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SUMMARY

Pertussis epidemics have displayed substantial spatial heterogeneity in countries with high
socioeconomic conditions and high vaccine coverage. This study aims to investigate the
relationship between pertussis risk and socio-environmental factors on the spatio-temporal
variation underlying pertussis infection. We obtained daily case numbers of pertussis notifications
from Queensland Health, Australia by postal area, for the period January 2006 to December
2012. A Bayesian spatio-temporal model was used to quantify the relationship between monthly
pertussis incidence and socio-environmental factors. The socio-environmental factors included
monthly mean minimum temperature (MIT), monthly mean vapour pressure (VAP), Queensland
school calendar pattern (SCP), and socioeconomic index for area (SEIFA). An increase in
pertussis incidence was observed from 2006 to 2010 and a slight decrease from 2011 to 2012.
Spatial analyses showed pertussis incidence across Queensland postal area to be low and more
spatially homogeneous during 2006–2008; incidence was higher and more spatially heterogeneous
after 2009. The results also showed that the average decrease in monthly pertussis incidence was 3·1%
[95% credible interval (CrI) 1·3–4·8] for each 1 °C increase in monthly MIT, while average increase
in monthly pertussis incidences were 6·2% (95% CrI 0·4–12·4) and 2% (95% CrI 1–3) for SCP
periods and for each 10-unit increase in SEIFA, respectively. This study demonstrated that pertussis
transmission is significantly associated with MIT, SEIFA, and SCP. Mapping derived from this work
highlights the potential for future investigation and areas for focusing future control strategies.
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INTRODUCTION

Pertussis (whooping cough) is a highly contagious
respiratory disease caused by the bacterium

Bordetella pertussis and constitutes a global public
health problem [1]. Pertussis is endemic throughout
the world [1–3] and the WHO estimates that 50
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million cases and 300 000 deaths occur annually [4].
Although vaccination reduces infection risk, pertussis
remains a key cause of morbidity and mortality, with
case-fatality rates in developing countries reported to
be up to 4% [4]. In recent years, an increase in number
of pertussis cases in adolescents and adults has been
reported globally [1, 5, 6]. Australia has had a pertus-
sis vaccination programme in place for decades, with
high national coverage. Despite this, pertussis is still
common in Australia, with an average of 17 676
cases annually over the past 10 years. Furthermore,
significant increases in pertussis incidence have been
observed over the last decade, particularly in adoles-
cents and the elderly [2, 5, 7, 8], culminating in a
large, nationwide outbreak that commenced in 2009
[9]. Previous research indicates that waning immunity,
transition from whole-cell pertussis vaccines to acellu-
lar pertussis vaccines, increasing use of a more sensi-
tive diagnostic test in PCR, and evolution of B.
pertussis might be the causes for increase in the out-
breaks of pertussis in Australia [10–13].

Previous studies have mainly focused on the effects
of vaccination, herd immunity, pertussis toxin, and
evolution of the bacterium on the epidemiology of per-
tussis [14–17]. Pertussis epidemics have previously been
associated with population structure, social and bio-
logical factors and herd immunity [8]. However, epi-
demics have shown substantial heterogeneity between
countries with similar socioeconomic conditions and
vaccination programmes [8]. Some studies have sug-
gested that while current vaccination strategies may
decrease clinical pertussis cases, they are not able to
fully control the circulation of pertussis [6, 8].

The epidemiology of pertussis is complex and
remains to be fully elucidated. Understanding the
social and environmental drivers of pertussis out-
breaks is integral to predicting future outbreaks and
developing effective intervention measures (including
vaccination strategies). Typically, pertussis is spread
via airborne transmission; infection occurs when sus-
ceptible individuals are exposed to aerosolized dro-
plets from pertussis-infected patients [3]. Pertussis
epidemics have previously been reported to exhibit
seasonality [16, 18, 19]. The effectiveness of airborne
transmission is influenced by droplet size and environ-
mental conditions, such as air flows, temperature and
evaporation [20, 21]. Understanding the social and
environmental predictors of pertussis outbreaks could
be useful for predicting future outbreaks and for
developing and implementing effective intervention
measures to minimize the impact of these outbreaks.

