We proceed to expand (5.25) in v, /pi < 1. 1In § 7.1, we solve
the lowest-order version of (5.25) and we show that the lowest-order distribution function
does not give rise to radial fluxes of particles or energy. In § 7.2, we go to next order in
Vi /pis << 1. Finally, in § 7.3, we calculate the particle and energy fluxes.

7.1. Lowest-order distribution function

Equation (5.25) becomes, to lowest order in v, /p; < 1,

!
ey {0}
; Oasilw
lI/t

Py
__?aari,l,W Yifui- (7.2)
lI/[
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Using the fact that 77f}; does not vary with o, we obtain the expression
gl{,ol},w(rv o, v, J7 t) — _ri,l,WTifMi + Ki,W(r9 v, Js t)a (73)

where the function K; y does not depend on «.

Due to the existence of junctures between different types of wells such as the one
sketched in figure 1, the function K; y can be independent of J in large regions of velocity
space. Before we explain why, we need to consider what happens with well junctures in
the limit v, /p; < 1. In this limit, it is in general impossible to impose continuity of g; ;. w
across the juncture, or condition (5.33) that relates the derivatives 9,8, 1w =~ 8,g;01},w on
different sides of a juncture to each other. This is hardly surprising since continuity of
gi.1.w and condition (5.33) are a result of collisions, and we have neglected collisions to
lowest order. In reality, continuity and condition (5.33) are not satisfied in appearance
only, because boundary layers where collisions become important can form around well
junctures.

The rest of this subsection is split into three parts. In the first one, we show that
collisional boundary layers only form around certain junctures, and we find a condition
that K; w must satisfy when these boundary layers form. In the second part, we study an
example that illustrates the shape of K; y. We finish with a general discussion.

7.1.1. Junctures of different types of wells for very small collision frequencies

Not all well junctures are problematic and need a boundary layer. Whether a juncture
has a boundary layer or not depends on the direction of the velocity in «, c¢y/¥,, and
the derivatives of the juncture coordinates J. w(r, o, v) with respect to . To explain
this further, we consider the juncture in figure 1. Some particles in well I leave this
well if the time derivative of J.,(r, o, v) is negative. Indeed, if a particle with J =
Jo (r(®), a(t), v(r)) at time ¢ were to stay in well 7, it would have to do so keeping
its second adiabatic invariant constant. However, such a particle would find itself with
J > J. (r(t+ A, a(t + At), v(t + At)) att + At. Since there are no possible orbits with
J > J.; in well I, the particle must have moved into well I/ or well /I, and in doing so,
the value of J of the particle has changed abruptly. This is consistent with J being an
adiabatic invariant: it is only constant when the motion is a slowly changing periodic orbit,
a description that does not apply to a transition from one well to another. These transitions
between different types of wells can be understood to be a result of the conservation of
phase-space volume. The second adiabatic invariant is the phase-space volume inside a
trapped orbit. When J,; becomes lower than the J of a particle, the phase-space volume
of the particle orbit cannot be contained inside well 7 and the particle ‘spills over’ into
wells /I and 71l (Dobrott & Greene 1971; Cary et al. 1986).

Equivalently to particles moving out of well / when the time derivative of J, ; is negative,
some particles move into well / if the time derivative of J,; is positive. As we will see
shortly, the fact that the time derivative of J,; is positive implies that particles are leaving
well 11, well III or both, and since these particles must move into another well, it is intuitive
that conservation of phase-space volume will force these particles to move to a well where
there is ‘space’. Well /, with a positive time derivative of J.;, is such a well because at
time ¢ all particles in that well have J < J.;(r(?), a(¢), v(t)), and hence, if no particle were
to move into well /, at time ¢ 4+ At there would be no particles that have second adiabatic
invariant between J.. ;(r(t), a(t), v(t)) and J. ;(r(t + A1), a(t + A1), v(t + Ab)).

To summarize, some particles move out of well 7 if the time derivative of J..; is negative
and some particles move into well / if the time derivative of J.; is positive. Similarly,
some particles transition out of well /I if the time derivative of J. ;; is negative, and some
transition into it if the time derivative of J.j is positive. The signs reverse for well 111
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because the orbits in this well have J larger than J,. ;;. Thus, particles move out of well 11/
if the time derivative of J, j; is positive, and transition into it if the time derivative of J,
is negative.

Since both » and v have time derivatives that are small in €, the time derivative of
Jew(r, o, v) is simply

dJc,W
dr

~ v Va ddow = Do, 4
Z Vg VU OyJew = v/ ave,W- (7)

t

Importantly, condition (5.27) imposes that d,J.; + 0,Jc. 1 = 0Jc - With this equality,
it is easy to check that, if some particles are moving into well I, i.e.
(cpy/¥,) 0udcr > 0, some particles must be leaving well 11, (cg)/¥/) 0,Jcn < 0, well
I, (c¢y/V¥)) 0yJen > 0, or both. It cannot be the case that particles are moving into all
three wells, or leaving all three wells.

Armed with the results above, we can start discussing the collisional boundary layers.
There are two distinct cases to consider:

(1) the signs of c¢y/¥, and 9,J. w are such that some particles leave one of the wells
and move into the other two wells; in this case, there is no boundary layer around
the juncture; or

(ii) the signs of c¢y/¥, and 0,J. w are such that some particles leave two of the wells
and move into the third well; in this case, a thin boundary layer forms around the
juncture.

To illustrate what happens in the case that some particles leave one of the wells and enter
the other two, we consider the following example. With the sign choices (cg,/¥,) 0,J.; <
0, (copy/¥)) 0der > 0 and (co/V¥/) 0,Jc. < 0, some particles leave well I and enter
well II and III. For small collisionality, kinetic equation (7.2) imposes that the piece of
the distribution function K; y is continuous along particle trajectories. Since particles are
leaving well I and moving into well /I and well /11, the distribution function in wells I/
and /1] must be the same as in well /, that is, K; ; = K;; and K; ;; = K; ;. Thus, there is no
need for a boundary layer because the distribution is continuous. Note that this process is
irreversible: if we reverse time, particles leave wells /I and /1] and move into well /, and we
will see shortly that this leads, in principle, to discontinuities in the distribution function.
In our equations, collisions are the only element that introduces irreversibility, so it is
surprising that they do not seem to play a role in the discussion. In reality, collisions have
led to this solution indirectly. If one assumes that, due to some unknown mechanism, more
particles move into well /I than into well 111, giving K; ;; > K; j;, the distribution function
is discontinuous across the juncture. Fokker—Planck collisions impose continuity in the
distribution function, and as a result we need a boundary layer around such a hypothetical
juncture. Appendix H shows that it is impossible to construct such a boundary layer, a
result that implies that the distribution function K; must be continuous across junctures
where particles leave one well to move into the other two wells.

We proceed to consider a juncture in which particles leave two wells and enter into
the third well. For example, consider the situation that arises if the signs of ¢;, ¥, and
the derivatives of J.;, J. and J.;; with respect to o imply that particles leave wells
I and II to enter well /II. In this case, in general, K;; and K, are different and we
need to obtain a value for K; ;. One can think of this problem as particles flowing into
the juncture from wells / and //, mixing inside the juncture, and leaving through well
III with a new distribution function K;;;. A collisional boundary layer, described in
Appendix H, forms around any juncture in which particles move out of two wells and
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into the third. The result of this boundary layer is simply a balance among the phase-space
fluxes of particles across the juncture. The infinitesimal element of phase-space volume
integrated over the gyrophase and [/ can be constructed from (2.18) and (4.13), and it is
(2n¥/v/By) dr da dv dJ to lowest order in €. With this phase-space volume element, we
can calculate the number of particles crossing J = J. . One first replaces the variable
J with AJy :=J — J.w. With this new set of coordinates, the infinitesimal phase-space
volume becomes (2n¥/v/By) dr da dv dAJy. Then, the rate at which phase-space volume
crosses the boundary J = J. y, equivalent to AJy = 0, is

2ny/v dAJ 27
TR OCW drdady = — megoy
B() dt BO

0yJe.w dr da dv, (7.5)

where we have used (7.4) and the fact that the time derivative of J is zero to obtain
dAJy/dt >~ —(c¢y/ V) o)., w. Using (7.5), we find that the number of particles crossing
the boundary is —(2nc¢{)vgl{’ol}yw /By) 0,J..w drda dv. Balance between the three fluxes
leaving and entering the juncture in figure 1 gives

Imed! 27cd)
B lc?(pov&{,ol}J 0gJerdrdadv — B 81{'.01},11 O, dr do dv
0
2mcpyv
—_ ;‘1’0 8 1y 8t dr dar dv. (7.6)
0

We can simplify this expression by dividing by —(2mcpyv/By) dr da dv. Furthermore,
using (7.3), we find the relationship

(Kip — ring Yifui)0adeq + (Kot — rist . Vifui) 0adcr
= (Ki,m — i TifMi) anc,lll- (7.7)

The definition r; 1w in (5.26) implies that r;; = r;;; = r; ;7 at the juncture because all the
particles on the juncture have the same value of 4 >~ A. With this result and the fact that
condition (5.27) gives 04Jc; + 0oJer = 0uJc.ur, all the terms that contain r; | cancel each
other, leaving

Ki,[ 8oz-]c,l + Ki,ll 8(1]6,1] = Ki,[[l anc.IIl- (78)

Equation (7.8) can be used to calculate K;;; given K;; and K;j. Note that, due to
condition (5.27), K; j; is equal to both K; ; and K; ;; if K;; = K, 1.

The discussion in this section is related to the probabilities of transition calculated by
Cary et al. (1986). If instead of the particle distribution function, one considers individual
particle motion across a juncture, the problem with junctures is reversed. When a particle
leaves one well to move into two other wells, the particle cannot be split into two. The exact
position of the trapped particle along its quasi-periodic motion (that is, its phase) when it
reaches the juncture determines the well that it moves into. Orbit-averaged motion ignores
this phase, but one can assume that particles are equally distributed along this phase and,
using this assumption, obtain the probability of transitioning into one well or the other.
Following Cary et al. (1986), if a particle leaves well 1, (c¢;/¥/) 04J.; < 0, to move into
either well 11, (c¢,/¥/) 04Jer > 0, or well 111, (c¢y/¥,) 9oJem < O, the probability that
it moves into well /I is —d,J. 11/9,J.1, whereas the probability that it transitions to well
I is 04J. 111/ J.;. Thus, for single particle motion, the derivatives of J. y with respect
to « enter in the problem, but they apply to the junctures in which the particle leaves one
well to move into one of the other two wells, instead of applying to the case in which
particles leave two wells to transition into the third well. In this latter type of juncture,
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a single particle leaving one of the wells does not have any other choice but to move
into the well that is accepting particles. To summarize, our formulation does not require
transition probabilities because it is based on the distribution function instead of single
particle motion and because, by keeping collisions, it develops the collisional boundary
layers described in Appendix H.

7.1.2. Example

After explaining how the distribution function behaves around junctures of different
types of wells, we proceed to argue that the function Ky is independent of J in large
regions of velocity space. To illustrate the problem, we consider the simple situation
sketched in figure 6. In this figure, we show the dependence of the effective potential
U >~ uB + Ziego/m; on [ for several values of o. We consider particle motion in this
effective potential for a radial electric field that forces particles to move in the direction
of increasing «, that is, c¢;/ ¥, > 0. Due to the changes in the U profile with o, we can
divide the motion into four steps:

(1) Step (@) — (b). The minimum of well /I decreases with o, while well I does not
change. Thus, 94/, > 0 and 0,J. ;; > 0, but 9,J.; = 0. Since c¢y/¥, > 0, the
discussion of the previous section implies that particles in well /I with low values
of J transition into well //. Particles cannot transition into well / because 9,J.; = 0.

(i1) Step (b) — (c¢). The minimum of well I decreases, while well /I does not change.
Hence, 0,J.; > 0, 9,J. s = 0 and 0,J.;; > 0, and particles in well 7/ with low
values of J transition into well /. Particles cannot transition into well II because
8onc,II =0.

(iii) Step (¢) — (d). The minimum of well /I increases until it reaches the value it had in
(a), while well I does not change. As aresult, 0,J.; = 0, 0,J.y < 0and 9,J. ;s < O,
and particles that had transitioned into well /I during step (i) go back into well 111,
but their value of J is greater than their initial one. Particles cannot transition into
well  because 9,J.; = 0.

(iv) Step (d) — (e). The minimum of well / increases until it reaches the value it had in
(a), while well II does not change. Then, 0,J.; < 0, 04J.y = 0 and 9,J. ;; < 0, and
particles that had transitioned into well I during step (ii) go back into well 111, but
their value of J is lower than their initial one. Particles cannot transition into well 17
because d,J.; = 0.

In the configuration in figure 6, there is only one juncture between wells /, I and I11.
This juncture is characterized by the functions J. ,(r, o, v), J. y(r, @, v) and J,. ;; (r, o, v),
sketched in figure 7(b). Each of these functions has a maximum and a minimum in « that
we denote J. w pu(r, v) and J.w ,(r, v), respectively. Particles in well / with values of J
smaller than J.;,(r, v) never transition to wells /I or III. Similarly, particles in well I/
with J smaller than J. j ,,(r, v) and particles in well /Il with J larger than J. j; » (7, v) do
not transition into the other two wells. In these regions of velocity space, the dependence
of K; w on J will be determined in § 7.2.

The situation is very different for particles in well /I that have J. ;,.(r,v) <J <
Jerm(r, v). These particles transition into wells / and /I and eventually transition back
into well III. There is a value of J, J;;(r,v) := Jeym(r, v) + Jeym(r, v), such that
particles in well III with J, ., < J < J;; transition into well /I, and particles with
Jin < J < Je . transition into well 7.

