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FINITE RELATION ALGEBRAS

JAMES MATHEW KOUSSAS

Abstract. We will show that almost all nonassociative relation algebras are symmetric and integral (in
the sense that the fraction of both labelled and unlabelled structures that are symmetric and integral tends to
1), and using a Fraı̈ssé limit, we will establish that the classes of all atom structures of nonassociative relation
algebras and relation algebras both have 0–1 laws. As a consequence, we obtain improved asymptotic
formulas for the numbers of these structures and broaden some known probabilistic results on relation
algebras.

§1. Introduction. The calculus of relations is a branch of logic that was developed
in the nineteenth century, largely due to the work of De Morgan, Peirce, and
Schröder; see [6, 22, 24], for example. By the beginning of twentieth century, the
calculus of relations was considered to be an important branch of logic. Indeed, in
[23], Russell stated that “the subject of symbolic logic is formed by three parts: the
calculus of propositions, the calculus of classes, and the calculus of relations.” The
calculus of relations even played a role in the birth of model theory. Indeed, Leopold
Löwenheim stated and proved the earliest known version of the Löwenheim–Skolem
Theorem as a result on the calculus of relations; for more details, see [1]. Interest in
the field mostly faded until the publication of [25], where Tarski defined an abstract
algebraic counterpart to the calculus of relations, namely relation algebras. Tarski
and many of his students took an interest in these algebras, which lead to relation
algebras becoming a fairly popular area of research that is still active.

The idea of defining the probability of a property holding in a class of finite
structures as a limit is due to Carnap (see [3]), but similar ideas appeared earlier.
In [7, 8], Fagin looked at the probability of certain sentences holding in the classes
of all relational structures of a given type as well as asymptotic formulas for the
numbers of these structures. The study of 0–1 laws was initiated by Glebskiı̆ et al. in
the 1970s; see [12, 16]. The study of conditions that guarantee the existence of 0–1
laws for first-order and monadic second-order properties were studied extensively
by Compton in [4, 5]. In the context of relation algebras, there has been surprisingly
little research published on probabilistic results of this nature. In [19], Maddux finds
an asymptotic formula for the number of nonassociative relation algebras in which
the identity is an atom and the number of integral relation algebras, and shows that
almost all of these algebras are rigid and satisfy any finite set of equations that hold
in all representable relation algebras. In the present article, we show that almost all
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finite nonassociative relation algebras are symmetric and have e as an atom, and
establish a 0–1 law for the class of all atom structures of finite nonassociative relation
algebras. Combining these results with the results of Maddux, we obtain a simple
asymptotic formula for both the number of nonassociative relation algebras and the
number of relation algebras, and show that almost all finite nonassociative relation
algebras are integral relation algebras.

§2. Preliminaries. We begin by giving a formal definition of labelled and
unlabelled probabilities of properties. We will mostly follow the approach taken
in [10]. Note that by N we mean {1, 2, ... }.

Definition 1 (Probabilities). Let K be a class of finite structures of a finite
signature F that is closed under isomorphism and has no upper bound on the size
of its members. For all n ∈ N, let Un be a set with precisely one representative from
each isomorphism class of n-element structures from K and let Ln be the set of all
structures in K with universe {1, ... , n}. Let P be some property of F-structures that
is invariant under isomorphisms (for example, a first-order property). Let s : N → N
be the increasing sequence of values of n with Un �= ∅. If the limit

lim
n→∞

|{A ∈ Us(n) | A |== P}|
|Us(n)|

,

exists, we call it the unlabelled probability of P and denote it by PrU(P,K). If the
limit

lim
n→∞

|{A ∈ Ls(n) | A |== P}|
|Ls(n)|

,

exists, we call it the labelled probability of P and denote it by PrL(P,K). If
PrU(P,K) = 1, we say that almost all structures in K satisfy P.

We will mostly work with classes where there are elements of every possible
cardinality, so the sequence s will be the identity sequence.

The result we will need from Freese [10] is stated below; this result is stated for
algebras, but the proof also works for relational structures. Similar results appear
in earlier articles, such as Fagin [8].

Proposition 2. Let K be a class of similar finite structures of a finite signature F
that is closed under isomorphism and has no upper bound on the size of its members,
let R be the property of being rigid (i.e., having a trivial automorphism group), let P be
a property F-structures that is invariant under isomorphism, and assume that we have
PrL(R,K) = 1. If one of PrU(P,K) and PrL(P,K) exists, then both quantities exist
and are equal.

Now we are in the position to recall the definition of an almost sure theory.

