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Abstract. Planet migration plays a crucial role in shaping planetary systems, and has therefore
received a lot of attention in recent years in an effort to compare the statistical properties
of observed exoplanets with the predictions of planet formation and migration theories. By
modifying the propagation properties of the waves induced by the planet in the disk, the presence
of a strong magnetic field can dramatically influence planet migration, in some cases reversing
its direction. The more realistic case of a weaker magnetic field is less clear, although turbulent
MHD simulations by Baruteau et al. (2011) suggest an effect on the corotation torque. Here,
we present a study of the corotation torque in 2D laminar disks containing a toroidal magnetic
field. We performed MHD simulations of the interaction between the magnetic field and the
horseshoe motion of the gas, and found that this results in an additional corotation torque.
This additional torque can be strong enough to reverse migration even for a field which pressure
is only one percent of the thermal pressure. We speculate that this could lead to long range
outward migration in the outer part of protoplanetary disks and may explain the observations
by direct imaging of planets at several tens of AU from their star like the 4 planets system
HR 8799.
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1. Introduction
The gravitational interaction between planets and their parent protoplanetary disk

gives rise to a torque exerted by the disk on a planet, which drives orbital migration.
The hydrodynamical torque exerted on low mass planets (type I migration) has two com-
ponents. The Lindblad differential torque due the spiral density waves launched at Lind-
blad resonances is negative and leads to fast inward migration. The corotation torque,
due an exchange of angular momentum with the gas within its coorbital region, can be
either positive or negative and may therefore in some circumstances slow down or reverse
migration.

How is the picture modified by the expected presence of a magnetic field ? In the
case of a strong azimuthal magnetic field that prevents horseshoe motion, the corotation
torque is replaced by angular momentum carried away at magnetic resonances, where
the rotational velocity relative to the planet is equal to the propagation speed of a slow
MHD wave or an Alfvén wave (Terquem 2003, Fromang et al. 2005). In the intermedi-
ate case of a weak magnetic field, horseshoe motion can be expected to take place and
give rise to a corotation torque. This has been confirmed by simulations of disks in which
the magneto-rotational instability (MRI) drives magneto-hydrodynamical (MHD) turbu-
lence (Baruteau et al. 2011, hereafter BFNM11). They showed the existence of horseshoe
dynamics and an unsaturated corotation torque. They also found the existence of an ad-
ditional corotation torque with moderate amplitude. In this proceeding, we investigate
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the physical origin and the properties of this additional corotation torque due to a weak
magnetic field. The results presented in this proceeding are described in more details in
Guilet et al. (2013).

2. Physical and numerical setup
2.1. Disk model

We consider a two-dimensional disk located at z = 0 in a cylindrical polar coordinates sys-
tem (r, ϕ, z). We assume a locally isothermal equation of state, and a non-selfgravitating
gas. The disk is laminar, and the effects of MHD turbulence are modeled by effective
diffusion coefficients: a viscosity and a resistivity. The viscosity is parameterized by the
usual α parameter : ν = αc2

s/ΩK , where cs is the sound speed and ΩK is the keplerian
angular velocity. The value of the magnetic diffusivity η is then determined by the as-
sumed magnetic Prandtl number defined as P = ν/η, which is expected to be of order
unity (Lesur & Longaretti 2009). We assume a simple initial magnetic field geometry,
with only a toroidal component Bϕ . This is motivated by the fact that in sheared MHD
turbulence the azimuthal component of the magnetic field tends to be the strongest one.
Furthermore, we initialize the calculation with power law profiles for the surface density
Σ, temperature T and azimuthal magnetic field Bϕ . The power law indices are defined
as b ≡ d log Bϕ/d log r, p ≡ d log Σ/d log r, and q ≡ d log T/d log r. The strength of the
magnetic field is measured in terms of the plasma parameter β, which is defined as the
ratio of the thermal to the magnetic pressure:

β = Pth/Pmag = 2c2
s/v2

A , (2.1)

where vA ≡ B/
√

μ0ρ is the Alfvén velocity, and μ0 is the vacuum permeability.
A planet is introduced in the disk at the beginning of the simulations and is held

in a fixed circular orbit, at a radius rp and azimuth ϕp = 0. We work in the frame
rotating with the planet at angular frequency Ωp . The planet potential is smoothed over
a softening length ε = 0.6H(rp). Except in Section 4, the torque calculations presented in
this paper include the planet’s Hill sphere. Finally, note that all the torques and torque
density distributions presented in this paper are per unit mass of the planet.

