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Abstract
In this article, we investigate the topological structure of large-scale interacting systems on infinite graphs, by
constructing a suitable cohomology which we call the uniform cohomology. The central idea for the construction is
the introduction of a class of functions called uniform functions. Uniform cohomology provides a new perspective
for the identification of macroscopic observables from the microscopic system. As a straightforward application of
our theory when the underlying graph has a free action of a group, we prove a certain decomposition theorem for
shift-invariant closed uniform forms. This result is a uniform version in a very general setting of the decomposition
result for shift-invariant closed 𝐿2-forms originally proposed by Varadhan, which has repeatedly played a key role
in the proof of the hydrodynamic limits of nongradient large-scale interacting systems. In a subsequent article, we
use this result as a key to prove Varadhan’s decomposition theorem for a general class of large-scale interacting
systems.
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1. Introduction

1.1. Introduction

One of the fundamental problems in the natural and social sciences is to explain macroscopic phenomena
that we can observe from the rules governing the microscopic system giving rise to the phenomena.
Hydrodynamic limit provides a rigorous mathematical method to derive the deterministic partial differ-
ential equations describing the time evolution of macroscopic parameters, from the stochastic dynamics
of a microscopic large-scale interacting system. The heart of this method is to take the limit with respect
to proper space-time scaling, so that the law of large numbers absorbs the large degree of freedom of
the microscopic system, allowing us to extract the behavior of the macroscopic parameters which char-
acterize the equilibrium states of the microscopic system. Hence, techniques from probability theory
including various estimates on Markov processes and their stationary distributions have played a central
role. In this article, we introduce a novel, geometric perspective to the theory of hydrodynamic lim-
its. Instead of using the law of large numbers, we construct a new cohomology theory for microscopic
models to identify the macroscopic observables and give interpretations to the mechanism giving the
macroscopic partial differential equations. Our main theorem gives an analogue of Varadhan’s decom-
position of closed 𝐿2-forms, which has played a key role in the proofs of the hydrodynamic limits of
nongradient systems.

Initially, many of the techniques developed in the theory of hydrodynamic limit were specific to the
interacting system under consideration. In the seminal article [7], Guo, Papanicolaou and Varadhan in-
troduced a widely applicable strategy known as the entropy method for proving the hydrodynamic limit
when the interacting system satisfies a certain condition known as the gradient condition. Furthermore,
Varadhan in [18] introduced a novel, refined strategy for systems which do not necessarily satisfy the
gradient condition, relying on proving the so-called decomposition of closed 𝐿2-forms. Although this
strategy has been successful in proving the hydrodynamic limit for a number of nongradient systems
[13, 9, 6, 19, 15, 16, 12], the implementation in practice has proven notoriously difficult, requiring ar-
guments with sharp spectral gap estimates specific to the system under consideration (see, for example,
[8, Section 7]). Due to the restrictiveness of the gradient condition, many interesting microscopic
systems are known or expected to be nongradient. Thus, it is vital to understand the mechanism of
Varadhan’s strategy and construct model-independent criteria for implementation applicable to a wide
variety of models.

The motivation of this article is to systematically investigate various large-scale interacting systems in
a unified fashion, especially to understand the mechanism in which similar decompositions seemingly
independent of the stochastic data appear in the proofs of the hydrodynamic limits. For this goal,
we introduce a general framework encompassing a wide variety of interacting systems, including the
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different variants of the exclusion processes and the lattice-gas with energy (see Examples 1.3 and 2.10).
We let X be a certain infinite graph which we call a locale, generalizing the typical Euclidean lattice
modeling the space where the microscopic dynamics takes place. We let S be a set expressing the
possible states at each vertex, such as the number of particles or amount of energy, and let 𝑆𝑋 �

∏
𝑥∈𝑋 𝑆

be the configuration space expressing all of the possible configurations of states on X. The dynamics
of a microscopic stochastic system are usually expressed by a generator. However, in our framework,
we focus on the interaction 𝜙 – a certain map 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 encoding the permitted change in
states on adjacent vertices (see Definition 2.4). The interaction gives 𝑆𝑋 a geometric structure, that of a
graph whose edges correspond to the transitions (i.e., all possible change of the configuration at a single
instant (see §1.2)). This structure is independent of the transition rate – stochastic data which encodes
the expected frequency of the transitions.

In this article, we construct the uniform cohomology reflecting the topological property of the
geometric structure of 𝑆𝑋 by replacing the space of functions on 𝑆𝑋 with a new class of functions called
the uniform functions, which considers the distances between the vertices of the locale. Our key result,
Theorem 6, states that under general assumptions, the zeroth uniform cohomology is isomorphic to the
space of conserved quantities – functions on S whose sums are conserved by 𝜙. This cohomology is
finite dimensional even though 𝑆𝑋 in general has an infinite number of connected components. For the
cases where the hydrodynamic limit is proven, conserved quantities are known to correspond to the
macroscopic parameters which characterize the equilibrium (or stationary) measures of the microscopic
system. Thus, we believe uniform cohomology gives an alternative justification for the origin of the
macroscopic observables. In addition, Theorem 6 also states that the uniform cohomology of 𝑆𝑋 for
degrees other than zero vanishes. The essential case is for degree one, where we prove that any closed
uniform form is the differential of a uniform function.

Our main theorem, Theorem 1, gives a certain structure theorem for closed uniform forms that
are shift-invariant (i.e., invariant by the action of a group). Here, we assume the existence of a free
action of a group on the locale, which ensures a certain homogeneity. The theorem is obtained as a
straightforward application of group cohomology to Theorem 6. If we choose a fundamental domain of
X for the action of the group, then we obtain a decomposition theorem in the spirit of the decomposition
of Varadhan (see Theorems 3, 4 and 5 of §1.3). The closed forms of Varadhan are 𝐿2-forms for the
equilibrium measure arising from the choice of the transition rate. Although uniform functions and
forms are defined algebraically without the need for any stochastic data, our shift-invariant forms in fact
form a common core of the various spaces of shift-invariant 𝐿2-forms constructed for each choice of the
transition rate, and will in subsequent research play a crucial role in proving Varadhan’s decomposition
for 𝐿2-forms (see, for example, [3]). Our main theorem indicates that the specification of Varadhan’s
decomposition is determined by the underlying geometric structure of the model. Moreover, our theory
gives a cohomological interpretation of the dimension of the space of shift-invariant closed forms
modulo the exact forms – whose origin up until now had been a mystery. The proof of our main theorem
does not require any spectral gap estimates and can be applied universally to a wide variety of systems.

Currently, all existing research concerning hydrodynamic limits for nongradient systems deals
exclusively with the case when the locale is the Euclidean lattice Z𝑑 , with an action of 𝐺 = Z𝑑 given
by the translation. Our decomposition theorem is valid for far more general infinite locales and groups,
including various crystal lattices with their group of translations and Cayley graphs associated to finitely
generated infinite groups with natural action of the group. The theorem is also true for systems with
multiple linearly independent conserved quantities. Our result provides crucial insight into the formula-
tion of Varadhan’s decomposition in these general settings. One of our goals is to find a more intuitive
and universal proof of the hydrodynamic limits for nongradient models. In a subsequent article [3],
we prove Varadhan’s decomposition theorem for a general class of models, where the main result of the
present article is the key for the generalization. Furthermore, we will use this decomposition theorem
to perform scaling limits for the general class of models.

Our theory is constructed from scratch, using only algebraic and combinatorial methods. In particular,
no probability theory, measure theory or analytic methods are used. Most importantly, we have taken
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Figure 1. The triangular and hexagonal lattices, and the Cayley graph for the free group G generated
by 𝜎1 and 𝜎2 (see Example 2.2 (4)).

care to make this article including the proof of our main result self-contained, except for the proof of
the well-established long exact sequence arising in group cohomology (see §5.2). Thus, we believe our
article should be accessible to mathematicians in a wide range of disciplines. We hope this article would
introduce to a broad audience interesting mathematical concepts related to typical large-scale interacting
systems, and to researchers in probability theory potentially powerful cohomological techniques that
may be relevant in identifying important structures of stochastic models.

The remainder of this section is as follows. In §1.2, we describe our framework and present some
examples. Then in §1.3, we state Theorem 1, the main theorem of our article, asserting the decomposition
for shift-invariant uniform closed forms. We then explain its relation to the decomposition by Varadhan.
Finally, in §1.4, we provide an overview of our article and the outline of the proof of our main theorem.