Definition 3 (Almost sure theory). Let K be a class of finite structures of a finite
signature F that is closed under isomorphism and has no upper bound on the size
of its members. We call the set of all first-order sentences � with PrL(�,K) = 1 the
almost sure theory of K.
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Next, we will give a brief introduction to relation algebras. For a more extensive
introduction, we refer the reader to Hirsch and Hodkinson [13], Maddux [21], and
Givant [11]. We begin by defining relation algebras. To match the notation used in
lattice theory, we will use ∨ and ∧ rather than + and ·. This allows us to use a more
group theoretic notation by using · and e rather than ; and 1′. We will assume that
unary operations are applied first and use multiplicative notation for ·. Therefore
x˘z ∧ y′ means ((x˘) · z) ∧ (y′), for example. We call d := e′ the diversity element.
We use ≈ for logical equality, as in universal algebra. To avoid reusing symbols,
we will use � for logical disjunction, � for logical conjunction, and ¬ for logical
negation. Where it is possible, we will usually drop superscripts on operations.

Definition 4 (Relation algebras). An algebra A = 〈A;∨,∧, ·, ′, ,̆ 0, 1, e〉 is called
a nonassociative relation algebra iff 〈A;∨,∧, ′, 0, 1〉 is a Boolean algebra, e is an
identity element for ·, and the triangle laws hold, i.e., we have

xy ∧ z = 0 ⇐⇒ x˘z ∧ y = 0 ⇐⇒ zy˘∧ x = 0,

for all x, y, z ∈ A. The class of all nonassociative relation algebras will be denoted
by NA. An algebra A ∈ NA is called a relation algebra iff · is associative. The class
of all relation algebras will be denoted by RA. An algebra A ∈ NA is said to be
symmetric iff A |== x˘ ≈ x.

We extend ideas from Boolean algebra to these algebras in the obvious way. For
example, an atom of a nonassociative relation algebra is an atom of its Boolean
algebra reduct.

Some basic properties of these algebras are summarised in the following result.

Proposition 5. Let A ∈ NA.

1. A |== x(y ∨ z) ≈ xy ∨ xz and A |== (x ∨ y)z ≈ xz ∨ yz.
2. A |== (x ∨ y)˘ ≈ x˘∨ y .̆
3. A |== 0˘ = 0, A |== 1˘ = 1, A |== e˘ = e, and A |== d˘ = d .
4. A |== x˘̆ ≈ x.
5. If a is an atom, then a˘ is an atom.
6. If A |== e ≈ 0, then A is trivial.

Based on Proposition 5, the operations of a complete atomic (and, in particular, a
finite) nonassociative relation algebra are completely determined by their values on
its atoms. Since a finite A ∈ NA has log2(|A|) atoms, this means these algebras are
determined by a small subset of its elements. This motivates the following definitions.
When e is an atom, it is sometimes convenient to include it in the signature rather
than a unary relation.

Definition 6 (Atom structure). Let A be a complete atomic nonassociative
relation algebra. We call At(A) := 〈At(A);fA, IA, TA〉 the atom structure of A,
where At(A) denotes the set of all atoms of A, fA is defined by x �→ x ,̆ IA :=
{a ∈ At(A) | a � e}, and TA := {(a, b, c) ∈ At(A)3 | ab � c}. If e is an atom, we
put Ate(A) := 〈At(A);fA, e, TA〉.

It turns out that these structures can be axiomatised.
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Definition 7 (FAS, FSIAS, and FSIASe). Let FAS denote the class of all finite
structures of the signature {f,T, I } (where f is a unary operation symbol, I is a
unary relation symbol, and T is a ternary relation symbol) that satisfy

(P) for all a, b, c ∈ U , we have (f(a), c, b), (c, f(b), a) ∈ T whenever
(a, b, c) ∈ T ,

(I) for all a, b ∈ U , we have a = b if and only if i ∈ I with (a, i, b) ∈ T .

We call a {f,T, I }-structure U integral iff we have |I | = 1, and symmetric iff U |==
f(x) ≈ x. The class of all symmetric and integral members of FAS will be denoted
by FSIAS. Now, let FSIASe be the class of all finite structures of the signature
{f, e, T} (where f is a unary operation symbol, e is a nullary operation symbol, i.e.,
a constant, and T is a ternary relation symbol) that satisfy f(x) ≈ x and

(IP) for all a, b, c ∈ U , we have (f(a), c, b), (c, f(b), a) ∈ T whenever
(a, b, c) ∈ T ,

(II) for all a, b ∈ U , we have a = b if and only if there is some (a, e, b) ∈ T .

The above definition abuses language slightly; a non-trivial A ∈ NA is called
integral iff xy = 0 implies that x = 0 or y = 0, which is equivalent to e being an
atom when A ∈ RA, but not in general. We refer to Maddux [20, 21] for further
details.