Current understanding of the role of socio-
environmental factors on pertussis transmission is lim-
ited. This study aims to investigate the relationship
between pertussis risk and socio-environmental fac-
tors on the spatio-temporal variation underlying per-
tussis in Queensland, Australia.

MATERIALS AND METHODS

Study site and data collection

The state of Queensland is located in the northeast of
Australia. It is Australia’s second largest state by land
mass, spanning ∼1·9 million km2. Climate conditions
vary markedly across the state. For example, low min-
imum temperatures are typically observed in the inland
southeast; dry and hot weather conditions occurs in the
inland west; a hot humid summer presents in the trop-
ical far north of Queensland; and warm temperate con-
ditions occur on the coastal regions [22].

Australia provides free pertussis vaccines to chil-
dren aged 0–15 years and to pregnant women.
People receive a pertussis immunization through visit-
ing their local doctor or immunization provider. Most
of these immunization encounters occur without pay-
ment of a consultation fee [23].

Data on the number of confirmed pertussis cases for
each postal area between 1 January 2006 and 31
December 2012 were provided by Queensland
Health (the Queensland State government health
authority). Postal areas are approximations of
Australia’s postcodes, produced by the Australian
Bureau of Statistics (ABS). Postal areas are widely
used by researchers in Australia because they are read-
ily available in many datasets [24–26]. Data on popu-
lation size and socioeconomic index for area (SEIFA)
for each postal area were obtained from the ABS [27].
The population size at each postal area was based on
the 2011 Census data in Australia [28]. A continuous
value of SEIFA is used to describe the average socio-
economic characteristics at different locations, includ-
ing education, occupation and wealth [29]. Data on
daily minimum temperature by month (MIT; °C)
and monthly daily vapour pressure (VAP) (hPa) for
each postcode area were obtained from the National
Computational Infrastructure between 1 January
2006 and 31 December 2012 [30].

Descriptive analysis

To better understand pertussis epidemics in
Queensland, this study provided the statistical
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summary of the pertussis data and the temporal pat-
terns of monthly pertussis incidences by the three
age groups (0–14, 15–64, 565 years).

Statistical modelling

A Bayesian spatio-temporal model was developed to
examine the effects of socio-environmental factors
on the pertussis incidence and the spatio-temporal
variability of pertussis epidemics. We denote yij as
the observed monthly pertussis cases at location i
and month j (i = 1, . . . , 424; j = 1, . . . , 84) between
January 2006 and December 2012. yij was assumed
to have a Poisson distribution:

yij �Poisson ρijEi

( )
,

where ρij represents the relative risk of the monthly
pertussis counts at location i and time j. Ei is the
age-adjusted expected number of pertussis cases at
location i. Ei was calculated as:

Ei =
∑g=3

g=1

PigRqg; Rqg = Oqg

Pqg
.

where Pqg and Pig represent the age-specific popula-
tions in the whole of Queensland and at postal area
i for the g age group, respectively; Oqg and Rqg are
the observed numbers of pertussis cases and the
mean incidence rate of pertussis for the g age group
in the whole of Queensland during 2006–2012,
respectively. Age-adjusted expected numbers of per-
tussis cases were used in the method because the dif-
ferent age structure in different postal areas might
affect the likelihood of pertussis infection [31].

The log relative risk for the spatio-temporal model
was thus given by:

log(ρij) = β0 + β1 ×MIT+ β2 × VAP+ β3

× SEIFA+ β4 × SCP+ tj + ui + vi

+ φij, (1)
Here β0 is the intercept; β1, β2, β3 and β4 are the coeffi-
cients for MIT, VAP, SEIFA, and Queensland school
calendar pattern (SCP), respectively; tj captures the
time trend over the study period; ui is spatially struc-
tured heterogeneity to capture residual spatial auto-
correlation in the data; νi represents unstructured
heterogeneity (no spatial correlation) to capture meas-
ure error or micro-scale variation at location i, where
vi has a normal distribution with mean zero and preci-
sion τv∼ gamma (0·5,0·0005); φij describes the spatio-
temporal variation and is assumed to be a normal

distribution with mean zero and precision τφ, τφ∼
gamma (0·001,0·001).