2.2. Normalization, fiducial parameters and migration regime
We normalize the radius, surface density, time and magnetic field such that rp = 1,
Σ(rp) = 1, Ωp = 1 and μ0 = 1. We use the following fiducial parameters : a planet-to-
primary mass ratio of Mp = 2×10−5M	 (around 7 earth mass’s for a Sun-like star), a disk
aspect ratio h = 0.05, a plasma parameter β = 100, diffusion coefficients α = 5.10−3 , P =
1, and a slope indice of the magnetic field b = −1. For p and q, we consider the following
fiducial disk model (Model 1 in BFNM11) : p = −1/2 and q = −1, corresponding to a
uniform aspect ratio of the disk.

The fiducial value of the planet mass falls into the regime of type I migration, since
Mp/(M∗h

3) = 0.16. The relative strength of the magnetic field and horseshoe motion
may be measured with the ratio of the Alfvén speed to the shear velocity at the separatrix
of the horseshoe region:

vA

vϕ (rp − xs)
� 0.86

√
M∗h3

Mpβ
. (2.2)

The fiducial parameters give: vA/vφ(xs) � 0.21. Since the Alfvén speed is significantly
smaller than the shear velocity at the separatrix of the horseshoe region, the magnetic
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field is not expected to prevent horseshoe motion of the gas. If they were present, the
magnetic resonances would lie within the horseshoe region. We therefore do not expect
to see magnetic resonances but rather horseshoe motion modified by the presence of the
magnetic field.

2.3. Numerical method
We use two different MHD codes : the finite volume code RAMSES (Fromang et al.
2006), and the finite difference code NIRVANA (Ziegler & Yorke 1997). The numerical
domain extends around the planet location in the range r ∈ [0.5, 2], and φ ∈ [−π, π].
Wave-killing zones are used near the grid’s inner edge (r ∈ [0.5, 0.65]) and outer edge
(r ∈ [1.7, 2]) in order to avoid spurious reflections of the planet’s wakes. Our default grid
resolution is such that the half-width of the horseshoe region is resolved by about 8 cells
for our fiducial set of parameters. We found that this resolution is good enough to obtain
converged results.

3. An additional corotation torque of magnetic origin
A global view of a simulation with the fiducial parameters is represented in Figure 1.

The density perturbation (left panel) shows two distinct features: the usual wake (i.e. the
spiral density waves launched in the inner and the outer disk), and an underdense region
localized around the planet’s orbital radius. This second feature is due to the horseshoe
dynamics in the presence of a magnetic field and will be described further below. The
magnetic field perturbation is mostly located near the corotation, indicating that the
main effect of the relatively weak magnetic field considered here is on the horseshoe
dynamics.

In Figure 2 we show a close up view of the horseshoe region, and compare simula-
tions using our fiducial magnetization β = 100 (upper panels) with simulations using
an extremely weak magnetization (β = 108, lower panels) where the magnetic field is
effectively passive. The horseshoe motion of the gas concentrates the magnetic field on
the dowstream separatrices of the horseshoe region, resulting in a similar magnetic con-
figuration for our fiducial magnetic field and a passive one (left panels). This is the result
of a competition between the advection due to horseshoe motion and diffusion by the

Figure 1. Global view of a simulation with the fiducial parameters. The left panel shows the
surface density perturbation, while the right panel shows the perturbation of the azimuthal
component of the magnetic field. The location of the planet is shown with a white + sign at
r = 1, ϕ = 0. The extent of the region around the planet represented in Figures 2 is shown with
a white sector in the left panel.
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Figure 2. Comparison of simulations using our fiducial magnetization β = 100 (upper panels)
with simulations using an extremely weak magnetization (β = 108 , lower panels) where the
magnetic field is effectively passive. Left panels: the color contours show the magnetic energy
normalized by its initial value. The black lines represent magnetic field lines. Right panels: the
color contours show the density perturbations. The black lines represent the streamlines. In all
panels, the white lines represent the separatrices delimiting the horseshoe region, the black cross
shows the position of the stagnation point at the intersection of the two separatrices. The planet
location is depicted by a black + sign at r = 1, ϕ = 0.

turbulent resistivity. The increased magnetic pressure near the downstream separatrices
creates an underdensity in the magnetized case in order to ensure approximate pressure
balance (right panels). Importantly an azimuthal asymmetry with respect to the planet’s
location is clearly visible: the stagnation point is located at negative azimuth in this
model, and the underdensity as well as the increased magnetic pressure are preferentially
at negative azimuth. The asymmetry of the density distribution results in a net torque
exerted on the planet, which time evolution is shown in Figure 3. The magnetic field
gives rise to a positive additional torque (which we term MHD torque excess), which is
larger than the hydrodynamical torque. As a result a positive total torque is obtained,
corresponding to outward migration.