Proposition 8. FAS is precisely the class of all atom structures of finite members of
NA, FSIAS is precisely the class of all atom structures of finite, integral, and symmetric
members of NA. There are bijective correspondences between the sets of isomorphism
classes from:

1. the class of finite members of NA and FAS;
2. the class of finite, integral, and symmetric members of NA and FISAS;
3. FSIAS and FSIASe .

Next, we introduce the notion of a cycle (from Maddux [19]) which can be used
to define and describe these structures.

Definition 9 (Cycles). Let U be a {f,T, I }-structure and let a, b, c ∈ U . We
call (a, b, c), (f(a), c, b), (b, f(c), f(a)), (f(b), f(a), f(c)), (f(c), a, f(b)), and
(c, f(b), a) the Peircean transforms of (a, b, c). The set of all of these triples is called
a cycle, and is denoted by [a, b, c]. We call (a, b, c) an identity triple iff I ∩ {a, b, c} �=
∅, and a diversity triple otherwise. We call [a, b, c] an identity cycle iff it contains
an identity triple, and a diversity cycle otherwise. We call (a, b, c) consistent iff
(a, b, c) ∈ T , and forbidden otherwise. We call [a, b, c] consistent iff [a, b, c] ⊆ T ,
and forbidden iff [a, b, c] ∩ T = ∅. We call a an identity atom iff a ∈ I and a diversity
atom otherwise. We extend these ideas to {f, e, T} in the obvious way.

The following result from [19] illustrates the connection between cycles and the
axioms for FAS and FSIASe .

Proposition 10. 1. Let U be an {f,T, I }-structure.
(a) The following are equivalent:

i. U satisfies (P);
ii. for all a, b, c ∈ U , the cycle [a, b, c] is either consistent or forbidden.
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(b) The following are equivalent:
i. U satisfies (I );

ii. for all a, b ∈ U , we have a = b if and only if [a, i, b] is consistent, for
some i ∈ I .

(c) If U is integral, then the following are equivalent:
i. U satisfies (I );

ii. f(e) = e and {[a, e, a] | a ∈ U} is the set of consistent identity cycles,
where e is the unique element of I.

2. Let U be a {f, e, T}-structure.
(a) The following are equivalent:

i. U satisfies (IP);
ii. for all a, b, c ∈ U , the cycle [a, b, c] is either consistent or forbidden.

(b) The following are equivalent:
i. U satisfies (II );

ii. f(e) = e and {[a, e, a] | a ∈ U} is the set of consistent identity cycles.

Based on Propositions 8 and 10, once given a finite set U, some e ∈ U , and
an involution f : U → U with f(e) = e, each U ∈ FAS that is an expansion of
〈U ;f, {e}〉 is completely determined by which cycles are consistent or forbidden.
Using this observation, it is possible count the number of atom-structures of a
given (finite) size. Indeed, in [19], Maddux obtains asymptotic formulas using this
method. The results we will need from [19] are summarised in the following results.

Proposition 11. Let U be an n-element set, for some n ∈ N, let e ∈ U , let f be an
involution of U with f(e) = e, and let s := |{a ∈ U | f(a) = a}|.

1. There are s – 1 diversity cycles with 1 triple; ones of the form [a, a, a].
2. There are (n – s)/2 diversity cycles with 2 triples; ones of the form [a, a, f(a)],

where f(a) �= a.
3. There are (s – 1)(n – 2) diversity cycles with 3 triples; ones of the form [a, b, b],

where f(a) = a and a �= b.
4. There are (n – 1)((n – 1)2 – 3s + 2)/6 + (s – 1)/2 diversity cycles with 6 triples.
5. There are Q(n, s) := (n – 1)((n – 1)2 + 3s – 1)/6 diversity cycles in total.
6. There areP(n, s) := (s – 1)! ((n – s)/2)! 2(n–s)/2 automorphisms of 〈U ;f, {e}〉.
Before we state the next result, we will pause to recall the definition of

representability.

Definition 12 (RRA). Let E be an equivalence relation over a set D. We call
the structure 〈℘(E);∪,∩, |, c , –1,∅, E, idD〉 the proper relation algebra on E, where
℘(E) be the powerset (i.e., set of all subsets) of E, | is relational composition, c is
set complement relative to E, –1 is relational inverse, and idD is the identity relation
on D. Thus, for each R,S ⊆ E,

R | S = {(x, z) ∈ D2 | (x, y) ∈ R, (y, z) ∈ S, for some y ∈ D},
R–1 = {(y, x) ∈ D2 | (x, y) ∈ R},
idD = {(x, y) ∈ D2 | x = y}.

