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Abstract
We present extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes, providing a common
generalization to the matroidal versions of the theorem due to Kalai and Meshulam, the ‘very colorful’ Helly
theorem introduced by Arocha, Bárány, Bracho, Fabila and Montejano and the ‘semi-intersecting’ colorful Helly
theorem proved by Montejano and Karasev.

As an application, we obtain the following extension of Tverberg’s theorem: Let A be a finite set of points in R𝑑
with |𝐴| > (𝑟 − 1) (𝑑 + 1). Then, there exist a partition 𝐴1, . . . , 𝐴𝑟 of A and a subset 𝐵 ⊂ 𝐴 of size (𝑟 − 1) (𝑑 + 1)
such that ∩𝑟

𝑖=1 conv((𝐵 ∪ {𝑝}) ∩ 𝐴𝑖) ≠ ∅ for all 𝑝 ∈ 𝐴 \ 𝐵. That is, we obtain a partition of A into r parts that
remains a Tverberg partition even after removing all but one arbitrary point from 𝐴 \ 𝐵.

1. Introduction

Let F be a family of (not necessarily distinct) sets, colored with r colors. Formally, we have a partition
F = F1 ∪· · ·∪F𝑟 . We call the subfamilies F𝑖 the color classes of F . We say that a subfamily F ′ ⊂ F is
colorful if it contains at least one set from each color class. We say that F ′ is intersecting if ∩𝐹 ∈F ′𝐹 ≠ ∅.
The colorful Helly theorem, observed by Lovász, asserts the following:

Theorem 1.1 (Lovász’s colorful Helly theorem (see [4])). Let C be a finite family of convex sets in R𝑑
colored with 𝑑 + 1 colors. If all colorful subfamilies of F of size 𝑑 + 1 are intersecting, then one of the
color classes is intersecting.

Many combinatorial properties of families of convex sets, and in particular Helly-type results like
Theorem 1.1, can be described in terms of the nerve of the family. Given a finite family F of sets, the
nerve of F is the simplicial complex on vertex set F whose simplices are the subfamilies F ′ ⊂ F that
are intersecting. We say that a simplicial complex X is d-representable if it is isomorphic to the nerve
of some family of convex sets in R𝑑 .

Two related notions are those of d-collapsibility and d-Lerayness, introduced by Wegner in [24]. Let
X be a simplicial complex. A simplex 𝜎 ∈ 𝑋 is called a free face of X if 𝜎 is contained in a unique
maximal face 𝜏 (possibly equal to 𝜎) of X. Given a free face 𝜎 of size at most d in X, an elementary
d-collapse is the operation of removing from X all the simplices containing 𝜎 (and contained in 𝜏).
We say that X is d-collapsible if there is a sequence of elementary d-collapses reducing X to the void
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complex ∅. A simplicial complex X is called d-Leray if all induced subcomplexes of X, including X
itself, have trivial homology groups in dimensions d and higher.

Wegner showed in [24] that every d-representable complex is d-collapsible and that every
d-collapsible complex is d-Leray. Many interesting results about the intersection patterns of a family of
convex sets can be obtained from the fact that the nerve of such a family is d-collapsible (or d-Leray).
For example, in [9], Kalai and Meshulam proved the following generalizations of Theorem 1.1.

Theorem 1.2 [9, Theorem 2.1]. Let X be a d-collapsible simplicial complex on vertex set V, and let M
be a matroid on V of rank r, with rank function 𝜌 such that 𝑀 ⊂ 𝑋 . Then, there is some 𝜏 ∈ 𝑋 such that
𝜌(𝜏) = 𝑟 and 𝜌(𝑉 \ 𝜏) ≤ 𝑑.

Theorem 1.3 [9, Theorem 1.6]. Let X be a d-Leray simplicial complex on vertex set V, and let M be a
matroid on V of rank r, with rank function 𝜌 such that 𝑀 ⊂ 𝑋 . Then, there is some 𝜏 ∈ 𝑋 such that
𝜌(𝑉 \ 𝜏) ≤ 𝑑.

Theorem 1.1 can be deduced from either Theorem 1.2 or 1.3 by taking X to be the nerve of the
family of convex sets, and M to be a ‘partition matroid’ corresponding to the coloring of the family (see
Section 6 for more details).

Generalizations of Theorem 1.1 in a different direction were presented by Arocha et al. in [3] and by
Montejano and Karasev in [13].

Theorem 1.4 (Very colorful Helly theorem [3, Theorem 10]). Let 1 ≤ 𝑘 ≤ 𝑑 + 1, and let C be a finite
family of convex sets in R𝑑 colored with 𝑑 + 1 colors. If every subfamily C ′ ⊂ C of size 𝑑 + 1 having at
least k different colors is intersecting, then there are 𝑑 + 2− 𝑘 color classes whose union is intersecting.

Theorem 1.5 (‘Semi-intersecting’ colorful Helly theorem [13, Lemma 2]). Let C be a finite family of
convex sets in R𝑑 colored with 𝑑 + 2 colors. If every colorful subfamily of size 𝑑 + 2 has at most one
nonintersecting subfamily of size 𝑑 + 1, then one of the color classes is intersecting.

Our main results consist of the following common generalizations of Theorem 1.4, Theorem 1.5 and
Theorem 1.2 (Theorem 1.3, respectively).

Theorem 1.6. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟} be integers. Let V be a
finite set with |𝑉 | ≥ max{𝑚 + 𝑑, 𝑟}. Let X be a d-collapsible simplicial complex on vertex set V, and let
M be a matroid of rank r on vertex set V with rank function 𝜌.

Assume that, for every 𝑈 = {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 , there is some 𝑖 ∈ [𝑚] such
that {𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖} ∈ 𝑋 . Then, there is some 𝜏 ∈ 𝑋 such that 𝜌(𝜏) ≥ 𝑟 + 1 −𝑚 and 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

Under the weaker assumption of d-Lerayness, we obtain a weaker conclusion:

Theorem 1.7. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟} be integers. Let V be a
finite set with |𝑉 | ≥ max{𝑚 + 𝑑, 𝑟}. Let X be a d-Leray simplicial complex on vertex set V, and let M be
a matroid of rank r on vertex set V with rank function 𝜌.

Assume that for every𝑈 = {𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−1} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 , either {𝑢1, . . . , 𝑢𝑑+1} ∈
𝑋 or there exists 𝑗 ∈ [𝑚 − 1] such that 𝜎 ∪ {𝑣 𝑗 } ∈ 𝑋 for every 𝜎 � {𝑢1, . . . , 𝑢𝑑+1}. Then, there is some
𝜏 ∈ 𝑋 such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

Remark 1.8. Note that the condition in Theorem 1.6 is implied by the condition in Theorem 1.7 and
that both conditions are implied by the following stronger (but perhaps more natural) condition: ‘For
every subset U of V of size 𝑑 +𝑚 with 𝜌(𝑈) ≥ 𝑘 , all but possibly at most 𝑚 − 1 of the the subsets of U
of size 𝑑 + 1 are simplices in X’. Moreover, note that all three conditions are equivalent for 𝑚 ≤ 2.

As an immediate consequence of Theorem 1.6, we obtain the following:

Theorem 1.9. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟}. Let C be a finite family
of convex sets in R𝑑 , colored with r different colors, of size |C | ≥ max{𝑚 + 𝑑, 𝑟}. Assume that for
every family {𝐴1, . . . , 𝐴𝑑 , 𝐵1, . . . , 𝐵𝑚} ⊂ C, colored with at least k different colors, at least one of the
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subfamilies of the form {𝐴1, . . . , 𝐴𝑑 , 𝐵𝑖}, for 𝑖 ∈ [𝑚], is intersecting. Then, there are 𝑟 − 𝑘 + 1 color
classes whose union is intersecting.

In the special case 𝑚 = 1 and 𝑟 = 𝑑 + 1, we recover Theorem 1.4. For 𝑚 = 2 and 𝑟 = 𝑘 = 𝑑 + 2, we
recover Theorem 1.5.

As an application of Theorem 1.9, we obtain the following extension of Tverberg’s theorem [23].
Let 𝐴 ⊂ R𝑑 be a finite set of points, and let 𝐴 = 𝐴1 ∪ . . . ∪ 𝐴𝑟 be a partition of A. We say that

𝐴1, . . . , 𝐴𝑟 is a Tverberg partition of A if∩𝑟
𝑖=1 conv(𝐴𝑖) ≠ ∅. Let 𝐵 ⊂ 𝐴. We say that 𝐵 � 𝐴 is a Tverberg

center for the partition 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑟 if, for every 𝑝 ∈ 𝐴 \ 𝐵,
⋂𝑟

𝑖=1 conv((𝐵 ∪ {𝑝}) ∩ 𝐴𝑖) ≠ ∅. In
other words, B is a Tverberg center for 𝐴 = 𝐴1 ∪ . . .∪ 𝐴𝑟 if, for every 𝑝 ∈ 𝐴 \𝐵, the partition of 𝐵∪ {𝑝}
induced by 𝐴1, . . . , 𝐴𝑟 is a Tverberg partition.