To understand what happens for particles with J. ., <J < Jorm, we define the
function Jyyy ou (J17.1n)- This function determines the value of the second adiabatic invariant
of a particle in well /Il after it has transitioned into well / or well Il and has then
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(a) U=pB+Ziﬂ (b) U=;AB+Z'-L%
. m; q iy
I
a=0
)
(c) U:pgq.z?%’“ (d) U=#B+Z;Lf’“

i

a=2n

{

FIGURE 6. Example of effective potential U(w, [). Each panel corresponds to a particular
value of «.

transitioned back to well /1. The value Jjj; o, of the adiabatic invariant after the particle
has transition in and out of well / or well /I depends only on the value that the adiabatic
invariant had before the particle transitioned, Jy; ;,. For the magnetic field configuration in
figure 6, the function Jyy ou(Jir.in) 18 sketched in figure 7(a) as a light pink straight line for
particles that transition into well 11 (J. ., < J < Jr1), and as a dark pink straight line for
particles that transition into well I (J; ; < J < J.r.m)- To sketch the function Jyy ou (J111.in)»
we have used the fact that

Jimiw Yoo —Jeim  fordog, <J <Jin,
Jirouwirin) = { i M h A i (7.9)

Jurin — Jerm + Jemms for Jin <J <Jeum-

Using the function Jjy ow(Jirin), We can schematically describe particle motion for
particles with J. ;7 <J < Je . This motion is shown in figure 7(a) as a black
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FIGURE 7. Evolution of the value of J of a particle in the magnetic field sketched in figure 6.
We start with a particle in well /7] with initial value of the second adiabatic invariant J = Jip .
Panel (a) shows the second adiabatic invariant of particles with J = Jyr i after these particles
has transition into well 7 (dark pink straight line) or well /I (light pink straight line), and then
back to well III. The trajectory of the particle with initial second adiabatic invariant Ji, ¢ is
represented by the black staircase-like line. Panel (b) shows the initial part of the same trajectory
in the plane («, J). The pink lines are J. j(«), Je (o) and J. ().

staircase-like line with arrows. We start with a particle with initial second adiabatic
invariant Ji, o < J; . After its transitions in and out of well /1, this particle has acquired the
second adiabatic invariant Jy; o (Jin.0), Which is necessarily in the interval [J. 7, Je.r.m]-
As a result, the particle will transition again into well / or well /. This fact is shown
in figure 7(a) by noting that Jy; ou(Jino) becomes Ji, 1, and this particle in turn will
transition in and out of well I/ to acquire the second adiabatic invariant Jy; ou(Jin,1) =
Jir.out (Ui .o (Jin0)). In figure 7(a), the fact that Ji,1 = Jiou(Jino) 1S represented as a
horizontal solid line that joins Jj ou(Jin0) With the diagonal line Jy; oue = Jir.in, shown
as a dotted line, and the fact that J;, ; becomes Jy; o (Jin,1) 1S represented as a vertical
dashed line from the diagonal to Jy; ou(Jin.1). Thus, in the Jy; o Vs Jirin graph, particle
trajectories are the staircase-like lines sketched in figure 7(a). The initial part of the same
trajectory is sketched in figure 7(b) in the (o, J) plane.

Figure 7(a) shows that any particle that starts with J. ., <J < J.ym ends up
sampling all possible values of the second adiabatic invariant between J. j; ,, and J. ;.
unless the function Jy o (Jirin) 1S very specific — a possible special case of this kind
is represented in figure 8, where particle trajectories close on themselves in a loop in
the (J, o) plane. We expect magnetic field magnitude profiles to satisfy the necessary
constraints that lead to configurations similar to the one in figure 8 only in a countable
number of flux surfaces. Thus, in general, particles in well /II with J values between
Jeqnm and J. gy sample all possible values of J between J. j; ., and J. 7 p. Since K; w
is constant along particle trajectories (it is independent of « and it is continuous at the
junctures of several wells because both g;; w and r;; y are continuous there), we find
that K; ;; does not depend on J for J, y,, < J < J..m. For the same reasons, K;; in the
interval [J. s, Jo;.m] and K j; in the interval [J. y , Jo.r.m] are both independent of J and
equal to the value of K; j; in the interval [J. 7, Je.r 1. In figure 9, we sketch K; y for the
configuration in figure 6.

7.1.3. General considerations
We have used the example in figure 6 to illustrate the dependence of K; y on J because
of its simplicity. In this particular configuration, particles do not have the option to choose
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FIGURE 8. Function Jyj7 out(J1ir1,in) for which particle trajectories describe a loop and do not
sample a finite interval of J.

Ki,][

w”

Jeam Jeqrm Jeam Jeqim Jeairm Jeqmm JKi_W=0 J

FIGURE 9. Sketch of the function K; w for the case in figure 6.

between two wells, and particles from two different wells are not forced to move into the
same well at the same time (this last case requires using (7.8)). Despite the simplicity of
the example, we believe that only very specific configurations allow for a K; y that is not
constant in J in regions with junctures of different types of wells. We note that (7.8) accepts
a constant K; y as a solution, and our believe is that in most cases this is the only solution.
Interestingly, this K; y solution does not have discontinuities in K; y across junctures, and
hence does not have the collisional boundary layers described in Appendix H. These layers
disappear only to lowest order, as we will see that they are necessary for the next-order
correction in the v;,/p;, < 1 expansion.

For large values of J, there are always junctures of different types of wells (see figure 10
and the appendix of Boozer & Gardner 1990), so we expect K, to be independent of
J above certain value of J. Moreover, since r;; w — 0 for / — oo by definition (5.26),
boundary condition (5.34) imposes that K;y = 0 in this region. From here on, the
value of J at which Ky vanishes is denoted by J, ,—o — see figure 9 for an example
Of J K; w=0-
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FIGURE 10. Sketch of trajectories with large J in the (/, o) plane. For large J, 4 must be close to
1/Bys, and hence it must have bounce points at a value of B close to By,. In the figure, we sketch
the contour B = 1/1 =~ By, as a thick red line (we have assumed that there is only one maximum
of B). The total trajectory of the particle is sketched in panel (a) as a thin red line. The best way
to identify a trajectory with a given A is to determine the location of the bounce points (note that
the left bounce point /7, w is on the right of the figure and the right bounce point /g w is on the
left). Particles with the kind of trajectory shown in panel (a) are exposed to four junctures with
other wells, as demonstrated by panels (b—e). In panel (), if the particle moves towards negative
o, it will transition to another type of well, similarly to panel (d). In panels (c,e), the particle
transitions when it moves towards positive «.

We finish by proving that the particle and energy fluxes due to gl{,ol}’w vanish. From (5.48),
we obtain that the flux of particles is

2
I~ ;)C‘fo/ Z/ dcx/me de[a rivwkKiw) — (2 leTsz)]-

(7.10)

The particle flux vanishes due to the integral over « and the fact that r;; y and K;  are
continuous across junctures between several wells. A similar proof shows that the ion heat
flux vanishes to lowest order in v, /0 < 1.

7.2. Next-order distribution function
To next order in v;,/p; < 1, we would expect (5.25) to give

oy vzvii,J_
qu’ gy = 5wl 98 w)- (7.11)
t

We explain at the end of this section that, in the intervals of J where there are junctures
between different wells and hence 9;K; w = 0, (7.11) is not valid. Before discussing this
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case, we consider the intervals of J where particles never transition into other wells. Then,

(7.11) gives

= ————0/[twJ (O, Kiw — Oyrit.w Tifui) ] (7.12)
4c

For these values of J, gl{,l]},w is defined for all «. For this reason, if we average
equation (7.12) over «, the first term vanishes, leaving the equation for K; y

[ (tw)a0sKiw — (tw 0s7i 1. w)e Yifui)] = 0, (713)
where
1 21
(++ ) = o (--+)da. (7.14)
T Jo

Solving (7.13) for K; allows one to integrate equation (7.12) with periodic boundary
conditions in «.

Equation (7.13) determines the dependence of K;  on J within the intervals of J where
there are no junctures of different types of wells. If the interval of J considered includes
J = 0, where tyy = 0, the integral of equation (7.13) is

8 i o
3K = MTJM. (7.15)

7:W>ot

In the example in figures 6 and 7, this solution is valid in well / for J < J.;,,, and in well I/
for J < J. .. Note that solution (7.15) leads to a discontinuity in 9,K; w at J.;,, and J. ;7.
because intervals of J with 9,K;y = O start at these values of J. These discontinuities
in the derivatives of K,y mean that there are boundary layers where the lowest-order
equation (7.2) is not valid and one needs to keep the collision operator to lowest order
(see Appendix I.1 for a discussion of these boundary layers). More importantly, the finite
values of 9,K;w at J =J.;,, and J.j,, also mean that there is collisional flux into the
region J > J.;,, of well I and the region J > J.,, of well II. These phase-space fluxes
are rapidly transported into well /Il by the E x B drift in the direction & and through
jumps in J due transitions to other wells. This phase-space flux must then leave at J. ;i v,
where the region with 9;K; = 0 ends. Conservation of collisional flux determines 9,K; ;i
atJe mm,

Jerm Im ((1)00,K; 1 — (11 0;7i1,1)a Yifui)

J=>Jim
+ Jearm hjl}l () o 0sKi it — (T 57i1.01) e Vifoai)
=Jemm 11JI+I1 () o 07K — (T Osri.imn) o Yifwai) - (7.16)

(See Appendix 1.1 for a derivation of this condition using the equation for the higher-order
correction gl{"ll}yw.) Since solution (7.15) is valid in wells I and I, condition (7.16) simply
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becomes
lirp (tun) o 05K i = 1ir+n (Tt aJri,l.III>ozTifMi- (7.17)
J=J m J=J m

With this condition, we can integrate equation (7.13) to obtain

(Tar 071 1)

a./I<i,lll = (T )
1/ o

Yifui, (7.18)
that is, solution (7.15) is valid in well /I/I even though this well does not have particles
with J = 0. Following this procedure for higher and higher values J, one can see that
solution (7.15) is in fact valid in every well. With 9,K; y calculated, we can integrate it to
obtain K; y imposing K; w = 0 at J = Jx, ,—.

The fact that K y vanishes for J > Jg, o implies that the solution for giol}’w for large
values of J is simply

m,-sz 1
8w = —riiw Tfur = — ; (ﬂw — —) Yifui

2'Zi6¢(l) BM
m;v°B, 1 By
~ — Aw — — + —— | Yifui, 7.19
2Z.e), ( Y B, B ) Iu (719)

where we have substituted the definition of r;;w (see (5.26)) and we have used the
approximation Ay =~ Ay. Surprisingly, this solution does not satisfy property (5.36)
(note that d;dy ~ —2/v>tyBy) even though property (5.36) is a consequence of the
equations for g; ; w. This apparent contradiction is resolved by a boundary layer where the
lowest-order equation (7.2) is not valid because one needs to keep the collision operator to
lowest order (see Appendix 1.2 for a brief discussion of this boundary layer).

We finish our discussion of the next-order correction gl[.ll},w by considering its value in
the regions where 9,K; = 0. Naively, for this region of velocity space, (7.11) gives

C¢/ Uzl)i," Tlf i
ﬁ aagj,ll},W = _#fb@w] Ariaw)- (7.20)
t

This equation has to be solved in regions where there are junctures of different types of

well, and as a result, there can be discontinuities in 85,11},W across the junctures. Following
the same procedure that we developed in Appendix H, we find that there are boundary
layers in the junctures where particles leave two of the wells to go into the third, and that
the result of these boundary layers is that gl{"ll},W must satisfy an equation similar to (7.8),

g,{,l]}yl 0o der + g,{,ll},” Oyt = g,{‘_ll}ﬂ] 0o d e 1ir- (7.21)

Despite their apparent validity, (7.20) and (7.21) cannot be solved. Using the definition of
ri1w in (5.26) and 9;y >~ —2 /vty By, we find that (7.20) is

2
1} m;v=v;
/! B
lIlt

= ——=Tifu 7.22
Y= 4Zed, i (7.22)

{
asdg,
Then, g}’lﬂw increases with o, posing a problem of continuity: due to the ergodic nature

of the trajectories in the regions of velocity space where 9,K; = 0, if we calculate g,{.}l}’w
using (7.22), the values of g;l]},w at two contiguous values of J would in general be very
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different because the lengths of the paths in « needed to reach these similar values of
J starting from the same phase-space point are very different. Such large differences for
contiguous values of J mean that we cannot neglect the collision operator in the regions
where 9;K; w = 0, and instead of (7.22), we need to integrate

ey o v 1 1 mv*v; |

09,4 =3, (twd 3,8 ) = — T 7.23
v/ 8i1w 4 i (twJ 958 1 w) 4Z;ed; ifm ( )

For this equation to be valid, the characteristic size of 9, must be at least 9, ~
 Pis/Vis ] €ViR > 1//€v;R, and hence we expect solution g, 1 w to have oscillatory
character in J. Due to the inclusion of collisions, the solutions to (7.23) contain the
boundary layers that appear around junctures of different types of wells, described in
Appendix H. At the junctures of different wells, we need to apply continuity of g,{;ll],w
and condition (5.33), which at this order is

Jer hm 7 8. 1t e n, hm T g, d=Je 111]11m T 3Jg, LI (7.24)

J=J Jer [
We discuss the boundary conditions for g,{.ll}’w in regions with 9;K; y = 0 in Appendix I.1.

7.3. Radial fluxes

In § 7.1 we showed that substituting gE’OI}YW into (5.48) for the particle flux gives zero. Thus,

the particle flux is determined by gl!,ll},w and the boundary layers that we have described
in Appendices H and I. To account for these higher-order effects, we manipulate (5.48):
we integrate by parts in o and we use (5.25) to rewrite 9,g;1.w in terms of the collision
operator and r; ;. w. We find

_2medy f / /JMW Vi W/
= d dJ 1w 0y (twd 058
BoV' Z o . v e ¢o ————ri1w 0;(twJ 958i.1.w)

-3, <%r§1YWTifM,»)] . (7.25)

This expression is not useful because, inside the boundary layers described in Appendices
H and I and in the regions of phase space where particles undergo transitions between
different types of wells, the collision operator applied on g; ; w gives large contributions to
the integrand that vanish upon integration. To avoid this delicate cancellation, we integrate

by parts in J to find
I = TClI/t’ /‘00 de/dkw o MVWdJUSU"J_T T ri 9 g1 (726)
l ZBQV/ 0 . ii, w JUi 1L, w O0J8i 1, W- .

In this expression, we can neglect the higher-order corrections to gl{,ol},w, and hence

JT‘I// 0o ARW
E = — ! d 3 ii T i / d / d.] J 8 i 2
ZBOV//O vu v Yifu, ZW: . 04 - Twd (071 w)

0 I
+ / dJ Ty d ((ajr,-,l,w)z— Al <Twaﬂ’i,1,w)a):|, (7.27)
0,K; w#0 (Tw)a

where we have used (7.3), and in the integral in J, we have distinguished the region
where 9;K; y vanishes from the region where it is equal to the value given in (7.15). Using
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dydw >~ —2/v*Boty to write d;r; 1w =~ —m;/Zed|Tw, the particle flux simplifies to
oy [ J
= —22—’,2’// dv v3vi[,leM,-Z/ do [/ dJ —
2Zi e ¢0 BV’ Jo w Jerw 9K w=0 Tw

+/ dJJ(L— ! )] (7.28)
0;K;,w#0 Tw (tW>oz

Note that the contribution from the particles in phase-space regions where 9,K; w # 0 is
reduced by a factor of (1 — ty/(Tw)s), that is, this expression shows that particles that
suffer transitions between different types of wells cause higher fluxes.