A relation algebra is said to be representable iff it embeds into a proper relation
algebra. The class of representable relation algebras will be denoted by RRA.
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The problem of determining whether every relation algebra is representable was
the main focus of research into relation-type algebras for many years, until it was
solved in the negative by Lyndon in [17]. Therefore one might be interested in the
asymptotics of the fraction of representable relation algebras. Maddux took the first
steps in this direction in [19].

Proposition 13. 1. Almost all integral labelled structures in FAS are rigid.
2. If E is the conjunction of a finite set of equations that hold in all members of

RRA, then E holds in almost all finite elements of NA in which e is an atom. In
particular, almost all nonassociative relation algebras in which e is an atom are
relation algebras.

Proposition 14. For all n, s ∈ N with s � n and n – s even, let F (n, s) be the
number of isomorphism classes of n-atom integral relation algebras with s atoms
satisfying x˘ = x. Then 2Q(n,s)/P(n, s) is an asymptotic formula for F (n, s), in the
sense that, for all ε > 0, there exists N ∈ N such that if n, s ∈ N with n > N , s � n,
and n – s even, then ∣∣∣∣∣1 –

F (n, s)P(n, s)
2Q(n,s)

∣∣∣∣∣ < ε.
Further, the same statement holds for nonassociative relation algebras in which e is an
atom.

We conclude with a reminder of Fraı̈ssé limits, which were defined by Fraı̈ssé in
[9]. We will mostly follow Hodges [15]. Firstly, we recall some definitions.

Definition 15 (Age). Let A be a structure. The age of A is the class of all finitely
generated structures that embed into A.

Definition 16 (HP, JEP, and AP). Let K be a class of similar structures. We
say that K has the hereditary property (HP) iff K is closed under forming finitely
generated structures. We say that K has the joint embedding property (JEP) iff, for
all A,B ∈ K, there is some C ∈ K that both A and B embed into. We say that K has
the amalgamation property (AP) iff, for all A,B,C ∈ K and embeddings � : A → B
and � : A → C, there is some D ∈ K and embeddings �′ : B → D and � ′ : C → D
such that �′ ◦ � = � ′ ◦ �.

Definition 17 (Homogeneity). Let A be a structure. We call A ultrahomogenous
iff every isomorphism between finitely generated substructures of A extends to an
automorphism of A. We call A weakly homogeneous iff, for all finitely generated
structures B and C of A with B � C and all embeddings � : B → A, there is an
embedding � : C → A extending �.

The following result shows that these definitions coincide

Proposition 18. A finite or countable structure is ultrahomogeneous if and only if
it is weakly homogeneous.
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The main result on these structures is the following existence and uniqueness
result, known as Fraı̈ssé’s Theorem.

Proposition 19 (Fraı̈ssé’s Theorem). Let S be a countable signature and let K be
a class of at most countable S-structures, that has the HP, JEP, and AP. Then there is
an S-structure F (called a Fraı̈ssé limit of K), unique up to isomorphism, such that F
is at most countable, K is the age of F, and F is ultrahomogeneous.

To state the last result of this section, we need to recall some definitions.

Definition 20 (Uniform local finiteness). Let K be a class of similar structures.
We say that K is uniformly locally finite iff there is a function f : N → N, such that,
for all A ∈ K, each n ∈ N, and every subset S of A with |S| � n, the substructure of
A generated by S has cardinality at most f(n).

Proposition 21. Let S be a finite signature, let K be a uniformly locally finite class
of S-structures with the HP, JEP, and AP, and at most countably many isomorphism
types of finitely generated S-structures, and let F be a Fraı̈ssé limit of K. Then the
first-order theory of F is ℵ0-categorical and has quantifier elimination.

§3. Main results. First, we show that almost all finite nonassociative relation
algebras are symmetric and have e as an atom. The proof and the observation that
almost all nonassociative relation algebras in which e as an atom are symmetric
were discovered independently by the author, but this result was also conjectured
by Roger Maddux in a private communication.

Theorem 22. Almost all members of FAS are in FSIAS.

Proof. Let n � 5, let U be an n-element set, and let 1 � i < n. Clearly, there are(
n
i

)
ways to select i identity atoms. Now, let 0 � p � �(n – i)/2�. There are at most(

n–i
2

)p
involutions of U with p non-fixed pairs, i.e., with sets of the form {u, f(u)}

with u �= f(u), since
(
n–i
2

)p
is the number of p independent selections of 2-element

sets of diversity atoms. Based on Proposition 10(1b), there are (2i – 1)n possible
ways of selecting identity cycles, since each element of U must appear in at least
one of the i cycles of the given form. Lastly, based on Proposition 11(5), there are
2Q(n–i+1,n–i+1–2p) ways to select diversity cycles; the number of choices of diversity
cycles in a (n – i + 1)-element structure satisfying |I | = 1 and a n-element structures
such that |I | = i and |U \ I | = n – i is clearly the same. Hence, by Proposition 5(5),
the fraction of members of FAS with universe {1, ... , n} that belong to FSIAS is
bounded below by

n2Q(n,n)∑n
i=1

∑�(n–i)/2�
p=0

(
n
i

)(
n–i
2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)