Theorem 1.10. Let 𝑑 ≥ 1, 𝑟 ≥ 2, and let 𝑛 = (𝑟 − 1) (𝑑 + 1). Let 𝐴 ⊂ R𝑑 be a finite set of points of size
larger than n. Then, there exists a partition 𝐴1, . . . , 𝐴𝑟 of A that has a Tverberg center of size n.

For |𝐴| = 𝑛+ 1, this is exactly Tverberg’s theorem. Theorem 1.10 is sharp in the sense that we cannot
guarantee a Tverberg center of size smaller than (𝑟 − 1) (𝑑 + 1): Let A be a generic set of points in R𝑑 (in
the sense that the 𝑑 |𝐴| coordinates of A are algebraically independent over the rationals). Assume for
contradiction that A has a partition 𝐴1, . . . , 𝐴𝑟 with a Tverberg center B of size 𝑘 < (𝑟 −1) (𝑑 +1). Then,
for every 𝑝 ∈ 𝐴 \ 𝐵, 𝐵′ = 𝐵∪ {𝑝} is a generic set of 𝑘 +1 ≤ (𝑟 −1) (𝑑 +1) points in R𝑑 , with a Tverberg
partition into r parts. However, it is well known that such a set does not have a Tverberg partition into
r parts (see, e.g., [23]). In fact, the condition of genericity can be replaced by the weaker property of
‘strong general position’ introduced by Reay in [18] (under the name ‘strong independence’); see also
[16, 17].

Theorem 1.10 is closely related to the ‘tolerant Tverberg theorem’ (see, e.g., [12, 6, 21, 7, 8]). Using
Theorem 1.10, we obtain a new proof of the following result from [21]:

Theorem 1.11 (Soberón–Strausz [21, Theorem 1]). Let 𝑑 ≥ 1, 𝑟 ≥ 2 and 𝑡 ≥ 0. Let 𝐴 ⊂ R𝑑 be a finite
set of points of size at least (𝑡 + 1) (𝑟 − 1) (𝑑 + 1) + 1. Then, there exists a partition 𝐴1, . . . , 𝐴𝑟 of A such
that, for any 𝐶 ⊂ 𝐴 of size t,

𝑟⋂
𝑖=1

conv(𝐴𝑖 \ 𝐶) ≠ ∅.

Our paper is organized as follows. In Section 2, we present some basic facts about simplicial
complexes and matroids that we will use later. In Section 3, we introduce the notion of ‘tolerance
complexes’ of matroids, which is used in the proofs of our main results. In Section 4, we present the
proof of Theorem 1.6, and in Section 5, we present the proof of Theorem 1.7. Section 6 deals with
the geometric applications of our results and contains the proofs of Theorems 1.9, 1.10 and 1.11. We
conclude in Section 7 with some open problems arising from our work.

2. Preliminaries

2.1. Simplicial complexes

A simplicial complex X is a family of subsets of some finite set V such that for every 𝜎 ∈ 𝑋 and 𝜎′ ⊂ 𝜎,
we have 𝜎′ ∈ 𝑋 . The set 𝑉 = 𝑉 (𝑋) is called the vertex set of X. The sets in X are called the simplices or
faces of the complex. The dimension of a simplex 𝜎 ∈ 𝑋 is |𝜎 | − 1, and the dimension of X, denoted by
dim(𝑋), is the maximal dimension of a simplex in X. We denote by 2𝑉 = {𝜎 : 𝜎 ⊂ 𝑈} the complete
complex on vertex set V.

A subcomplex of X is a simplicial complex 𝑋 ′ such that each simplex of 𝑋 ′ is also a simplex of X.
For 𝑈 ⊂ 𝑉 , the subcomplex of X induced by U is the complex

𝑋 [𝑈] = {𝜎 ∈ 𝑋 : 𝜎 ⊂ 𝑈}.
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Let 𝜎 be a simplex in X. We define the link of 𝜎 in X to be the subcomplex

lk(𝑋, 𝜎) = {𝜏 ∈ 𝑋 : 𝜎 ∩ 𝜏 = ∅, 𝜎 ∪ 𝜏 ∈ 𝑋},

and the costar of 𝜎 in X to be the subcomplex

cost(𝑋, 𝜎) = {𝜏 ∈ 𝑋 : 𝜎 ⊄ 𝜏}.

If 𝜎 is a zero-dimensional simplex, that is, if 𝜎 = {𝑣} for some vertex 𝑣 ∈ 𝑉 , we simply write
lk(𝑋, 𝑣) = lk(𝑋, {𝑣}), and 𝑋 \ 𝑣 = cost(𝑋, {𝑣}) = 𝑋 [𝑉 \ {𝑣}].

Let X and Y be simplicial complexes on disjoint vertex sets. The join of X and Y is the simplicial
complex on 𝑉 (𝑋) ∪𝑉 (𝑌 ) defined as

𝑋 ∗ 𝑌 = {𝜎 ∪ 𝜏 : 𝜎 ∈ 𝑋, 𝜏 ∈ 𝑌 }.

The following well-known special case of the Mayer–Vietoris exact sequence relates the homology
of a complex X to that of the link and costar of one of its vertices (see, e.g., [11, Theorem 2.2] for a
detailed proof).

Theorem 2.1. Let X be a simplicial complex on vertex set V, and let 𝑣 ∈ 𝑉 . Then, there is an exact
sequence

· · · → 𝐻̃𝑘 (lk(𝑋, 𝑣)) → 𝐻̃𝑘 (𝑋 \ 𝑣) → 𝐻̃𝑘 (𝑋) → 𝐻̃𝑘−1(lk(𝑋, 𝑣)) → · · ·

We will need the following equivalent definition of d-Leray complexes due to Kalai and Meshulam.

Lemma 2.2 [10, Proposition 3.1]. A simplicial complex X is d-Leray if and only if 𝐻̃𝑘 (lk(𝑋, 𝜎)) = 0
for all 𝜎 ∈ 𝑋 and 𝑘 ≥ 𝑑.

Recall that, given a free face 𝜎 ∈ 𝑋 of size |𝜎 | ≤ 𝑑, an elementary d-collapse is the operation
consisting of removing 𝜎 and all simplices containing it from X. Note that the complex obtained after
this operation is exactly cost(𝑋, 𝜎). We denote such an elementary d-collapse by 𝑋 → 𝑋 ′ = cost(𝑋, 𝜎).
The following equivalent definition of d-collapsibility was observed by Tancer in [22] (see also [24,
Lemma 1] for a similar statement):

Lemma 2.3 [22, Lemma 5.2]. A simplicial complex X is d-collapsible if and only if there is a sequence
of elementary d-collapses

𝑋 = 𝑋1 → 𝑋2 → · · · → 𝑋𝑡

such that the free face in each elementary d-collapse is of size exactly d, and dim(𝑋𝑡 ) < 𝑑 − 1.

2.2. Matroids

A family M of subsets of a nonempty set V is a matroid if it satisfies

(i) ∅ ∈ 𝑀 ,
(ii) for all 𝐴′ ⊂ 𝐴 ⊂ 𝑉 , if 𝐴 ∈ 𝑀 , then 𝐴′ ∈ 𝑀 , and

(iii) if 𝐴, 𝐵 ∈ 𝑀 and |𝐴| < |𝐵 |, then there exists 𝑥 ∈ 𝐵 \ 𝐴 such that 𝐴 ∪ {𝑥} ∈ 𝑀 .

The elements of M are usually called the independent sets of M, and the maximal elements are called
the bases of M. The rank function of a matroid M on V is a function 𝜌 : 2𝑉 → N such that for every
𝑊 ⊂ 𝑉 , 𝜌(𝑊) equals the maximal size of a set 𝑊 ′ ⊂ 𝑊 with 𝑊 ′ ∈ 𝑀 . The rank of the matroid M is
defined as 𝜌(𝑉). The span of a set 𝑈 ⊂ 𝑉 is defined as

span𝑀 (𝑈) = {𝑣 ∈ 𝑉 : 𝜌(𝑈 ∪ {𝑣}) = 𝜌(𝑈)}.
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Note that the conditions (i) and (ii) allow us to regard a matroid M as a simplicial complex. Moreover,
condition (iii), sometimes called the ‘exchange property’ for independent sets, implies that M is a pure
simplicial complex – that is, all the bases of M are of the same size (equal to the rank of M). See, for
example, [15] for more background on matroids.