The properties of the MHD torque excess were characterized by systematically varying
the slope indices of the density, temperature and magnetic field, the viscosity and resis-
tivity as well as the magnetic field strength. We found that the MHD torque excess has
an opposite sign to that of the azimuth of the stagnation point. The sign of the stagnation
point azimuth ϕs is independent of the magnetic field and is governed by the density
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Figure 3. Time evolution of the torque exerted on the planet in our fiducial model, with and
without a magnetic field (full and dashed lines respectively).
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Figure 4. Comparison of the density perturbation obtained in our 2D laminar simulations (left
panel) with that of the 3D turbulent simulations of BFNM11. Both simulations clearly show a
negative density perturbation near the downstream separatrix at negative azimuth.

and temperature profiles in the following way (fit obtained from hydrodynamical simula-
tions): sign(ϕs) = sign(1.3q − p − 0.6). The MHD torque excess is therefore expected to
be positive for profiles typical of protoplanetary disks. On the other hand, the magnitude
of the stagnation point azimuth with respect to the azimuth of the planet is increased
by presence of the magnetic field. The amplitude of the MHD torque excess increases
strongly when the magnetic field strength is increased or when the turbulent resistiv-
ity is decreased (and it is roughly independent of the gradients of density, temperature
and magnetic field). This dependence on the resistivity is due to the fact that a lower
resistivity allows more concentration of magnetic flux on the downstream separatrices.

4. Comparison with 3D MHD simulations of disks with turbulence
due to the MRI

In order to check how well a 3D turbulent situation can be described by 2D simulations
where the effects of turbulence are modeled by diffusion coefficients, we compared our
results with the 3D MHD simulations of disks performed by BFNM11, where the MRI
operates throughout the whole disk. For this purpose, we ran 2D simulations using the
same parameters as in BFNM11, in particular with a viscosity and magnetic field strength
set to α = 3.10−2 , and β = 50 and the same disk model as in the rest of this proceeding
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Figure 5. Comparison of the torque density distribution obtained in our 2D laminar simulations
with that of the 3D turbulent simulations of BFNM11. Hydrodynamic simulations are shown
with dashed lines, while their MHD counterpart are shown with full lines. Furthermore, we
considered 2 values of the magnetic Prandtl number (setting the resistivity): Pm = 1 (black
lines) and Pm = 0.5 (red lines). The torques and torque densities are calculated excluding the
Hill radius for consistency with BFNM11.

(the magnetic Prandtl was not measured in BFNM11, so two values are considered here
P = 0.5 and P = 1). The density perturbation is displayed in Figure 4: the underdense
region located near the downstream separatrix at negative azimuth is clearly visible
in both the 2D laminar simulation (left panel) and the 3D turbulent simulation (right
panel). The torque density distribution, shown in Figure 5, is also very similar in the
turbulent and laminar runs. This gives confidence that the same physical process is at
work in both situations.

5. Conclusion
We showed that a weak toroidal magnetic field such as created by the magneto-

rotational instability can give rise to a significant additional torque on a low mass planet.
This torque excess is positive for disk profiles typical of protoplanetary disk and can be
strong enough to reverse the direction of migration (Guilet et al. 2013). A particularly
interesting consequence is that an outward migration is then possible in the radiatively
efficient outer parts of protoplanetary disks, where the hydrodynamical torque would
otherwise lead to inward migration. We speculate that this could lead to a long range
outward migration in the outer part of protoplanetary disks and may explain the ob-
servations by direct imaging of planets at several tens of AU from their star like the 4
planets system HR 8799 (Marois et al. 2008).

Future research should study the effect on planet migration of a vertical magnetic field,
which is expected to be present in protoplanetary disks (Ferreira et al. 2006, Muto et al.
2008, Guilet & Ogilvie 2012, 2013).
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