=
1

(
∑n
i=1

∑�(n–i)/2�
p=0

(
n
i

)(
n–i
2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n))/n

.
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We have

1
n

n∑
i=1

�(n–i)/2�∑
p=0

(
n

i

)(
n – i

2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n)

=
1
n

�(n–1)/2�∑
p=0

n

(
n – 1

2

)p
2Q(n,n–2p)–Q(n,n)

+
1
n

n–1∑
i=2

�(n–i)/2�∑
p=0

(
n

i

)(
n – i

2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n).

Clearly, (
n – 1

2

)p
�

(
n2

2

)p
.

Now,

Q(n, n – 2p) – Q(n, n) =
1
6

(n – 1)((n – 1)2 + 3(n – 2p) – 1)

–
1
6

(n – 1)((n – 1)2 + 3n – 1)

=
1
6

(n – 1)((n – 1)2 + 3n – 6p – 1 – ((n – 1)2 + 3n – 1))

=
1
6

(n – 1)(3n – 6p – 3n)

= (1 – n)p,

hence (
n2

2

)p
2Q(n,n–2p)–Q(n,n) =

(
n2

2

)p
2(1–n)p

=
(
n2

2n

)p
.

Since n � 5, we have 0 < n2/2n < 1, so the formula for a geometric sum gives

1
n

�(n–1)/2�∑
p=0

n

(
n – 1

2

)p
2Q(n,n–2p)–Q(n,n) �

�(n–1)/2�∑
p=0

(
n2

2n

)p

=
1 – (n2/2n)�(n–1)/2�+1

1 – n2/2n
.

Using basic limits, n2/2n and (n2/2n)�(n–1)/2�+1 tend to 0, and so

lim
n→∞

(
1 – (n2/2n)�(n–1)/2�+1

1 – n2/2n

)
= 1.
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Define S(m) := Q(m,m), for each m ∈ N. We have

S(m) =
1
6

(m – 1)((m – 1)2 + 3m – 1)

=
1
6

(m – 1)(m2 – 2m + 1 + 3m – 1)

=
1
6

(m – 1)(m2 +m)

=
1
6

(m3 – m),

for each m ∈ N. Using the formula for a difference of cubes, we get

S(n – i + 1) – S(n)

=
1
6

((n – i + 1)3 – (n – i + 1) – n3 + n)

=
1
6

((n – i + 1 – n)((n – i + 1)2 + n(n – i + 1) + n2) + i – 1)

=
1
6

(– (i – 1)(n2 – 2(i – 1)n + (i – 1)2 + n2 – (i – 1)n + n2) + i – 1)

=
1
6

(– 3(i – 1)n2 + 3(i – 1)2n – (i – 1)3 + i – 1).

In particular,

i = 2 =⇒ S(n – i + 1) – S(n) =–
1
2
n2 +

1
2
n,

i = 3 =⇒ S(n – i + 1) – S(n) =– n2 + 2n – 1,

i = 4 =⇒ S(n – i + 1) – S(n) =–
3
2
n2 +

9
2
n – 4.

If 1 � i < n and 1 � p � �(n – i)/2�, then �(n – i)/2� � n,
(
n
i

)
� nn,

(
n–i
2

)p �
(n2)n = n2n, (2i – 1)n � 2in, and Q(n – i + 1, n – i + 1 – 2p) � S(n – i + 1). Over
the interval [1,∞), x �→ (x3 – x)/6 is increasing, hence S(n – i + 1) – S(n) is
maximised when i is minimised. Since n � 5, we have n – 1 � 4 and 2n > 1. Hence,
using the formula for a geometric sum, we get

1
n

n∑
i=2

�(n–i)/2�∑
p=0

(
n

i

)(
n – i

2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n)

� 1
n

n∑
i=2

�(n–i)/2�∑
p=0

nnn2n(2i – 1)n2S(n–i+1)–S(n)

� 1
n

n∑
i=2

nn3n(2i – 1)n2S(n–i+1)–S(n)

=
n∑
i=2

n3n(2i – 1)n2S(n–i+1)–S(n)
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= n3n3n2–n2/2+n/2 + n3n7n2–n2+2n–1 +
n∑
i=4

n3n(2i – 1)n2S(n–i+1)–S(n)

� n3n3n2–n2/2+n/2 + n3n7n2–n2+2n–1 +
n∑
i=4

n3n2in2–3n2/2+9n/2–4

� n3n3n2–n2/2+n/2 + n3n7n2–n2+2n–1 + n3n2–3n2/2+9n/2–4
n∑
i=0

(2n)i

= n3n3n2–n2/2+n/2 + n3n7n2–n2+2n–1 + n3n2–3n2/2+9n/2–4 2n(n+1) – 1
2n – 1

.