1.2. The large-scale interacting system

In this subsection, we introduce the various objects in our framework describing large-scale interacting
systems and give natural assumptions which ensure our main theorem. The precise mathematical
definitions of the objects in the triplet (𝑋, 𝑆, 𝜙) given in §1.1 are as follows. We define a locale (𝑋, 𝐸)
to be any locally finite simple symmetric directed graph which is connected (see §2.1 for details). Here,
X denotes the set of vertices, and 𝐸 ⊂ 𝑋 × 𝑋 denotes the set of directed edges of the locale. We regard a
locale (𝑋, 𝐸) as a metric space equipped with the graph distance. By abuse of notation (see Remark 2.8),
we will often denote the locale (𝑋, 𝐸) with the same symbol as its set of vertices X. The condition that
X is connected and locally finite implies that the set of vertices of X is countable. If the set of vertices
is an infinite set, then we say that X is an infinite locale. We define the set of states S as a nonempty
set with a designated element ∗ ∈ 𝑆 which we call the base state, and we define the symmetric binary
interaction, or simply an interaction 𝜙 on S, to be a map 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 such that for any pair of
states (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 satisfying 𝜙(𝑠1, 𝑠2) ≠ (𝑠1, 𝑠2), we have 𝚤 ◦ 𝜙 ◦ 𝚤 ◦ 𝜙(𝑠1, 𝑠2) = (𝑠1, 𝑠2), where
𝚤 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is the bijection obtained by exchanging the components of 𝑆 × 𝑆. The ordering of
𝑆 × 𝑆 determines the direction of the interaction, and the condition intuitively means that if we execute
the interaction and if it is nontrivial, then further executing the interaction in the reverse direction takes
us back to where we started. To realize the full large-scale interacting system, we also need to choose a
transition rate. However, this is outside the scope of the current article.

The most typical example of an infinite locale is given by the Euclidean lattice Z𝑑 = (Z𝑑 ,E𝑑) for
integers 𝑑 ≥ 1, where Z𝑑 is the d-fold product of the set of integers Z, and

E
𝑑 �

{
(𝑥, 𝑦) ∈ Z𝑑 × Z𝑑

�� |𝑥 − 𝑦 | = 1
}
.

Here, we let |𝑥 − 𝑦 | �
∑𝑑
𝑗=1 |𝑥 𝑗 − 𝑦 𝑗 | for any 𝑥 = (𝑥1, . . . , 𝑥𝑑), 𝑦 = (𝑦1, . . . , 𝑦𝑑) in Z𝑑 . Crystal lattices

such as the triangular and hexagonal lattices as well as Cayley graphs associated to finitely generated
infinite groups (see Figure 1) are other examples of infinite locales.
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We say that a locale is weakly transferable if for any ball 𝐵 ⊂ 𝑋 , the complement 𝑋 \𝐵 is a nonempty
finite disjoint union of connected infinite graphs. By definition, a weakly transferable locale is an
infinite locale. We will also consider a stronger condition on the locale which we call transferable (see
Definition 4.16 for the precise definition). Immediately from the definition, we see that if for any ball
𝐵 ⊂ 𝑋 , the complement 𝑋 \𝐵 is a connected infinite graph, then X is transferable. The Euclidean lattice
Z𝑑 = (Z𝑑 ,E𝑑) for 𝑑 > 1, crystal lattices such as the triangular and hexagonal lattices, and the Cayley
graph for a finitely generated free group generated by 𝑑 > 1 elements give examples of transferable
locales (see Remark 4.19). The Euclidean lattice Z = (Z,E) for 𝑑 = 1, which is also the Cayley graph
for a free group generated by one element, gives an example of a weakly transferable locale which is
not transferable. See Example 2.2 in §2 for other examples of locales.

We call the triplet (𝑋, 𝑆, 𝜙) as above a topological interacting system, or simply a system for short.
For the system (𝑋, 𝑆, 𝜙), we define the configuration space 𝑆𝑋 by

𝑆𝑋 �
∏
𝑥∈𝑋

𝑆.

We call any element 𝜂 ∈ 𝑆𝑋 a configuration, and we denote by ★ the base configuration, defined to be
the configuration whose components are all at base state. Next, for any 𝜂 ∈ 𝑆𝑋 and 𝑒 = (𝑥1, 𝑥2) ∈ 𝐸 ,
we let (𝜂′𝑥1 , 𝜂

′
𝑥2 ) = 𝜙(𝜂𝑥1 , 𝜂𝑥2). We define 𝜂𝑒 = (𝜂𝑒𝑥) ∈ 𝑆𝑋 by

𝜂𝑒𝑥 �

{
𝜂𝑥 𝑥 ≠ 𝑥1, 𝑥2

𝜂′𝑥 𝑥 = 𝑥1, 𝑥2.
(1)

The transition structure on 𝑆𝑋 , expressing all possible change of the configuration at a single instant,
is defined as Φ � {(𝜂, 𝜂𝑒) | 𝜂 ∈ 𝑆𝑋 , 𝑒 ∈ 𝐸} ⊂ 𝑆𝑋 × 𝑆𝑋 . Then (𝑆𝑋 ,Φ) is a symmetric directed graph
(see Lemma 2.5 for a proof). Again by abuse of notation, we will often denote the graph (𝑆𝑋 ,Φ) by 𝑆𝑋

(see also Remark 2.8). We remark that generally, 𝑆𝑋 on an infinite locale is not connected, simple nor
locally finite as a graph, and the set of vertices is not countable.

Next, we introduce the conserved quantity for the interaction 𝜙, which we define to be any function
𝜉 : 𝑆 → R satisfying 𝜉 (∗) = 0 and

𝜉 (𝑠1) + 𝜉 (𝑠2) = 𝜉 (𝑠′1) + 𝜉 (𝑠′2) (2)

for any (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆, where (𝑠′1, 𝑠
′
2) � 𝜙(𝑠1, 𝑠2). This function gives values reflecting the state, such

as the number of particles or energy depending on the physical context, whose sums are conserved by the
interaction. We denote by Consv𝜙 (𝑆) the R-linear space of all conserved quantities for the interaction 𝜙.

Denote by 𝑆𝑋∗ the subset of 𝑆𝑋 consisting of elements 𝜂 = (𝜂𝑥) such that 𝜂𝑥 = ∗ for all but finite 𝑥 ∈ 𝑋 .
Then 𝑆𝑋∗ also has a structure of a graph induced from that of 𝑆𝑋 . Note that if X is finite, then 𝑆𝑋∗ = 𝑆𝑋 .
Any conserved quantity 𝜉 ∈ Consv𝜙 (𝑆) defines a function 𝜉𝑋 : 𝑆𝑋∗ → R by 𝜉𝑋 (𝜂) �

∑
𝑥∈𝑋 𝜉 (𝜂𝑥) for

any 𝜂 ∈ 𝑆𝑋∗ . Note that the sum is a finite sum since 𝜂 ∈ 𝑆𝑋∗ . We call the value 𝜉𝑋 (𝜂) a conserved quantity
of the configuration 𝜂.

Throughout this article, we let N = {0, 1, . . . , } denote the set of natural numbers. We consider the
following properties of an interaction, which will play an important role in our main theorem.
Definition 1.1. For an interaction 𝜙 on S, let 𝑐𝜙 � dimR Consv𝜙 (𝑆).
1. We say that the interaction 𝜙 is irreducibly quantified, if for any finite locale X if the configurations

𝜂, 𝜂′ ∈ 𝑆𝑋 have the same conserved quantities (i.e., if 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′) for any 𝜉 ∈ Consv𝜙 (𝑆)), then

there exists a finite path (see §2.1) from 𝜂 to 𝜂′ in 𝑆𝑋 .
2. We say that the interaction 𝜙 is simple if 𝑐𝜙 = 1, and for any nonzero conserved quantity

𝜉 ∈ Consv𝜙 (𝑆), the monoid generated by 𝜉 (𝑆) via addition in R is isomorphic to N or Z.
A monoid is defined to be a set with a binary operation that is associative and has an identity

element, the first examples beingN, Z or Rwith the operation being the usual addition and with identity
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Figure 2. Exclusion process.

Figure 3. Multi-species exclusion process.

element 0. Provided 𝑐𝜙 = 1, the second condition in Definition 1.1 (2) is satisfied, for example, if there
exists 𝜉 ∈ Consv𝜙 (𝑆) such that 𝜉 (𝑆) ⊂ N and 1 ∈ 𝜉 (𝑆), or 𝜉 (𝑆) ⊂ Z and ±1 ∈ 𝜉 (𝑆).

Remark 1.2. The second condition of Definition 1.1 (1) implies that any configurations with the
same conserved quantities are in the same connected component of the configuration space 𝑆𝑋∗ . The
configuration space on an infinite locale X usually has an infinite number of connected components.
If the above condition is satisfied, then we may prove that the connected components of 𝑆𝑋∗ are charac-
terized by its conserved quantities (see Remark 2.25). This condition is equivalent to the condition that
the associated stochastic process on the configurations with fixed conserved quantities are irreducible.