We will need the following very simple auxiliary results about matroids.

Lemma 2.4. Let M be a rank r matroid on vertex set V, and let 𝜌 be its rank function. Then, for each
0 ≤ 𝑡 ≤ |𝑉 |, there exists 𝑈 ⊂ 𝑉 such that |𝑈 | = 𝑡 and 𝜌(𝑈) ≥ min{𝑡, 𝑟}.

Proof. If 𝑡 ≤ 𝑟 , let U be any independent set of M of size t. If 𝑡 ≥ 𝑟 , let 𝑈 ⊂ 𝑉 be any set of size t
containing a basis of M. �

Lemma 2.5. Let M be a matroid on vertex set V with rank function 𝜌. Let 𝑈 ⊂ 𝑊 ⊂ 𝑉 . Then

𝜌(𝑈) ≥ 𝜌(𝑊) − |𝑊 \𝑈 |.

Proof. By definition of the rank function, W contains an independent set𝑊 ′ of size 𝜌(𝑊). Then,𝑊 ′∩𝑈
is an independent set of size at least |𝑊 ′ | − |𝑊 \𝑈 | = 𝜌(𝑊) − |𝑊 \𝑈 |. So 𝜌(𝑈) ≥ 𝜌(𝑊) − |𝑊 \𝑈 |. �

3. Tolerance complexes of matroids

Let M be a matroid with rank function 𝜌 on vertex set V. Let 𝑟 = 𝜌(𝑉) be the rank of M. For 0 ≤ 𝑡 ≤ 𝑟 , let

𝑀 𝑡 = {𝜎 ⊂ 𝑉 : 𝜌(𝜎) ≥ |𝜎 | − 𝑡}.

In particular, for 𝑡 = 0 we have 𝑀0 = 𝑀 . Note that 𝑀 𝑡 is exactly the ‘t-tolerance complex’ of M, as
defined in [11].

Lemma 3.1. Let 0 ≤ 𝑡 ≤ 𝑟 . Then, 𝑀 𝑡 is a matroid.

Proof. First, note that 𝑀 𝑡 is a simplicial complex: If 𝜎 ∈ 𝑀 𝑡 and 𝜎′ ⊂ 𝜎, then, by Lemma 2.5,

𝜌(𝜎′) ≥ 𝜌(𝜎) − |𝜎 \ 𝜎′ | ≥ |𝜎 | − |𝜎 \ 𝜎′ | − 𝑡 = |𝜎′ | − 𝑡,

and therefore 𝜎′ ∈ 𝑀 𝑡 .
We will show that 𝑀 𝑡 satisfies the exchange property for independent sets: Let 𝜎, 𝜏 ∈ 𝑀 𝑡 such that

|𝜏 | > |𝜎 |. We have to show that there is a vertex 𝑣 ∈ 𝜏 \ 𝜎 such that 𝜎 ∪ {𝑣} ∈ 𝑀 𝑡 .
Since 𝜎 ∈ 𝑀 𝑡 , we have 𝜌(𝜎) ≥ |𝜎 | − 𝑡. If 𝜌(𝜎) > |𝜎 | − 𝑡, then for all 𝑣 ∈ 𝑉 \ 𝜎 we have

𝜌(𝜎 ∪ {𝑣}) ≥ 𝜌(𝜎) ≥ |𝜎 ∪ {𝑣}| − 𝑡, as wanted. If 𝜌(𝜎) = |𝜎 | − 𝑡, then, since 𝜏 ∈ 𝑀 𝑡 ,

𝜌(𝜏) ≥ |𝜏 | − 𝑡 > |𝜎 | − 𝑡 = 𝜌(𝜎).

Let 𝜏′ ⊂ 𝜏 such that |𝜏′ | = 𝜌(𝜏) and 𝜏′ ∈ 𝑀 , and let 𝜎′ ⊂ 𝜎 such that |𝜎′ | = 𝜌(𝜎) and 𝜎′ ∈ 𝑀 . Then,
since |𝜏′ | > |𝜎′ |, there exists 𝑣 ∈ 𝜏′ \ 𝜎′ such that 𝜎′ ∪ {𝑣} ∈ 𝑀 . Note that 𝑣 ∈ 𝜏 \ 𝜎 (otherwise,
𝜎′ ∪ {𝑣} ⊂ 𝜎, in contradiction to 𝜌(𝜎) = |𝜎′ |). We obtain

𝜌(𝜎 ∪ {𝑣}) ≥ 𝜌(𝜎) + 1 = |𝜎 ∪ {𝑣}| − 𝑡,

and therefore, 𝜎 ∪ {𝑣} ∈ 𝑀 𝑡 . Hence, 𝑀 𝑡 is a matroid. �

Lemma 3.2. Let 0 ≤ 𝑡 ≤ 𝑟 . Denote the rank function of 𝑀 𝑡 by 𝜌𝑡 . Then, for every 𝐴 ⊂ 𝑉 ,

𝜌𝑡 (𝐴) = min{|𝐴|, 𝜌(𝐴) + 𝑡}.

Proof. Assume first that |𝐴| ≤ 𝜌(𝐴) + 𝑡. Then 𝜌(𝐴) ≥ |𝐴| − 𝑡, and therefore 𝐴 ∈ 𝑀 𝑡 . In particular,
𝜌𝑡 (𝐴) = |𝐴|.
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Assume now that |𝐴| ≥ 𝜌(𝐴) + 𝑡. Let 𝐼 ⊂ 𝐴 such that |𝐼 | = 𝜌(𝐴) and 𝐼 ∈ 𝑀 . Then, any 𝑈 ⊂ 𝐴 of
size 𝜌(𝐴) + 𝑡 containing I satisfies

𝜌(𝑈) ≥ 𝜌(𝐼) = 𝜌(𝐴) = (𝜌(𝐴) + 𝑡) − 𝑡 = |𝑈 | − 𝑡,

and therefore belongs to 𝑀 𝑡 . Thus, 𝜌𝑡 (𝐴) ≥ 𝜌(𝐴) + 𝑡. On the other hand, every𝑈 ⊂ 𝐴 such that𝑈 ∈ 𝑀 𝑡

satisfies 𝜌(𝑈) ≥ |𝑈 | − 𝑡, and therefore |𝑈 | ≤ 𝜌(𝑈) + 𝑡 ≤ 𝜌(𝐴) + 𝑡. So 𝜌𝑡 (𝐴) ≤ 𝜌(𝐴) + 𝑡. �

Remark 3.3. Given two matroids 𝑀1 and 𝑀2 on vertex set V, the matroid union of 𝑀1 and 𝑀2 is defined
as 𝑀1 ∨𝑀2 = {𝜎 ∪ 𝜏 : 𝜎 ∈ 𝑀1, 𝜏 ∈ 𝑀2}. The matroid union theorem (see, e.g., [15, Sec. 11.3]) states
that 𝑀1 ∨ 𝑀2 is a matroid, with rank function 𝜌12 satisfying

𝜌12 (𝐴) = min{𝜌1(𝐵) + 𝜌2 (𝐵) + |𝐴 \ 𝐵 | : 𝐵 ⊂ 𝐴}

for every 𝐴 ⊂ 𝑉 , where 𝜌1 and 𝜌2 are the rank functions of 𝑀1 and 𝑀2, respectively.
Note that 𝑀 𝑡 is the matroid union of M and the uniform matroid {𝐴 ⊂ 𝑉 : |𝐴| ≤ 𝑡}. Therefore,

Lemma 3.1 and Lemma 3.2 can also be obtained as a consequence of the matroid union theorem.

4. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Our proof extends the argument for the case 𝑚 = 1, 𝑘 = 𝑑 + 1
given by Kalai and Meshulam in [9, Theorem 2.1].

Theorem 1.6. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟} be integers. Let V be a
finite set with |𝑉 | ≥ max{𝑚 + 𝑑, 𝑟}. Let X be a d-collapsible simplicial complex on vertex set V, and let
M be a matroid of rank r on vertex set V with rank function 𝜌.