We have

n3n3n2–n2/2+n/2 = 23n log2(n)+log2(3)n–n2/2+n/2,

which clearly tends to 0. Similarly,

n3n7n2–n2+2n+1 = 23n log2(n)+log2(7)n–n2+2n–1,

which tends to 0. Lastly,

n3n2–3n2/2+9n/2–4 2n(n+1) – 1
2n – 1

= 23n log2(n)–n2/2+11n/2–4 2–n2–n(2n
2+n – 1)

2n – 1

= 23n log2(n)–n2/2+11n/2–4 1 – 2–n2–n

2n – 1
.

Now, it is clear that 23n log2(n)–n2/2+9n/2–4 tends to 0 and (1 – 2–n2–n)/(2n – 1) tends to
0, hence the term above has limit 0. Combining these results with basic limits, we
get

lim
n→∞

(
1
n

n∑
i=1

�(n–i)/2�∑
p=1

(
n

i

)(
n – i

2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n)

)
� 1,

and so

lim
n→∞

(
1

(
∑n
i=1

∑�(n–i)/2�
p=1

(
n
i

)(
n–i
2

)p
(2i – 1)n2Q(n–i+1,n–i+1–2p)–Q(n,n))/n

)
� 1.

By the Squeeze Principle, the fraction of members of FAS with universe {1, ... , n}
in FSIAS tends to 1. Combining these results, Propositions 2, 8, and 13(1), we find
that almost all members of FAS belong to FSIAS, which is what we wanted. �

Combining this with Propositions 8 and 13(2), we obtain the following.

Corollary 23. Almost all finite nonassociative relation algebras are symmetric
integral relation algebras.

Using Propositions 10 and 14, we obtain the following.

Corollary 24. 2Q(n,n)/(n – 1)! is an asymptotic formula for the number of n-atom
nonassociative relation algebras. The same formula holds if we add the assumption of
associativity, symmetry, or e being an atom.
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Next, we aim to establish a 0–1 law for FAS. Based on Proposition 22, it will be
enough to establish a 0–1 law for FSIAS. We essentially follow the method outlined
in the introduction of Bell and Burris in [2]. For the completeness proof required
for this method, we will make use of a Fraı̈ssé limit. It will be convenient to work
with the class FSIASe rather than FSIAS, then translate the result, as FSIAS does not
have the HP. First, we show that a limit exists.

Lemma 25. FSIASe has a Fraı̈ssé limit.

Proof. By Theorem 19, it is enough to show that FSIASe has the HP, JEP, and
AP.

By definition, FSIASe is the class of finite members of a universal class. Based on
this, FSIASe is closed under forming substructures, so FSIASe clearly has the HP.

For the AP, let S,V,W ∈ FSIASe and let� : S → V and � : S → W be embeddings.
Without loss of generality, we can assume thatV ∩W = S and� and � are inclusion
maps. Thus, we can define U := 〈U ;fU, e, TU〉, whereU := V ∪W ,fU is given by

fU(x) =

{
fV(x), if x ∈ V,
fW(x), if x ∈W,

and TU := TV ∪ TW. Let a, b, c ∈ U and assume that (a, b, c) ∈ TU. By construc-
tion, we have (a, b, c ∈ V and (a, b, c) ∈ TV) or (a, b, c ∈W and (a, b, c) ∈ TW).
In the first case, (fU(a), c, b), (c, fU(b), a) ∈ TU, since TV ⊆ TU, fU�V = fV,
and V satisfies (IP). Similarly, we have (fU(a), c, b), (c, fU(b), a) ∈ TU in the
second case, so U satisfies (IP). Let a ∈ U . If a ∈ V , then we have (a, e, a) ∈ TU,
since TV ⊆ TU and V satisfies (II). Similarly, (a, e, a) ∈ TU when a ∈W . Since
U = V ∪W , it follows that (a, e, a) ∈ TU in every case. Lastly, let a, b ∈ U such
that (a, e, b) ∈ TU. By construction, (a, b ∈ V and (a, e, b) ∈ TV) or (a, b ∈W
and (a, e, b) ∈ TW). Since V and W satisfy (II), we have a = b, so (II) holds.
Since V and W both satisfy f(x) ≈ x, it follows that fV and fW are both identity
maps. By construction, fU is an identity map, so U |== f(x) ≈ x. By definition,
U = V ∪W , hence |U | � |V | + |W |. Thus, U is finite. Based the above results,
we have U ∈ FSIASe . Clearly, the inclusion maps ıV : V → U and ıW : W → U are
embeddings and ıV ◦ � = ıW ◦ �. Combining these results, we find that FSIASe has
the AP, which is what we wanted to show.

