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Abstract

We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical
systems defined on the closed unit interval. Our considerations are associated with chaos theory by
adding an additional assumption that an entropy of a function at a given point is infinite.
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1. Introduction and preliminaries

Many papers associated with autonomous and nonautonomous discrete dynamical
systems emphasise the close relationship between these systems and difference
equations of the form xn+1 = f (xn) or xn+1 = fn(xn) (see, for example, [1]). In this
way, dynamical systems with discrete time observations have numerous practical
applications in various fields, including economics, biology, information flow, or
physics [3, 10, 17]. One of the main issues considered in this context is stability.
Various concepts of this notion led to attempts at their standardisation, made in [10].
We will extend the concept presented there, combining it with an entropy of a
function at a point. The notion of topological entropy is often connected with chaos
theory and, in this context, there are relationships between the various definitions of
chaos and the fact that a function has positive entropy (see, for example, [8]). In
the classical approach, the topological aspects of discrete dynamical systems were
considered in the context of continuous functions. If we restrict our considerations
to continuous functions, of course, we limit the scope by eliminating, for example,
derivatives. Therefore, since the beginning of the twenty-first century, there have
appeared many papers showing that the classical topological considerations (for
example, topological entropy, Sharkovskiı̆’s theorem) may be extended to certain
discontinuous functions [12, 15]. We therefore consider some issues related to discon-
tinuous functions.
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Throughout this paper, I will stand for the closed unit interval, N the set of all
positive integers and N0 the set N ∪ {0}. We will only consider functions from I into
I, so from now on we will write f instead of f : I→ I. The symbol ρu will denote the
metric of uniform convergence. The cardinality (respectively, the interior in the space
I with the natural topology) of any set A ⊂ I will be denoted by #(A) (respectively,
int(A)). The restriction of f to P ⊂ I will be denoted by f � P. Moreover, if f (P) ⊂ P
then we will say that P is f -invariant.

In Theorem 2.6 we focus on the family of all Darboux functions f such that x0

is a fixed point of f (that is, f (x0) = x0). We will denote this family by D Fixx0 .
Obviously, a function f is a Darboux function if the image of any connected set by
f is a connected set. However, it is worth adding that a function f is a Darboux
function if and only if each point x ∈ I is a Darboux point of f [2]. A point
x0 ∈ I is a Darboux point of f if (lim infx→x+

0
f (x), lim supx→x+

0
f (x)) ⊂ R+( f , x0) and

(lim infx→x−0 f (x), lim supx→x−0
f (x)) ⊂ R−( f , x0), where R+( f , x0) (R−( f , x0)) is the set

of all points y such that for any ε > 0 there is a point x ∈ [x0, x0 + ε) (x ∈ (x0 − ε, x0])
such that f (x) = y.

A nonautonomous dynamical system (or a dynamical system for short) is a pair
(I, ( f1,∞)), where ( f1,∞) is any sequence of functions { fn}∞n=1. We will identify a
dynamical system (I, ( f1,∞)) with the sequence { fn}∞n=1 and denote it by ( f1,∞). A
dynamical system is called autonomous if fn = f for all n ∈ N and some function f
(such a system will be denoted by ( f )).

Let ε > 0, i0 ∈ N and V be a set of functions from I into itself. We shall say that this
set (i0, ε)-perturbs the dynamical system ( f ) to a dynamical system having property
P, if for any function ξ ∈ V we have ρu( f , ξ) < ε and the nonautonomous dynamical
system ( f1,∞) such that fi = f for i ∈ N \ {i0} and fi0 = ξ has the property P.

The symbol Fix( f1,∞) will stand for the set of all fixed points of ( f1,∞), that is,
x0 ∈ Fix( f1,∞) if fn(x0) = x0 for n ∈ N. By Fix( f ), we mean the set of all fixed points
of a function f . We denote the set of all continuity points of ( f1,∞) by C( f1,∞). That
is, x0 ∈ C( f1,∞) if and only if for any n ∈ N the function fn is continuous at x0. For
an autonomous dynamical system ( f ), we shorten the notation to C( f ). Similarly
to [4], for a dynamical system ( f1,∞) and n, i ∈ N, the symbol f i

n will stand for
fn+i−1 ◦ fn+i−2 ◦ · · · ◦ fn−1 ◦ fn. In order to keep the symmetry of notation, in the case
of an autonomous dynamical system (g) we will use the notation (g)i

1 instead of gi.
In Section 2 we will need the notion of an entropy of a function at a point,

considered in [9, 13]. Let f be a function, L be a family of pairwise disjoint
nonsingleton continuums in I and J ⊂ I be a connected set such that J ⊂ f (A) for any
A ∈ L. A pair B f = (L, J) is called an f -bundle. If A ⊂ J for all A ∈ L then such an
f -bundle will be called an f -bundle with dominating fibre.