A similar procedure to the one that we have shown above gives the energy flux

7 o J
P = -_—— dv USUii 71 i / da / dJ —
Q 4Zi2€2¢(/)2B0V/ /(; - lfM XW: arw |: 0K w=0 Tw

+/ dJJ(i— ! )] (7.29)
3/K; w0 Tw (Tw)a

The fluxes in (7.28) and (7.29) are inversely proportional to ¢62 and hence diverge when
¢, vanishes. The reason for this divergence is that the E' x B drift was assumed to be much
larger than the radial component of the drifts in (4.5). For ea¢,/T; ~ €, this assumption
is not satisfied, and the first term in (7.3) becomes of the same order as the Maxwellian
fui, glving gﬁ,ol},w ~ fui, that is, the distribution function is not close to a Maxwellian. This
is a manifestation of the fact that orbit widths become comparable to the minor radius of
the stellarator. To summarize, formulas (7.28) and (7.29) are not valid for ea¢ /T, < €. At
these values of the electric field, the radially global equations (2.1), (2.2), (2.27), (2.30) and
(2.36) must be used. Importantly, even for eag,/T, ~ 1, energetic particles with energies
larger than eR¢, ~ m;v}/€ have VB and curvature drifts that are comparable to or larger
than the E' x B drift. This means that, unless the stellarator is close to omnigeneity (Calvo
et al. 2017; Catto 2019), energetic particles produced by fusion reactions, radiofrequency
heating or neutral beams have to be modelled using the radially global equations (2.1),
(2.2), (2.27), (2.30) and (2.36). These radially global orbit-averaged equations will be
valid as long as the gyroradius and the banana orbit width of energetic particles are
sufficiently small. In particular, the finite banana orbit width mechanism for energetic
particle transport proposed by Goldston, White & Boozer (1981) is negligible in the limit
in which the orbit-averaged equations (2.1), (2.2), (2.27), (2.30) and (2.36) are valid.

We finish by estimating the size of the particle and the energy flux. Using ¥, ~ aBy,
¢y~ Ti/ea, V' ~ Ra,J ~ JevR, tw ~ R//ev,; and T; ~ 1/a, we find

I~ 65/2Vi*nivti’ 0 ~ Gs/zvi*niTiUm (7.30a,b)

These estimates can be obtained using a random walk estimate. As we explained in
the introduction, in (1.5), the width of a typical trapped-particle orbit is w ~ €a. Since
the effective collision frequency for trapped particles is veg ~ v;;/€, trapped particles
undergo a random walk with steps of length w every time €/v;;. The resulting diffusion
coefficient is D ~ /ew?v.;, where /€ is an estimate for the trapped-particle fraction.
The estimates for the fluxes are then obtained from D ~ €*%a*v;;, I} ~ D|Vn;| ~ Dn;/a
and Q; ~ n;D|VT;| ~ Dn;T;/a.
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8. Large aspect ratio stellarators close to omnigeneity

In this section we study large aspect ratio stellarators close to omnigeneity. A magnetic
field is omnigeneous when it satisfies d,Jy = 0 for all trapped particles, that is,

hew - 19,B
brw  V 1 — 1B
for all A. As explained by Cary & Shasharina (1997a,b) and Parra et al. (2015), this

condition imposes stringent constraints on how the magnitude B depends on « and /. Of
these constraints, two are particularly important for our discussion.

OoJw = —Vv dl =0, (8.1)

(i) The maxima of B on a flux surface are not on isolated points, but on lines that close
on themselves. Moreover, those lines where the maxima lie are separated from each
other by such a distance that any particle that travels between these maxima has only
one possible value of J, which we denote by J,, »» because it is also the maximum
value that J can take.

(i1) In junctures of several types of wells like the one depicted in figure 1 (see Parra
et al. (2015) for a discussion of the existence of omnigeneous magnetic fields with
junctures of different types of wells), the values of the second adiabatic invariant at
the juncture are independent of «, that is, d,J.w = 0. This means that there are no
transitions from one type of well to another.

Collisional transport in omnigeneous stellarators is very small, and for this reason
designing stellarators close to omnigeneity is of interest. We consider large aspect ratio
stellarators that are close to omnigeneity. We find two distinct types. In § 8.1, we show that
large aspect ratio stellarators with large mirror ratios are close to omnigeneity, and hence
one can use the equations derived by Calvo ef al. (2017) to calculate neoclassical fluxes in
these stellarators. In § 8.2, we study optimized large aspect ratio stellarators with mirror
ratios close to unity.

8.1. Large aspect ratio stellarators with large mirror ratios

In previous sections, we have discussed in detail large aspect ratio stellarators with mirror
ratios close to unity, an approximation that describes well many modern stellarators.
However, it is possible that increasing the mirror ratio will be of interest in the future.
For this reason, we consider large aspect ratio stellarators with By(/) a general function
of [. Note that such stellarators satisfy (8.1) to lowest order because By (/) is independent of
«. This means that B, (r, «, [) can be considered to be the deviation from omnigeneity. We
can then use the formulation by Calvo et al. (2017) by replacing the expansion parameter
8, which measures the size of the deviation from omnigeneity, with €.

Using the same techniques as Calvo et al. (2017), it is possible to prove that the
lowest-order solution for the ion distribution function is a stationary Maxwellian f;; with
density and temperature that are flux functions, and that the potential is a flux function
to lowest order, ¢ (r, o, [, t) > ¢o(r, t) ~ T;/e. The correction to the Maxwellian is only
significantly different from zero for trapped particles, for which it satisfies g; ;. w ~ €fy;. As
for large aspect ratio stellarators with mirror ratios close to unity, the typical radial width of
a trapped-particle orbit is ea because the radial magnetic drift is small by € compared with
the component of the E x B drift parallel to the flux surface. Apart from these similarities,
the formulation by Calvo et al. (2017) differs from the equations presented in previous
sections of this paper in significant ways. For By /By, — 1 ~ 1, the typical parallel
velocity of trapped particles is not small compared with the thermal speed, and the fraction
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of trapped particles is of order unity. The energy gained or lost by work done by the radial
electric field during a trapped particle’s radial displacement is insufficient to affect trapped
particles with v ~ vy, unlike in large aspect ratio stellarators with mirror ratios close to
unity, where trapped particles have v; ~ /€v,. For this reason, the velocity coordinates
& and p are appropriate — in Calvo et al. (2017), these coordinates are replaced by the
equivalent coordinates v and A := v? /v*B for convenience. Another important difference
with large aspect ratio stellarators with mirror ratios of order unity is that the correction to
the lowest-order potential is ¢ (r, &, [, 1) ~ €T;/e instead of ¢3»(r, t, [, 1) ~ €3/°T; /e, and
as a result the radial component of the E x B drift contributes significantly to the radial
displacement of trapped particles.

We proceed to discuss the different transport regimes predicted by the formulation of
Calvo et al. (2017). For collision frequencies v; larger than the characteristic frequency
associated with the E x B drift, |vg|/a ~ p;v;i/a, that is, for p;/e K v, <K €2, the
equations derived by Calvo et al. (2017) predict a 1/v regime. In this regime, the particle
and energy fluxes are of order

r;~ &E,Oi*nivm Qi ~ &Epi*niTivth (8.2a,b)

Ik [£3

Here, the characteristic length Ly and the parameter 6 in Calvo et al. (2017) have been
replaced with a and €, and our definition of v;, differs from the one used by Calvo et al.
(2017), v$®, by a factor of €, v, = v$*/e. Note that, for large aspect stellarators with
large mirror ratios, the transition to the lower collisionality transport regime happens for
Vix ~ Pix/€ — in comparison, for large aspect ratio stellarators with mirror ratios close to
unity, the transition happens for v, ~ p;.. The difference is due to the typical parallel
velocity of the trapped particles: for large aspect ratio stellarators with mirror ratios close
to unity, trapped particles have v, ~ \/ev,; and hence it is easy for collisions to detrap
these particles, giving a large effective collision frequency v;;/€ for trapped particles.

The estimates for the fluxes in (8.2a,b) can also be obtained from a random walk
argument similar to the one that gives the estimates in (6.2a,b). In large aspect ratio
stellarators with large mirror ratios, the effective collision frequency for trapped particles is
v; and hence the random walk is composed of steps of length vy; - Vr/v; ~ (pi/vi)a K
€a that happen with frequency v;. The corresponding diffusion coefficient is D ~ (vyy; +
Vr/vi)? v ~ epl%kav,,» /Vis, where we have noted that the fraction of trapped particles is of
order unity. This diffusion coefficient gives the estimates in (8.2a,b).

For v, < pi/€, the derivation of Calvo et al. (2017) does not assume that the
component of the VB and curvature drifts parallel to the flux surface is smaller than
the same component of the E x B drift. For this reason, it allows for cancellation of
the average drift parallel to the flux surface for certain particles. In large aspect ratio
stellarators with large mirror ratios and an electric field |¢;| that is much larger than
T;/eR, the E x B drift is larger than the magnetic drifts by e|¢y|R/T; > 1, and hence
only a exponentially small number of particles with energies above eR¢y, >> m;v’ can have
vanishing drifts parallel to the flux surface. These particles can be neglected, and as a result
the transport is dominated by boundary layers in velocity space of width Av; < v,; that
appear at the trapped—passing boundary or around junctures of different types of wells. In
these layers, the effective collision frequency is

Uy : Vii (8.3)
Verf ~ . .
"\ av ) In/av)
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The effective collision frequency becomes larger than v; because very small angle
collisions are sufficient to change the parallel velocity by a small amount Av; < v,;. The
logarithmic reduction of the effective collision frequency is due to the fact that particles in
these layers have bounce points that are very close to local maxima of B, where they spend
logarithmically long times. Collisions near these maxima of B are ineffective because v is
very close to zero, v, < v, and a collision that changes the parallel velocity of a particle
by Av; changes its parallel kinetic energy by m;v Avy < m;v;Avy only. With such a small
change in kinetic energy, the particle cannot leave the layer. The collisions that expel the
particles from the boundary layer happen away from the bounce points, where v, ~ v,; and
particles spend only a fraction of its bounce period of order 1/In(v;/Av)). The effective
collision frequency veg has to be comparable to the inverse of the time that it takes a
particle to drift poloidally around the stellarator, |vg|/a ~ piv,i/a, giving

A € Vi ! (8.4)
v~ Uy | — ——————. .
PN o In(pr evsy)

The transport due to these boundary layers is of order

€V 3 € Vi I3
I ~ In ( i )fzpi*nivzi, Qi ~ In ( L )€2pi*niTivﬂ- (8.5a,b)
Pis €V Pix €Vjy

The formulation by Calvo et al. (2017) does not work for v;a/|vg| < €2|Ine| — this limit
is derived in § 6 of Calvo et al. (2017) without the logarithmic correction (recall that §
must be replaced with €). This means that, in normalized quantities, the /v regime does
not extend below v;, ~ €] In€]p;.. We leave the study of what happens for collisionalities
lower than this limit for another publication.

As other estimates given in previous sections, the estimates in (8.5a,b) can be obtained
from a random walk argument. Only particles in velocity-space boundary layers with
width Avy, given in (8.4), participate in the transport. These particles have an effective
collision frequency veg ~ |vgl/a ~ pivi/a, and hence typical radial displacements
Vi + Vr/veg ~ €a. Thus, the diffusion coefficient is

A ; VY’
p~ 2Y 1n< v ) (”M r) Ve, (8.6)
Uy Avy Vefr

where the prefactor (Av/v,;)In(v;/Avy) is due to the small fraction of particles
that are in the boundary layers and cause transport. The logarithmic correction in
(Avy/v;) In(v;/Avy) is due to the long bounce periods of the orbits of interest: the
particles in the boundary layers spend logarithmically long times around local maxima
of B, where they accumulate, giving a density large by In(v,/Av;). The diffusion
coefficient in (8.6) gives D ~ /(evi,/pi) In(pix /€ Vi) €2 piav,;, and with it we can obtain
the estimates in (8.5a,b).

A comparison between expressions (8.2a,b) and (8.5a,b) and expressions (6.2a,b) and
(7.30a,b), sketched in figure 11, reveals that neoclassical fluxes in large aspect ratio
stellarators with large mirror ratios are larger than the fluxes in equivalent large aspect
ratio stellarator with mirror ratios close to unity. This is perhaps part of the reason why no
stellarators with large mirror ratios have been built.

https://doi.org/10.1017/50022377822000897 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822000897

Large aspect ratio stellarators 49

In (L' / pixnive; ) .
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FIGURE 11. Particle and energy fluxes as a function of v;,/p; for large aspect ratio stellarators
with large mirror ratios (blue line) and mirror ratios close to unity (green line). Note that, for

Vix ™~ Pix, the difference between the fluxes of large aspect ratio stellarators with large mirror
ratios and the fluxes of large aspect ratio stellarators with mirror ratios close to unity is only a

factor of 4/|In€].

8.2. Optimized large aspect ratio stellarators with mirror ratios close to unity

It is possible to optimize large aspect ratio stellarators with mirror ratios close to unity to
achieve lower neoclassical transport. We treat such cases by using the expansion proposed
by Calvo et al. (2018), that is, we consider a magnetic field that can be written as

B(r,a,l) = By + BV (r, a0, ) + BN (ry o, ) + - - - (8.7)
Here, By + B[O], with B[IO] ~ €By, is omnigeneous, that is,

]h%.ow 0 B[O]
/ l dl =0, (8.8)
biow \/ 1 — B, — BY"/B,

where we have used the large aspect ratio approximation to (8.1). Here, lgﬂo,w(”v a, A) and
l,[)(g,oﬁw(r, a, A) are the bounce points that correspond to the omnigeneous magnetic field,
determined by the equations B\ (r, a, l,[,OL],O’W) /By =1—ABy = B (r, a, lgg,o_w) /By. The
correction B[ll] ~ §€By is the perturbation away from omnigeneity. We assume that § < 1.
Note that we are using the superscripts with square brackets ! for the expansion in § to
distinguish it from the expansion in § 7.

We proceed to expand (5.25) in § < 1. We first obtain r;; y by writing

Jw(r,a, v, ) = I, v, ) + I a0, ) + - (8.9)
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with
J[Ol(r b 1) = 20 [l]”’”)w\/l ABy — B[O]/Bodl JeviR (8.10)
Ihtow
and
I, v, 2) = _i o B/ dl ~ 8 /ev,R. (8.11)

lLL]()W \/1 ABy —BILO]/B()

When we invert the relation Jyw (r, , v, A) to obtain Ay (r, @, v, J), we find that Ay does
not depend on « to lowest order in the expansion in § < 1. If we continue to next order in
8, we obtain

Aw(rya, v, 0) = A (r, v, ) + A (o, v, 0) + - - (8.12)
where
JllJ 2J[1J S
A r o, v, J) o= = = W O (8.13)
BAJW UZBO‘[W B()
Here,

l[bR(J w ]
w(r, v, ) = / dl (8.14)
b \/ 1— 2B, — B"/B,

is the lowest-order bounce time.
With the result in (8.12), (5.25) becomes

chy [1] Vii, L
o a8itw —
t

o
(T I0s81 ) = =g i Y (8.15)

where 8,[,11],w ~ O€fy; and

mlJ‘[;,]

[1]
llW(ra v, J) _Z (f)/ [0]

~ Jea. (8.16)

At the junctures of several wells, we need to impose condition (5.33), which in the
expansion in § becomes

[0] [0] [1] [0] [0] [1] [0] [0]
Je hm T 081+ e hm Ty 08 = Jem hm] T anz 111 (8.17)
I

J*)J(‘,I —Jenr —Jem

Importantly, since the omnigeneous stellarator has a maximum value of J, Joy u, the

boundary condition for gl 1 w 1s not imposed at J — oo, butatJ = J([)?A M

gy (oo v, I8 = 0. (8.18)
The particle and energy fluxes simplify to

2megy [~ o e (1] [1] 2.5/
I = —,/ dv Z/ do dJvg y uri |y ~ 82€* prnivy, (8.19)
BoV" Jo 0 D R
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and

Tmicd (1 (1
0 = BOV,Of de/ da /W drviglly a,rttly ~ 826 pnTivs.  (8.20)

Note that we have used the fact that there are no transitions between wells in an
omnigeneous magnetic field to extend the integrals in « to the whole interval [0, 27].