Clearly, FSIASe contains a trivial structure. This structure embeds into all A ∈
FSIASe , so the JEP follows from the AP. Thus, FSIASe has the HP, JEP and AP, as
required. �

Definition 26 (LSI, TSI, and SSI). Let LSI be a Fraı̈ssé limit of FSIASe , let TSI be
the first-order theory of LSI, and let SSI be the almost sure theory of FSIASe .

The elements of FSIASe are symmetric, so generated substructures contain at
most one extra element, namely e. So, by Proposition 21, we have the following.

Corollary 27. TSI is ℵ0-categorical and has quantifier elimination.

Next we introduce what Bell and Burris call extention axioms in [2]. The sentences
essentially assert that a substructure can be extended by a single point in all possible
ways. Here ¬0 and ¬1 mean no symbol and ¬, respectively.
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Definition 28. Let ASI be the set of first-order sentences of the form

∀x1, ... , xm :
m�

i=1

xi �≈ e → ∃y : y �≈ e �
(
m�

i=1

y �≈ xi

)
� ¬cT (y, y, y) �

(
m�

i=1

¬ci T (xi , y, y)

)
�

(
�

1�i�j�m
¬cij T (xi , xj, y)

)
,

where m ∈ � and c, ci , cij ∈ {0, 1}, for all 1 � i � j � m.

Lemma 29. Let L be countable model of (II ), (IP), and f(x) ≈ x. Then L ∼= LSI

if and only if L |== ASI.

Proof. For the forward direction, assume that L ∼= LSI. Then L is a Fraı̈ssé limit
of FSIASe , hence the age of L is FSIASe and L is ultrahomogeneous. Let n ∈ �, let
c, ci , cij ∈ {0, 1}, for all 1 � i � j � n, and let u1, ... , un ∈ L \ {eL}. Let U denote
the substructure of L generated by U := {u1, ... , un}. Fix some element v /∈ U and
define V := 〈V ;fV, eV, TV〉, where V := U ∪ {eF, v}, fV = idV , eV = eL, and TV

is given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TU ∪ [v, eL, v] ∪ [v, v, v]

∪
( ⋃

{[ui , v, v] | ci = 0}
)
∪

( ⋃
{[ui , uj , v] | cij = 0}

)
if c = 0,

TU ∪ [v, eL, v] ∪
( ⋃

{[ui , v, v] | ci = 0}
)

∪
( ⋃

{[ui , uj , v] | cij = 0}
)

if c = 1.

Since the age of L is FSIASe , we must have U ∈ FSIASe , so it is easy to see that
V ∈ FSIASe . Again, since the age L is FSIASe , there is a substructure W of L that is
isomorphic to V. Let� : V → W be an isomorphism. Then� ◦ ıU is an isomorphism
from U to the substructure of L generated by�[U ]. As L is ultrahomogeneous,� ◦ ıU
extends to an automorphism, say �. Then, by construction, �–1(�(v)) is the witness
to the sentence from ASI given by n, c, and each ci , and cij , when choosing xi = ui ,
for each 1 � i � n. Thus, L |== ASI.

Conversely, assume that L |= ASI. To show that L ∼= LSI, we need to show that
FSIASe is the age of L and that L is ultrahomogeneous. As L is a symmetric model of
(IP) and (II), the age of L is a subset ofFSIASe . Assume, for a contradiction, that this
inclusion is proper. Let U be an element of minimal size in FSIAS that is not in the
age of L. Clearly, |U | > 1. Now, let u ∈ U \ {eU} and let V denote the substructure
of U generated by V := U \ {u}. By our minimality assumption, V embeds into
L. Let � : V → L be such an embedding. Let m := |V | – 1, let {v1, ... , vm} be an
enumeration of V \ {eV}, let

c :=

{
0 if [u, u, u] ⊆ TU,

1 if [u, u, u] � TU,

let

ci :=

{
0 if [vi , u, u] ⊆ TU,

1 if [vi , u, u] � TU,
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for all 1 ≤ i ≤ m, and let

cij :=

{
0 if [vi , vj , u] ⊆ TU,

1 if [vi , vj , u] � TU,

for all 1 ≤ i ≤ j ≤ m. As L |= ASI, L satisfies the sentence defined by c and each ci
and cij , so there is a witness, say y, for the choice of xi := �(vi), for all 1 ≤ i ≤ m.
By construction, the substructure of L generated by �[V ] ∪ {y} is isomorphic to U.
Thus, U embeds into L, so U is in the age of L, contradicting our assumption.