The following are examples of interactions and corresponding conserved quantities.

Example 1.3.

1. The most basic situation is when 𝑆 = {0, 1} with base state ∗ = 0. The map 𝜙 : 𝑆× 𝑆 → 𝑆× 𝑆 defined
by exchanging the components of 𝑆 × 𝑆 is an interaction (see Figure 2). The conserved quantity
𝜉 : 𝑆 → N given by 𝜉 (𝑠) = 𝑠 gives a basis of the one-dimensional R-linear space Consv𝜙 (𝑆). This
interaction is simple. The stochastic process induced from this interaction via a choice of a transition
rate is called the exclusion process.

2. Consider the case 𝑆 = {0, 1, . . . , 𝜅} with base state ∗ = 0 for some integer 𝜅 > 1. The map
𝜙 : 𝑆× 𝑆 → 𝑆× 𝑆 defined by exchanging the components of 𝑆× 𝑆 is an interaction (see Figure 3). For
𝑖 = 1, . . . , 𝜅, let 𝜉 (𝑖) be the conserved quantity given by 𝜉 (𝑖) (𝑠) = 1 if 𝑠 = 𝑖 and 𝜉 (𝑖) (𝑠) = 0 otherwise.
Then 𝜉 (1) , . . . , 𝜉 (𝜅) gives a basis of the R-linear space Consv𝜙 (𝑆). The stochastic process induced
from this interaction via a choice of a transition rate is called the multi-color exclusion process, or
more generally, the multi-species exclusion process.

See Example 2.10 in §2.2 for other examples of interactions covered by our theory. We will prove in
Proposition 2.19 that all of the interactions in Examples 1.3 and 2.10 are irreducibly quantified.

Remark 1.4. For 𝑠 ∈ 𝑆 in the interactions in Example 1.3, 𝑠 = 0 describes the state where there are
no particles at the vertex, and 𝑠 = 𝑖 for an integer 𝑖 > 0 the state where there exists a particle of
type labeled as i (referred to as color i or species i) at the vertex. The exclusion in the exclusion and
the multi-species exclusion processes signify that at most one particle is allowed to occupy each vertex.
The conserved quantity 𝜉 (𝑖) returns 1 if a particle of species i occupies the vertex and 0 otherwise. Then
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𝜉 (𝑖)𝑋 (𝜂) �
∑
𝑥∈𝑋 𝜉 (𝑖) (𝜂𝑥) for a configuration 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ on a locale X expresses the total number of

particles of species k in the configuration.

The hydrodynamic limits of the exclusion process for certain choices of transition rates of nongradient
type have been studied by Funaki, Uchiyama and Yau [6] and Varadhan and Yau [19] (see also Theorem 3
of §1.3). For the multi-species exclusion process, a variant has been studied by Quastel [13] and
Erignoux [5]. See Remark 2.12 for other known cases corresponding to the interactions given in
Example 2.10. Up until now, all of the interacting systems of nongradient type whose hydrodynamic
limits have been proved are models over the Euclidean lattice.

Typical research in hydrodynamic limit investigates the stochastic process of large-scale interacting
systems obtained from a specific interaction with a specific transition rate on a specific locale. One
important purpose of this article is to construct a mathematical framework to study many types of
models at once and to find specific conditions on the locale and interactions to allow for a suitable
theory. The notion of transferable locales and irreducibly quantified interactions, which we believe are
new and have not previously appeared in literature, are steps in this direction. The distinctive feature of
our framework is the separation of the stochastic data from the geometric data, as well as the separation
of the set of states and the interaction from the underlying locale. The theory works best when S is
discrete, a case which already covers a wide variety of models. In future research, we hope to generalize
our framework to include known models with more general S, such as 𝑆 = R and 𝑆 = R≥0, where a more
subtle notion of uniform functions incorporating smoothness should be necessary for compatibility with
existing models.

1.3. Main theorem and relation to Varadhan’s decomposition

The goal of our article is to study the topological properties of the configuration space 𝑆𝑋 with transition
structure via a newly defined class of uniform functions and forms. In this subsection, we introduce
Theorem 1, which is the main theorem of this article, giving a decomposition of shift-invariant closed
uniform forms. We will then discuss its relation to Varadhan’s decomposition of shift-invariant closed
𝐿2-forms.

We first introduce notations concerning functions and forms on the configuration space with transition
structure. Consider the system (𝑋, 𝑆, 𝜙), and let 𝑆𝑋 be the corresponding configuration space with
transition structure. For any set A, we let 𝐶 (𝐴) � Map(𝐴,R) be the R-linear space of functions from A
toR. We say that a function 𝑓 ∈ 𝐶 (𝑆𝑋 ) is local if there exists a finite Λ ⊂ 𝑋 such that f is in the image of
𝐶 (𝑆Λ) with respect to the inclusion 𝐶 (𝑆Λ) ↩→ 𝐶 (𝑆𝑋 ) induced from the projection 𝑆𝑋 → 𝑆Λ. In other
words, a function is local if it only depends on a configuration through a finite sublocale. Any local
function may be regarded as a function in 𝐶 (𝑆𝑋∗ ) via the map induced from the projection 𝑆𝑋∗ → 𝑆Λ.
We denote by 𝐶loc (𝑆

𝑋 ) the space of local functions on 𝑆𝑋 , which is a subspace of both 𝐶 (𝑆𝑋 ) and
𝐶 (𝑆𝑋∗ ). We define the space of uniform functions (see Definition 3.5 for the precise definition) to be a
certain R-linear subspace 𝐶unif (𝑆

𝑋 ) of 𝐶 (𝑆𝑋∗ ) containing the space of local functions 𝐶loc(𝑆
𝑋 ), and we

let 𝐶0
unif (𝑆

𝑋 ) be the subspace of 𝐶unif (𝑆
𝑋 ) consisting of function f satisfying 𝑓 (★) = 0. We define the

space of closed uniform forms 𝑍1
unif (𝑆

𝑋 ) (see Definitions 2.27 and 3.10 for the precise definition) to be a
certain R-linear subspace of

∏
𝑒∈𝐸 𝐶loc (𝑆

𝑋 ), and we define the differential 𝜕 : 𝐶0
unif (𝑆

𝑋 ) → 𝑍1
unif (𝑆

𝑋 )
by 𝜕 𝑓 � (∇𝑒 𝑓 ), where ∇𝑒 𝑓 for any 𝑒 ∈ 𝐸 is the function defined by

∇𝑒 𝑓 (𝜂) � 𝑓 (𝜂𝑒) − 𝑓 (𝜂) (3)

for any 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ) and 𝜂 ∈ 𝑆𝑋∗ . The differential 𝜕 is induced from the differential of the standard
cochain complex associated with the graph (𝑆𝑋 ,Φ) (see §2.3 and Appendix A).

For our main theorem, we consider a locale with a free action of a group. Let G be a group, and we
assume that the locale X has a free action of a group G. This induces actions of G on various functions
and forms. Both the Euclidean lattice and crystal lattices such as the triangular and hexagonal lattices
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of dimension d have natural free actions of 𝐺 = Z𝑑 . For any R-linear space with an action of G, we
denote by 𝑈𝐺 the G-invariant subspace of U. We will often say shift-invariant to mean G-invariant if
the group G is understood. We denote by C � (𝑍1

unif (𝑆
𝑋 ))𝐺 the space of shift-invariant closed uniform

forms, and by E � 𝜕
(
𝐶0

unif (𝑆
𝑋 )𝐺

)
the image by 𝜕 of the space of shift-invariant uniform functions.

Remark 1.5. The existence of a free action of G ensures that the locale X is homogenous. We understand
the quotient C/E to philosophically represent the first uniform cohomology of the quotient space 𝑆𝑋/𝐺, a
topological space which can be interpreted as a model of an infinitesimal neighborhood of a macroscopic
point.

We denote by Hom(𝐺,Consv𝜙 (𝑆)) the space of group homomorphisms from G to Consv𝜙 (𝑆). In
other words,𝜓 ∈ Hom(𝐺,Consv𝜙 (𝑆)) is any map𝜓 : 𝐺 → Consv𝜙 (𝑆) satisfying𝜓(𝜎𝜏) = 𝜓(𝜎)+𝜓(𝜏)
for any𝜎, 𝜏 ∈ 𝐺. Our decomposition theorem giving the uniform analogue of Varadhan’s decomposition
is as follows.