Comparing the estimates for the fluxes in (8.19) and (8.20) with the ones for a generic
large aspect ratio stellarator with mirror ratio close to unity in (5.48) and (5.50), we see
that a near-omnigeneous stellarator does indeed confine better than a generic one by a
factor of 8 <« 1. This factor, however, is not uniform for all values of v;,. While in the 1/v
regime, v /pix > 1, we can follow the arguments in § 6 to obtain

I~ 62‘; " S pnivg, Qi ~ 82‘; " 52 poni v, (8.21a,b)
% I%

for v;, < p;, the scaling with § is not a simple 82, as we explain below. Before considering
the regime v, << i, we discuss how to obtain the estimates in (8.19), (8.20) and (8.21a,b)
using a random walk argument. For v, = p;., in between collisions, trapped particles move
a radial distance (vyy; « V7). w/verr, Where vegr ~ v;;/€ s the effective collision frequency
for trapped particles. Since (vy; « Vr),w ~ 8€pivy, the typical radial displacement is
(Vi » V) ow/Verr ~ (0ix/Vix)8€a < Sea. With this estimate, we obtain a random walk
diffusion coefficient D ~ /€ ((vyi + V)e.w/Veit)*Vesr, Where the factor of (/€ is due to
the trapped-particle fraction. This diffusion coefficient D ~ §*¢>*p2av,;/v;. gives the
estimates (8.21a,b) for v, > p;,, and the estimates in (8.19) and (8.20) for v, ~ pj.

If we try to solve (8.15) for v;, < p; following the procedure in §7, we run into
problems at the largest value of J, J([)?[]L > and at junctures of different types of wells. Indeed,
if we neglect the collision operator in (8.15), the solution is

gl yria v, 1,0 =K (rov, 0,0 — rl L Y, (8.22)

where the function K,“V]V(r v, J, t) does not depend on «. Solution (8.22) cannot vanish at

J = J‘[mr]1 y in general because rl 1 w does not vanish there. The contrlbutlon proportional

to r,[ 1] w cannot be cancelled by a judicious choice of K,“V]V because rl 1 W depends on o

while Kl“d, does not. Similarly, it is not possible to impose continuity of gl 1 \w across
junctures. The problem at J = J([)g{ v 18 a manifestation of the fact that there are orbits

om.y+ Lhe perturbation B" will in general
introduce isolated local maxima in B above those of the omnigeneous magnetic field, and
these maxima will not be equal to each other. The fact that there are individual maxima
means that we are back to the case that we have studied in §§ 5 and 7. Thus, one needs to
include J > J([)?Jl’ v- The problem at junctures of different types of wells is due to the fact
that approximation (8.15) does not allow transitions between different types of wells.
We proceed to study the distribution functions and fluxes for v;, < p;. There are two
limits of interest that we consider: 82| In§| < vi,/p < 1 and v,/ pi < 82 1n8)|.

with second adiabatic invariants larger than J*!

8.2.1. The /v regime in optimized large aspect ratio stellarators with mirror ratios
close to unity

We start by considering the regime 82| In 8| < vi,/pi < 1, where we will find the /v
regime (Galeev et al. 1969; Ho & Kulsrud 1987). In the region J(E?A’M —J < 8| Ind|/eviR,
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particles have bounce points at the new maxima introduced by the perturbation B[ll] above
the maxima of the omnigeneous magnetic field. To understand estimate J([,?I]] w—JS
8| In 8| /€v;R, note that the particles that bounce in the new maxima of B are in an
interval of A of order A1 ~ §¢/By. This interval corresponds to an interval in J of order
A0, Jy, where 9,y ~ € '?v,;RBy| In §|. The logarithm is due to the fact that the bounce
points are always a small distance /SR away from a local maximum of B. Particles
spend logarithmically long times near these local maxima, giving 8,Jw >~ —v>Byty /2 ~
€ 2v,ByR| In §|.

To determine whether the particles in the region J([)ﬂ Iy

—J < 8| In8|/€v,;R can make
up for the difference between gl[,ll]yw and the distribution function in the passing-particle
region, we estimate the size of the change in the distribution function Ag; | o for J([)?I]L =

J S 8l1né8|/eviR. For J%! \ — J < 8|1n8|/ev R, we find

9181w ~ _A8iom _ . (8.23)
"' 8| In8|/€v,R

Using this estimate in (5.25), we find that the dominant balance is between the collision

operator and the term proportional to d,7; 1w, giving

Vi A 0 TS (8.24)
T o A8itom Y 0l JMi- .
52 Indle - ortom ™ g alutw S
Here, one of the logarithms |Iné| due to a derivative with respect to J has cancelled
with another logarithm |In§| in Ty, which is of order R|In§|/+/€v,; because the bounce
points of the orbits are always a small distance ~/SR away from a local maximum of B. In

(8.24), r;1.w is proportional to Ay — 1/By ~ 8¢ /B, and hence of order §ea. As a result,
we estimate Ag; 1 om to be

Agirom ~ 81108122 efyy < Sefun (8.25)
v<

Ik

This means that the solution for g;; w in the region J‘[ﬂ’ w—J < 81nd|/ev,R cannot
match with glL’lll‘W and we still have a discontinuity — see figure 12 for a sketch of the
situation. A similar reasoning can be made for g; ; w near a juncture.

Collisional boundary layers appear at the discontinuity between gl[,lll,w and the
distribution function at J([,?I]L v —J < 81 Ind|y/ev,R, and at the discontinuities on junctures.
In these boundary layers, g; | w changes significantly over a width AJ 5 < /€v,R, giving
8w ~ giaw/AJ m > g 1.w/~/€v;R. This large derivatives in J make the collision

operator large and comparable to the E x B drift (Ho & Kulsrud 1987; Calvo et al. 2017,

2018),
vi (VEuR\" ([ VEuR\ ety 5.26)
e \ Ay AJ s v '

The logarithm in this estimate comes from the fact that the bounce points of the particles
in this layer are close to local maxima of the omnigeneous magnetic field. Solving (8.26)
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g' A
l,l,W Jnm,M
8%|In 8| > vl p; .

5|Ind| < vl pis

Juncture A }
Le———

:\ Juncture B

FIGURE 12. Sketch of the ion distribution function g; | w in near-omnigeneous large aspect
ratio stellarators with mirror ratios close to unity for 82|Iné| < vix/pix < 1 (red line) and
Vis/ pis < 8%|In 8| (green line). The maximum value of the second adiabatic invariant in the
omnigeneous magnetic field J| (o1 m. 1S represented as a blue dashed line. We consider a case where
there is a juncture in the region J ([)(1)1]1 w —J > 8| Ind|/€v,R (juncture A). Of all the junctures that
appear for J, ([)?I]l v —J < 811nd|/€v,R, we only sketch one (juncture B). The /v boundary layers

that appear in the case 82| In 8| < vix/pis < 1 (red line) are highlighted as pink areas. Note that,
outside of the /v boundary layers and the junctures, the derivative of the distribution function
gi,1,w with respect to J remains the same as v;,/ p;« changes.

for AJ s gives

A-Iﬁ Vi Pix
~ [—I1 1. 8.27
\/EvtiR Pisx ! (Vi* ) < ( )

The distribution function in these boundary layers is not of the form in (8.22), and hence
does not vanish under the integrals for the particle and energy fluxes, given in (8.19) and
(8.20). Thus, the fluxes are mostly due to particles within the boundary layer, giving

Vl* Pz* Vz* :0;*

r~¢ 2panivg, Qi ~ 82 2 puniTivg.  (8.28ab)

These are the particle and energy fluxes of the /v regime (Ho & Kulsrud 1987; Calvo
et al. 2017, 2018). This regime only appears in large aspect ratio stellarators with mirror
ratios close to unity when they are close to omnigeneity.

The estimates in (8.28a,b) can be obtained from a random walk argument. The particles
that contribute most to radial transport are the particles in velocity-space boundary layers
of width Avy < /ev,;. We start by estimating the width of the boundary layers. The
effective collision frequency in these layers is

Uy : Vii (8.29)
Vefr ~ . .
& AUH ln(ﬁv,i/Av||)
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We have obtained this effective collision frequency using the same arguments that we used
to find (8.3). Note that the only difference between (8.3) and (8.29) is in the logarithm,
where we find an extra factor of /€ in (8.29). In the layer, the effective collision frequency
is of the same order as the inverse of the time that it takes for a particle to drift poloidally
around the stellarator, veg ~ |vg|/a ~ piv;i/a. This balance gives a boundary layer width

V; 1
Avy ~ Jev,, | ———m. (8.30)
| ! Pis ln(pi*/vi*)

Comparing this result with (8.27), we see that the width of the layer in v is smaller than
in J, AJ 5/5/€viR ~ In(pi /i) (Avy //€vy) > Avy//€v,. This is consistent with the
transformation between the velocity-space variables v and J and the cartesian velocity v.
Indeed, we can take Av;//€v,; ~ ByAd/e, with AA the size of the layer in A := v? /v?B,
and AJ ~ A9, Jyw ~ /€v;R(ByAd/e¢) In(e/ByAQ), where the logarithmic divergence is
a result of particles spending a long time around the local maxima of B.

To obtain estimates for the fluxes, in addition to the layer width Av; and the effective
collision frequency v, we need the typical radial displacement between collisions of
particles in the boundary layers, given by (vy; « V7)o w/Verr. SInce (vy « Vi) ~ 8€0iVy
and v ~ i Vsi/a, we find (v - V7). w/verr ~ dea. With all these results, we can write
the random walk diffusion coefficient as

2
D~ Ay In («/Evzi> ((vMi : Vr)TqW) Veits (8.31)

Uy Ay Veff

where we have used that the fraction of particles in the boundary layers is of the order of
(Avy/vy) In(/€v,/ Avy). The logarithmic correction in the particle fraction is due to the
accumulation of slow particles around the local maxima of B. The diffusion coefficient in
(8.31) gives D ~ 8%\/v;, pix In(p;,. /vi )€ *avy;, and with it we can obtain the estimates in
(8.28a,b).

8.2.2. The v regime in optimized large aspect ratio stellarators with mirror ratios close
to unity

The /v regime stops being valid for v,/ p;, ~ 8| In §| because the distribution function
at J([,(IJI]1 v —J < 811Ind|y/ev R, given in (8.25), becomes comparable to gl[,lll,w and there is
no need for a boundary layer any longer — see figure 12 for a sketch. The same happens for
the discontinuities on junctures of different types of wells.

For v,/ pix < 8%|In 8|, we need to use the procedure laid out in § 7. The resulting fluxes
are given in (7.28) and (7.29). Particles with J([)(I)I]1 w —J > 8|1nd|/€v,R that are outside
of the regions affected by junctures move without having to transition between different
types of wells. Thus, particles with J(E?r]l_ v —J > 8| Ind|/€v,R that are outside of regions
affected by junctures are in the region of velocity space with 9,K; y # 0. The integral in
this region has an integrand proportional to 1/7y — 1/(tw)e, and this difference is small
because to lowest order, i does notdepend on t, 1/t — 1/(tw)e ~ 8+/€v;;/R. Moreover,
1/tw — 1/{tw)a ~ 8/€v;/R is integrated over «, and the integral vanishes to lowest order,
finally giving

27 2 _ 2 2 .
/ (i T ) do / OB o TN
0 0

Tw (TW>a <TW>2¢ R

Then, the contribution to I; and Q; from particles with J([,?ATM —J > §|In8|/ev,R
and outside of the regions affected by junctures are §?€>?v,n;v; and 8%€>?v,n;Tivy,
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respectively. Note that these are consistent with estimates that one can find using the
approximate integrals (8.19) and (8.20) for the fluxes.

Conversely, in the region J([)?I]l v —J < 811nd|y/ev,R or in the region where particles
are affected by junctures, particles have multiple transitions, and hence 9,K; w = 0. There
is then no cancellation similar to the one in (8.32). Using that the typical size of the
intervals of interest in J is §|In 8| /ev;R and that Ty ~ R|Iné|/\/€v,, the integrals in

(7.28) and (7.29) give
I~ 565/2Vi*nivti’ 0 ~ Ses/zvi*niTiUﬁ- (8.33a,b)

These contributions are larger than the ones from the particles that satisfy J([)?I]L u—J>
8| In §|/€v,;R and are outside of the regions affected by junctures, and hence dominate the
fluxes.

We proceed to obtain the estimates in (8.33a,b) using a random walk argument. For
Vir/ Pix <K 82| 1In 8], particles remain close to the flux surface in which they started because
their radial drift averages out after several poloidal turns around the stellarator. The time
for several poloidal turns is of the order of a/|vg| and, in that time, particles drift radially
a distance w ~ (vy; - Vr) wa/|vg| ~ dea. Transport is dominated by particles in thin
velocity layers of width Av//€v,; ~ & located at the trapped—passing boundary or around
junctures of several wells. For particles in these layers, we can apply the formula for
the effective collision frequency in a thin layer in (8.29), finding ves; ~ v;;/8%| In §|. With
these results, we find the diffusion coefficient D ~ §|In § |\/Ew2 Verr, Where the fraction of
particles in the boundary layer is §|In§|,/€. The logarithmic correction to the fraction
of particles in the layer is due to the accumulation of particles around the local maxima of
B. Using all our estimates, we finally obtain D ~ §¢°>av,;, and this diffusion coefficient
leads to the estimates in (8.33a,b).

In figure 13, we sketch the estimates in (8.21a,b), (8.28a,b) and (8.33a,b) for the fluxes
in near-omnigeneous large aspect ratio stellarators with mirror ratios close to unity. For
comparison, we sketch the corresponding estimates (6.2a,b) and (7.30a,b) for generic large
aspect ratio stellarators with mirror ratios close to unity. Note that the optimization towards
omnigeneity is much more effective in the 1/v regime. The reduced effectiveness of the
optimization in the /v and v regimes is due to the barely trapped particles and the particles
near junctures of different types of wells.