Let ε > 0, n ∈ N, B f = (L, J) be an f -bundle and M ⊂
⋃
L. We say that M is

(B f , n, ε)-separated if for each x, y ∈ M, x , y, there is i ∈ {0, 1, . . . , n − 1} such that
f i(x), f i(y) ∈ J and | f i(x) − f i(y)| > ε. Define

maxsep[B f , n, ε] = max{#(M): M ⊂ I is a (B f , n, ε)-separated set}.
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An entropy of an f -bundle B f is the number given by the formula

h(B f ) = lim
ε→0

lim sup
n→∞

[1
n

log(maxsep[B f , n, ε])
]
.

Lemma 1.1 [13]. Let f be an arbitrary function and B f = (L, J) be an f -bundle
with dominating fibre. Then h(B f ) ≥ log(#(L)) whenever L is finite and h(B f ) = +∞

whenever L is infinite.

We shall say a sequence of f -bundles Bk
f = (Lk, Jk) converges to a point x0,

if for any ε > 0 there exists k0 ∈ N such that both
⋃
Lk ⊂ (x0 − ε, x0 + ε) and

( f (x0) − ε, f (x0) + ε) ∩ Jk , ∅ for any k ≥ k0. In this way, we obtain a multifunction
E f : I( R ∪ {+∞} by putting E f (x) = {lim supn→∞ h(Bn

f ) : Bn
f −→ x as n→∞}.

An entropy of a function f at x0 ∈ I [9] is the number e f (x0) = sup E f (x0).

2. Stable and almost stable points and perturbation

The notion of a stable point will be adopted in the version given in [10] and in a
natural way it will be extended to the concept of an almost stable point.

We say that x0 ∈ I is a stable point of a dynamical system ( f1,∞) if x0 ∈ Fix( f1,∞)
and for any ε > 0 there is δ > 0 such that for each i ∈ N and x ∈ I, if |x − x0| < δ then
| f i

1(x) − x0| < ε, and an almost stable point if for any ε > 0 there are δ > 0 and i0 ∈ N
such that for each i ≥ i0 and x ∈ I, if |x − x0| < δ then | f i

1(x) − x0| < ε.
By a stable (almost stable) point of a function f , we mean a stable (almost stable)

point of the autonomous dynamical system ( f ).
Before we get to more complex considerations, some basic properties and

relationships between these concepts will be given. (The simple proofs are omitted.)

Property 2.1.

(i) If x0 ∈ I is a stable point of a dynamical system ( f1,∞) then x0 is an almost stable
point of this system. The converse is not true in general.

(ii) If x0 ∈ I and x0 ∈ C( f1,∞) then x0 is a stable point of the dynamical system ( f1,∞)
if and only if x0 is its almost stable point.

(iii) If f is a function and x0 ∈ I is a stable point of the autonomous dynamical system
( f ), then x0 ∈ C( f ). The converse is not true.

(iv) There exist a dynamical system ( f1,∞) and x0 ∈ I such that x0 is a stable point of
( f1,∞) and x0 < C( f1,∞).

(v) If x0 ∈ I is a stable point of a dynamical system ( f1,∞) then x0 is a continuity
point of f1.

(vi) There exist a dynamical system ( f1,∞) and x0 ∈ I such that x0 is a stable point of
the function fn for any n ∈ N and it is not a stable point of ( f1,∞).

Property 2.2. If ( f1,∞) is a dynamical system, x0 ∈ Fix( f1,∞) and there exists a
nondegenerate interval P ⊂ I containing x0 such that f1 � P is a constant function
or there exists n0 ∈ N \ {1} such that P is f n0−1

1 -invariant and fn0 � P is a constant
function, then
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(a) x0 is an almost stable point of ( f1,∞), and
(b) if additionally x0 ∈ C( f1,∞) then x0 is a stable point of ( f1,∞).

It is obvious that we should focus our attention on dynamical systems whose terms
are not constant on any neighbourhood of x0.

Let f be a function and x0 ∈ [0, 1) (x0 ∈ (0, 1]). We shall say that f is nowhere
constant at x0 from the right (from the left) if for any ε > 0 there exists x1 ∈ (x0, x0 + ε)
(x1 ∈ (x0 − ε, x0)) such that f (x1) , f (x0). Let x0 ∈ (0, 1). We shall say that f is
nowhere constant at x0 if it is simultaneously nowhere constant at x0 from the right
and from the left.

For simplicity of notation, we adopt the convention that for x0 ∈ {0, 1} writing that
f is nowhere constant at x0 means that f is nowhere constant at 0 from the right and at
1 from the left.

Lemma 2.3. If f is nowhere constant at x0 ∈ I from the left (from the right) and there
is a nondegenerate interval P ⊂ I such that x0 ∈ P and f � P is a Darboux function,
then for any x1 ∈ P such that x1 < x0 (x1 > x0) the image f ([x1, x0]) ( f ([x0, x1])) is a
nondegenerate interval.