In the study we assumed that the variable SCP was
a categorical variable with two categories: SCP = 1
representing the months during the school term, and
SCP = 0 representing the months during school holi-
days. The conditional autoregressive (CAR) model
was used to describe the random effect ui as a function
of the first-order neighbours u−i at site i. The condi-
tional distribution of ui|u−i is given by:

ui u−i| �N

∑m
s=1

wisus

wi+
,
τ2u
wi+

⎛
⎜⎜⎝

⎞
⎟⎟⎠,

where ui has a normal distribution with precision τu, a
gamma distributions τu∼gamma (0·5,0·0005), and
conditional weighted mean given by the average of
the first-order neighbours u−i without ui. Let u−i =
[u1, u2, . . . , ui−1, ui+1, . . . , um]. A symmetric n× n
matrix W of spatial weights with elements wis and
wi+ = ∑m

s=1 wis is used to describe the local neigh-
bourhood relationship, where wis = 1 if sites i and s
are neighbours, and wis= 0 otherwise [32].
Moreover, the above CAR model was also used to
perform the temporally correlated random effect tj
with a one-dimensional random walk prior and a
neighbourhood structure of the immediately previous
month and subsequent month. Thus, tj is assumed to
be a normal distribution with precision τt; let τt be a
gamma distribution τt∼ gamma (0·01,0·01).

To ensure the spatio-temporal model [i.e. equation
(1)] is appropriate for describing the pertussis data in
the study, six reduced models underlying risk factors
were developed to detect whether model goodness of
fit can be improved when including different random
effects of ui, vi, ti and ϕij. All models were compared
using the deviance information criterion (DIC). The
model was run 150 000 Markov Chain Monte
Carlo iterations with the first 30 000 iterations dis-
carded as burn-in using WinBUGS software v. 1.4
(http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-
project-winbugs/).

RESULTS

The average of the monthly incidence of pertussis
was 0·1/1000 population (range 0·02–0·25/1000) in
Queensland during the 2006–2012 study period. The
observed age-specific monthly incidences in Table 1
indicate that children aged 0–14 years had the highest
monthly incidence with an average of 0·15/1000 (range
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0·01–0·53/1000) per month. Of the reported pertussis
cases, 29·2% (age-specific incidence rates 171/100 000
per year), 55·5% (age-specific incidence rates 100/
100 000 per year) and 15·3% (age-specific incidence
rates 143/100 000 per year) were aged 0–14 years,
15–64 years and 565 years, respectively. The largest
number of annual cases was observed in 2011 and
the smallest number in 2007. Monthly case numbers
peaked in winter in 2006 and 2007, in summer in
2008, in autumn in 2009 and in spring during 2010–
2012. Figure 1 shows an increasing trend in observed
monthly incidence of pertussis in Queensland from
2008 to 2010. The trends in the observed age-specific
monthly incidences were different between the three
age groups (Fig. 1). A notable increase in incidence

occurred in the 0–14 years age group from 2008
onwards. An increasing trend was also observed in
people aged 565 years, while a slight decreasing
trend seen in the 15–64 years age group from 2010
to 2012. The average of the observed monthly inci-
dence of pertussis cases for each postal area (range
0–47·5/1000 local people) also exhibited heterogeneity
across Queensland (Fig. 2). The spatial clustering of
high observed incidences mostly occurred in the south-
west and the southeast of Queensland (Fig. 2).

The full model, including the four random effects
(u, v, t, φ), exhibited the best fit for the pertussis
data due to the lowest DIC value compared to the
six reduced models (Table 2). The full model showed
an average decrease in monthly pertussis cases

Table 1. The monthly pertussis incidences (per 1000 population) and variables for Queensland (January 2006–
December 2012).