Theorem 1 (=Theorem 5.17). For the system (𝑋, 𝑆, 𝜙), assume that the interaction 𝜙 is irreducibly
quantified and that X has a free action of a group G. If X is transferable, or if the interaction 𝜙 is simple
and X is weakly transferable, then we have a canonical isomorphism

C/E � Hom(𝐺,Consv𝜙 (𝑆)). (4)

Moreover, a choice of a fundamental domain for the action of G on X gives a natural decomposition

C � E ⊕ Hom(𝐺,Consv𝜙 (𝑆))

of R-linear spaces.

If the rank of the maximal abelian quotient 𝐺ab of G is finite, then we have the following.

Corollary 2 (=Corollary 5.19). Let the assumptions be as in Theorem 1. Moreover, suppose that
𝐺ab is of finite rank d. If we fix a generator of the free part of 𝐺ab, then we have an isomorphism
Hom(𝐺,Consv𝜙 (𝑆)) �

⊕𝑑
𝑗=1 Consv𝜙 (𝑆). A choice of a fundamental domain of X for the action of G

gives a decomposition

C � E ⊕

𝑑⊕
𝑗=1

Consv𝜙 (𝑆). (5)

The decomposition (5) decomposes any shift-invariant closed uniform form in C as a unique sum of a
form in E , closed forms whose potential are shift-invariant uniform functions, and a form obtained as the
image with respect to the isomorphism (5) of elements in

⊕𝑑
𝑗=1 Consv𝜙 (𝑆). The space E corresponds to

the part which averages out to zero when taking a proper space-time scaling limit and so does not appear
in the hydrodynamic limit. Hence, the decomposition theorem implies that the macroscopic property
of our model may be completely expressed in terms of forms arising from the space

⊕𝑑
𝑗=1 Consv𝜙 (𝑆),

which are related to the flow of conserved quantities in each of the directions induced by the action of
the group G.

In addition to the geometric data (𝑋, 𝑆, 𝜙), if we fix a suitable transition rate, then this gives a shift-
invariant equilibrium measure on the configuration space and a compatible inner product on the space
of forms. If we consider the case when the locale is the Euclidean lattice 𝑋 = (Z𝑑 ,E𝑑) with standard
translation by the group 𝐺 = Z𝑑 , and if (𝑆, 𝜙) is the exclusion process of Example 1.3 (1), a typical
choice of a transition rate gives rise to the product measure 𝜈 = 𝜇⊗Z𝑑

𝑝 on 𝑆𝑋 = {0, 1}Z𝑑 , where 𝜇𝑝 is
the probability measure on 𝑆 = {0, 1} given by

𝜇𝑝 (𝑠 = 1) = 𝑝, 𝜇𝑝 (𝑠 = 0) = 1 − 𝑝
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for some real number 0 < 𝑝 < 1. We denote by 𝐿2 (𝜈) the usual 𝐿2-space of square integrable functions
on {0, 1}Z𝑑 with respect to the measure 𝜈. The space of local functions 𝐶loc ({0, 1}Z

𝑑
) is known to be

a dense subspace of 𝐿2 (𝜈). We let 𝜉 : {0, 1} → N be the conserved quantity given by 𝜉 (𝑠) = 𝑠, which
gives a basis of Consv𝜙 ({0, 1}). For any 𝑥 ∈ 𝑋 , we let 𝜉𝑥 : {0, 1}Z𝑑 → R be the function defined
by 𝜉𝑥 (𝜂) � 𝜂𝑥 for any 𝜂 = (𝜂𝑥) ∈ {0, 1}Z𝑑 . For any 𝑥 = (𝑥 𝑗 ) ∈ Z𝑑 , denote by 𝜏𝑥 the translation
of (Z𝑑 ,E𝑑) by x. In this case, Varadhan’s decomposition of shift-invariant closed 𝐿2-forms proved by
Funaki, Uchiyama and Yau is the following.

Theorem 3 [6, Theorem 4.1]. Let 𝜔 = (𝜔𝑒) ∈
∏
𝑒∈𝐸 𝐿2 (𝜈) be a shift-invariant closed 𝐿2-form. Then

there exists a set of constants 𝑎1, . . . , 𝑎𝑑 ∈ R and a series of local functions ( 𝑓𝑛)𝑛∈N in 𝐶loc({0, 1}Z
𝑑
)

such that

𝜔𝑒 = lim
𝑛→∞

∇𝑒

( ∑
𝑥∈Z𝑑

𝜏𝑥 ( 𝑓𝑛) +
𝑑∑
𝑗=1

𝑎 𝑗
∑
𝑥∈Z𝑑

𝑥 𝑗𝜉𝑥

)

in 𝐿2 (𝜈) for any 𝑒 ∈ E.

The same statement for certain transition rates giving non-product measures on {0, 1}Z𝑑 was proved
by Varadhan and Yau [19], requiring different spectral gap estimates. The uniform version of Theorem 3,
obtained by applying Corollary 2 to the above model for the fundamental domain Λ0 = {(0, . . . , 0)} of
𝑋 = Z𝑑 for the action of 𝐺 = Z𝑑 , is given as follows.

Theorem 4. Let 𝜔 = (𝜔𝑒) ∈
∏
𝑒∈E𝐶loc({0, 1}Z

𝑑
) be a shift-invariant closed form. Then there exists a

set of constants 𝑎1, . . . , 𝑎𝑑 ∈ R and a local function f in 𝐶loc({0, 1}Z
𝑑
) satisfying 𝑓 (★) = 0 such that

𝜔𝑒 = ∇𝑒

( ∑
𝑥∈Z𝑑

𝜏𝑥 ( 𝑓 ) +
𝑑∑
𝑗=1

𝑎 𝑗
∑
𝑥∈Z𝑑

𝑥 𝑗𝜉𝑥

)

in 𝐶loc ({0, 1}Z
𝑑
) for any 𝑒 ∈ E.

Our proof does not require a choice of the transition rate, thus completely independent of the measure.
We remark that the sums in the brackets on the right-hand side of Theorem 3 and Theorem 4 are uniform
functions in 𝐶0

unif ({0, 1}
Z𝑑 ).

Next, consider a general system (𝑋, 𝑆, 𝜙) satisfying the assumptions of Theorem 1, and suppose that
X has a free action of 𝐺 = Z𝑑 . We fix the generator of G to be the standard basis of Z𝑑 , and we denote
an element of 𝐺 = Z𝑑 by 𝜏 = (𝜏𝑗 ) ∈ Z𝑑 instead of 𝑥 = (𝑥 𝑗 ) since the locale X in general does not
coincide with G. The disassociation of the group G from the locale X is another distinctive feature of
our framework. If we fix a fundamental domain Λ0 of X for the action of G, then Corollary 2 in this
case gives the following.

Theorem 5. Assume for simplicity that 𝑐𝜙 is finite, and fix a basis 𝜉 (1) , . . . , 𝜉 (𝑐𝜙) of Consv𝜙 (𝑆). Let
𝜔 = (𝜔𝑒) ∈

∏
𝑒∈𝐸 𝐶loc (𝑆

𝑋 ) be a shift-invariant closed uniform form. In other words, let 𝜔 ∈ C. Then
there exists 𝑎𝑖 𝑗 ∈ R for 𝑖 = 1, . . . , 𝑐𝜙 and 𝑗 = 1, . . . , 𝑑 and a shift-invariant uniform function F in
𝐶0

unif (𝑆
𝑋 ) such that

𝜔 = 𝜕

(
𝐹 +

𝑐𝜙∑
𝑖=1

𝑑∑
𝑗=1

𝑎𝑖 𝑗

(∑
𝜏∈𝐺

𝜏𝑗𝜉
(𝑖)
𝜏 (Λ0)

))
, (6)

where we let 𝜉𝑊 be the function in 𝐶0
unif (𝑆

𝑋 ) defined as 𝜉𝑊 �
∑
𝑥∈𝑊 𝜉𝑥 for any conserved quantity

𝜉 ∈ Consv𝜙 (𝑆) and 𝑊 ⊂ 𝑋 .
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In Theorem 5, we remark that 𝜕𝐹 ∈ E , and by Remark 5.20,

𝜔𝜓 � 𝜕

( 𝑐𝜙∑
𝑖=1

𝑑∑
𝑗=1

𝑎𝑖 𝑗

(∑
𝜏∈𝐺

𝜏𝑗𝜉
(𝑖)
𝜏 (Λ0)

))
∈ C (7)

is the image of 𝜓 =
(∑𝑐𝜙

𝑖=1 𝑎𝑖1𝜉
(𝑖) , . . . ,

∑𝑐𝜙
𝑖=1 𝑎𝑖𝑑𝜉

(𝑖)
)
∈
⊕𝑑

𝑗=1 Consv𝜙 (𝑆) through the isomorphism (5)
for the choice of Λ0 in Theorem 5. The equality 𝜔 = 𝜕𝐹 + 𝜔𝜓 of (6) is precisely the decomposition
given by (5).