Lemma 2.4. Let n0 ∈ N, f1, f2, . . . , fn0 be functions and x0 ∈ I be a fixed point of
each function fn for n ∈ {1, . . . , n0}. If there is a nondegenerate interval P ⊂ I such
that x0 ∈ int(P) and for any n ≤ n0 the function fn is nowhere constant at x0, P is
fn-invariant and fn � P is a Darboux function, then f n0

1 is nowhere constant at x0.

Proof. Assume that x0 ∈ (0, 1). If x0 ∈ {0, 1} the proof proceeds in the same way. Let
ε > 0. Without loss of generality we can assume that ε < min{x0 − inf P; sup P − x0}.
If n0 = 1 the lemma is obvious, so assume that n0 > 1. It is sufficient to show that

there are x1 ∈ (x0 − ε, x0), x2 ∈ (x0, x0 + ε) such that f n0
1 (x1) , x0, f n0

1 (x2) , x0. (2.1)

Consider first the function f1. There are y1
1 ∈ (x0 − ε, x0), y1

2 ∈ (x0, x0 + ε) such
that f1(y1

1) , x0 and f1(y1
2) , x0. By Lemma 2.3, f1([y1

1, x0]) and f1([x0, y1
2]) are

nondegenerate intervals containing x0.
Next, there are y2

1 ∈ f1([y1
1, x0]) ∩ (x0 − ε, x0 + ε), y2

2 ∈ f1([x0, y1
2]) ∩ (x0 − ε, x0 + ε)

such that f2(y2
1) , x0 and f2(y2

2) , x0. So we can find y1,2
1 ∈ [y1

1, x0], y1,2
2 ∈ [x0, y1

2]
such that f1(y1,2

1 ) = y2
1, f1(y1,2

2 ) = y2
2, f2( f1(y1,2

1 )) , x0 and f2( f1(y1,2
2 )) , x0. Obviously,

y1,2
1 ∈ (x0 − ε, x0) and y1,2

2 ∈ (x0, x0 + ε).
The sets f2( f1([y1,2

1 , x0])) and f2( f1([x0, y1,2
2 ])) are nondegenerate intervals

containing x0 (see Lemma 2.3). So there are y1,2,3
1 ∈ (x0 − ε, x0) and y1,2,3

2 ∈ (x0, x0 + ε)
such that f3( f2( f1(y1,2,3

1 ))) , x0 and f3( f2( f1(y1,2,3
2 ))) , x0. We continue in this

fashion obtaining points y1,2,...,n0
1 ∈ (x0 − ε, x0) and y1,2,...,n0

2 ∈ (x0, x0 + ε) such that
f n0
1 (y1,2,...,n0

1 ) , x0 and f n0−1
1 (y1,2,...,n0

2 ) , x0. Putting x1 = y1,2,...,n0
1 and x2 = y1,2,...,n0

2 yields
(2.1), which means that f n0

1 is nowhere constant at x0. �
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Lemma 2.5. Let ( f1,∞) be a dynamical system and x0 ∈ Fix( f1,∞). If there are n0 ∈ N and
a nondegenerate interval P ⊂ I such that x0 ∈ int(P), fn0 is not continuous at x0 from
both sides (with the obvious qualification if x0 ∈ {0, 1}) and for any n < n0 the function
fn is nowhere constant at x0, P is fn-invariant and fn � P is a Darboux function, then
x0 is not a stable point of ( f1,∞).

Proof. If n0 = 1 then Proposition 2.1(iv) implies that x0 is not a stable point of ( f1,∞).
Assume that n0 > 1. Then one can find sequences (xk)k∈N, (yk)k∈N ⊂ I such that

xk ≤ x0 ≤ yk for any k ∈ N, limk→∞ xk = limk→∞ yk = x0 and x0 is not a limit of both
sequences { fn0 (xk)}k∈N and { fn0 (yk)}k∈N. There is no loss of generality in assuming
that limk→∞ fn0 (xk) = α and limk→∞ fn0 (yk) = β. Put ε = min{ 12 |x0 − α|,

1
2 |y0 − β|} and

suppose that x0 is a stable point of ( f1,∞). Thus there is δ > 0 such that

if |x − x0| < δ then |x0 − f n0
1 (x)| < ε. (2.2)

Let k0 ∈ N be such that |xk0 − x0| < δ, xk0 ∈ P, fn0 (xk) < (x0 − ε, x0 + ε) and
fn0 (yk) < (x0 − ε, x0 + ε) for k > k0. By Lemmas 2.4 and 2.3, f n0−1

1 ([xk0 , x0]) is a
nondegenerate interval containing x0. Let k1 > k0 be such that xk1 ∈ f n0−1

1 ([xk0 , x0])
or yk1 ∈ f n0−1

1 ([xk0 , x0]). Without any restriction of generality, we can assume that
yk1 ∈ f n0−1

1 ([xk0 , x0]), so there exists t0 ∈ [xk0 , x0] such that f n0−1
1 (t0) = yk1 . Therefore

|t0 − x0| < δ and f n0
1 (t0) < (x0 − ε, x0 + ε), which contradicts (2.2). �

In the next theorem, we show that under some natural assumptions we can perturb
an autonomous dynamical system ( f ) so that a given point will be an almost stable
point of a new system and will not be its stable point.