9. Conclusion

There are four results in this article that are worth emphasizing. The first one is the
set of orbit-averaged equations for neoclassical transport at low collisionality in large
aspect ratio stellarators with mirror ratios close to unity derived in §5. It consists of a
kinetic equation for trapped particles, given in (5.25), and the corresponding boundary
conditions to be imposed around junctures of different types of wells (see (5.33)) and
at the trapped—passing boundary (see (5.34)). The trapped-particle distribution function
obtained from these equations can then be integrated to give the particle and energy fluxes
(see (5.48) and (5.50)). To our knowledge, this is the most detailed derivation of a model
for large aspect ratio stellarators with mirror ratios close to unity in the limit v;, ~ pj,
and in conjunction with the model described in Calvo et al. (2017) and Calvo et al. (2018)
for near-omnigeneous stellarators, is the only self-consistent local model for stellarator
neoclassical transport at low collisionality that we are aware of. The set of equations has
been implemented in KNOSOS (Velasco et al. 2021), and it produces fluxes close to those
calculated by DKES but with much less computational effort. The fact that the model
matches DKES neoclassical fluxes is unsurprising, as we have shown in Appendix G
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FIGURE 13. Particle and energy fluxes as a function of v;,/p;s for generic large aspect ratio
stellarators with mirror ratios close to unity (green line) and near-omnigeneous large aspect ratio
stellarators with mirror ratios close to unity (red line).

that the model and DKES kinetic equations are the same to lowest order in the inverse
aspect ratio. Interestingly, the derivation in Appendix G also shows that there is an O(y/€)
difference between our model and DKES equations, and DKES is not correct to that order.
Thus, when the results from the equations in this paper differ from those of DKES, one
cannot assume that DKES is correct by default. More theoretical and numerical work on
these higher-order corrections to the aspect ratio expansion is needed as /€ is not very
small.

The second interesting result in this article is the limit v;, << p;, for generic large aspect
ratio stellarators with mirror ratios close to unity, described in § 7. We have been able to
show that there is no /v regime when this type of stellarator is not close to omnigeneity.
Instead, generic large aspect ratio stellarators with mirror ratios close to unity enter the
v regime directly for v, < pi. We have also examined the v regime in great detail,
explaining how the distribution function behaves in this limit. The transitions from one
type of well to another are a crucial aspect. While these transitions make the particle
motion stochastic and diffuse particles in velocity space, there is no stochastic diffusion in
real space and the neoclassical diffusion coefficient remains proportional to the collision
frequency. We believe that transitions between different types of wells do not lead to
stochastic real space diffusion independent of the collision frequency because ions in
the regimes that we consider are confined by the electric field, and while transitions can
cause jumps in the second adiabatic invariant J, they do not change the total energy of
the particle. When the total energy is conserved, particles cannot move long distances
(> €a) radially because they cannot overcome the barrier set by the electric potential, that
is, particles remain within a distance of order €a of the flux surface that they started at
without collisions. Collisions are needed to break conservation of total energy for each
particle. While collisions conserve energy overall, in each collision, individual trapped
particles can gain or lose energy. In our calculation, they mostly exchange energy with a
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large population of passing particles. We should add that, even though transitions between
different types of wells do not make the neoclassical diffusion independent of the collision
frequency, they do enhance neoclassical diffusion, as we explain below (7.28).

Part of the outcome of the v regime calculation is the explicit formula for the fluxes in
the v regime, given in (7.28) and (7.29). With these formulas, the fluxes can be calculated
from the magnetic field of the stellarator without solving a kinetic equation. These explicit
formulas might be useful for optimization routines if they can be evaluated fast. We
believe that this is possible using techniques similar to those developed to perform bounce
averages for KNOSOS (Velasco et al. 2020).

The third result that we want to emphasize is that large aspect ratio stellarators with large
mirror ratios are close to omnigeneous and can be treated using the formulation developed
by Calvo et al. (2017). These stellarators experience a /v regime for €| In €| K v,/ pi K
1/€. The neoclassical fluxes in large aspect ratio stellarators with large mirror ratios are
significantly larger than the ones that one would obtain in an equivalent large aspect ratio
stellarator with mirror ratio close to unity.

Finally, the fourth result of note is the limit of near omnigeneity for large aspect ratio
stellarators with mirror ratios close to unity. When we consider this type of stellarator,
we find the /v regime for a range of collisionalities that depends on the deviation from
omnigeneity §: 8%|In§| < v/ px < 1. This interval of validity disappears when § ~ 1,
explaining why we could not find a /v regime in generic large aspect ratio stellarators
with mirror ratios close to unity. The derivation for near-omnigeneous large aspect ratio
stellarators with mirror ratios close to unity gives another interesting result, namely,
optimization is less effective for v, < pi, and it is worse in the v regime, where the
fluxes are reduced only by a factor of § instead of by a factor of §%. For this reason,
it is probably worth considering the use of the v regime fluxes in (7.28) and (7.29) as
optimization targets. If one can reduce effectively the fluxes in the regime that is less
responsive to optimization, the fluxes in the other regimes will likely reduce even more. In
particular, we expect that the optimization of the fluxes in (7.28) and (7.29) will target
problematic particles at the trapped—passing boundary and in regions where there are
transitions between different types of wells.
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Appendix A. Discontinuities in the derivatives of the distribution function at
junctures of different types of wells

In this appendix, we show how to obtain (2.36) by imposing, in the example juncture of
figure 1, that the collisional flux of particles out of wells I and /I enters well III.
For trapped particles the collision operator in (2.15) can be written as Cj;[g; w, fi(o)] =

— vyl BeFelgiw £+ 8, Fulgiw, £°1), where

- yu
Felgiw, [0] := T l(Hgg[f“]agg,W+Hgﬂ[f“ 18,8w — Lelf "1giw) (A1)
v

is the phase-space particle flux in the £ direction and

7 yu -
Fulgiw [0 :=— |H|<H,Lg[f( 10sgiw + Hulf 1008w — L 1giw)  (A2)

is the phase-space particle flux in the u direction. We need the particle flux perpendicular
to the boundary & = E.(r, «, u, t). To obtain this flux, we use coordinates in which the
boundary £ = E.(r, «, 1, t) becomes trivial: instead of using r, «, €, u and ¢, we replace
the variable £ by AE := & — E.(r, @, 1, t) such that AE = 0 gives the desired boundary.
With these new variables, the collision operator in (2.15) becomes

Cilgiw. "1 = — v, {8ae (Felgiw, [ "1+ 8, AE Flgiw, 1)

+ 8, Fulgiw fO1), (A3)

where we have used the fact that 9, A = —9,&, satisfies drs(9,AE) = 0. Equation (A3)
indicates that the flux of particles across the boundary A€ = 0 is given by Fg — 9,&, F,.
Integrating this flux over the gyrophase ¢ and along trapped orbits, we find that the
phase-space flux across the boundary £ = £.(r, «, i, t) can finally be written as

Lor,w _ _ _
— 271y, Z/ [(Heelf 10 giw + ng[fi(o)] 0u8iw — Lelf 1 giw

o JhbLw

— 3, E(H,e [ " 0egiw + Ho V18,800 — LuIF V18 )]ﬁ (A4)
v

Using the definition of the transit average in (2.28), the balance between the three
collisional fluxes in and out of wells 7, II and /II in figure 1 is

— 2yt [(Hee ) ea egis + (He ) s 9,810 — (LelFV1) e 81
— 0uE(Hye [ e 08is + (HyunlF " Do 0u8is — (Lulf”Des 1)1
—ZTTJ/iiTIIHHgs[f e 35gi11+<H5u[f- ) e augill—(Lg[f; e it
— 0, E(Hyue N e 0o + (HulF " Ve 9u8imt — LulF” Vs gi0)]
= —2ny;tul Hng”- ] e 0e&imr + Hg/L[f' ]>1:,III augi,lll - (LS[];[(O)Dr,HIgi.Hl
— 3, E(\Hyue " Ve e i + (HiuulF " Vet 881 — (LulF Ve 8101 (AS)

This long expression can be simplified due to the continuity of g;y and 0,&. dggiw +
0,8iw across € = E.(r, a, i, t). The continuity of g;y implies that t,(H,,q[}_C,»(O)])r,z +
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T (Hpq[fi(o)])r,u = T <Hpq[}7;'(0)]>7:,111 and that 7; (Lp[f;'(())])t,l + <Lp[f;'(0)]>f,11 = (L,
[fi(o)]),JH for p=&,u and g =&, . Using these results and dividing by —2my;,
expression (A5) simplifies to

T [(Hee []?,‘(O)Df,l (0cgis — Oegim) + (Hey m(o)])r,l (0,8i.1 — 0,&i.m)
— 0, E(Hye " Vet Begis — degim) + (HunlF D e B — 3u81.m))]
+ tl(Hee [f,-(o)])r,n (0cgir — O gim) + (Hsu[]?i(o)])r,n (0,811 — 0,.8i.m1)
- 3M5L-((Hu5 [}_C,'(O)])r,u (0cginr — Ocgim) + (Huu[}_ci(o)])r,u(augi,u - 3,;81’,111))]
=0. (A6)

Using the continuity of the combination of 9,&, d¢giw + 9,8 w, We can write 0,8;; —

augi,lll = _a,ugc (0ggi1 — O¢ggim) and augi,ll - 3/481',111 = —3M5c (0egin — 0ggim). With
these results, and employing the fact that He,, = H, ¢, expression (A6) becomes

Tl (HeelF ") er — 2(He w210t 0,Ec + (HuplFON 01 (8,60 (D81t — 0e i)
+ tyl(Hee [ﬁ(O)Dr,l - 2<H5;L [)_Ci(o)]>r,1 3;1& + <H;m [fi(o)])u (augc)z] (0c&ir — 0e&imr)
—0. (A7)

Using the identities 7;(H,, [fi(o)]),,, + T (H)py [ﬁ(o)])r, = Tu{Hpyy, [f_”l.(o)])L 1 again, we obtain
the compact expression in (2.36).

Appendix B. Conditions on the flux surface shape imposed by the MHD equilibrium
equations

In this appendix, we give the constraints that x; (r, ¢, /) must satisfy. In addition to (3.10),
x must satisfy the first-order version of (3.3),

l;() . 8[X1 = 0, (B])

and a solvability constraint of the MHD force balance equations that we proceed to obtain.
The second-order terms in the € expansion of (3.5) and (3.6) are given by

o (BoB2, B By o BodBog \ BB, .
"\ 4n " 8x 4n O 4modl VP 4 0T
B, dBy ByB, B;
— Ewalxl c0x = o Ko+ 0,.x1 + ﬁaﬁxl - d,X1, (B2)
and
o (BB, B By - BodBo \ _ABeB); .
“Ndanr "8 4n P 4w dl O 4 0T
B, dB B,B B
_ ﬁd_loalxl . aaxl — ;nIKO . aaxl —+ ﬁaﬁxl . 3QX]. (B3)

To eliminate B, and x, from these equations, we differentiate (B2) with respect to o and
(B3) with respect to r, and we subtract these two derivatives from each other to obtain

)

Ea,[Bo(a,ixl C 0,1 — 021+ DXy + (g + 0eX1) (Bo + 9,%1) — (K0 + ,%1) (By + Dx1))]

= —2P/ICO . 80[.X|, (B4)
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where we have used (3.14) to write B; in terms of x; and (B1) to obtain I;O . 8,2,.x] =0
and 130 . %xl = 0. Note that, if x; is a solution to (3.10), (B1) and (B4), the function
xi(r,a, ) + A(r, a)lAJO(l) is also a solution. Here, A(r, o) can be any function of r and «.
This set of equivalent solutions arises from the fact that one is free to choose where [
vanishes.

Appendix C. Lowest-order ion distribution function in large aspect ratio stellarators
with mirror ratios close to unity

In this appendix, we first solve for the lowest-order trapped-particle distribution function
gio.w in Appendix C.1 and we then obtain the lowest-order passing-particle distribution
function ;¢ in Appendix C.2. We finish with a discussion of the distribution function in
the barely-passing-particle region in Appendix C.3.

C.1. Lowest-order trapped-particle distribution function

We proceed to rewrite (2.27) using the coordinates v and J. We neglect the time derivatives
and the source S; employing the estimates in (5.1). Thus, (2.27) becomes

((vg + ) « Vo) o w (008iw + 9odw 0581 w)
+ ((vg +vp) - Vi) ow (0,8w + 0,0 058w + 00w 0s8iw)

~ (Calgiws F " Dew (Cl)

where the derivatives of g; y with respect to r and « are performed holding v and J fixed,
whereas the derivatives of v and Jy with respect to the same variables are performed
holding £ and p constant. Employing (5.17) and (5.18), to lowest order in €, (C1) can be
rewritten as

co, _
%aagi,o,w — <Cii[gi,0,W’f,‘(0)]>r,W =0. (C2)
t

The terms proportional to d;g; o.w and 9,8, 0. w have been neglected because we assume that
the derivatives of g; o w with respect to v and r satisfy d;Ing; 0w ~ v,; "and 9, 1n giow ™~
a~'. Recall that the estimate 9, Ing; o w ~ a~' < (ea)! is valid because the derivative is
performed holding v and J constant.

The fact that the derivative of g; o w with respect to J is larger than its derivative with
respect to v (compare (4.18) and (4.19)) simplifies significantly the collision operator in
(C2) because the term with two derivatives with respect to J becomes the largest,

Cii[gi,O,W»]_ci(O)] =vi Vw0, (VUVUH[hi,O] - Vodw 8Jgi,0,w) [1+ 0("/?)]
Vii
~ —&iow- (C3)
€

Here, the Rosenbluth potential H[%; ] is evaluated using only 4, o because the contribution
to the integral from g; o is smaller by /€ due to the smallness of the region of velocity

space where g; o.w is defined. Since V ,Jy =~ erHIAJ for trapped particles (see (4.12)), we
need the component b - V,V H[h;o] - b of V,V H[h; ] for the lowest-order version of
the collision operator. We find

v, —v' |?hio(v)

. (C4)
v — v

b V.V, Hihol - b= /

Note that, for trapped particles, the parallel component of the velocity is small in €,
giving v >~ ve, (x, ¢), where e, is defined in (2.3). Using this result and writing
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v~ f/é’l; +v'y/1 —&7(cos¢’ e, + sing’ b x &,), (C4) can be written as
b-V,V,Hlhio - b~ Hylhiol(¥), (C5)
where we have defined the new functional

—2_2——/ 1— ” ’ —/21_ 72
e
(2 — 20 7/\/1 — £2cos ¢/ + 72)3/2
(©6)

This result demonstrates that b - V.V, H[ho] - b depends only on v to lowest order in €.
With all these results, (C3) becomes

Hyplhiol(v) == /

7 - Vii
Ciilgio.w. /i1 = viHys[hi 1) Twoy 0y (twvy ds8i0.w) [1+ O(e'/*)] ~ 0w (C7)
Transit averaging equation (C7), we obtain
7(0) _ - 12 Vii
(Cilgiow. [ Vew = ViiHp[hio1(0) 05 (twd s8:0w) [1 + O('/*)] ~ ~ Siow- (C8)