Assume that, for every 𝑈 = {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 , there is some 𝑖 ∈ [𝑚] such
that {𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖} ∈ 𝑋 . Then, there is some 𝜏 ∈ 𝑋 such that 𝜌(𝜏) ≥ 𝑟 + 1 −𝑚 and 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

Proof of Theorem 1.6. Let

R = {𝜂 ∈ 𝑋 : |𝜂 | ≥ 𝑑 + 1, 𝜌(𝜂) ≥ 𝑘 − 𝑚 − 𝑑 + |𝜂 |}

= {𝜂 ∈ 𝑋 ∩ 𝑀𝑑+𝑚−𝑘 : |𝜂 | ≥ 𝑑 + 1}.

By Lemma 2.4, there is some 𝑈 = {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑉 with 𝜌(𝑈) ≥ min{𝑚 + 𝑑, 𝑟} ≥ 𝑘 .
Then, there is some 𝑖 ∈ [𝑚] such that 𝜎𝑖 = {𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖} ∈ 𝑋 . Note that 𝜎𝑖 ⊂ 𝑈 ∈ 𝑀𝑑+𝑚−𝑘 , so
𝜎𝑖 ∈ R, and in particular R ≠ ∅.

By Lemma 2.3, there is a sequence of elementary d-collapses 𝑋 = 𝑋1 → 𝑋2 → · · · → 𝑋𝑡 such that
the free faces collapsed at each step are of size exactly d, and 𝑋𝑡 satisfies dim(𝑋𝑡 ) < 𝑑 − 1.

By definition, R ⊂ 𝑋 = 𝑋1, and clearly R ⊄ 𝑋𝑡 . Let 1 ≤ 𝑛 < 𝑡 be the maximal index such that
R ⊂ 𝑋𝑛. Let 𝜎 be the free face of size d in the elementary d-collapse 𝑋𝑛 → 𝑋𝑛+1, and let 𝜏 be the
unique maximal face of 𝑋𝑛 containing 𝜎.

Since R ⊂ 𝑋𝑛 but R ⊄ 𝑋𝑛+1, there is some 𝜎 ⊂ 𝜎′ ⊂ 𝜏 such that 𝜎′ ∈ 𝑀𝑑+𝑚−𝑘 . In particular, we
have 𝜎 ∈ 𝑀𝑑+𝑚−𝑘 . Let

A = {𝜂 ⊂ 𝑉 \ 𝜎 : 𝜎 ∪ 𝜂 ∈ 𝑀𝑑+𝑚−𝑘 , 𝜎 ∪ {𝑢} ∉ 𝑋𝑛 for all 𝑢 ∈ 𝜂}.

Note that, since 𝜎 ∈ 𝑀𝑑+𝑚−𝑘 , we have ∅ ∈ A, and therefore A ≠ ∅. Let 𝜂 be a maximal element of A.
First, note that |𝜂 | ≤ 𝑚 − 1. Otherwise, let 𝑣1, . . . , 𝑣𝑚 ∈ 𝜂, and let 𝑈 = 𝜎 ∪ {𝑣1, . . . , 𝑣𝑚}. Then

𝑈 ⊂ 𝜎 ∪ 𝜂 ∈ 𝑀𝑑+𝑚−𝑘 , and therefore

𝜌(𝑈) ≥ |𝑈 | − (𝑑 + 𝑚 − 𝑘) = (𝑑 + 𝑚) − (𝑑 + 𝑚 − 𝑘) = 𝑘.
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Therefore, there is some 𝑖 ∈ [𝑚] such that 𝜎𝑖 = 𝜎 ∪ {𝑣𝑖} ∈ 𝑋 . Since 𝜎𝑖 ⊂ 𝜎 ∪ 𝜂 ∈ 𝑀𝑑+𝑚−𝑘 , we also
have 𝜎𝑖 ∈ 𝑀𝑑+𝑚−𝑘 . Thus, 𝜎𝑖 ∈ R, and therefore 𝜎𝑖 = 𝜎 ∪ {𝑣𝑖} ∈ 𝑋𝑛, in contradiction to 𝜂 ∈ A.

Next, note that, for all 𝑣 ∈ 𝑉 \ span𝑀 (𝜎 ∪ 𝜂), we have 𝜎 ∪ {𝑣} ∈ 𝑋𝑛. Otherwise, we would
have

𝜌(𝜎 ∪ 𝜂 ∪ {𝑣}) = 𝜌(𝜎 ∪ 𝜂) + 1 ≥ |𝜎 ∪ 𝜂 | − (𝑑 + 𝑚 − 𝑘) + 1 = |𝜎 ∪ 𝜂 ∪ {𝑣}| − (𝑑 + 𝑚 − 𝑘).

So 𝜎 ∪ 𝜂 ∪ {𝑣} ∈ 𝑀𝑑+𝑚−𝑘 , and therefore 𝜂 ∪ {𝑣} ∈ A, in contradiction the the maximality of 𝜂.
Therefore, since 𝜎 is contained in the unique maximal face 𝜏 of 𝑋𝑛, we obtain

𝑉 \ span𝑀 (𝜎 ∪ 𝜂) ⊂ 𝜏, (4.1)

or equivalently,

𝑉 \ 𝜏 ⊂ span𝑀 (𝜎 ∪ 𝜂).

We divide into two cases: If 𝜌(𝜎 ∪ 𝜂) = |𝜎 ∪ 𝜂 | − (𝑑 + 𝑚 − 𝑘) = 𝑘 − 𝑚 + |𝜂 |, then

𝜌(𝑉 \ 𝜏) ≤ 𝜌(𝜎 ∪ 𝜂) = 𝑘 − 𝑚 + |𝜂 | ≤ 𝑘 − 1,

as wanted.
If 𝜌(𝜎 ∪ 𝜂) ≥ |𝜎 ∪ 𝜂 | − (𝑑 + 𝑚 − 𝑘) + 1, then for every 𝑣 ∈ 𝑉 \ (𝜎 ∪ 𝜂), we have

𝜌(𝜎 ∪ 𝜂 ∪ {𝑣}) ≥ 𝜌(𝜎 ∪ 𝜂) ≥ |𝜎 ∪ 𝜂 ∪ {𝑣}| − (𝑑 + 𝑚 − 𝑘).

So 𝜎 ∪ 𝜂 ∪ {𝑣} ∈ 𝑀𝑑+𝑚−𝑘 , and therefore, by the maximality of 𝜂 in A, we must have 𝜎 ∪ {𝑣} ∈ 𝑋𝑛.
Hence, since 𝜎 is contained in the unique maximal face 𝜏 of 𝑋𝑛, we have 𝑉 \ 𝜂 ⊂ 𝜏 (actually, 𝑉 \ 𝜂 = 𝜏
since 𝜎 ∪ {𝑢} ∉ 𝑋𝑛 for all 𝑢 ∈ 𝜂 by the definition of A). Thus,

𝜌(𝑉 \ 𝜏) = 𝜌(𝜂) ≤ |𝜂 | ≤ 𝑚 − 1 ≤ 𝑘 − 1.

Finally, let 𝑣 ∈ 𝑉 . If 𝑣 ∈ span𝑀 (𝜎 ∪ 𝜂), then, since 𝜎 ⊂ 𝜏, we have 𝑣 ∈ span𝑀 (𝜏 ∪ 𝜂). If
𝑣 ∉ span𝑀 (𝜎 ∪ 𝜂), then by Equation (4.1), 𝑣 ∈ 𝜏 ⊂ span𝑀 (𝜏 ∪ 𝜂). Thus, span𝑀 (𝜏 ∪ 𝜂) = 𝑉 , and
therefore 𝜌(𝜏 ∪ 𝜂) = 𝜌(𝑉) = 𝑟 . Hence, by Lemma 2.5, we obtain

𝜌(𝜏) ≥ 𝑟 − |𝜂 | ≥ 𝑟 − 𝑚 + 1. �

5. Proof of Theorem 1.7

First, we prove the 𝑚 = 1 case of Theorem 1.7:

Theorem 5.1. Let X be a d-Leray simplicial complex on vertex set V. Let M be a matroid on V of rank
𝑟 ≥ 𝑑 + 1. Denote by 𝜌 the rank function of M. Let 1 ≤ 𝑘 ≤ 𝑑 + 1.

Assume that X contains all the sets 𝜎 ⊂ 𝑉 of size 𝑑 + 1 such that 𝜌(𝜎) ≥ 𝑘 . Then, there is some
𝜏 ∈ 𝑋 such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

The main tool we will need for the proof is the following result by Kalai and Meshulam (implicit in
the proof of [9, Thm 1.6]; see also [2, Theorem 3] for a similar statement and [1, Theorem 4.5] for an
equivalent dual version).