In fact, Theorem 4 is a special case of Theorem 5, as follows. If Λ0 is finite, then we may see from the
definition that any 𝜔 ∈

∏
𝑒∈𝐸 𝐶loc (𝑆

𝑋 ) which is closed and shift-invariant is uniform. In addition, again
if Λ0 is finite, any shift-invariant uniform function 𝐹 ∈ 𝐶0

unif (𝑆
𝑋 ) is of the form 𝐹 =

∑
𝜏∈Z𝑑 𝜏( 𝑓 ) for

some local function 𝑓 ∈ 𝐶loc(𝑆
𝑋 ) satisfying 𝑓 (★) = 0 (see Lemma 5.15). Here, 𝜏( 𝑓 ) denotes the image

of f with respect to the action of 𝜏 ∈ Z𝑑 . For the case 𝑋 = Z𝑑 with the action of 𝐺 = Z𝑑 given by the
standard translation, if we let Λ0 = {(0, . . . , 0)}, then we have 𝜏𝑥 (Λ0) = {𝑥} for any 𝑥 ∈ Z𝑑 . From these
observations and the definition of the differential 𝜕, we see that Theorem 4 follows from Theorem 5.

In the general setting of Theorem 1, the choice of a transition rate satisfying certain conditions gives
an inner product compatible with the norm on the space of 𝐿2-forms. The existence of Varadhan’s
decomposition amounts to the following question. See [2, Conjecture 5.5] for a precise formulation of
this question as a conjecture.
Question. Assume that the fundamental domain of the action of G on the vertices of X is finite. For
a suitable definition of closed 𝐿2-forms, if 𝜔 is a shift-invariant closed 𝐿2-form, then does there exist
𝜔𝑛 ∈ E for 𝑛 ∈ N and 𝜓 ∈ Hom(𝐺,Consv𝜙 (𝑆)) such that

lim
𝑛→∞

(𝜔𝑛 + 𝜔𝜓) = 𝜔 ?

Here, we let 𝜔𝜓 be the element in C corresponding to 𝜓 in the decomposition (5) of Corollary 2 given
for a choice of a fundamental domain of X for the action of G.

The question is answered affirmatively for the cases that Varadhan’s decomposition are shown.
Although our local forms construct the core of the 𝐿2-space, and local closed forms in our sense are
closed forms in the sense of the 𝐿2-space, it is currently not generally known whether our local closed
forms form a core of closed forms in the sense of 𝐿2-spaces. Nevertheless, in subsequent research, we
prove Varadhan’s decomposition for certain locales using Theorem 1 of this article, when S is finite and
𝜇 is a product measure, assuming a certain spectral gap estimate pertaining to the interaction (cf. [3]).
Through this process, we hope to understand the role played by the sharp spectral gap estimates in the
proof of hydrodynamic limits for nongradient systems, a question which has been an important open
question for the past thirty years (see, for example, [8, Preface]).

Let C𝐿2 and E𝐿2 be the shift-invariant closed and exact forms for the 𝐿2-space. The inner product on
the 𝐿2-space defines an orthogonal decomposition

C𝐿2 � E𝐿2 ⊕ Hom(𝐺,Consv𝜙 (𝑆)) (8)

which is different from (5). By reinterpreting the method in hydrodynamic limits for obtaining the
macroscopic deterministic partial differential equation from the microscopic system, we have come
to understand that the diffusion matrix associated with the macroscopic partial differential equation
is given precisely by the matrix relating the two decompositions (5) and (8). One critical observation
from this fact is that the size of the diffusion matrix of our system should be 𝑐𝜙𝑑, the dimension of⊕𝑑

𝑗=1 Consv𝜙 (𝑆).
Through our investigation, we have come to see the stochastic data consisting of the measure and

compatible inner product as a certain analogy of differential geometric data on Riemannian manifolds
– the volume form and the metric. Through this analogy, the orthogonal decomposition (8) may be
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regarded as a differential geometric decomposition given as a certain analogue of the Hodge-Kodaira
decomposition in Riemannian geometry, whereas the decomposition (5) is viewed as a more topological
decomposition. In light of this analogy, it would be interesting to interpret the diffusion matrix relating
the topological and measure theoretic structures of C𝐿2 as an analogy of the period matrix in Hodge
theory comparing the topological and differential geometric structures of the manifold. Such ideas will
be explored in future research.

1.4. Overview

In this subsection, we give an overview of the proof of Theorem 1. The key result for the proof is
Theorem 6 below concerning the property of uniform cohomology. Consider the system (𝑋, 𝑆, 𝜙). The
uniform cohomology is defined for a configuration space with transition structure as follows.

Definition 1.6. We define the uniform cohomology 𝐻𝑚
unif (𝑆

𝑋 ) for 𝑚 ∈ N of the configuration space 𝑆𝑋
with transition structure to be the cohomology of the cochain complex

𝐶0
unif (𝑆

𝑋 )
𝜕
−→ 𝑍1

unif (𝑆
𝑋 ),

which is zero in degrees 𝑚 ≠ 0, 1. Concretely, we have 𝐻0
unif (𝑆

𝑋 ) � Ker 𝜕, 𝐻1
unif (𝑆

𝑋 ) �
𝑍1

unif (𝑆
𝑋 )/Im 𝜕, and 𝐻𝑚

unif (𝑆
𝑋 ) = {0} in degrees 𝑚 ≠ 0, 1. The uniform cohomology is philosophically

the reduced cohomology in the sense of topology of the pointed space consisting of the configuration
space 𝑆𝑋 and base configuration ★ ∈ 𝑆𝑋 .

Theorem 6 (=Theorem 5.8). For the system (𝑋, 𝑆, 𝜙), assume that the interaction 𝜙 is irreducibly
quantified. If X is transferable, or if the interaction 𝜙 is simple and X is weakly transferable, then we
have

𝐻𝑚
unif (𝑆

𝑋 ) �

{
Consv𝜙 (𝑆) 𝑚 = 0
{0} 𝑚 ≠ 0.

The configuration space 𝑆𝑋 with transition structure viewed geometrically as a graph generally
has an infinite number of connected components. Hence, it may be surprising that 𝐻0

unif (𝑆
𝑋 ) is finite

dimensional. This calculation very beautifully reflects the fact that assuming the conditions of the
theorem, the connected components of the graph 𝑆𝑋∗ can be determined from the values of its conserved
quantities (see Remark 2.25). By the definition of 𝐻𝑚

unif (𝑆
𝑋 ), Theorem 6 is equivalent to the existence

of a short exact sequence

0 �� Consv𝜙 (𝑆) 𝑖 �� 𝐶0
unif (𝑆

𝑋 )
𝜕 �� 𝑍1

unif (𝑆
𝑋 ) �� 0. (9)

In other words, (9) is a sequence ofR-linear maps such that i is injective, 𝜕 is surjective, and Im 𝑖 = Ker 𝜕.
A large portion of our article is dedicated to the construction of (9), especially the proof that the
differential 𝜕 is surjective.

First, in §2.1, we introduce our model and the associated configuration space. In §2.2, we introduce
the notion of a conserved quantity. Then in §2.3, we define the usual cohomology for the configuration
space with transition structure and the notion of closed forms. We then give the relation between the
conserved quantities and the 𝐻0 of the configuration space.

In §3.1, we introduce the notion of local functions with exact support and prove that any function
𝑓 ∈ 𝐶 (𝑆𝑋∗ ) may be expanded uniquely as a possibly infinite sum of local functions with exact support.
We say that 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is uniform if the diameter of support in the expansion of f is uniformly bounded.
In §3.2, we first note that the function 𝜉𝑋 =

∑
𝑥∈𝑋 𝜉𝑥 for any conserved quantity 𝜉 ∈ Consv𝜙 (𝑆) is
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uniform. Since 𝜉𝑋 (★) = 0, the correspondence 𝜉 ↦→ 𝜉𝑋 gives a natural inclusion 𝑖 : Consv𝜙 (𝑆) ↩→
𝐶0

unif (𝑆
𝑋 ). Assume now that the interaction is irreducibly quantified. We prove in Theorem 3.7 that this

inclusion gives an isomorphism

Consv𝜙 (𝑆) � Ker 𝜕.