At the junctures of several wells, we need to impose continuity of g;ow and use
condition (2.36) to relate the discontinuous derivatives on different sides of the well.
We proceed to rewrite (2.36) in the new coordinates v and J. The derivative of
giow With respect to € iS degiow = eV 358:.0.w + deJw 358i.0.w- Noting that dgv =
1/v ~ 1/vy, 0sJw = Tw = R//€vy, 358i0.w ~ &io.w/ Vi and 8;8i.0.w ~ &io.w/~/€ViR, the
derivative with respect to £ simplifies to dgg; 0w =~ Tw 9,8:.0.w- Equation (2.36) can be
simplified further by noting that £.(r, o, u, t) is given by (5.29) and hence 9,&, =~ Bjy.
With these results, (2.36) becomes

dl

lhr.1
lim 7; 0,80 Z/ (Heelhiol — 2BiHe,lhiol + BZZMHMM[hi,O]) —

J=der IpL.1 IvH |

) Ipr 11 dl
+ lim 758000 ) / (Heehiol = 2BusHe,[hiol + By Houlhiol) 75
et P Lor 11 I
o 11 d/
) 2
= Jhgn T 058i,0.111 Z/ (Heglhiol — 2BiHeg,[hiol + By Huylhiol) m (C9)
el o Yl I

Note that, Hee = V-V, VH-V,E=v-V,VH-v,H;, =V ,E-V,VH-V,u=
v-V,V,H-v,/BandH,, =V,u-V,VH-V,u=v, -V,V,H-v,/B* Thus,

Heelhiol — 2BiHe [ hiol + BiyH,lhiol

= (vi; + v, (1 - B%)) -V, V., H[h,] - (vi; + v, (1 - B%)) . (C10)

Since 1 —Bj/B~¢€ but v, ~ ev;, Heelhiol — 2BwHe,[hiol + BiyH,ulhiol =
VP Hyph;01(1 + O(e'/2)). Then, by dividing (C9) by Hy[;o](D), we find

Jer im 7058507 +Jep im 75058500 = Jer im Tyy5 95840, (C11)
J=Jer J—J J—J

[/ el

Equation (C11) could have also been obtained by following a procedure similar to the
one in Appendix A. Note that (C8) implies that the phase-space particle flux across the
boundary J = J. w(r, a, v, 1) is =270yl [hi0]1(V) Je.wTw18i0.w-
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Using (C2) and (C8), we find that that the equation for g; o y is

cd! _
903,00 — ViHonlhio(©) 3 (2wd drgiow) = 0. (C12)

1
We need to impose the continuity condition (2.24) that implies that g; o w for / — oo must
be equal to ;o at the trapped—passing boundary, where § ~ /e < 1. Then,

jhm gi,O,Wbt(’? «a, l_)i Ja t) = hi,O(r’ 59 O’ t) (C13)

Note that we have approximated the trapped—passing boundary by & = 0. We discuss this
approximation in detail in Appendix C.3.
To find the solution to (C12), we first need to show that

Jlim TwoJ 018i0w, (1, 0, 0, J, 1) =0, (C14)

that is, there is no collisional flux from the trapped region into the passing region.
Property (C14) can be shown to be true following the same procedure that we employed
to find property (5.36). With property (C14), we can find the solution g; o w given in (5.4).
We multiply (C12) by g;.0.w to write

o,
24
— YiiHp[hi01(D) 9y (gi.0.wTwd 9s8i.0.w) = 0. (C15)

2
&i _
" <%) + Vil [hi 01(0) Twd (358i0.w)°

We integrate this equation over J and @ and we sum over W. We use (C11) at the junctures
of different wells, and we employ property (C14) to show that a boundary term at J/ — oo
vanishes. After all these calculations, we find

Inw

Z/ o da d’l’w] (a_]g,"()lw)z =0. (C16)
w odLw

Jmw

This equation implies that g; o w is independent of J. Using this result in (C12), we also
find that g;o.w is independent of «. We obtain solution (5.4) by applying the boundary
condition (C13).

C.2. Lowest-order passing-particle distribution function
To lowest order in €, according to (5.1), we can neglect the time derivatives and the source
in (2.30), finding

B
<_Cii[hia hi]> ~0. (C17)
vy fs

For most passing particles, v = a\/2(5 — By — Ziegy(r, t)/m;) is very close to being
independent of o and /. Thus, for most values of &, (C17) becomes

Ciilhi o, higl = 0. (CIB)

We need to impose boundary condition (2.25) that requires that the derivatives of g; w
and h; with respect to velocity are continuous across the trapped—passing boundary. The
continuity of the derivatives imposes that the collisional flux across the trapped—passing
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boundary be continuous. This collisional flux is dominated by pitch-angle scattering
events, and the pitch-angle scattering flux is controlled by the derivative of g;y with
respect to J in the trapped region of velocity space. Since we have shown that 9;g; 0w = 0,
only the derivatives of g;; w play a role in the collisional flux across the trapped—passing
boundary. Due to the smallness of |vj| ~ </ev; in the trapped region, V,g;w ~
€ 2gi1.w/vi ~ €'2h; /v, where we have used g 1w ~ €h; 0. Hence, the collisional flux
across the trapped—passing boundary is small in € because V,g; 1w is small in €. The lack
of collisional flux across the trapped—passing boundary gives the boundary condition

8Ehi,0(r7 l_)’ 07 [) = 07 (C19)

for h;o. A more rigorous derivation of this boundary condition can be found in
Appendix C.3.

To obtain boundary condition (C19), the fact that there is no piece of g; y of order
€'2g; o.w is important. Using (4.5), (4.6) and (5.18), we find that the next-order corrections

to (C12) are
ey _
Faagi,l,w — YiiHpoLhi0)(©) 9y (twd 8,8i1.w) = (Ciilgiow- hiol)ew
1
micgv’ Zied,,
————— (0,B - 0,8i — ——0;8; . C20
2Z,eBoW, (0oB1) ,W( 8i.0.w 5 8io.w ( )

To obtain this result, we have used the fact that (C;[g;0.w, hiol)..w 1s of order v;g;ow
instead of v;g;0.w/€ because g;ow only depends on v. Thus, there is no correction to
gio.w of order €'/ 2g,-,o,w, and we can use boundary condition (C19).

The only possible solution to (C18) with condition (C19) is a stationary Maxwellian
with density and temperature that are flux functions, as shown in (5.5).

C.3. Lowest-order barely-passing-particle distribution function

The coordinate £ is not a constant of the motion for barely passing particles with || ~
€ < 1. In this small region of velocity space, it is more convenient to use as a coordinate
the value of £ at the location of the maximum of U,

g - UM(ra M, t)
E —Ziepy, (r, pu, t)/m;

_ 0J2(E — uBy(r) — Ziedpo(r, 1) /my) [

v

é(r,é’, w,o, 1) = O'\/

1+ 0(e")], (C21)

where ¢y, is the value of the potential at the location where U is maximum, and By, (r) is
the maximum of B on flux surface r.
Using v and & as coordinates, the parallel velocity can be written as

by = if)\/,i-_‘z n B]yM(r) —B](r, o, l) [1 + 0(61/2)], (C22)
€] Bo

where B, y(r) is the maximum value of By on flux surface r. According to this
approximation, vy and hence & are constant for |§| > (/€. Moreover, £ > & for |£] > /€.
Unfortunately, we need to consider |£| ~ /€ because it is in this region that we find the

trapped—passing boundary: at the trapped—passing boundary, § = 0.
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In the barely-passing-particle region |£| ~ /€, we can write the distribution function as
hi(r, 0, €, 1) + Ahypy(r, 0, €, 1)
~ i(r, 0,6, 0) + (& — &) 8ehi(r, B, &, 1) + Ahyyy(r, 0, €, 1), (C23)
where h;(r, 0, €, t) is the function k;(r, 0, £, £) but with & replaced by £ and h;(r, v, &, 1) >~
hio(r, v, &, t) is the passing particle distribution function discussed in Appendix C.2. The

passing-particle distribution function h;(r, v, &, ) =~ h; o(r, v, &, t) is determined by (C18)
and satisfies

851/11'(’”, 1_)’ 57 t) 5 \/Eh’i,o, (C24)

for |&| ~ /€, as we will see at the end of this appendix. The piece Ahjpp (7, v, A, 1)
1s small in € and vanishes for |§| > /€, leaving the solution h,(r, v, &, 1) for freely
passing particles with |£] ~ 1. We proceed to show that A#; ,,,, simply ensures that there is
continuity in the collisional fluxes across the barely-passing-particle region.

In Appendix C.1, we show that d;g; 0w = 0. With this result, we can give a bound for
the size of d; Ah; p,. Using the continuity condition (2.24) to write

Jhm gi,Wb[(ra o, l_)v J? t) = hm [hi(ra l_}v éa t) + Ahi,bp(r7 1_)’ év t)] 5 (C25)
—>00 £E—0

we can deduce that
Jlim d&iwy (o, 0, J, 1) = lim [05h;(r, 0, &, 1) + 05 Ahy (1, 0, €, 1)] . (C26)
—00 £—0
Applying this result to (2.25), where 0 = d¢v 95 + dgJw 9, for trapped particles and dg =
0gv 0; + 0g& g for passing particles, we find

Jim 9g Ty, 581w, (ry o, U, 7, 1) = lim & [0zhi(r, 0, &, 1) + 0: Ahywy(r, 0, €, )] . (C27)
— 00 £—0

Using dgJy = Ty, 9¢€ = (1 — £2)/0°€ and 9,8;0.w = O, this condition becomes
ehi(r, 0, E, 1) + 95 Ahypp(r, 0, €, 1)
lim =

E—0 3

=7’ Jlim Ty, 0&itwy, (1, 0, J,1).  (C28)

Using |€| ~ /€, Ty ~ € 2R /v, 3, ~ € '/>/v,;R and (C24), we find the estimate
85 Ahi,bp ~ \/Ehi.(). (C29)

To calculate Ah;y,, we need to integrate g Ah;p, ~ J€hi o over § . Since the region

of interest is |&| ~ V€, the integral is over an interval of & of order /€, and hence
Ah;p ~ \/EagAh,-,bp ~ €h;, justifying the neglect of Ah;y, in (C25) to obtain (C13).
In Appendix D we will see that Ah;p, ~ €h; ( is in fact only a bound as A#h; y, is smaller
than €h; o.

We proceed to solve (C17) in the barely-passing-particle region. Using B >~ B, and
(C18), we find that (C17) becomes, to lowest order in ¢,

Bo(lvy| ™' Cii [(§ — &) chu(r, 0, &, 1) + Ahipy, hig]), = O, (C30)

where we have neglected the contributions of the difference £ — & and of Ah;p, to the
Rosenbluth potentials because they are small in €. The derivatives of £ — £ and Ah;p, with
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respect to £ in the barely-passing-particle region are large, 0 In(€ — &) ~ 0z In Ah;pp ~
€2, Thus, in the collision operator applied to g — & and Ah,y,, the term that contains
two derivatives with respect to £ dominates,
Ci[(E — &) 0chi(r, 0, &, 1) + Ahipy, hio]
~ YV o€« 0z [V V HIhio] - Vo€ 0z (€ — &) 0chi(r, 0, 6, 1) + Ahywp) | ~ viihio.
(C31)

Using V& ~ (£/& )b, 0 ~ £/& and (C5), and employing the fact that the derivative of
0ghi(r, v, &, 1) with respect to & is small compared with the derivatives of &€ — & and Ah;
with respect to £, the collision operator simplifies to
Ci [(E — &) 9:hi(r, 0,0, 1) + Ahipp, hig]
iiH hi vé -
~ V+[_‘O] vy 0 |:UT (85Ahi,bp + (1 — E) dehi(r, v, &, t))] ~ vih;o. (C32)
v’§ 3 Y|
Employing this result, (C30) becomes
iiH hi v S S — —
Y, bf[ 01(0) o |:<|U!|>f 9 Aoy + (M _ v) dehi(r, v, £, t)] —0. (C33)
v?€] 13 13
We solve for 9z Ah;p by realizing that 0 Ah;y, is small for |E] > /€ because Ah;
vanishes for |£| > |/, finding

0z Ah; (7, v, 5, fH = 5] — — 1| 0chi(r,v,§,1), (C34)
<\/§2 + Biw— Bl)/Bo>

fs

where we have used the lowest-order version of expression (C22) for the parallel velocity.
We can integrate once more to obtain A#h;,,

Ahi,bp(r,a,é,t)=a$hi(r,5,s,t)i h 1- & — | dg’,
€1 Jiey <\/s/2+(Bl,M—Bl)/BO)

fs
where we have used that Ah; , vanishes for [€] > /€.

Substituting (C34) into (C28), we obtain

li - T B
EESL O:hi(r,v,&,1) girgl_ 0:hi(r,v,&,1)

B,y —B
= < %> v Jlim Twy 0181wy (1 &0, 0, J, 1) ~ \J€hy.
0 — 00
fs

(C36)

Since the derivatives of &; o with respect to £ at £ = 0 are small in €, they have to be set to
zero to lowest order, giving condition (C19).
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Appendix D. Barely passing particles

In this appendix, we show that the correction to the distribution function due to the
barely passing particles, Ah;,p, is of order €’y and hence several boundary conditions
that we have used in this article are valid. To discuss the barely passing particles, we use
the formalism developed in Appendix C.3. In Appendix C.3, we state that A#h; ,, is at most
of order €h;, but in reality it is smaller. In § 5.2 and Appendix F, we show that Ty 9,8, 1.w
and Ty 9,8, 3/2,w vanish for J/ — oo. These results mean that (C28) must be modified to

give
a—hi r, l_)v _7t +8_Ahl r, l_)v _7t - . -
%in(l) £ 32 5.0) %__ d L 5.1 =° Jlgglo Tw, 082wy, (10, v, J, 1), (D1)

This equation gives the estimate
9 Ahy oy ~ € fui. (D2)

By integrating 9z Ah;,, over the barely-passing-particle region, of width AE ~ \J€, we
obtain the size that we announced at the start of this appendix,

Ahipy ~ €fui. (D3)

The small size of this contribution justifies neglecting Ah;y, in the continuity
condition (C25) to obtain the boundary conditions (5.34) and (F8).

Solutions (C34) and (C35) are valid in the barely-passing-particle region even at the
high order that we are considering. Following the same procedure that led to (C36) but
using (D1) instead of (C28), we obtain the boundary condition

Elifg 0chizpn(r,v,6,1) = — Elil}){ 0:hi3pn(r,v,8,1)

By —B
=< L1> 0° lim Ty, 0ygiow, (roo, 0, J,1).  (D4)
B ] J—00

This is the boundary condition that connects g; > w and 5, 3.