Lemma 5.2 (Kalai–Meshulam [9]). Let X be a simplicial complex and M a matroid with rank function
𝜌 on the same vertex set V. For each 𝜎 ∈ 𝑋 , let

ℓ𝜎 = min{𝑘 ≥ −1 : 𝐻̃𝑖 (lk(𝑋, 𝜎)) = 0 ∀𝑖 ≥ 𝑘}.
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If for all 𝜎 ∈ 𝑋 ,

𝜌(𝑉 \ 𝜎) ≥ ℓ𝜎 + 1,

then 𝑀 ⊄ 𝑋 .
We will also need the following well-known simple result.

Lemma 5.3 (Helly’s theorem for d-Leray complexes). Let X be a d-Leray complex on vertex set V, and
let 𝑈 ⊂ 𝑉 be a set of size at least 𝑑 + 1. Assume that every subset of U of size 𝑑 + 1 is a simplex of X.
Then, 𝑈 ∈ 𝑋 .
Proof. Assume for contradiction that 𝑈 ∉ 𝑋 . Let 𝑆 ⊂ 𝑈 be an inclusion minimal set such that 𝑆 ∉ 𝑋 .
By the assumption of the lemma, we must have |𝑆 | ≥ 𝑑 + 2. But then, by the minimality of S, 𝑋 [𝑆]
is just the boundary of a (|𝑆 | − 1)-dimensional simplex, which has nontrivial homology in dimension
|𝑆 | − 2 ≥ 𝑑. This is a contradiction to the assumption that X is d-Leray. �

Proof of Theorem 5.1. Assume for contradiction that for all 𝜎 ∈ 𝑋 , 𝜌(𝑉 \ 𝜎) ≥ 𝑘 . In particular, we
have |𝑉 \ 𝜎 | ≥ 𝑘 for all 𝜎 ∈ 𝑋 .

Recall that we defined, for 𝜎 ∈ 𝑋 ,

ℓ𝜎 = min{𝑛 ≥ −1 : 𝐻̃𝑖 (lk(𝑋, 𝜎)) = 0∀𝑖 ≥ 𝑛}.

Let 𝑡 = 𝑑 + 1 − 𝑘 . In order to apply Lemma 5.2, we will show that 𝜌𝑡 (𝑉 \ 𝜎) ≥ ℓ𝜎 + 1 for all 𝜎 ∈ 𝑋 .
Let 𝜎 ∈ 𝑋 . By Lemma 3.2, we have

𝜌𝑡 (𝑉 \ 𝜎) ≥ min{|𝑉 \ 𝜎 |, 𝑡 + 𝑘} = min{|𝑉 \ 𝜎 |, 𝑑 + 1}.

We divide into two cases:
First, assume |𝑉 \𝜎 | ≥ 𝑑+1. Then, since X is d-Leray, we have, by Lemma 2.2, ℓ𝜎 ≤ 𝑑, and therefore

𝜌𝑡 (𝑉 \ 𝜎) ≥ min{|𝑉 \ 𝜎 |, 𝑑 + 1} = 𝑑 + 1 ≥ ℓ𝜎 + 1.

Now, assume |𝑉 \ 𝜎 | ≤ 𝑑. Then, we have 𝜌𝑡 (𝑉 \ 𝜎) = |𝑉 \ 𝜎 |. Since |𝑉 \ 𝜎′| ≥ 𝑘 for all 𝜎′ ∈ 𝑋 , we
must have dim(𝑋) ≤ |𝑉 | − 𝑘 − 1, and therefore

dim(lk(𝑋, 𝜎)) ≤ |𝑉 \ 𝜎 | − 𝑘 − 1.

In particular, ℓ𝜎 ≤ |𝑉 \ 𝜎 | − 𝑘 . We obtain

𝜌𝑡 (𝑉 \ 𝜎) = |𝑉 \ 𝜎 | ≥ ℓ𝜎 + 𝑘 ≥ ℓ𝜎 + 1.

Hence, by Lemma 5.2, we have 𝑀 𝑡 ⊄ 𝑋 . That is, there is some 𝜏 ∈ 𝑀 𝑡 such that 𝜏 ∉ 𝑋 . If |𝜏 | ≥ 𝑑 + 1
then, by Lemma 5.3, there is some 𝜏′ ⊂ 𝜏 of size 𝑑 + 1 such that 𝜏′ ∉ 𝑋 . If |𝜏 | < 𝑑 + 1, then, since 𝑀 𝑡

is a matroid of rank 𝑟 ≥ 𝑑 + 1 > |𝜏 |, there is some 𝜏′ ⊃ 𝜏 of size 𝑑 + 1 such that 𝜏′ ∈ 𝑀 𝑡 , and, since
𝜏 ∉ 𝑋 , we also have 𝜏′ ∉ 𝑋 .

In both cases, since 𝜏′ ∈ 𝑀 𝑡 , we have

𝜌(𝜏′) ≥ |𝜏′ | − 𝑡 = 𝑑 + 1 − 𝑡 = 𝑘,

but this is a contradiction to the assumption of the theorem. �

For the proof of Theorem 1.7, we will need the following Lemma about d-Leray complexes.
Lemma 5.4. Let X be a d-Leray complex on vertex set V, and let 𝐴 ⊂ 𝑑 + 1 such that 𝐴 ∉ 𝑋 . Let

𝑈 = {𝑣 ∈ 𝑉 \ 𝐴 : 𝑣 ∪ 𝜎 ∈ 𝑋 : for all 𝜎 ⊂ 𝐴, |𝜎 | = 𝑑}.

Assume that 𝑈 ≠ ∅. Then, for every 𝑎 ∈ 𝐴, 𝑈 ∪ 𝐴 \ {𝑎} ∈ 𝑋 .
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Proof. Given a set 𝐵 ⊂ 𝑉 and 𝑖 ≥ 0, we denote by
(𝐵
𝑖

)
the family of all subsets of B of size i, and we

denote by 𝜕2𝐵 the boundary of the simplex on vertex set B, that is, the simplicial complex consisting of
all proper subsets of B.

First, note that, since 𝑈 ≠ ∅, we must have 𝜎 ∈ 𝑋 for every 𝜎 � 𝐴. That is, 𝜕2𝐴 ⊂ 𝑋 . We will show
that, for every 1 ≤ 𝑖 ≤ |𝑈 | and 𝑊 ∈

(𝑈
𝑖

)
, 𝑋 [𝐴 ∪𝑊] = 𝜕2𝐴 ∗ 2𝑊 . We argue by induction on i. The base

case 𝑖 = 1 is obvious by the definition of U. Suppose, for some 1 ≤ 𝑖 < |𝑈 |, that 𝑋 [𝐴 ∪ 𝑇] = 𝜕2𝐴 ∗ 2𝑇
for every 𝑇 ∈

(𝑈
𝑖

)
. Let 𝑊 = {𝑢1, 𝑢2, . . . , 𝑢𝑖+1} ⊂ 𝑈.

Consider

𝐿 = lk(𝑋 [𝐴 ∪𝑊], {𝑢1, 𝑢2, . . . , 𝑢𝑖−1}).

Note that, by Lemma 2.2, 𝐻̃ 𝑗 (𝐿) = 0 for every 𝑗 ≥ 𝑑. Furthermore, by the induction hypothesis, we
have 𝑋 [𝐴 ∪ (𝑊 \ {𝑢𝑖})] = 𝜕2𝐴 ∗ 2𝑊 \{𝑢𝑖 }, and therefore 𝐿 \ 𝑢𝑖 = 𝜕2𝐴 ∗ 2{𝑢𝑖+1 }. In particular, 𝐿 \ 𝑢𝑖
contractible, and thus 𝐻̃ 𝑗 (𝐿 \ 𝑢𝑖) = 0 for all 𝑗 ≥ 0. By Theorem 2.1, there exists a long exact sequence

· · · → 𝐻̃ 𝑗 (𝐿) → 𝐻̃ 𝑗−1 (lk(𝐿, 𝑢𝑖)) → 𝐻̃ 𝑗−1(𝐿 \ 𝑢𝑖) → · · ·

We obtain that

𝐻̃ 𝑗 (lk(𝐿, 𝑢𝑖)) = 0 for all 𝑗 ≥ 𝑑 − 1.

Since 𝜕2𝐴 ⊂ lk(𝐿, 𝑢𝑖) = lk(𝑋 [𝐴 ∪ 𝑊], {𝑢1, 𝑢2, . . . , 𝑢𝑖}), there must be a d-dimensional chain in
lk(𝐿, 𝑢𝑖) whose boundary equals to 𝜕2𝐴. For each (𝑑 − 1)-dimensional simplex 𝜎 in 𝜕2𝐴, the only
possible d-dimensional simplex of lk(𝐿, 𝑢𝑖) containing 𝜎 is 𝜎 ∪ {𝑢𝑖+1}. This shows 𝜕2𝐴 ∗ 2{𝑢𝑖+1 } ⊂

lk(𝐿, 𝑢𝑖). Since 𝐴 ∉ lk(𝐿, 𝑢𝑖), we must actually have lk(𝐿, 𝑢𝑖) = 𝜕2𝐴 ∗ 2{𝑢𝑖+1 }, and hence we have
𝑋 [𝐴 ∪𝑊] = 𝜕2𝐴 ∗ 2𝑊 .