It remains to prove that 𝜕 is surjective. In Definition 3.10, we define the notion of uniform forms. For
the remainder of §3, we assume in addition that X is strongly transferable – that is, 𝑋 \ 𝐵 is an infinite
connected graph for any ball B in X. We consider a function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 is uniform, and
we construct in Proposition 3.18 of §3.3 a symmetric pairing ℎ 𝑓 : M ×M → R on a certain additive
submonoid M ⊂ R𝑐𝜙 (see Definition 2.24) satisfying the cocycle condition

ℎ 𝑓 (𝛼, 𝛽) + ℎ 𝑓 (𝛼 + 𝛽, 𝛾) = ℎ 𝑓 (𝛽, 𝛾) + ℎ 𝑓 (𝛼, 𝛽 + 𝛾)

for any 𝛼, 𝛽, 𝛾 ∈ M. We then prove in Proposition 3.19 of §3.4 that if ℎ 𝑓 ≡ 0, then 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ).
In §4, we consider the case when X is weakly transferable. This section is technical and can be

skipped if the reader is only interested in the strongly transferable case. In §4.2, we again construct
a pairing ℎ 𝑓 for any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 is uniform, and we prove in Proposition 4.13 the
cocycle condition for ℎ 𝑓 . We note that in general, the pairing ℎ 𝑓 may not be symmetric. We prove in
Proposition 4.14 of §4.3 a weakly transferable version of Proposition 3.19. Finally, we prove in §4.4
that the pairing ℎ 𝑓 is symmetric if the locale X is transferable.

In §5, we complete the proof that 𝜕 is surjective (see Theorem 5.2 for details). The method of
proof is as follows. For any closed uniform form 𝜔 ∈ 𝑍1

unif (𝑆
𝑋 ), since 𝜔 is closed, by Lemma 2.28,

there exists 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 = 𝜔. Note that f may not necessarily be a uniform function.
By the previous argument, there exists a pairing ℎ 𝑓 : M × M → R satisfying the cocycle condition.
We prove in Lemma 5.5 that if the pairing ℎ 𝑓 is symmetric, or in Lemma 5.5 if the interaction is
simple, there exists a function ℎ : M → R such that

ℎ 𝑓 (𝛼, 𝛽) = ℎ(𝛼) + ℎ(𝛽) − ℎ(𝛼 + 𝛽)

for any 𝛼, 𝛽 ∈ M. We modify the function f using h to obtain a function with the same 𝜕 𝑓 but satisfies
ℎ 𝑓 ≡ 0. By Proposition 3.19 or Proposition 4.14, we see that 𝑓 ∈ 𝐶0

unif (𝑆
𝑋 ). This proves that the

differential 𝜕 in (9) is surjective, completing the proof of Theorem 6.
Now for the proof of Theorem 1, suppose that the locale X has a free action of a group G. This gives a

natural action of G on various spaces of functions and forms. Noting that G acts trivially on Consv𝜙 (𝑆),
the boundary homomorphism of the long exact sequence for group cohomology (49) associated with
the short exact sequence (9) immediately gives an inclusion

C/E � � 𝛿 �� Hom(𝐺,Consv𝜙 (𝑆)).

For a fixed fundamental domain Λ0 of X for the action of G, we let

𝜔𝜓 � 𝜕
(∑
𝜏∈𝐺

𝜓(𝜏)𝜏 (Λ0)

)
∈ C

for any 𝜓 ∈ Hom(𝐺,Consv𝜙 (𝑆)), noting that 𝜓(𝜏) ∈ Consv𝜙 (𝑆) for any 𝜏 ∈ 𝐺. The relation of 𝜔𝜓
to the form in (7) is explained in Remark 5.20. By explicit calculation, we see in Proposition 5.18
that 𝛿(𝜔𝜓) = 𝜓; hence, 𝛿 is surjective. The R-linear map 𝜔 ↦→ (𝜔 − 𝜔𝜓 , 𝜓) for 𝜓 � 𝛿(𝜔) gives a
decomposition of R-linear spaces

C � E ⊕ Hom(𝐺,Consv𝜙 (𝑆)),
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completing the proof of Theorem 1. In Appendix A, we review well-known results concerning
cohomology of graphs. In Appendix B, we give some examples. In Appendix B.1, we describe the
objects appearing in our article for the exclusion process. Finally, in Appendix B.2, we let 𝑋 = Z and
consider the multi-color exclusion process for 𝑆 = {0, 1, 2}. Then X is not transferable and 𝑐𝜙 = 2. We
prove that 𝜕 of Definition 1.6 is not surjective in this case.

2. Configuration space and conserved quantities

In this section, we will introduce the configuration space of a large-scale interacting system and the
notion of a conserved quantity. We then define and investigate its cohomology.

2.1. Configuration space and transition structure

In this subsection, we will give a graph structure which we call the transition structure on the configu-
ration space of states on a locale. We first review some terminology related to graphs.

A directed graph (𝑋, 𝐸), or simply a graph, is a pair consisting of a set X, which we call the set of
vertices, and a subset 𝐸 ⊂ 𝑋 × 𝑋 , which we call the set of directed edges, or simply edges. For any
𝑒 ∈ 𝐸 = 𝑋 × 𝑋 , we denote by 𝑜(𝑒) and 𝑡 (𝑒) the first and second components of e, which we call the
origin and target of e, so that 𝑒 = (𝑜(𝑒), 𝑡 (𝑒)) ∈ 𝑋 × 𝑋 . For any 𝑒 ∈ 𝐸 , we let 𝑒 � (𝑡 (𝑒), 𝑜(𝑒)), which
we call the opposite of e. We say that a directed graph (𝑋, 𝐸) is symmetric if 𝑒 ∈ 𝐸 for any 𝑒 ∈ 𝐸 , and
simple if (𝑥, 𝑥) ∉ 𝐸 for any 𝑥 ∈ 𝑋 . For any 𝑒 = (𝑜(𝑒), 𝑡 (𝑒)) ∈ 𝐸 , we will often use e to denote the set
𝑒 = {𝑜(𝑒), 𝑡 (𝑒)}. We say that (𝑋, 𝐸) is locally finite if for any 𝑥 ∈ 𝑋 , the set {𝑒 ∈ 𝐸 | 𝑥 ∈ 𝑒} is finite.
In this article, by abuse of notation (see Remark 2.8), we will often simply denote the graph (𝑋, 𝐸) by
its set of vertices X.

We define a finite path on the graph X to be a finite sequence �𝑝 � (𝑒1, 𝑒2, . . . , 𝑒𝑁 ) of edges in E
such that 𝑡 (𝑒𝑖) = 𝑜(𝑒𝑖+1) for any integer 0 < 𝑖 < 𝑁 . We denote by len( �𝑝) the number of elements N in
�𝑝, which we call the length of �𝑝. We let 𝑜( �𝑝) � 𝑜(𝑒1) and 𝑡 ( �𝑝) � 𝑡 (𝑒𝑁 ), and we say that �𝑝 is a path
from 𝑜( �𝑝) to 𝑡 ( �𝑝). For paths �𝑝1, �𝑝2 such that 𝑡 ( �𝑝1) = 𝑜( �𝑝2), we denote by �𝑝1 �𝑝2 the path from 𝑜( �𝑝1) to
𝑡 ( �𝑝2) obtained as the composition of the two paths. If a path �𝑝 satisfies 𝑜( �𝑝) = 𝑡 ( �𝑝), then we say that
�𝑝 is a closed path. For any 𝑥, 𝑥 ′ ∈ 𝑋 , we denote by 𝑃(𝑥, 𝑥 ′) the set of paths from x to 𝑥 ′. We define the
graph distance 𝑑𝑋 (𝑥, 𝑥 ′) between x and 𝑥 ′ by

𝑑𝑋 (𝑥, 𝑥
′) � inf

�𝑝∈𝑃 (𝑥,𝑥′)
len( �𝑝)

if 𝑃(𝑥, 𝑥 ′) ≠ ∅, and 𝑑𝑋 (𝑥, 𝑥
′) � ∞ otherwise. We say that any subset 𝑌 ⊂ 𝑋 is connected if

𝑑𝑌 (𝑥, 𝑥
′) < ∞ for any 𝑥, 𝑥 ′ ∈ 𝑌 , where 𝑑𝑌 is the graph distance on the graph (𝑌, 𝐸𝑌 ) given by

𝐸𝑌 � 𝐸 ∩ (𝑌 × 𝑌 ).

Definition 2.1. We define the locale to be a locally finite simple symmetric directed graph 𝑋 = (𝑋, 𝐸)
which is connected. If the set of vertices of X is an infinite set, then we say that X is an infinite locale.

We will use the terminology locale to express the discrete object that models the space where the
dynamics under question takes place. We understand the connectedness to be an important feature of
the locale.

Example 2.2.

1. The most typical example of an infinite locale is the Euclidean lattice Z𝑑 = (Z𝑑 ,E𝑑) for integers
𝑑 ≥ 1, where Z𝑑 is the d-fold product of Z, and

E
𝑑 �

{
(𝑥, 𝑦) ∈ Z𝑑 × Z𝑑

�� |𝑥 − 𝑦 | = 1
}
.