Appendix E. Example of a problematic well juncture

In § 5.2.2, we state that wells end at locations o, and ag w where J,, w = Jyw. There
are cases in which this property is not obvious. We show such an example in figure 14(a),
in which well I disappears at « = ag; because J,,; = Jy; = 0 at that value of «. The
problem with this configuration arises for o > ag;, where well /I and /Il merge into a
new larger well. There are different ways to address this problem, and we comment on
two: one could terminate wells /I and /1] at o« = og; and start a new well IV at that value
of o, or one could terminate well /II and declare that the merged well beyond ag; is
well I1. In either of these options, a well disappears without J,,  being equal to Jy w.
Moreover, if we were to choose the second option and declare that the merged well is well
11, the function J. ;; that determines the location of the juncture in velocity space becomes
discontinuous in «. Both of these features are undesirable, and instead we choose to add a
‘false’ two-well juncture for o > og /, represented by a red dashed line in figure 14(a). We
can locate the ‘false’ juncture J. ; = J. ;; that artificially separates particles into wells 11
and /II wherever we wish. The only condition that we impose for convenience is that the
extended functions J. ; and J. ;; be continuous, as shown in the example of figure 14(b).
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FIGURE 14. (@) Example of limit g ; in which well I closes and well /I and III become
indistinguishable. There are several ways to treat such a case. We choose to define a ‘false’
juncture J. iy = J¢ 1 (represented by a dashed line) that splits particles into well II and well
IIT arbitrarily for o« > ag . (b) Sketch of the functions J. s, J. ;7 and J. 7 vs «. The sketch is
consistent with the ag s sketched in figure (a). The ‘false’ juncture J. ;j = J. i is represented by
dashed lines. The shape of J. ; = J. zi7 in the region where well 7 does not exist is arbitrary. We
choose it such that J. ;(r, , v, t) and J. i (r, @, v, t) are continuous in .

Note that such a ‘false’ juncture does not affect the final result because junctures impose
continuity of the distribution function and continuity of the collisional velocity-space flux,
and hence continuity of the distribution function derivatives. With these ‘false’ junctures,
we ensure that wells end only at values of « where J,,, w = Jyw-

Appendix F. Correction g; 3,2 w to the trapped-particle distribution function

In this appendix, we show that g;3, w does not depend on « or J and hence
Tw J 9,8i3/2,w = 0 for all J and not only at the trapped—passing boundary.

We start by discussing the contributions to g; 3/, w due to the collision operator. One
might think that the differential piece of the linearized collision operator applied on g; ;. w
has pieces of order €'/?v;fy; that would have to be included in an equation for 8i 32w, but
after careful manipulations using V,v = v/v and (4.12) for V,Jy, we find that this is not
the case. Indeed, since V, = V,v9; + V Jw 9; and

o wBlwlyl | v v s
Vye(o) = = [3U<TW<B) () Vw)

% r,W|UII|

v
o\ —————C--)-V,J , F1
+0; (TW<B>1:,W|v|||( ) w)] (F1)
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we obtain

V2 1 (r, 0, 1)

1 3y (twl 3:8i.1.w)

(Cf,-,D[gi,l,w])r,w -

l_12T JU,‘,‘ (I", l_), t)
= 058i1,w 0y In(B) - w

4
72 v L (rv, 1) 0% (0, 1)
BT 9 W 2 ii, » Uy _ ii, s Uy 9 ,‘
e ’[<B>T,W <””( 4 4 )>W oy
ZMT‘,ZV v2Bvj; | (B)r.w ?
UL (B 9,8
+ (B)r.w< 1 B 78i.1,W
’ T, W
Tz Vi'” Vi L 2
n <B>Vfw<(7 — =) (0 + 21 (B = (B)w) )I!W 3,801
2
Tw v UM\ 2
+- —— (v + 21 (B — (B), > 958i.1. }
(S G- ) s
B T 4 i/t i
+ < >_’W35 <(v_v_) o af)gi,l,W> ~ Vigiw ~ € Pix vnfM- (F2)
v 20(B)w a

The contributions of the integral part of the linearized collision operator to the trapped
particle equation can be neglected to the order that determines g;3, w because their
size is given by C“,[ 13/2] Viihi,3/2 ~ Es/zpi*vrifMi/a and Cﬁ'.[[gi,l,w] ~ 61/2Viigi,1,w ~
€% pivifui/a. Here, the integral operator applied on g;w has an extra factor of (/e
because the region of velocity space where g; |  is defined is small in /€.

We proceed to consider the contributions to the equation for g; 3> w due to the E x B
drift (c/B)i) x Vs, (see (4.5) and (5.18)). This E x B contribution has already been
accounted for in (5.25) in the term proportional to (c¢y/¥,) d.7:1,w. Keeping higher-order
corrections in (5.22), we find

Jw(r o, v, A, 1) ~ 20

Ipr,w _ B(r,a,l 2Z, , ,l,[
\/I_ABO— DD BT LD d F)

Iprw mi v?
We calculate 9,1y by differentiating equation (F3) with respect to « holding r, v and J
constant. We find

v’B,

02 _
0,B 3 ~ — Oy Aw. F4
<ZBO 1 + ¢%/2>r,w 5 w (F4)

This result shows that the E x B drift due to ¢3/, is included naturally in the term
(chy/¥,) 0u1i1,w because, using (4.5), we can write the radial drifts as

(Vg + vag) - V) me_[ o B+ 20 [1 4+ 0(e)]
Ve+ V) - Vi), = — » €
B W Zew \2B, Lt G w

= Cl:liif) 80(}’,‘,1"}[/ [1 + 0(6)] (FS)

t
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Due to all the considerations listed above, the equation for g; 3/» w is

C;%a g — 1_)2Vii’J_
w’ «5i,3/2,W 4

t

0y (twJ 9;8i3/2.w) = 0. (F6)

At this order, the equation for the junctures of different wells is still the simple result

Jey im 770585320 +Jer im 10585300 = Jer im Ty 058332, (F7)
J—=>Jer J=>Jen J—=>Jemn

Equations (F6) and (F7) have to be solved in conjunction with the boundary condition

Jllm gi,3/2,Wb‘(r7 o, 55 Ja t) = hi,3/2(r’ 1_}’ 05 t) (FS)

that we obtain from condition (2.24) (see Appendix D for more detail). Using the same
methodology that led to solution (5.4), we can show that the solution to (F6), (F7) and
(F8) is given by (5.40) and hence g; 3> w does not depend on « or J.

Appendix G. Derivation of (5.25), (5.33) and (5.34) from the DKES kinetic equation

In this appendix, we derive (5.25), (5.33) and (5.34) from the DKES kinetic equation.
The DKES kinetic equation assumes that the ion distribution function is the Maxwellian
distribution function f;; corrected by the small piece f;,

firia, Lv, y, ©) = fi(r, v, 0) + fi(r o, L v, v, 0). (G1)

The velocity-space coordinates are the magnitude of the velocity v and the angle y

between the velocity v and the magnetic field, y := arccos(b - v /v). The DKES Kkinetic
equation in these variables is

L pvnvilag+ B oih Ludnyama
U COS X Vr)- i e i — v Sin i
"B, v (B, 2" P O
- »Cii[fi] = —vy; VI YVifui, (G2)
where
~ Vi, 1 (V) . A
Lilfi) := 5 =0, (siny B,) (G3)
sin y

is a model pitch-angle scattering operator. This equation has to be solved with magnetic
fields that satisfy the MHD constraint (V x B) - Vr = 0. In the {r, «, [} coordinates, this
constraint is

9 B ol (bxVr).Vi|=0 G4
a(@>+z[( x Vr) - vi| = 0. (G4)

To obtain (5.25), (5.33) and (5.34) from (G2), we need to expand in p; ~ v, < 1 and
in € <« 1. We first expand in p;, ~ v, < 1,

=R +5"+, (GS)
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where fi(") ~ pl’jf, For the expansion p; ~ v;, < 1, we need to use the velocity-space
coordinates v, 1 = sin’* /B and . In these coordinates, (G2) becomes

[ V0o
(B?)gs

(Bz>fs
_ Acgy
(Bz>fs

where vy = vcosy = ov+/1 — AB and

dof:

n B
[(b x Vr).VI9B+ ;a(,B

t

:| Bfi - L:ii[fi] = —vy; « Vr Tifui, (G6)

Vu L( )

['ii[fi] vy BA(UM 3/1ﬁ (G7)
To lowest order in p; < 1, (G6) simplifies to v 8U§(O> = 0. Following the same
procedure that we used in § 2, we split fi(o) into a trapped-particle distribution function
giw(r,a, v, 4, 1) and a passing-particle distribution function 4;(r, v, 4, o, t). To next order
in p; < 1, (G6) becomes

(1) Cd’o B 200 /1045(/) |: 2 B ] 2(0)
v (bxVr)-VIoB+ —0,B|0,f;
g T By, Ty i
- ['ii[f,'(O)] = —vy; - VI Tifui. (G8)

To eliminate the first term in this equation, we transit average in the trapped-particle
region, and we multiply by B/|v,| and flux surface average in the passing-particle region.
To perform these operations, we use

2 [ . B
[(b x Vr) - VI}B + ,aD,B] == [(b x Vr) - VI3|v| + Jaa|u”|] . (G9)
l v t

|U|||

and (G4) to write

ABeg), T . B
(0 (b x Vi) - VIaB+ —3,B|) =0 (G10)
|vII|<B )fs lpz fs
and
Acd) T - B 2! R
—< <Py [(b X Vr)-VI3,B+ —aaBD R WY (G11)
(B2>fs ll/r/ oW vZTWlIJ/<BZ>fS

where jw is defined in (5.52). With these results, the transit average of (G8) becomes

’ B2 . R 2 A 3 a
cl (B )ew BB b 0w 018w

lpr/ <B2>fs ¢ vz‘EWlI/z,(Bz)fs
- <['ii[§i,W]>T’W = —(vmi + V1)ow Tifuis (G12)
for trapped particles. The flux surface average of (G8) multiplied by B/|v;| gives
B R
< Lll[hl]> = 07 (G13)
vy fs

for passing particles.
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Equation (G12) can be simplified even further for trapped particles by noting that

dJw = — ”2; B - (G14)
Using this expression, we can rewrite (G12) as
ZZC;%(—&JW BuBiw + Vudw D181, w)
V2T (B?)y
- (['ii[gi,WDT’W = — (Vi * V)ow Tifui- (G15)

This form of the equation shows that jW is a constant of the motion in DKES. Indeed,
if instead of using v and A as velocity-space coordinates, we use v and J, (G15) can be

written as
C¢6 <B2>I,W A~ A
?/m 0a&iw — (ﬁii[gi,w])nw == (Wi - V)ew Yifui, (G16)
where
. v?v;; 1 (v)(B?), vj .
(cii[gi,W]L’W = %3} /lf‘%/wz)r,w EH 8]gi,w . (G17)
oW

In the DKES kinetic equation, there will also be junctures of different wells such as the
one shown in figure 1. These junctures are determined by values of J that depend on r, «,
v and the well index W, J = J. w(r, o, v). These values of J satisfy

jc,l(rv o, U) + jc,ll(r’ o, U) = ‘}L',Ill(r? o, U), (GIS)

and imposing that the collisional flux across these junctures is continuous gives the
condition

: 2/n2 Uﬁ ~ : 2 /2 Uﬁ ~
Alll’}'l TI (B )r.I — 83g,»,1 =+ Alll;n T” <B )r,Il — 8;g,»,”
A B iy A B i,

J=>Jem

2
— T 2 p2 Ui I
= lim 7,,(B%)m B 958i.1m1- (G19)
I

Equations (G13), (G16) and (G19) can be further simplified using the expansion in € <
1. Using a procedure similar to the one we follow in § 5.2, we find

Siw=28i1w+8&izow+ 8w+, (G20)
and
hi=hizp+---, (G21)

where g, w ~ €"fy; and iz,-,n ~ €"fy;. Using the fact that B ~ B, to lowest order, we obtain

that J and J are approximately the same coordinate, J ~ ByJ. As a result, (G16) and
(G19) become (5.25) and (5.33) to lowest order. As explained in § 5.2, the continuity of

derivatives across the trapped—passing boundary implies that the size of h; is €3/*fy;, and
as a result we obtain boundary condition (5.34) for g; 1 w.
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Appendix H. Boundary layer at the juncture of several magnetic wells

In junctures where particles leave two of the wells and enter a third one, a collisional
boundary layer appears in the region

|J —J. WI Vix Pix
—— ~ —1In|{— 1 H1
JevR Pix ! Vi < (H)

(we justify this estimate below). The distribution function g; ; y in this boundary layer can
be written as

8itw = Kijuncew(r, o, v, Adjunct, 1) — i1, w Vifui, (H2)

where AJjyne :=J — Jow(r, o, v). The function Kj jynce, w (7, @, v, AJjunei, 1) changes rapidly
in AJjunci, and slowly in o.

We can find the equation for K; juu,w by substituting (H2) into (5.25) and neglecting
small terms

/ 2
co v Jew
0 i, C,
- ! aath,W 8AJJL,MI{i,junct,W - 4 aAJju"u(Tc,W 8Alju"C‘Ki,junct,W) = 0, (H3)
t

where the logarithmically diverging function
TC,W(ra o, v, AJjunct) = _fc,W,log(r, o, U) In |A-]junct| + fc,W,O(r» o, U) (H4)

is the asymptotic approximation for ty near J = J. . We have neglected the derivative of
K; junct, w With respect to o because it is small compared with the first term in (H3). We can
obtain estimate (H1) by balancing the two terms in (H3),

ey ot w Uzvii,LJc,ch,W,lo
0 ~ 10 | A - (HS)
U Adjunct (AJjunct)
Indeed, this equation gives

1002 2
‘1’, V7Vij 1 Te W log
/
C¢O 80( In Jc, w

Cd)(/) 8a In Jc, w
P02 1 Tew log

|A‘]junct| ~

~ Z (ﬁ) . (H6)
Pix Vi

For the order of magnitude estimate, we have used ¢, ~ Ti/ea, ¥/ ~ aBy, J.w ~ /€viR
and 7w 10g ~ R/ J/€v,;. With (H6), we can simplify 7.y to

C¢6 aa In JL',W

—_—. (H7)
Y020 1 T wlog

Tew 22 Tew,log IN

From here on, we use this approximation that makes 7. independent of AJjc.
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Equation (H3) has to be solved in conjunction with continuity of Kj junw across the
juncture and along with condition (5.33), which in the layer becomes

JerTer lim aAJju,mKi,junct,I+Jc,11Tc,11 lim aAJjunC,Ki,junct,Il

junct ™ junct ™

=JemTeqr 1im Ops, Kijuncemr- (H8)

junct—>

For large AJjunei, the function K;juneew (7, o, v, Adjunee, 1) must tend to the solutions
outside of the layer,

hm Ki,junct,W(r7 o, v, AJjuncla t) = Ki,W(ra o, v, JC,W’ t) (H9)

‘A‘/junctl_>oc

With boundary conditions (H9), the solutions to (H3) are

Ki,juncl,W(ra o, v, AJjunch t) - Ki,W(rv o, v, Jc,Wa t)
degy 0y Ind,

Adiinet | > H10
020, | Tew ! l) (E10)

+ Ay (r, o, v, 1) exp (—

where the function Ay (r, «, v, t) is a constant of integration.
We proceed to discuss how to use solution (H10) to solve the problem. We consider
a juncture like the one in figure 1 such that particles leave well I and II to enter well
11, that is, —(c¢y/¥/) 0oJe,w > 0 for W = 1,11, IIl. This means that the exponential in
solution (H10) diverges for well 111, where AJjyn > 0, and thus the solution in well /11

can tend to K; j(r, &, v, J. . t) only if Ay (r, o, v, £) = 0. As a result, the derivative of
K; junct,mr with respect to AJjyne vanishes, and condition (H8) simply gives

JeatTer lim aAJjunclKi,juncl,I +JenTen lim aAJjunC,Ki,junct,Il =0. (HI1)

-]Juncl_) A-]juncl_)

Imposing this condition and the fact that K; junc,; and K; junce, s have to be equal to each
other at AJjunec = 0 to be continuous with K junct, 77, we find the functions A; and Aj;. The
final solutions are
Ki,junct,l(r, a, v, AJjunct’ [) = Ki,l(r, a, v, Jc,h t)
n OudeulKinn(ry o, v, Jey, t) — Ky (ry v, Jo g, 1)]
aOtJC,I + anC,II
deg) 04 In .
X exp ( MMW) , (H12)

lI’/U2Vii,LTc,1

and

K junce1(ry a, v, Adjynee, 1) = K (ry e, v, Jegp, 1)
+ aOl‘IC,I[Ki,I(r9 o, Vv, ‘IC,]’ t) - Ki,”(ra o, v, JC,”a t)]
aoth,l + aot-]c,ll
4ep), 9, In J,.
x exp ( MMM&) . (HI13)

020, Teg

With these solutions, we can find K (7, o, v, Jo iy, 1) = K junce (75 o, v, 0, 1) because
K juncimr (75 o, v, 0, 1) has to be equal to the values K junct,; and Kj junce,ir at Adjunee = 0. The
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solution for K; y;(r, o, v, J. i1, t) is the same one that we found by applying conservation
of particles, given in (7.8).