Finally, letting 𝑖 = |𝑈 |, we obtain that 𝜕2𝐴 ∗ 2𝑈 ⊂ 𝑋 , as desired. �

Theorem 1.7. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟} be integers. Let V be a
finite set with |𝑉 | ≥ max{𝑚 + 𝑑, 𝑟}. Let X be a d-Leray simplicial complex on vertex set V, and let M be
a matroid of rank r on vertex set V with rank function 𝜌.

Assume that for every𝑈 = {𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−1} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 , either {𝑢1, . . . , 𝑢𝑑+1} ∈
𝑋 or there exists 𝑗 ∈ [𝑚 − 1] such that 𝜎 ∪ {𝑣 𝑗 } ∈ 𝑋 for every 𝜎 � {𝑢1, . . . , 𝑢𝑑+1}. Then, there is some
𝜏 ∈ 𝑋 such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

Proof. We argue by induction on m. For 𝑚 = 1 the claim holds by Theorem 5.1. Let 𝑚 > 1, and assume
that the claim holds for 𝑚 − 1.

If for all 𝑈 = {𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−2} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 − 1, either {𝑢1, . . . , 𝑢𝑑+1} ∈ 𝑋 or
there is some 1 ≤ 𝑗 ≤ 𝑚 − 2 such that 𝜎 ∪ {𝑣 𝑗 } ∈ 𝑋 for all 𝜎 � {𝑢1, . . . , 𝑢𝑑+1}, then by the induction
hypothesis there is some 𝜏 ∈ 𝑋 such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 2 ≤ 𝑘 − 1, as wanted.

Otherwise, there exists 𝑈 = {𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−2} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 − 1 such that 𝐴 =
{𝑢1, . . . , 𝑢𝑑+1} ∉ 𝑋 and for every 1 ≤ 𝑗 ≤ 𝑚 − 2 there is some 𝜎𝑗 � 𝐴 such that 𝜎𝑗 ∪ {𝑣 𝑗 } ∉ 𝑋 .
We divide into two cases: First, assume that 𝜌(𝑈) = 𝑘 − 1. Then, for any 𝑣 ∈ 𝑉 \ span𝑀 (𝑈), we have
𝜌({𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−2, 𝑣}) ≥ 𝑘 , and therefore by the assumption of the theorem we must have
𝜎 ∪ {𝑣} ∈ 𝑋 for all 𝜎 � 𝐴. Note that, since 𝜌(𝑉) = 𝑟 ≥ 𝑘 > 𝜌(𝑈), we must have 𝑉 \ span𝑀 (𝑈) ≠ ∅.
Hence, by Lemma 5.4, we have 𝜏 = 𝑉 \ span𝑀 (𝑈) ∈ 𝑋 . Note that 𝜌(𝑉 \ 𝜏) = 𝜌(𝑈) = 𝑘 − 1, as desired.

Next, assume that 𝜌(𝑈) ≥ 𝑘 . Then, for any 𝑣 ∈ 𝑉 \𝑈, we have 𝜌({𝑢1, . . . , 𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−2, 𝑣}) ≥
𝜌(𝑈) ≥ 𝑘 , and therefore by the assumption of the theorem, we must have 𝜎 ∪ {𝑣} ∈ 𝑋 for every
𝜎 � 𝐴. Note that, since |𝑉 | ≥ 𝑑 + 𝑚 ≥ |𝑈 | + 1, we must have 𝑉 \𝑈 ≠ ∅. So, by Lemma 5.4, we have
𝜏 = (𝑉 \𝑈) ∪ {𝑢1, . . . , 𝑢𝑑} ∈ 𝑋 . Since 𝜌(𝑉 \ 𝜏) = 𝜌({𝑢𝑑+1, 𝑣1, . . . , 𝑣𝑚−2) ≤ 𝑚 − 1 ≤ 𝑘 − 1, we are
done. �
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6. Geometric applications

6.1. Colorful Helly and Carathéodory theorems

In this section, we present a proof of Theorem 1.9 and show how to derive from it an analogous extension
of Bárány’s colorful Carathéodory theorem [4]. The arguments in this section are standard and well
known (see, e.g., [9, 4]), but we include detailed proofs for completeness.

Theorem 1.9. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟}. Let C be a finite family
of convex sets in R𝑑 , colored with r different colors, of size |C | ≥ max{𝑚 + 𝑑, 𝑟}. Assume that, for
every family {𝐴1, . . . , 𝐴𝑑 , 𝐵1, . . . , 𝐵𝑚} ⊂ C, colored with at least k different colors, at least one of the
subfamilies of the form {𝐴1, . . . , 𝐴𝑑 , 𝐵𝑖}, for 𝑖 ∈ [𝑚], is intersecting. Then, there are 𝑟 − 𝑘 + 1 color
classes whose union is intersecting.

Proof. Let X be the nerve of the family C. By Wegner’s theorem [24], X is d-collapsible. Let C1, . . . , C𝑟
be the color classes of C. Let M be the partition matroid on vertex set C, corresponding to the partition
C = C1 ∪ · · · ∪ C𝑟 . That is, the independent sets of M are exactly the colorful subfamilies of C, and the
rank function 𝜌 satisfies

𝜌(C ′) = |{𝑖 ∈ [𝑟] : C ′ ∩ C𝑖 ≠ ∅}|

for all C ′ ⊂ C. That is, 𝜌(C ′) is the number of different colors appearing in C ′.
Let 𝑈 = {𝐴1, . . . , 𝐴𝑑 , 𝐵1, . . . , 𝐵𝑚} ⊂ 𝑉 be a subfamily colored with at least k different colors

(or equivalently, satisfying 𝜌(𝑈) ≥ 𝑘). Then, there is some 𝑖 ∈ [𝑚] such that {𝐴1, . . . , 𝐴𝑑 , 𝐵𝑖} is
intersecting. In other words, {𝐴1, . . . , 𝐴𝑑 , 𝐵𝑖} ∈ 𝑋 . Therefore, by Theorem 1.6, there is some 𝜏 ∈ 𝑋
such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1. That is, 𝜏 ⊂ C is an intersecting subfamily, whose complement intersects at
most 𝑘 −1 color classes. This means that 𝜏 contains at least 𝑟 − 𝑘 +1 entire color classes, as wanted. �

Theorem 6.1. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟}. Let P be a finite family of
points in R𝑑 colored with r colors of size |𝑃 | ≥ max{𝑚 + 𝑑, 𝑟}.

Assume that the convex hull of the union of every 𝑟 − 𝑘 + 1 color classes contains the origin.
Then, there is some {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑃, colored with at least k different colors, such that
0 ∈ conv({𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖}) for all 𝑖 ∈ [𝑚].

Proof. For each 𝑝 ∈ 𝑃, let 𝐻𝑝 ⊂ R𝑑 be defined as

𝐻𝑝 = {𝑥 ∈ R𝑑 : 𝑥 · 𝑝 > 0}.

Note that, for 𝑝 ≠ 0, 𝐻𝑝 is an open half-space, and for 𝑝 = 0, 𝐻𝑝 = ∅. In particular, 𝐻𝑝 is convex for
all 𝑝 ∈ 𝑃.

It is a well-known fact that for any 𝑃′ ⊂ 𝑃, 0 ∈ conv(𝑃′) if and only if ∩𝑝∈𝑃′𝐻𝑝 = ∅. Indeed, assume
first that ∩𝑝∈𝑃′𝐻𝑝 ≠ ∅. That is, there is some 𝑥 ∈ R𝑑 such that 𝑥 · 𝑝 > 0 for all 𝑝 ∈ 𝑃′. Let {𝑡𝑝}𝑝∈𝑃′ be
nonnegative real numbers such that

∑
𝑝∈𝑃′ 𝑡𝑝 = 1. Then, there is some 𝑝0 ∈ 𝑃′ such that 𝑡𝑝0 > 0. Thus,

we obtain ( ∑
𝑝∈𝑃′

𝑡𝑝𝑝

)
· 𝑥 =

∑
𝑝∈𝑃′

𝑡𝑝 (𝑝 · 𝑥) ≥ 𝑡𝑝0 (𝑝0 · 𝑥) > 0.