Theorem 2.6. Let x0 ∈ I and f ∈ D Fixx0 be such that x0 is its stable point and
f ′(x0) ∈ (0, 1). (If x0 ∈ {0, 1}, this is a one-sided derivative.) Then for any ε > 0 there
is an open (in the space (D Fixx0 , ρu)) set Vε ⊂ D Fixx0 such that for any i ∈ N the
dynamical system ( f ) is (i, ε)-perturbed by Vε to a dynamical system for which x0 is
an almost stable point and is not its stable point.

Proof. Let ε > 0. Assume that x0 ∈ (0, 1). If x0 ∈ {0, 1} the proof is analogous.
According to Proposition 2.1(iii), there is δ0 ∈ (0,min{ε/3, x0, 1 − x0}) such that

f ([x0 − δ0, x0 + δ0]) ⊂ (x0 − ε/3, x0 + ε/3). Since f ′(x0) ∈ (0,1), one can findσ ∈ (0,1)
and α ∈ (0, δ0) such that, for any x ∈ (x0 − α, x0 + α) \ {x0},

0 <
f (x) − f (x0)

x − x0
< σ. (2.3)

Thus, if x ∈ (x0, x0 + α) then f (x) ∈ (x0, x). From this and the fact that f (x0) = x0,

( f )n
1(x) ∈ (x0, ( f )n−1

1 (x)) ⊂ (x0, x) for x ∈ (x0, x0 + α) and n ∈ N. (2.4)

In the same manner,

( f )n
1(x) ∈ (( f )n−1

1 (x), x0) ⊂ (x, x0) for x ∈ (x0 − α, x0) and n ∈ N. (2.5)
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Conditions (2.3), (2.4) and (2.5) yield

|( f )n
1(x) − x0| <

3
4
ασn for x ∈

(
x0 −

α

4
, x0 +

3
4
α
]

and n ∈ N. (2.6)

For n = 1 the above inequality is obvious. If x ∈ (x0 −
1
4α, x0 + 3

4α] and n ∈ N \ {1}
then |( f )n

1(x) − x0| = | f (( f )n−1
1 (x)) − x0| < σ|( f )n−1

1 (x) − x0| <
3
4ασ

n.
Let {an}n∈N be a strictly decreasing sequence of positive numbers such that a1 ≤

1
2α

and limn→∞ an = 0. Put bn = x0 − an, cn = x0 + an, dn = 1
2 (c2n+1 + c2n) and rn =

1
2 (b2n+1 + b2n) for n ∈ N. Moreover, let g0(x) = f (x) if x ∈ I \ (x0 − α, x0 + α) ∪ {x0},
g0(x) = x0 if x ∈

⋃∞
n=1((b2n−1, b2n) ∪ (c2n, c2n−1)), g0(x) = x0 + 1

2α if x = dn or x = rn

for n ∈ N and let g0 be linear otherwise.
It is easy to see that each point of I is a Darboux point of g0 and x0 ∈ Fix(g0), so

g0 ∈ D Fixx0 . Moreover, ρu(g0, f ) ≤ 2
3ε. So, if Vε = {φ ∈ D Fixx0 : ρu(g0, φ) < 1

4α} and
ξ ∈ Vε, then ρu( f , ξ) ≤ ρu( f , g0) + ρu(g0, ξ) < ε.

Let ξ ∈ Vε. Fix i0 ∈ N and put β = 1
8α. Suppose that x0 is a stable point of ( f1,∞),

where fn = f for n ∈ N \ {i0} and fi0 = ξ. Then there exists γ > 0 such that for any
k ∈ N and x ∈ (x0 − γ, x0 + γ),

f k
1 (x) ∈ (x0 − β, x0 + β). (2.7)

If i0 = 1, consider n0 ∈ N such that dn0 ∈ (x0 − γ, x0 + γ). Thus f1(dn0 ) = ξ(dn0 ) ∈
(x0 + 1

4α, x0 + 3
4α), contrary to (2.7).

If i0 > 1, let x1 ∈ (x0, x0 + min{γ, α}). Obviously x0 ∈ Fix( f i0−1
1 ) and, by (2.4),

f i0−1
1 (x1) ∈ (x0, x1). Let n1 ∈ N be such that dn1 ∈ (x0, f i0−1

1 (x1)). There is x∗ ∈ (x0, x1)
such that f i0−1

1 (x∗) = dn1 . Then f i0
1 (x∗) ∈ (x0 + 1

4α, x0 + 3
4α), contrary to (2.7).