Lastly, based on Lemma 18, it will be enough to establish that L is weakly
homogeneous. Let U ≤ V be finitely generated substructures of L and let � : U → L
be an embedding. Note that since L is symmetric, e is the only new element that can
be generated by a subset. If U = V, then we are done. Assume that U �= V and fix
some v ∈ V \U . Letm := |U | – 1, let {u1, ... , um} be an enumeration ofU \ {eU},
let

c :=

{
0 if [v, v, v] ⊆ TV,

1 if [v, v, v] � TV,

let

ci :=

{
0 if [ui , v, v] ⊆ TV,

1 if [ui , v, v] � TV,

for all 1 ≤ i ≤ m, and let

cij :=

{
0 if [ui , uj , v] ⊆ TV,

1 if [ui , uj , v] � TV,

for all 1 ≤ i ≤ j ≤ m. As L |= ASI, L satisfies the sentence defined by c and each ci
and cij , so there is a witness, say y, for the choice of xi = �(ui), for all 1 ≤ i ≤ m.
By construction, the map � : U ∪ {v} → L given by

�(x) =

{
�(x) if x ∈ U,
y if x = v

embeds the substructure of V generated by U ∪ {v} into L. By assumption, V
is finite, hence � can be extended to an embedding � : V → L by repeating this
construction. Thus, L is weakly homogeneous, which is what we wanted to show. �

Based on Theorem 19, we have the following.

Corollary 30. Together, (IP), (II ),f(x) ≈ x, andASI form a ℵ0-categorical and
therefore complete theory.

Lemma 31. ASI ⊆ SSI.
Proof. Let n ∈ N, letm ∈ �, let c, ci , cij ∈ {0, 1}, for all 1 � i � j � m, and let

� be the sentence from ASI defined by these parameters. Clearly, given non-identity
elements x1, ... , xm, y ∈ {1, ... , n} such that y �= xi , for all 1 � i � n, at most

1 +m +
m2 +m

2
=
m2 + 3m + 2

2
,
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cycles are forced to be consistent for � to be satisfied for these given choices.
Thus, the fraction of structures failing the sentence with these choices is below
1 – 2–(m2+3m+2)/2. There are (n – 1)m ways to select x1, ... , xm, n – m – 1 ways to
select y given x1, ... , xm, and the choices of y are independent once x1, ... , xn are
selected. Based on these results, the fraction of structures not modelling � is bounded
above by

(n – 1)m(1 – 2–(m2+3m+2)/2)n–m–1.

Clearly, (n – 1)m � nm = 2m log2(n) and n – m – 1 < n, so this quantity is below

2m log2(n)+n log2(1–2–(m2+3m+2)/2).

Since 1 – 2–(m2+3m+2)/1 < 1, we have log2(1 – 2–(m2+3m+2)/2) < 0, hence

lim
n→∞

2m log2(n)+n log2(1–2–(m2+3m+2)/2) = 0.

By the Squeeze Principle, the fraction of structures not modelling � tends to 0. Thus,
ASI ⊆ SSI, as claimed. �

So, based on Proposition 19 and Lemma 29, we have the following.

Corollary 32. SSI is ℵ0-categorical, and therefore complete. Thus, FSIASe has a
0–1 law.

This result can be translated to a result for FSIAS.

Corollary 33. FSIAS has a 0–1 law.

Proof. Let U ∈ FSIAS, let eU be the unique element of I, let Ue :=
〈U ;fU, eU, TU〉, let � be a {f,T, I }-sentence, and let �e be the {f, e, T}-sentence
obtained from ϕ by replacing all occurences of I (x), for some x, with x ≈ e. By
construction, U |== ϕ if and only if Ue |== ϕe . As there is a one-to-one correspondence
between isomorphism classes in FSIAS and FSIASe , this observation and Corollary
32 tell us that FSIAS has a 0–1 law, as required. �

Hence, by Theorem 22, we have the following.

Corollary 34. FAS has a 0–1 law.

§4. Further work. Perhaps the most obvious open problem in this area is problem
of determining whether almost all nonassociative relation algebras are representable;
this problem is mentioned by Maddux in [21] and by Hirsch and Hodkinson in
[13]. A possible first step to solving this problem could be solving the corresponding
problems for the classes of feebly and qualitatively representable algebras introduced
by Hirsch et al. in [14].

Problem 1. Determine whether almost all nonassociative relation algebras are
feebly, qualitatively, or (strongly) representable.

Determining whether or not Corollary 34 extends to the classes of nonassociative
relation algebras and relation algebras would also be an interesting problem.

Problem 2. Determine whether NA and RA have 0–1 laws.
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