Here, we let |𝑥 − 𝑦 | �
∑𝑑
𝑗=1 |𝑥 𝑗 − 𝑦 𝑗 | for any 𝑥 = (𝑥1, . . . , 𝑥𝑑), 𝑦 = (𝑦1, . . . , 𝑦𝑑) in Z𝑑 .
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Figure 4. The Euclidean lattices Z2 and with nearest 2-neighbor Z2
2.

2. For integers 𝑑 ≥ 1 and 𝑛 > 0, a variant of the Euclidean lattice is given by the Euclidean lattice with
nearest n-neighbor Z𝑑𝑛 = (Z𝑑 ,E𝑑𝑛) (see Figure 4), where

E
𝑑
𝑛 �

{
(𝑥, 𝑦) ∈ Z𝑑 × Z𝑑

�� 0 < |𝑥 − 𝑦 | ≤ 𝑛
}
.

3. Many types of crystal lattices such as the triangular, hexagonal and diamond lattices are infinite
locales (see, for example, [17, Example 3.4, Example 8.3] and [10, §5]).

4. Let G be a finitely generated group, and let S ⊂ 𝐺 be a minimal set of generators. Then the
associated Cayley graph (𝐺, 𝐸S ) given by 𝐸S � {(𝜏, 𝜏𝜎), (𝜏, 𝜏𝜎−1) | 𝜏 ∈ 𝐺, 𝜎 ∈ S} is a locale. If
G is infinite, then the associated Cayley graph is an infinite locale.

5. Let 𝑋1 = (𝑋1, 𝐸1) and 𝑋2 = (𝑋2, 𝐸2) be locales. If 𝑋 � 𝑋1 × 𝑋2 and

𝐸 � {((𝑜(𝑒1), 𝑜(𝑒2)), (𝑡 (𝑒1), 𝑜(𝑒2)) | 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2}

∪ {((𝑜(𝑒1), 𝑜(𝑒2)), (𝑜(𝑒1), 𝑡 (𝑒2)) | 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2} ⊂ (𝑋1 × 𝑋2) × (𝑋1 × 𝑋2),

then (𝑋, 𝐸) is a locale, which we denote 𝑋1 × 𝑋2. We say that X is a product of 𝑋1 and 𝑋2. Note that
(Z𝑑 ,E𝑑) coincides with the d-fold product (Z,E) × · · · × (Z,E).

6. Suppose 𝑋 = (𝑋, 𝐸) is a locale, and let 𝑌 ⊂ 𝑋 be a connected subset. If we let 𝐸𝑌 � 𝐸 ∩ (𝑌 ×𝑌 ) ⊂
𝑋 × 𝑋 , then 𝑌 = (𝑌, 𝐸𝑌 ) gives a graph which is a locale. We call Y a sublocale of X.

Next, we introduce the set of states, which is a nonempty set S expressing the possible states the
model may take at each vertex, and the configuration space 𝑆𝑋 for S on X.

Definition 2.3. We define the set of states to be a nonempty set S. We call any element of S a state. We
will designate an element ∗ ∈ 𝑆 which we call the base state. If 𝑆 ⊂ R and 0 ∈ 𝑆, then we will often
take the base state ∗ to be 0. For any locale 𝑋 = (𝑋, 𝐸), we define the configuration space for S on X by

𝑆𝑋 �
∏
𝑥∈𝑋

𝑆.

We call an element 𝜂 = (𝜂𝑥) of 𝑆𝑋 a configuration. We denote by ★ the base configuration, which is
the configuration in 𝑆𝑋 whose components are all at base state.

Now, we introduce the symmetric binary interaction, which expresses the interaction between states
on adjoining vertices.

Definition 2.4. A symmetric binary interaction, which we simply call an interaction on S, is a map
𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 such that

𝚤 ◦ 𝜙 ◦ 𝚤 ◦ 𝜙(𝑠1, 𝑠2) = (𝑠1, 𝑠2) (10)

for any (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 satisfying 𝜙(𝑠1, 𝑠2) ≠ (𝑠1, 𝑠2), where 𝚤 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is the bijection obtained
by exchanging the components of 𝑆 × 𝑆.
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Examples of the set of states S and interactions 𝜙 are given in Example 2.10 of §2.2. Throughout
this article, a system (𝑋, 𝑆, 𝜙) indicates that X is a locale, S is a set of states, and 𝜙 is an interaction. We
will next define the configuration space with transition structure associated with such a system. We first
prepare a lemma.
Lemma 2.5. For a locale 𝑋 = (𝑋, 𝐸) and the set of states S, let 𝑆𝑋 be the configuration space for S on
X. Let 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 be an interaction on S. For any 𝑒 = (𝑜(𝑒), 𝑡 (𝑒)) ∈ 𝐸 ⊂ 𝑋 × 𝑋 , we define the
map 𝜙𝑒 : 𝑆𝑋 → 𝑆𝑋 by 𝜙𝑒 (𝜂) � 𝜂𝑒, where 𝜂𝑒 = (𝜂𝑒𝑥) ∈ 𝑆𝑋 is defined as in (1). In other words, 𝜙𝑒 (𝜂) is
obtained by applying 𝜙 to the 𝑜(𝑒) and 𝑡 (𝑒) components of 𝜂. If we denote by Φ the image of the map

𝐸 × 𝑆𝑋 → 𝑆𝑋 × 𝑆𝑋 , (𝑒, 𝜂) ↦→ (𝜂, 𝜙𝑒 (𝜂)), (11)

then the pair (𝑆𝑋 ,Φ) is a symmetric directed graph.
Proof. It is sufficient to prove that the directed graph (𝑆𝑋 ,Φ) is symmetric. By the definition of an
interaction, we have 𝚤 ◦ 𝜙 ◦ 𝚤 ◦ 𝜙(𝑠1, 𝑠2) = (𝑠1, 𝑠2) for any (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 such that 𝜙(𝑠1, 𝑠2) ≠ (𝑠1, 𝑠2).
This shows that for any 𝜂 ∈ 𝑆𝑋 , if 𝜙𝑒 (𝜂) ≠ 𝜂, then we have 𝜙�̄� ◦ 𝜙𝑒 (𝜂) = 𝜂. Consider the element
(𝜂, 𝜙𝑒 (𝜂)) ∈ Φ. If 𝜙𝑒 (𝜂) = 𝜂, then (𝜙𝑒 (𝜂), 𝜂) = (𝜂, 𝜂) ∈ Φ. If 𝜙𝑒 (𝜂) ≠ 𝜂, then (𝜙𝑒 (𝜂), 𝜂) = (𝜙𝑒 (𝜂), 𝜙�̄�◦
𝜙𝑒 (𝜂)), which is an element in Φ since it is the image of (𝑒, 𝜙𝑒 (𝜂)) ∈ 𝐸 × 𝑆𝑋 by the map (11). �

Remark 2.6. In fact, the condition (10) that we impose on the interaction is simply a sufficient condition
and not a necessary condition for our theory. The property that we actually use is that (𝑆𝑋 ,Φ) is a
symmetric directed graph.
Definition 2.7. For a locale X and a set of states S, if we fix an interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆, then
Lemma 2.5 implies that Φ gives a structure of a symmetric directed graph

𝑆𝑋 = (𝑆𝑋 ,Φ)

on the configuration space 𝑆𝑋 . We call this structure the transition structure, and we call any element
𝜑 ∈ Φ a transition. In particular, we say that 𝜑 = (𝜂, 𝜙𝑒 (𝜂)) ∈ Φ is a transition of 𝜂 by e. Following the
convention in literature, we will often denote 𝜙𝑒 (𝜂) by 𝜂𝑒.
Remark 2.8. Our convention of denoting the locale (𝑋, 𝐸) by X and the configuration space with
transition structure (𝑆𝑋 ,Φ) by 𝑆𝑋 follows similar convention as that of topological spaces, where the
topological space and its underlying set is denoted by the same symbol. We are interpreting the set of
edges of a graph as giving a geometric structure to the set of vertices.

For the configuration space 𝑆𝑋 with transition structure, the edges Φ expresses all the possible
transitions on the configuration space with respect to the interaction 𝜙. For any element 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋 ,
we define the support of 𝜂 to be the set Supp(𝜂) � {𝑥 ∈ 𝑋 | 𝜂𝑥 ≠ ∗} ⊂ 𝑋 . The subset

𝑆𝑋∗ �
{
𝜂 = (𝜂𝑥) ∈ 𝑆𝑋 | | Supp(𝜂) | < ∞

}
⊂ 𝑆𝑋

of the configuration space will play an important role in our theory. If we let Φ∗ � Φ∩ (𝑆𝑋∗ × 𝑆𝑋∗ ), then
𝑆𝑋∗ = (𝑆𝑋∗ ,Φ∗) is again a symmetric directed graph, which we refer to again as a configuration space
with transition structure.