These contradictions show that x0 is not a stable point of ( f1,∞).
Now we will show that x0 is an almost stable point of ( f1,∞). Let β1 > 0. There is

δ0 > 0 such that |( f )n
1(x) − x0| < β1 for any n ∈ N and |x − x0| < δ0. Put δ∗ = min{δ0,

1
2α}

and consider the following two possibilities.
Suppose i0 = 1. Let n0 > 2 be such that 3

4ασ
n0−2 < β1. Let n > n0 and |x − x0| < δ∗.

If x ∈ (x0 − δ∗, x0 + δ∗) then f1(x) = ξ(x) ∈ (x0 −
1
4α, x0 + 3

4α). From this and (2.6) we
obtain | f n

1 (x) − x0| < β1.
Suppose i0 > 1. Let n0 > i0 + 1 be such that 3

4ασ
n0−i0−1 < β1. Let n > n0 and

|x − x0| < δ∗. If x ∈ (x0 − δ∗, x0] then, by (2.5), f i0−1
1 (x) = ( f )i0−1

1 (x) ∈ (x0 − δ∗, x0].
If x ∈ (x0, x0 + δ∗) then, by (2.4), f i0−1

1 (x) = ( f )i0−1
1 (x) ∈ (x0, x0 + δ∗). Therefore, if

x ∈ (x0 − δ∗, x0 + δ∗] then f i0−1
1 (x) ∈ (x0 − δ∗, x0 + δ∗). Thus f i0

1 (x) ∈ (x0 −
1
4α, x0 + 3

4α).
From this and (2.6) we conclude that | f n

1 (x) − x0| = | f
n−i0
i0+1 ( f i0

1 (x)) − x0| < β1.
In both cases, we see that x0 is an almost stable point of ( f1,∞). �

In the above theorem, the set D Fixx0 can be replaced by the family of all Darboux
Baire-one functions such that x0 is their fixed point if we start with a Darboux Baire-
one function f . Also, if we assume that the function f is almost continuous in the sense
of Stallings (this kind of function was introduced in [14]) then, using Lemma 2.3 and
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Theorems 2.2 and 2.4 from [11], we can prove that the function g0 constructed in the
above proof is almost continuous in the sense of Stallings. Therefore, we can replace
D Fixx0 by the set of all Stallings almost continuous functions such that x0 is their
fixed point. Moreover, if we assume that f is an approximately continuous function
(as defined in [16]) and, in addition, require that the sequence {an}n∈N considered in the
above proof is such that x0 is a density point of the set

⋃∞
n=1((b2n−1, b2n) ∪ (c2n, c2n−1))

then we obtain immediately that g0 is an approximately continuous function. Thus
in the above theorem the set D Fixx0 can be replaced by the set of all approximately
continuous functions such that x0 is their fixed point.

3. Odd points and approximation

The analysis of different examples of functions leads us to the interesting
observation that entropy of a function may be focused at one point. The problematic
question here is the meaning of the expression ‘entropy is focused around a
point’ [6, 13, 18]. Although positive entropy at a given point can be understood as
‘unpredictable’ behaviour of the function around this point, it turns out that there are
situations where the function at a given point is stable, but an entropy of the function
at this point is equal to infinity. This leads to distinguishing so-called odd points.

We shall say that x0 ∈ I is an odd point of a dynamical system ( f1,∞) if x0 is an
almost stable point of the dynamical system ( f1,∞) and for any n ∈ N an entropy of the
function fn at the point x0 is infinite. By an odd point of a function f , we mean an odd
point of the autonomous dynamical system ( f ).

Let Oddc(x0) denote a family of all continuous at x0 functions f such that x0 is an
odd point of f . Clearly, Oddc(x0) ⊂ St(x0), where St(x0) is the family of all functions
f such that x0 is a stable point of f . We can prove even more.

Theorem 3.1. Let x0 ∈ [0, 1]. The set Oddc(x0) is a dense set with empty interior in the
space (St(x0), ρu).

Proof. Assume that x0 ∈ (0, 1). Similar arguments apply to the case x0 ∈ {0, 1}.
We first prove that Oddc(x0) is dense in the space (St(x0), ρu). Let f ∈ St(x0)

and ε > 0. By Proposition 2.1(iii), there is δ ∈ (0,min{ 13ε, x0, 1 − x0}) such that
f ([x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε). Put bn
i = x0 + δ(2n + 1 + i)/22n(2n + 1) for

n ∈ N and i ∈ {0, . . . , 2n + 1}.
Define the function g : I→ I by g(x) = f (x) for x ∈ I \ (x0 − δ, x0 + δ), g(x) =