It is worth noting that if we apply this method to a hypothetical boundary layer in
a juncture where particles leave one well to enter two other wells, we find that the
exponential in solution (H10) diverges in two of the wells (the two that the particles enter),
and as a result, the functions Ay have to vanish in those wells. One ends up finding that
the solution is constant in all the wells, recovering the result that K; y is constant across
this kind of juncture.

Appendix I. Boundary layers around discontinuities in 9;K; w

There are two types of boundary layers that form around discontinuities in 9;K; y: the
layers on the boundaries of the regions where K;  is independent of J, and the layer on
the trapped—passing boundary. We describe both types of layers in this appendix.

I.1. Boundary layers on the boundaries of the regions where 9;K; w = 0

To discuss the boundary layers that appear on the boundaries of the regions where K; y
does not depend on J, we use the example of the layer that arises around J = J ;5 in the
example discussed in § 7.1.2. We use the variable AJy :=J — J. 1. The typical size of
AJbl is
Ay Vi
—~ [ — K1, 11
VeviR Pis 1
as we will show below.
Particles behave differently for AJy, positive or negative. For AJ, > 0, we can write the
distribution function in the boundary layer region as

Vi
gt = Kir — riv . Vifui + g,{}’f,},”(r, o, v, Ay, 1) + O (—_*Esz) ) (I12)

123

it [ Vi < 1. (13)
€fui Pis

Substituting (I2) into (5.25), we obtain the equation for the boundary layer for AJ,; > 0,

where

’ 2
C¢08 (bl Vi JemmTir o o 4
;081 — Ay A 8i i = Y (I14)
v, 4

where tj; is evaluated at J = J. ;. For J > J..m, particles move uninterruptedly
along o. Thus, we impose periodic boundary conditions in « for g}’bll ,}111' We also impose

lim gy (r, v, Ady, 1) =0 (I5)

A1b1*>00

and continuity and continuity of derivatives with g; ;7 for J < J. j.m-
The distribution function in the region J < J. . is simply g1 = Kim —
rinm Yifui +g,{,11}‘,,,, where g,{,ll}y,,, is determined by (7.23). In other words, unlike for

J > J.r.m, we do not distinguish between gl{,ll}y ,; and the boundary layer piece of the
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distribution function because the equation for gﬁ,ll}’ , contains collisions. As a result, the
continuity of g; ; iy across J = J, 1. gives

bl 1
gl{‘,l,}[]](r’ o, v, 07 t) = g,{',1},m(’"» o, v, JL',I”.Ma t)? (16)

and the continuity of the derivative with respect to J gives
bl 1
8./I{i,lll(r, v, J:,_III,M’ t) + aAJblgl{,l,}[[](ra o, v, Oa t) = 3]8,{',1},111(’”, o, v, Jc,l”,Mv t)» (17)

where 0;K; (7, v, J:,H’ w» 1) 1s the derivative of K j; with respect to J evaluated at a value
of J slightly above J = J, ji;. ). Recall that 9,K; ;; vanishes for J < J. j.m.
By balancing the different terms in (I4), we obtain estimate (I1) for the boundary layer

width. The estimate for the size of gl{ﬁl},,, in (I3) is obtained from the fact that gf}’,l},,, is
the integral of 9, Jb]gﬁf’ll},,, over an interval of AJy of the size given in (I1). The size of
N gﬁ},,,, NS g,{.}’ll’},,, ~ /€fui/viR, is determined by boundary condition (I7).

Equations (I16) and (I7) are also the boundary conditions for gl{.yll}’ ;i In the region where
0;K; iy vanishes. Note that this means that g}’lll, . 1s larger than expected by a factor of
/ Pix/Vix n€ar J = J. 1, but it becomes of order (vi,/ pp ) €fyi for (Je s — J)//€viR >
A/ Vix/ pix» €xcept for some regions of small phase-space volume that we proceed to discuss.

In the example that we are considering (see figures 6 and 7), 81{',11}. matd =Jo gy for o
slightly smaller than 7 (¢ = =™) is different from g,{.,ll}’ w atJ = Je .y for o slightly larger

than 1t (¢« = n™). The particles with J = J, ;. at @ = 7" are particles that used to have
a second adiabatic invariant close to J = J. ;) and hence their number is determined by
the value of gl{,ll}’ yaround J = J. ;; and @ = 7w~ The particles withJ = J, ;. ata = 7~
transition into well / where they have a second adiabatic invariant very similar to J.; .
This means that gl!,ll}’ ;around J = J,.;y and o = v is determined by gl{,ll}’ watd =Jom
and @ = 7, and hence is large by a factor of </ p;./Vv;s in a region of width \/€v;,/p;v,iR
around J.; ». The particles in this region around J.; ., in turn, transition back into well
111 at some value of o between 1 and 2m. This means that there is another region around
another value of J that connects to J,. ; ,y where gl[’ll}, i 18 larger than expected. These regions
of large gl{;ll},w go on until gil]},w becomes sufficiently small due to diffusion in J.
Boundary condition (I7) gives the velocity-space flux conservation condition (7.16).
Indeed, integrating (7.23) in « and in J for the juncture sketched in figures 6 and 7, we

find
Vi1 {1 {1
ii, . .
— Jc,”l,M hm ('L']” 8ng~.] III> — Jc,l,m hm <T] 8‘]gl~.] 1>
4 T=J m e . o
. n mivzvii,J_
_Jc,ll,m hm <TH aJgi,l,11> = —,(JC,III,M - Jc,l,m - Jc,ll,m)TifMi~ (18)
J=Jeim o 4Zie¢0

Using boundary condition (I7), the definition of r; ; w in (5.26) and 9,y ~ —2/ v2ByTw,
(I8) becomes

Jemm 111}1 (Tm (31Ki,m — srinm TifMi)>a

—Jmm

—Jerm lim <1'1 (31Ki,1 — Osrinm TifMi)>

J—=J

c.l.m

(02
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—Jearm Nim (ty (0,Kisr — Oyrivn Yifni)),

_)Jc.ll,m

. (b1} . (b1}
= —Jemm lim <T”1 am&in 111> +Jerm lim <771 amm8in 1>
AJy—0 LA AJy—0 B

. bl}
+Jetrm AIJIHIEO <‘L'11 aAJblg,{,L,,)a . (I9)

We obtain the velocity-space flux conservation condition (7.16) from this expression by
employing the fact that (I4) and (I5) and the equivalent equations for the boundary layers
atJ = J. ., and J. 5, give

lim (ty das,80 w)e = 0. (110)

AJpy—0

Incidentally, t;; in (I4) diverges logarithmically at « = 7, where J.;; = J. r.m. This
divergence is integrable and does not affect the previous discussion.

L.2. Boundary layer at the trapped—passing boundary

The collisional layer that appears at the trapped—passing boundary is a result of the
lowest-order solution (7.19) not satisfying property (5.36) at the trapped—passing boundary.
This layer is best described in the coordinate Ad:= A — 1/By >~ A — 1/By + By./B2,

which is of order
[ABy v 1 oy (11)
€ Pix ln(pi*/vi*)

(we will argue that this estimate is correct below). We consider gﬁﬁll}’w, determined by (7.23),
as a function of AA. We find below that in the region of velocity space that satisfies (I11),

g,{;ll},w is not of order (v, /pix)€fyi, but much larger,

{1}
8i1w Vi 1
Silw o T T &, (112)
efMi Pis ln(pi*/vi*)

Using estimates (I111) and (I112) in (7.23), we find

2
U™V 1

)

g/ twdw (35w)’ ai/lA/lgz{,ll},W =0. (I13)
t

(aocgl{',ll},w + dodw 3A/lg§,11},w) -
Here, we can use 9,y >~ —2/v>ByTy and 0, Ay = —352<aa31>r,w to simplify (I113) to

ey (0uB1), Vi1 J
—0 (a g el g ol > — W2 ey =o0. 114)

8i 1w LW
. B} b v2Bity

We need to evaluate the different coefficients in this equation for small A1. We will use
the property that, for A4 — 0, the particle trajectory covers the whole flux surface in such
a way that the average of any function over the length of the line is related to the flux
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surface average of the function by

Ibr.w
Yeydl (B
]im ZbL<W — ( ( ))fS . (115)
A0 Dyp w — lorw (B)ss

Then, we can write
Iv _ (Bluwhs _ {viehs
o <B|v||,tp|_l)fs N <|vH,tp|_l)fs,
where v i, is the parallel velocity of the particles at the trapped—passing boundary. Note
that the average (|v) | ') does not diverge logarithmically despite |vj | depending

linearly on / near the maximum of B, because the integral over « eliminates de divergence.
With this result, (I14) simplifies to

cPy o (0Bi)w {1y Vi . {1Vl 0 0l
048;. ——— 018 — P 9 liw = 0. (117)
Ll/’ ( LW B LW V2B {[uy 1) BA8AELLW

116)

To obtain an estimate for (d,B;)..w, we need to consider the integral

(04B1), v 2 [ %5, (0) di (118)
YT vty Jiew /B — Bi(D)/Bo— AABy

We first note that, for A1l — 0, this integral vanishes,

i o) /” 3.B1()
im (9,B),,
A0 Vew = T do fo dl vy ! \/(Bl v — Bi(D)/By

430 o

S —— ‘/ dar 9, /4A&M—&mv&w =0. (I19)
-1

v [y do [y dllvy el Jo 0

Here, we have used the fact that the length L, defined below (2.31), is independent of «
to lowest order in the aspect ratio expansion, L(r, o) >~ Ly(r). We proceed to determine
how integral (I18) goes to zero for small AA. A sketch of the integral path is shown in
figure 15: the path of integration is composed of an almost surface-covering piece and a
piece of short length in the region «, < @ < «y,, where «, and «,, are the values of « for
which the maximum of B on the line « is equal to 1/4. For most values of o and A4, the
bulk of the integral is the almost surface-covering piece, and its size can be estimated by
replacing the line integral by an integral over the surface that the line covers, shaded in
figure 15,

9,81 ()
<aolBl>r,W ~ o7 Io da dl
v [y da [ dl vy el [ Jo 0 VB — Bi(D)/By — AAB,

/h /LD 04 B (1)
+ da | a . (120)
a 0 V By — Bi(1))/By — AAB,

The value of this surface integral is dominated by the region near the maximum of
B; because the rest of surface integral vanishes as shown by (I19). To avoid cluttering
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notation, we choose o and [ such that « = 0 and / = 0 at the maximum of B;, that is,
By = Bi(r, 0,0). Then, around the maximum,

1 1
Bi(r,a,l) ~ By + 512 3B (r,0,0) +ald2,B(r,0,0) + 5052 82,Bi(r,0,0), (121)

with 97B;(r, 0,0) < 0, 32,B:(r, 0,0) < 0 and
;B (r,0,0) 32 B (r,0,0) — [82B,(r,0,0)]* > 0. (122)

This Taylor expansion around the maximum /=0 and « = 0 implies that o, ~ o), ~
V€~ AABy, and that the integrals over [ in (I120) are of order

! 3,81 (1) L
dl ~ /eByRa |1 AAB 23
/ VB — Bi(1))/By — AAB VeBoRa |In (o + € )] (123)

for small «. Thus, we find

(3.B1).w ~ BiAdln ( > : (124)

BoAd

This is only an estimate. The real value and sign of (9,B;). w depends strongly on the
particular orbit under consideration, determined by its . Before we proceed, we point out
that it is important not to confuse the o shown in figure 15, where a single orbit samples
several values of «, with the value of « that we assign to the orbit (for example, we can
assign to an orbit the value of o where it has its left bounce point). Going back to the
dependence of (d,B;)..w on the particular orbit, consider what happens as the bounce
points move from «, to «,. When a bounce point approaches «,, the part of the path
near the bounce, which we ignored in our estimate (I24), becomes dominant due to a
logarithmic divergence at the bounce point. As a result, (d,B;).w is the value of 9,B; at
the bounce point, which is of order «, 8(3&3 1(r,0,0) ~ «/EAAB?)/ o importantly, note that
the logarithmic divergence can only dominate when the bounce point is very close to o,
that is, close by exp(—R/(lyr.0.w — lrr.o.w)) < 1, and hence our estimate (124) is valid for
most orbits. The situation for a bounce point in ¢, is similar, but in this case the sign of
d, B, at the bounce point is the opposite to the one that we consider above, showing that
(04 B1):.w changes sign.

Using estimate (I24) in (117), we find the estimate (I11) for the width of the layer.
The estimate for the size of g; 11 w in (I12) is obtained from the estimate for the width

of the layer and the fact that the derivative of gl 1 w With respect to A4 must be such
that property (5.36) is satisfied. Note, however, that property (5.36) is not imposed on the
equation as a boundary condition. The boundary condition at A4 = 0 is

gy (r o, 0,0, =0. (125)
The phase-space flows along o and across J at large values of AA are the ones that
ensure that property (5.36) is satisfied. These phase-space flows, determined by (7.23)

and boundary conditions (I6) and (I7), are the boundary condition that we need to impose
for large A A to solve (I117).
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Right bounce point

By, -
Left bounce point

[

FIGURE 15. Path of integration of the integral in (I18) in the (/, &) plane (thin dark pink line),
and area of integration for the integral in (120) (shaded region). For large J, 4 must be close to
1/Byy, and hence it must have bounce points at a value of B close to Byy. In the figure, we sketch
the contour B = 1/1 =~ By, as a red line (we have assumed that there is only one maximum of
B). The lines «, and «;, are marked in blue and green, respectively.
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