Mean (S.D.) Min–max

Monthly pertussis incidence in Queensland 0·1 (0·06) 0·02–0·25
Monthly pertussis incidence for 0–14 years group 0·15 (0·14) 0·01–0·53
Monthly pertussis incidence for 15–64 years group 0·09 (0·05) 0·02–0·18
Monthly pertussis incidence for 565 years group 0·12 (0·06) 0·02–0·25
Monthly mean minimum temperature 15·1 (4·5) 6·1–21·8
Monthly mean vapour pressure 17 (4·2) 9·2–24·1
Socioeconomic index for area 964.6 (72.2) 799–1227

Fig. 1. The temporal patterns of the monthly incidence of confirmed pertussis cases in the three age groups and
Queensland (January 2006 to December 2012).
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of 3·1% [95% credible interval (CrI) 1·3–4·8] for each
1 °C increase in monthly MIT, while average increases
in monthly pertussis cases were 6·2% (95% CrI 0·4–
12·4) and 2% (95% CrI 1–3) for school term (SCP =
1) and for each 10-unit increase in SEIFA, respectively
(Table 3). No significant relationship was found
between pertussis risk and VAP.

The temporally correlated effect [exp(t)] showed an
increase in pertussis risk from 2006 to 2010 and a
slight decrease from 2011 to 2012 (Fig. 3). Strong spa-
tial variation in relative risk was observed across
Queensland (Fig. 4). The spatially correlated random
effect showed that the posterior mean of spatial vari-
ation [exp(u)] in relative risk ranged from 0·6 to 3·2
across the postal areas. The spatially correlated effect
also identified the regions with the spatial clustering of
pertussis risk unexplained by the full model. The four
random effects might explain the effects of unobserved
risk factors.

Fig. 2. Average of observed monthly pertussis incidence by Queensland postal area.

Table 2. Model comparison for relative risk of monthly
pertussis counts underlying socio-environmental factors
and different random effects over the six models

Model Random effect

Deviance
information
criterion

Full model [equation (1)] ui, vi, ti, φij 65896
Reduced model 1 ui, ti, φij 66021
Reduced model 2 vi, ti, φij 65916
Reduced model 3 ui, vi, φij 69401
Reduced model 4 ui, vi, ti 73814
Reduced model 5 ti, φij 71878
Reduced model 6 No 101304

Table 3. Bayesian Poisson regression models of
pertussis, Queensland, Australia, 2006–2012

Variables
Changes
(%)

95% credible
interval

Socioeconomic index for area 2 1 to 3
Monthly mean minimum
temperature

−3·1 −1·3 to −4·8

Queensland school calendar
pattern

6·2 0·4 to 12·4
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For simplicity, the estimated monthly relative risks
(ρij) were aggregated by each year to illustrate the
spatio-temporal patterns in pertussis epidemics over
time across Queensland. There was strong evidence

of spatial and temporal variability of relative risk
after adjustment for socio-environmental factors
(Fig. 5). Local relative risks were low and homoge-
neous across Queensland between 2006 and 2008.

Fig. 3. Time trend in posterior mean relative risk of pertussis (solid line) with 95% credible intervals (dashed lines) from
the spatio-temporal model during the study period in Queensland.

Fig. 4. The spatial distribution of structured and unstructured heterogeneities in posterior mean relative risk across
Queensland.

1226 X. Huang and others

https://doi.org/10.1017/S0950268816003289 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816003289


However, from 2009 onwards, relative risk and het-
erogeneity across Queensland increased (Fig. 5).

DISCUSSION

This study found a significant negative association
between the pertussis incidence and MIT in
Queensland. Although pertussis is spread by aerosol
droplets, the effect of environmental factors on the
survival of B. pertussis is still not fully understood
[33]. Pertussis cases have previously been reported to
increase in winter [16]. A New Zealand study also
found a negative relationship between minimum tem-
perature and pertussis [34]. This is biologically plaus-
ible as temperature variation might influence host
susceptibility and the survival of the pathogen in the
environment [35, 36]. Our study demonstrates that a
decrease in temperature might lead to increase in per-
tussis transmission.