x for x ∈ (I ∩ [x0 −
2
3δ, x0 + 1

2δ]) \
⋃∞

n=1[x0 + δ/22n, x0 + δ/22n−1], g(x) = x0 + δ/22n

for x ∈ {bn
i : n ∈ N and i = 0, 2, . . . , 2n}, g(x) = x0 + δ/22n−1 for x ∈ {bn

i : n ∈ N and
i = 1, 3, . . . , 2n + 1} and g linear otherwise. It is easy to see that

g([bn
0, b

n
2n+1]) = [bn

0, b
n
2n+1] for n ∈ N, (3.1)

and
g([bn

i , b
n
i+1]) = [bn

0, b
n
2n+1] for n ∈ N and i ∈ {0, 2, . . . , 2n}. (3.2)
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We will show that ρu( f , g) < ε and g ∈ Oddc(x0). Obviously, x0 ∈ Fix(g) and g is
continuous at x0. Let α > 0. There is n0 ∈ N such that δ/22n−1 < α for n ≥ n0. Put
β0 = min{δ/22n0−1, α}. We claim that

|x0 − (g)i
1(x)| < α for i ∈ N whenever |x0 − x| < β0.

Let x ∈ (x0 − β0, x0 + β0) and i ∈ N. If there is n > n0 such that x ∈ [bn
0, b

n
2n+1] then

condition (3.1) gives (g)i
1(x) ∈ [bn

0, b
n
2n+1] ⊂ (x0 − α, x0 + α). If for any n > n0 we have

x < [bn
0, b

n
2n+1], then g(x) = x and, in consequence, (g)i

1(x) = x ∈ (x0 − α, x0 + α).
Observe that eg(x0) = ∞. Indeed, put Fn = {[bn

2i, b
n
2i+1] : i = 0, 1, . . . , 2n−1} for

n ∈ N. By condition (3.2), it is easy to show that the (Fn, [bn
0, b

n
2n+1]) are g-bundles

with dominating fibre. Moreover, we check at once that the sequence of bundles
{(Fn, [bn

0, b
n
2n+1])}n∈N converges to x0. Since #(Fn) = 2n−1 + 1 for n ∈ N, Lemma 1.1

implies that∞ ∈ Eg(x0). Thus an entropy of g at x0 is infinite.
Finally, note that ρu( f , g) < ε. Indeed, if x ∈ I \ (x0 − δ, x0 + δ) then g(x) = f (x), so

|g(x) − f (x)| = 0. If x ∈ [x0 −
2
3δ, x0 + 1

2δ] then g(x) ∈ [x0 −
2
3δ, x0 + 1

2δ]. Moreover,
for x ∈ (x0 − δ, x0 −

2
3δ) ∪ (x0 + 1

2δ, x0 + δ) we have g(x) ∈ (x0 −
1
3ε, x0 + 1

3ε). Now,
we see at once that |g(x) − f (x)| < 2

3ε for x ∈ (x0 − δ, x0 + δ). Finally, we obtain
ρu( f , g) = supx∈I |g(x) − f (x)| < ε.

Since ε is arbitrary, these considerations show that Oddc(x0) is dense in the space
(St(x0), ρu).

We will now show that Oddc(x0) has empty interior in the space (St(x0), ρu). For this
purpose it is sufficient to show that for any f ∈ St(x0) and ε > 0 there exists g∗ ∈ St(x0)
such that g∗ < Oddc(x0) and ρu( f , g∗) < ε.

Let us fix f ∈ St(x0) and ε > 0. One can find δ ∈ (0,min{ 13ε, x0, 1 − x0}) such that
f ([x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε). Put g∗(x) = f (x) if x ∈ I \ (x0 − δ, x0 + δ) and
g∗(x) = x0 if [x0 −

1
2δ, x0 + 1

2δ] and let g∗ be linear otherwise. Obviously, ρ(g∗, f ) < ε.
What is more, if |x0 − x| < 1

2δ then (g∗)i
1(x) = x0 for i ∈ N, which gives that g∗ ∈ St(x0).

Since g∗ is a constant function on the set [x0 −
1
2δ, x0 + 1

2δ], we have eg∗(x0) = 0, which
means that g∗ < Oddc(x0). �

We now focus our attention on an approximation of a function by (nonautonomous)
dynamical systems. The first theorem is related to an approximation by a dynamical
system consisting of discontinuous functions and the second is connected with a
dynamical system consisting of functions continuous at some point. For other kinds of
approximation by functions with an entropy at a special point, see [5, 7, 13].

Theorem 3.2. Let x0 ∈ I and f ∈ St(x0). For any ε > 0 there exists a dynamical system
( f ε1,∞) such that:

(W1) f εn is not continuous at x0 from both sides (so also is nowhere constant at x0)
for any n ∈ N (with the obvious one-sided interpretation if x0 ∈ {0, 1}),

(W2) for any n ∈ N the point x0 is not an almost stable point of each function f εn ,
(W3) x0 is not a stable point of ( f ε1,∞),
(W4) x0 is an odd point of ( f ε1,∞), so it is also an almost stable point of this system,
(W5) ρu( f , f εn ) < ε for any n ∈ N.

https://doi.org/10.1017/S0004972717000272 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000272


[9] Stable, almost stable and odd points of dynamical systems 253

Proof. Let f ∈ St(x0) and ε > 0. We will construct the dynamical system having the
above properties for x0 ∈ (0, 1). The proofs in other cases proceed in a similar way.