Therefore, 0 ∉ conv(𝑃′). In the other direction, assume that 0 ∉ conv(𝑃′). Then, there is some
hyperplane separating 0 from conv(𝑃′). In other words, there exists 𝑥 ∈ R𝑑 such that 𝑥 · 𝑦 > 0 for all
𝑦 ∈ conv(𝑃′). In particular, 𝑥 ∈ 𝐻𝑝 for all 𝑝 ∈ 𝑃′. Therefore, ∩𝑝∈𝑃′𝐻𝑝 ≠ ∅.

We color the family H = {𝐻𝑝}𝑝∈𝑃 in r colors, each set 𝐻𝑝 colored with the color of p. As-
sume for contradiction that for all {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑃, colored with at least k colors,
0 ∉ conv({𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖}) for some 𝑖 ∈ [𝑚]. Equivalently, for all {𝐻𝑢1 , . . . , 𝐻𝑢𝑑 , 𝐻𝑣1 , . . . , 𝐻𝑣𝑚 } ⊂ H,
colored with at least k colors, {𝐻𝑢1 , . . . , 𝐻𝑢𝑑 , 𝐻𝑣𝑖 } is intersecting for some 𝑖 ∈ [𝑚].
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By Theorem 1.9, there are 𝑟 − 𝑘 + 1 color classes in H whose union is intersecting. Equivalently,
there are 𝑟 − 𝑘 + 1 color classes in P that do not contain the origin in the convex hull of their union. But
this is a contradiction to the assumption of the theorem. �

For the next section, we will need the special case 𝑟 = 𝑘 = 𝑑 + 𝑚 of Theorem 6.1:
Theorem 6.2. Let 𝑑 ≥ 1 and 𝑚 ≥ 1. Let P be a finite family of points in R𝑑 colored with 𝑑 + 𝑚 colors.
Assume that the convex hull of every color class contains the origin. Then, there is some colorful set
{𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑃 such that 0 ∈ conv({𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖}) for all 𝑖 ∈ [𝑚].

6.2. Tverberg centers for large point sets

In this section, we prove Theorem 1.10. Theorem 1.10 follows from Theorem 6.2 by a straightforward
adaptation of Sarkaria’s proof of Tverberg’s theorem via the colorful Carathéodory theorem [19]. For
completeness, we write down the argument, closely following the exposition in [3] (which in turn is
based on Bárány and Onn’s variant of Sarkaria’s proof given in [5]).

First, we will need the following Lemma:
Lemma 6.3 (Sarkaria (see, e.g., [3, Lemma 2])). Let 𝑃1, . . . , 𝑃𝑟 be finite sets of points in R𝑑 . Let
𝑣1, . . . , 𝑣𝑟 ∈ R𝑟−1 be the vertices of the standard (𝑟 − 1)-dimensional simplex. Define

𝑃̄ =

{(
𝑥
1

)
⊗ 𝑣 𝑗 : 𝑗 ∈ [𝑟], 𝑥 ∈ 𝑃 𝑗

}
⊂ R(𝑟−1) (𝑑+1) ,

where ⊗ denotes the Kronecker product. Then ∩𝑟
𝑗=1 conv(𝑃 𝑗 ) = ∅ if and only if 0 ∉ conv(𝑃̄).

Theorem 1.10. Let 𝑑 ≥ 1, 𝑟 ≥ 2, and let 𝑛 = (𝑟 − 1) (𝑑 + 1). Let 𝐴 ⊂ R𝑑 be a finite set of points of size
larger than n. Then, there exists a partition 𝐴1, . . . , 𝐴𝑟 of A that has a Tverberg center of size n.
Proof. Let 𝑛 = (𝑟 − 1) (𝑑 + 1) and 𝑚 = |𝐴| − 𝑛. Write 𝐴 = {𝑥1, . . . , 𝑥𝑛+𝑚}. For 1 ≤ 𝑖 ≤ 𝑚 + 𝑛
and 1 ≤ 𝑗 ≤ 𝑟 , let 𝑥 𝑗

𝑖 be a copy of the point 𝑥𝑖 . For 1 ≤ 𝑗 ≤ 𝑟 , let 𝑃 𝑗 = {𝑥
𝑗
1 , . . . , 𝑥

𝑗
𝑛+𝑚}, and let

𝑃 = 𝑃1 ∪ · · · ∪ 𝑃𝑟 . Let 𝑣1, . . . , 𝑣𝑟 ∈ R𝑟−1 be the vertices of the standard simplex, and define for each
1 ≤ 𝑖 ≤ 𝑛 + 𝑚 and 1 ≤ 𝑗 ≤ 𝑟 ,

𝑥
𝑗
𝑖 =

(
𝑥
𝑗
𝑖

1

)
⊗ 𝑣 𝑗 ∈ R

𝑛.

Let 𝑃̄ = {𝑥
𝑗
𝑖 : 1 ≤ 𝑖 ≤ 𝑛 + 𝑚, 1 ≤ 𝑗 ≤ 𝑟}. We color the points in P with |𝐴| = 𝑛 + 𝑚 colors, where, for

1 ≤ 𝑖 ≤ 𝑛 +𝑚 and 1 ≤ 𝑗 ≤ 𝑟 , 𝑥 𝑗
𝑖 is colored with color i. Similarly, we color 𝑃̄ with 𝑛 +𝑚 colors, where,

for 1 ≤ 𝑖 ≤ 𝑛 + 𝑚 and 1 ≤ 𝑗 ≤ 𝑟 , 𝑥 𝑗
𝑖 is colored with color i.

Note that for each color class 𝐶𝑖 = {𝑥
𝑗
𝑖 : 1 ≤ 𝑗 ≤ 𝑟}, 1 ≤ 𝑖 ≤ 𝑛 + 𝑚, we have ∩𝑟

𝑗=1 conv(𝐶𝑖 ∩ 𝑃 𝑗 ) =

∩𝑟
𝑗=1 conv({𝑥 𝑗

𝑖 }) = {𝑥𝑖} ≠ ∅. So, by Lemma 6.3, we have

0 ∈ conv({𝑥 𝑗
𝑖 : 1 ≤ 𝑗 ≤ 𝑟})

for all 1 ≤ 𝑖 ≤ 𝑛 + 𝑚. That is, the convex hull of each of the color classes of 𝑃̄ contains the origin.
Therefore, by Theorem 6.2, there is a colorful set 𝑈 = {𝑥𝑏1

𝑎1 , . . . , 𝑥
𝑏𝑛+𝑚
𝑎𝑛+𝑚 } ⊂ 𝑃̄ such that

0 ∈ conv({𝑥𝑏1
𝑎1 , . . . , 𝑥

𝑏𝑛
𝑎𝑛 , 𝑥

𝑏𝑛+𝑖
𝑎𝑛+𝑖 }) (6.1)

for all 1 ≤ 𝑖 ≤ 𝑚. Since U is colorful, the index set {𝑎1, . . . , 𝑎𝑛+𝑚} is a permutation of [𝑛 + 𝑚].
Therefore, we can define a partition 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑟 by

𝐴 𝑗 = {𝑥𝑎𝑖 : 𝑏𝑖 = 𝑗}
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Figure 1. Two Tverberg partitions of nine points in the plane into three parts. The partition on the left
does not have a Tverberg center of size 6, while the partition on the right has one: {𝑣2, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣9}.

for 1 ≤ 𝑗 ≤ 𝑟 . Let 𝐵 = {𝑥𝑎1 , . . . , 𝑥𝑎𝑛 } ⊂ 𝐴. By Lemma 6.3, Equation (6.1) implies that for all 1 ≤ 𝑖 ≤ 𝑚,

𝑟⋂
𝑗=1

conv
(
{𝑥𝑏1

𝑎1 , . . . , 𝑥
𝑏𝑛
𝑎𝑛 , 𝑥

𝑏𝑛+𝑖
𝑎𝑛+𝑖 } ∩ 𝑃 𝑗

)
=

𝑟⋂
𝑗=1

conv
(
(𝐵 ∪ {𝑥𝑎𝑛+𝑖 }) ∩ 𝐴 𝑗

)
≠ ∅,

as wanted. �

Remark 6.4. For any point set in R𝑑 of size larger than (𝑟 − 1) (𝑑 + 1), Theorem 1.10 guarantees the
existence of a partition into r parts with Tverberg center of size at most (𝑟 − 1) (𝑑 + 1). Note, however,
that the same point set may have other Tverberg partitions without such a center (see Figure 1).