SCP and SEFIA were also demonstrated to influ-
ence transmission of pertussis in this study. It is not
surprising that periods of school attendance were asso-
ciated with increased pertussis cases as it leads to
crowding of susceptible individuals, increasing the
risk of pertussis spread between school children and

subsequently to their families [16, 37, 38]. A high
score of local SEIFA is typically correlated with a
lower unemployment rate and greater access to eco-
nomic and social resources [27]. While the increased
risk in pertussis associated with a single unit increase
in SEIFA was modest, it may indicate that as
SEIFA increases, opportunity for exposure to others,
and therefore, risk of pertussis exposure, through
work and social events increases.

A significantly increased trend in pertussis incidence
was shown from 2008. Pertussis vaccination plays a
significant role in reduction of pertussis infections
[8]. Pertussis vaccine coverage in Queensland is very
high with an average of 92% for children having
received the primary course by their first birthday
and 94·5% by the second birthday [39]. The national
immunization programme provides publically funded
vaccines to children aged 0–15 years in Australia
[40]. However, a significant increase in pertussis inci-
dence was observed in children aged 0–14 years and
people aged565 years. Our result suggests that future
studies need to investigate the effect of risk factors in
pertussis transmission between different age groups.
This is particularly relevant in light of recent publica-
tions that suggest differences over time in vaccine

Fig. 5. The spatio-temporal distributions of posterior mean relative risk over time across Queensland.
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effectiveness between the diphtheria-tetanus-whole-
cell pertussis vaccine and the diphtheria-tetanus-
acellular pertussis vaccine that replaced the whole-cell
vaccine as part of the publically funded schedule in
Queensland in 1999 [13, 41].

The maps of the spatio-temporal patterns in the
posterior mean relative risks depict strong heterogen-
eity after adjusting for socio-environmental factors
and random effects. Although there is the same
immunization programme and high vaccine coverage
across Queensland, there was substantial spatial vari-
ation in incidence during pertussis epidemics
(Fig. 4). Pertussis transmission dynamics is complex
and is driven by a combined effect of population
immunity, population structure, socio-environmental,
and biological factors [8]. Hence, it is possible that dif-
ferent locations might experience different epidemio-
logical characteristics of pertussis [42]. The derived
maps may support a better understanding of evolution-
ary dynamics of pertussis. Moreover, the areas with
high relative risk also presented large uncertainty,
which might provide clues for further investigating per-
tussis transmission.

Our study is the first attempt to develop a predictive
model based on socio-ecological factors for the con-
trol and prevention of pertussis in Queensland,
Australia. From this work we plan to develop an
ongoing and comprehensive database to facilitate pre-
vention of pertussis based on an ensemble of socio-
ecological and disease surveillance data. The results
of this study will inform future research into the social
determinants of pertussis and control in high-risk
areas.

Some limitations of the study should be acknowl-
edged. First, the potential confounding factors such
as vaccination coverage and uptake, population
immunity and travel-to-work patterns were not avail-
able in the current study. However, high pertussis vac-
cination coverage across Queensland could reduce
estimated bias. Second, the data might not include
all pertussis cases, particularly those with mild clinical
symptoms or those who are asymptomatic. Moreover,
data on weather at postcode area level were not avail-
able after December 2012 at National Computational
Infrastructure, Australia. Therefore, we could not
include data after 2012 in this study, which may affect
interpretation of our results. Finally, this study was
not able to take into account the effect that changes
in general practitioner testing behaviour (increased
testing) [12] or changes in diagnostic approaches for
pertussis (PCR vs. serology) may have had on the

observed epidemiology of pertussis in Queensland
[11]. Moreover, further analysis needs to add detailed
personal information to improve our understanding of
pertussis epidemics.

CONCLUSIONS

This study demonstrates that pertussis transmission is
significantly associated with MIT, SEIFA and SCP.
The spatio-temporal analysis provided evidence of
substantial variation in the spatio-temporal distribu-
tion of pertussis risk in different postal areas. The
results also reveal that the pertussis epidemics are het-
erogeneous under the same national immunization
programme across Queensland. The derived maps
highlight the potential areas for future investigation
and interventions.
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