We may assume that ε < min{x0, 1 − x0}. Proposition 2.1(iii) implies that there
exists δ < min{ 13ε, x0, 1 − x0} such that f ([x0 − δ, x0 + δ]) ⊂ (x0 −

1
3ε, x0 + 1

3ε). Put
ak = δ/2k, bk = x0 + ak and ck = x0 − ak for k ∈ N.

Now fix n ∈ N and put fn(x) = f (x) for x ∈ I \ (x0 − δ, x0 + δ), fn(x) = x0 for
x ∈ {b2k−1, c2k−1 : k ∈ N} ∪ {x0}, fn(x) = bn for x ∈ {b2k : k ∈ N} and fn(x) = cn for
x ∈ {c2k : k ∈ N} and let fn be linear otherwise.

We will show that the dynamical system ( f1,∞), where fn is defined by the above
formula, has properties (W1)–(W5). Indeed, conditions (W1) and (W5) are obvious.
Condition (W1) and Lemma 2.5 yield (W3).

Let n ∈ N. For any σ > 0, ( fn)k
1([x0 −

1
2δ, x0 + 1

2δ] ∩ (x0 − σ, x0 + σ)) = [cn, bn]. Fix
ε0 = an+1. For any β > 0 and any k ∈ N, we can find x1 ∈ (x0 − β, x0 + β) such that
( fn)k

1(x1) = bn, so |x0 − ( fn)k
1(x1)| = an > ε0. This means that x0 is not an almost stable

point of the function fn, which gives (W2).
To prove (W4) we show first that x0 is an almost stable point of ( f1,∞). Let ε1 > 0.

There is n0 ∈ N such that an <
1
2ε1 for any n ≥ n0. Moreover, f n

1 ([x0 −
1
2δ, x0 + 1

2δ]) =

[cn, bn]. Thus for any n ≥ n0, if |x − x0| <
1
2δ then | f n

1 (x) − x0| < an < ε1. Since
x0 ∈ Fix( f1,∞), x0 is an almost stable point of ( f1,∞).

Now we will show that e fn (x0) =∞ for each n ∈ N. Fix n ∈ N. One can find k0 ∈ N
such that b2k < bn for any k ≥ k0. Put Fk = {[b2(k+k0+i)+1, b2(k+k0+i)] : i ∈ N} for each
k ∈ N. For any k ∈ N the pair (Fk, [x0, bn]) is an fn-bundle with dominating fibre.
Moreover, the sequence of bundles (Fk, [x0, bn]) converges to the point x0. Since for
any k ∈ N the family Fk is infinite, Lemma 1.1 implies that∞ ∈ E fn (x0), so an entropy
of fn at x0 is equal to∞.

Finally, x0 is an odd point of ( f1,∞). �

Theorem 3.3. Let x0 ∈ I and f ∈ St(x0). For any ε > 0 there exists a dynamical system
( f ε1,∞) such that:

(C1) f εn is continuous at x0 and nowhere constant at x0 for any n ∈ N,
(C2) for any n ∈ N the point x0 is not an almost stable point of the function f εn ,
(C3) x0 is a stable point of ( f ε1,∞),
(C4) x0 is an odd point of ( f ε1,∞),
(C5) ρu( f , f εn ) < ε for any n ∈ N.

Proof. Assume that x0 ∈ (0, 1). Similar arguments apply to the case x0 = 0 or x0 = 1.
Let f ∈ St(x0) and ε ∈ (0,min{x0, 1 − x0}). Proposition 2.1(iii) shows that there is

δ ∈ (0,min{ 13ε, x0, 1 − x0}) such that f ([x0 − δ, x0 + δ]) ⊂ (x0 −
1
3ε, x0 + 1

3ε).
Consider the dynamical system ( f1,∞), where for any n ∈ N, the function fn is

defined in the following way: fn(x) = f (x) if x ∈ I \ (x0 − δ, x0 + δ) ∪ {x0}; fn(x) =

x0 + δ/2k−1 if x = x0 + δ/2k or x = x0 − δ/2k and k > n and k ∈ N; fn(x) = x0 + δ/2k if
x = x0 + δ/2k+1 + s · δ/(2k+1 − 1)2k+2 or x = x0 − δ/2k+1 − s · δ/(2k+1 − 1)2k+2 and k > n
and k ∈ N and s = 2, 4, . . . , 2k+1 − 2; fn(x) = x0 if x = x0 + 3δ/2k+2 or x = x0 − 3δ/2k+2

and k > n and k ∈ N; fn(x) = x0 + δ/2k if x = x0 + δ/2k+1 + s · δ/(2k+1 − 1)2k+2 or
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x = x0 − δ/2k+1 − s · δ/(2k+1 − 1)2k+2 and k > n and k ∈ N and s = 1, 3, . . . , 2k+1 − 3;
fn(x) = x0 + δ/2n if x = x0 + 2

3δ or x = x0 −
2
3δ and fn is linear otherwise.