Let 𝐴 ⊂ R𝑑 be a finite set of points. We say that a partition 𝐴1, . . . , 𝐴𝑟 of A is a Tverberg partition
with tolerance t if

𝑟⋂
𝑖=1

conv(𝐴𝑖 \ 𝐶) ≠ ∅,

for any 𝐶 ⊂ 𝐴 of size at most t. In other words, the partition has tolerance t if it remains a Tverberg
partition even after removing any t points from A. Larman showed in [12] that any 2𝑑+3 points inR𝑑 have
a Tverberg partition into two parts (that is, a Radon partition) with tolerance 1. This was later extended
by García-Colín ([6, 7]) who showed that any (𝑡 +1) (𝑑 +1) +1 points in R𝑑 have a Radon partition with
tolerance t, and by Soberón and Strausz in [21], who showed that any (𝑡 + 1) (𝑟 − 1) (𝑑 + 1) + 1 points in
R𝑑 have a Tverberg partition into r parts with tolerance t. Note that this bound is not sharp in general: In
[8], it was shown that any set of 𝑟𝑡 + 𝑜(𝑡) points in R𝑑 has a Tverberg partition into r parts with tolerance
t, giving an improved bound for large values of t (see [20] for a further improvement of this bound). In
[14], an improved bound was given in the case 𝑑 = 1, and in the case 𝑑 = 2 for some values of 𝑟, 𝑡.

It was brought to our attention by Andreas Holmsen that one can recover Soberón and Strausz’s
result as a consequence of Theorem 1.10, in the following way:

Theorem 1.11 (Soberón-Strausz [21, Theorem 1]). Let 𝑑 ≥ 1, 𝑟 ≥ 2 and 𝑡 ≥ 0. Let 𝐴 ⊂ R𝑑 be finite
set of points of size at least (𝑡 + 1) (𝑟 − 1) (𝑑 + 1) + 1. Then, A has a Tverberg partition into r parts with
tolerance t.

Proof. We argue by induction on t. For 𝑡 = 0, the claim is just Tverberg’s theorem. Assume 𝑡 ≥ 1. By
Theorem 1.10, there exists a partition 𝐴1, . . . , 𝐴𝑟 of A and a set 𝐵 ⊂ 𝐴 of size (𝑟 − 1) (𝑑 + 1) such that

𝑟⋂
𝑖=1

conv((𝐵 ∪ {𝑝}) ∩ 𝐴𝑖) ≠ ∅
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for any 𝑝 ∈ 𝐴 \ 𝐵. Note that |𝐴 \ 𝐵 | ≥ 𝑡 (𝑟 − 1) (𝑑 + 1) + 1. Therefore, by the induction hypothesis, there
is a Tverberg partition 𝐵1, . . . , 𝐵𝑟 of 𝐴 \ 𝐵 with tolerance 𝑡 − 1.

We denote by 𝑆𝑟 the set of permutations of [𝑟]. Since |𝐴 \ 𝐵 | > 𝑡 (𝑟 − 1) (𝑑 + 1) ≥ 𝑡𝑟 , we have

1
𝑟!

∑
𝜋∈𝑆𝑟

| ∪𝑟
𝑖=1 𝐴𝑖 ∩ 𝐵𝜋 (𝑖) | =

1
𝑟!

∑
𝜋∈𝑆𝑟

𝑟∑
𝑖=1

|𝐴𝑖 ∩ 𝐵𝜋 (𝑖) | =
1
𝑟!

𝑟∑
𝑖=1

∑
𝜋∈𝑆𝑟

|𝐴𝑖 ∩ 𝐵𝜋 (𝑖) |

=
1
𝑟!

𝑟∑
𝑖=1

(𝑟 − 1)!|𝐴𝑖 \ 𝐵 | =
|𝐴 \ 𝐵 |

𝑟
> 𝑡.

Therefore, there is some 𝜋 ∈ 𝑆𝑟 such that | ∪𝑟
𝑖=1 𝐴𝑖 ∩ 𝐵𝜋 (𝑖) | ≥ 𝑡 + 1. Let 𝐷 = ∪𝑟

𝑖=1𝐴𝑖 ∩ 𝐵𝜋 (𝑖) . We define
a new partition 𝐴̃1, . . . , 𝐴̃𝑟 of A by

𝐴̃𝑖 = (𝐴𝑖 ∩ 𝐵) ∪ (𝐵𝜋 (𝑖) ∩ (𝐴 \ 𝐵))

for all 1 ≤ 𝑖 ≤ 𝑟 . Note that 𝐴̃𝑖 ∩ 𝐷 = 𝐴𝑖 ∩ 𝐷 for all i.
We are left to show that 𝐴̃1, . . . , 𝐴̃𝑟 is a Tverberg partition of A with tolerance t. Let 𝐶 ⊂ 𝐴 be a

subset of size at most t. We divide into two cases. First, assume that C is disjoint from B. Then, since
|𝐶 | ≤ 𝑡 and |𝐷 | ≥ 𝑡 + 1, there is some 𝑝 ∈ 𝐷 \ 𝐶. We obtain

𝑟⋂
𝑖=1

conv( 𝐴̃𝑖 \ 𝐶) ⊃
𝑟⋂
𝑖=1

conv(( 𝐴̃𝑖 ∩ (𝐵 ∪ 𝐷)) \ 𝐶)

=
𝑟⋂
𝑖=1

conv((𝐴𝑖 ∩ (𝐵 ∪ 𝐷)) \ 𝐶) ⊃
𝑟⋂
𝑖=1

conv(𝐴𝑖 ∩ (𝐵 ∪ {𝑝})) ≠ ∅,

as desired. Next, assume that 𝐶 ∩ 𝐵 ≠ ∅. Let 𝐶 ′ = 𝐶 ∩ (𝐴 \ 𝐵). Then |𝐶 ′ | ≤ 𝑡 − 1, and therefore, since
𝐵1, . . . , 𝐵𝑟 is a Tverberg partition of 𝐴 \ 𝐵 with tolerance 𝑡 − 1, we obtain

𝑟⋂
𝑖=1

conv( 𝐴̃𝑖 \ 𝐶) ⊃
𝑟⋂
𝑖=1

conv(( 𝐴̃𝑖 ∩ (𝐴 \ 𝐵)) \ 𝐶 ′) =
𝑟⋂
𝑖=1

conv(𝐵𝜋 (𝑖) \ 𝐶
′) =

𝑟⋂
𝑖=1

conv(𝐵𝑖 \ 𝐶
′) ≠ ∅.

Thus, 𝐴̃1, . . . , 𝐴̃𝑟 is a Tverberg partition of A with tolerance t, as wanted. �

7. Concluding remarks

It would be interesting to prove a stronger version of Theorem 1.7, analogous to Theorem 1.6:

Conjecture 7.1. Let 𝑑 ≥ 1, 𝑟 ≥ 𝑑 + 1, 1 ≤ 𝑚 ≤ 𝑟 and 𝑚 ≤ 𝑘 ≤ min{𝑚 + 𝑑, 𝑟} be integers. Let V be a
finite set with |𝑉 | ≥ max{𝑚 + 𝑑, 𝑟}. Let X be a d-Leray simplicial complex on vertex set V, and let M be
a matroid of rank r on vertex set V with rank function 𝜌.

Assume that for every 𝑈 = {𝑢1, . . . , 𝑢𝑑 , 𝑣1, . . . , 𝑣𝑚} ⊂ 𝑉 with 𝜌(𝑈) ≥ 𝑘 , there is some 𝑖 ∈ [𝑚] such
that {𝑢1, . . . , 𝑢𝑑 , 𝑣𝑖} ∈ 𝑋 . Then, there is some 𝜏 ∈ 𝑋 such that 𝜌(𝑉 \ 𝜏) ≤ 𝑘 − 1.

Another interesting question, suggested to us by Florian Frick, is whether a version of Theorem 1.10
holds in the context of the topological Tverberg theorem. That is,

Conjecture 7.2. Let 𝑑 ≥ 1, 𝑟 ≥ 2 a prime power, and 𝑛 = (𝑟 − 1) (𝑑 + 1). Let 𝑁 > 𝑛, and let Δ𝑁 be the
N-dimensional simplex. Then, for every continuous map 𝑓 : Δ𝑁 → R𝑑 , there exist r pairwise disjoint
faces 𝐹1, . . . , 𝐹𝑟 of Δ𝑁 , and an (𝑛 − 1)-dimensional face F of Δ𝑁 such that, for each n-dimensional
face 𝐹 ′ of Δ𝑁 containing F, ∩𝑟

𝑖=1 𝑓 (𝐹𝑖 ∩ 𝐹 ′) ≠ ∅.
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