We will show that for this dynamical system conditions (C1)–(C5) are fulfilled.
Conditions (C1) and (C5) are obvious.

Fix n ∈ N. We see at once that fn � [x0 + δ/2n+1, x0 + 2δ/3] is a constant function
equal to x0 + δ/2n.

Moreover, for β < δ/2n and any σ > 0 there exist x1 ∈ (x0, x0 + σ) and i0 ∈ N
such that ( fn)i

1(x1) < (x0 − β, x0 + β) for each i > i0. Indeed, fix β < δ/2n and σ > 0.
There is k0 ∈ N such that x0 + δ/2k0 ∈ (x0, x0 + σ) and k0 > n + 1. Putting x1 =

x0 + δ/2k0 and i0 = k0 − (n + 1), we obtain fn(x1) = x0 + δ/2k0−1. Thus ( fn)2
1(x1) =

x0 + δ/2k0−2, ( fn)3
1(x1) = x0 + δ/2k0−3 and in general ( fn)s

1(x1) = x0 + δ/2k0−s for s ∈
{1, . . . , k0 − n + 1}. Hence ( fn)i0+1

1 (x1) = fn(x0 + δ/2k0−i0 ) = x0 + δ/2k0−i0−1 = x0 + δ/2n.
Obviously, x0 + δ/2n ∈ (x0 + δ/2n+1, x0 + 2δ/3). Thus for any i > i0 we have ( fn)i

1(x1) =

( fn)i0+2
i−i0−1(( fn)i0+1

1 (x1)) = x0 + δ/2n, so |( fn)i
1(x1) − x0| > β, which shows that x0 is not an

almost stable point of the function fn, and (C2) is proved.
To show (C3), note first that x0 ∈ Fix( f1,∞). Moreover, for each n ∈ N we have

fn([x0 − δ/2, x0 + δ/2]) = [x0, x0 + δ/2n]. Thus

f k
1 ([x0 − δ/2, x0 + δ/2]) ⊂ [x0, x0 + δ/2k] for k ∈ N. (3.3)

Let β > 0. One can find k0 ∈ N such that δ/2k0 < δ and k0 > 1. Then if |x0 − x| < δ/2,
by (3.3), we get f k

1 (x) ∈ [x0, x0 + δ/2k0 ] for k ≥ k0. Thus |x0 − f k
1 (x)| < β.

For each k ∈ {1, . . . , k0 − 1}, we can find σk > 0 such that if |x0 − x| < σk then
|x0 − f k

1 (x)| < β. Putting σ0 = min{ 12δ, σ1, . . . , σk0−1}, we see that for any k ∈ N if
|x0 − x| < σ0 then |x0 − f k

1 (x)| < β. Thus x0 is a stable point of ( f1,∞).
By Proposition 2.1(i) and (C3), x0 is an almost stable point of ( f1,∞). We only need

to show that for any n ∈ N, an entropy of fn at the point x0 is equal to∞.
For this, let n ∈ N. For any k ∈ N and s ∈ {0, 2, . . . , 2n+k+1 − 2}, we consider the set

J s
k = [x0 +δ/2n+k+1 + sδ/(2n+k+1−1)2n+k+2, x0 +δ/2n+k+1 + (s + 1)δ/(2n+k+1−1)2n+k+2].

For k ∈ N, the pair Bk
fn

= (Fk, [x0, δ/2n+k]), where Fk = {J s
k : s = 0, 2, . . . , 2n+k+1 − 2},

is an fn-bundle.
Moreover, J2n+k+1−2

k = [3δ/2n+k+2 − δ/(2n+k+1 − 1)2n+k+2, 3δ/2n+k+2] ⊂ [x0, δ/2n+k],
so J s

k ⊂ [x0, δ/2n+k] for any k ∈ N and s = 0, 2, . . . , 2n+k+1 − 2. What is more, fn(J s
k) =

[x0, δ/2n+k] for k ∈ N and s = 0, 2, . . . , 2n+k+1 − 2. So, for each k ∈ N, the pair Bk
fn

is an
fn-bundle with dominating fibre.

Since the sequence (Bk
fn

)k∈N is convergent to x0 and for each k ∈ N the cardinality
of the family Fk is equal to 2n+k, Lemma 1.1 gives h(Bk

fn
) ≥ n + k for any k ∈ N. Thus

lim supk→∞ h(Bk
fn

) =∞ and, in consequence, e fn (x0) =∞. This proves (C4). �
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