For any set A, we let 𝐶 (𝐴) � Map(𝐴,R) be the R-linear space of functions from A to R. As in §1.2,
for any finite Λ ⊂ 𝑋 , we let 𝑆Λ �

∏
𝑥∈Λ 𝑆. Following standard convention, we let 𝑆∅ = {★} if Λ = ∅.

The natural projection 𝑆𝑋∗ ⊂ 𝑆𝑋 → 𝑆Λ given by mapping 𝜂 = (𝜂𝑥)𝑥∈𝑋 ∈ 𝑆𝑋 to 𝜂 |Λ � (𝜂𝑥)𝑥∈Λ induces
a natural injection 𝐶 (𝑆Λ) ↩→ 𝐶 (𝑆𝑋∗ ). From now on, we will identify 𝐶 (𝑆Λ) with its image in 𝐶 (𝑆𝑋∗ ).
Note that any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is a function in 𝐶 (𝑆Λ) if and only if f as a function for 𝜂 ∈ 𝑆𝑋∗ depends only
on 𝜂 |Λ ∈ 𝑆Λ. We call any such function a local function. We denote by 𝐶loc (𝑆

𝑋 ) the space of local
functions, which is a subspace of both 𝐶 (𝑆𝑋 ) and 𝐶 (𝑆𝑋∗ ). If the set of vertices of X is finite, then we
simply have 𝐶loc(𝑆

𝑋 ) = 𝐶 (𝑆𝑋 ) = 𝐶 (𝑆𝑋∗ ). Our methods are of interest predominantly for the case when
X is an infinite locale.
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2.2. Conserved quantities and irreducibly quantified interactions

In this subsection, we introduce the notion of conserved quantities, which are certain invariants of states
preserved by the interaction. Using the conserved quantities, we will introduce the important notion for
an interaction to be irreducibly quantified. In what follows, let S be a set of states with base state ∗ ∈ 𝑆,
and we fix an interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 on S.

Definition 2.9. A conserved quantity for the interaction 𝜙 is a function 𝜉 : 𝑆 → R satisfying 𝜉 (∗) = 0
and

𝜉 (𝑠1) + 𝜉 (𝑠2) = 𝜉 (𝑠′1) + 𝜉 (𝑠′2) (12)

for any (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 and (𝑠′1, 𝑠
′
2) � 𝜙(𝑠1, 𝑠2). We denote by Consv𝜙 (𝑆) the R-linear subspace of

Map(𝑆,R) consisting of the conserved quantities for the interaction 𝜙. We let 𝑐𝜙 � dimR Consv𝜙 (𝑆).

Examples of interactions and corresponding conserved quantities are given as follows.

Example 2.10.

1. Let 𝑆 = {0, 1, . . . , 𝜅} with base state ∗ = 0 for some integer 𝜅 > 0. For the multi-species exclusion
process of Example 1.3 (2), we have 𝑐𝜙 = 𝜅, and the conserved quantities given by 𝜉 (𝑖) (𝑠) = 1 if
𝑠 = 𝑖 and 𝜉 (𝑖) (𝑠) = 0 otherwise for 𝑖 = 1, . . . , 𝜅 give a basis of the R-linear space Consv𝜙 (𝑆).

2. Let 𝑆 = N or 𝑆 = {0, . . . , 𝜅} ⊂ N for some integer 𝜅 > 0. We let ∗ = 0 be the base state. The map
𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 defined by

𝜙(𝑠1, 𝑠2) �

{
(𝑠1 − 1, 𝑠2 + 1) 𝑠1 − 1, 𝑠2 + 1 ∈ 𝑆

(𝑠1, 𝑠2) otherwise

is an interaction. The stochastic process induced from this interaction when S is finite is the generalized
exclusion process (see Figure 5). Note that for any 𝑛 > 1 in S, we have 𝜙(𝑛, 0) = (𝑛 − 1, 1); hence,
for any conserved quantity 𝜉, Equation (2) inductively gives

𝜉 (𝑛) = 𝜉 (𝑛) + 𝜉 (0) = 𝜉 (𝑛 − 1) + 𝜉 (1) = 𝜉 (𝑛 − 2) + 2𝜉 (1) = · · · = 𝑛𝜉 (1).

This shows that 𝑐𝜙 = 1, and the conserved quantity 𝜉 : 𝑆 → N given by 𝜉 (𝑠) = 𝑠 gives a ba-
sis of the one-dimensional R-linear space Consv𝜙 (𝑆). This interaction is simple in the sense of
Definition 1.1 (2).

3. Let 𝑆 = N, or let 𝑆 = {0, . . . , 𝜅} ⊂ N for some integer 𝜅 > 1, with base state ∗ = 0. The map
𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 defined by

𝜙(𝑠1, 𝑠2) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑠2, 𝑠1) 𝑠1 > 0, 𝑠2 = 0
(𝑠1 − 1, 𝑠2 + 1) 𝑠1 > 1, 𝑠2 > 0, 𝑠2 + 1 ∈ 𝑆

(𝑠1, 𝑠2) otherwise

is an interaction. We have 𝑐𝜙 = 2, and the functions 𝜉 (1) (𝑠) = 𝑠 and

𝜉 (2) (𝑠) =

{
1 𝑠 > 0
0 𝑠 = 0

give a basis of theR-linear space Consv𝜙 (𝑆). This interaction is the lattice gas with energy. Intuitively,
S represents the amount of energy on the vertex, with 𝑠 = 0 representing the fact that there are no
particles.
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Figure 5. Generalized exclusion process.

4. For 𝑆 = {−1, 0, 1} with base state ∗ = 0, the map 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 defined by

𝜙((0, 0)) = (−1, 1), 𝜙((−1, 1)) = (1,−1), 𝜙((1,−1)) = (0, 0),

and 𝜙((𝑠1, 𝑠2)) = (𝑠2, 𝑠1) for 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 + 𝑠2 ≠ 0 is an interaction. We have 𝑐𝜙 = 1, and
the conserved quantity 𝜉 : 𝑆 → Z given by 𝜉 (𝑠) = 𝑠 gives a basis of the R-linear space Consv𝜙 (𝑆).
This interaction is simple in the sense of Definition 1.1 (2).

5. For 𝑆 = {0, 1} with base state ∗ = 0, the map 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 defined by

𝜙((0, 𝑠)) = (1, 𝑠), 𝜙((1, 𝑠)) = (0, 𝑠)

for any 𝑠 ∈ 𝑆 does not satisfy (10). However, (𝑆𝑋 ,Φ) is a symmetric directed graph for any locale
X, and our theory applies also to this case (see also Remark 2.6). This case is known as the Glauber
model. Since 𝜙(0, 0) = (1, 0), Equation (12) gives 𝜉 (1) = 𝜉 (0) = 0 for any conserved quantity 𝜉;
hence, we have 𝑐𝜙 = dimR Consv𝜙 (𝑆) = 0.

The exclusion process of Example 1.3 (1) is a special case of both the multi-species exclusion process
and the generalized exclusion process, with the set of states given by 𝑆 = {0, 1}.

Let X be a locale, and let 𝑆𝑋∗ be the configuration space with transition structure associated with our
interaction. Note that if 𝜉 is a conserved quantity, then 𝜉 defines a function 𝜉𝑋 : 𝑆𝑋∗ → R given by

𝜉𝑋 (𝜂) �
∑
𝑥∈𝑋

𝜉 (𝜂𝑥) (13)

for any 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ . The sum is well defined since by definition, 𝜂𝑥 = ∗ outside a finite number of
𝑥 ∈ 𝑋 .

Remark 2.11. The interactions in Example 2.10 have the following interpretations. See Remark 1.4 for
the case of the multi-species exclusion process.

(2) For 𝑠 ∈ 𝑆 in the process in Example 2.10 (2), 𝑠 = 0 describes the state where there are no particles
at the vertex, and 𝑠 = 𝑘 for an integer 𝑘 > 0 the state where there are k indistinguishable particles
at the vertex. Then for the conserved quantity given by 𝜉 (𝑠) = 𝑠 for any 𝑠 ∈ 𝑆, the value 𝜉𝑋 (𝜂) for a
configuration 𝜂 ∈ 𝑆𝑋∗ expresses the total number of particles in the configuration. If 𝑆 = {0, · · · , 𝜅}
for some integer 𝜅 > 0, then this process is called the generalized exclusion process, since at most
𝜅 particles are allowed to occupy the vertex. If 𝑆 = N, then the process includes the trivial case
where the particles evolve as independent random walks with no interactions between the particles,
as described in [8, Chapter 1].

(3) For 𝑠 ∈ 𝑆, the process in Example 2.10 (3), 𝑠 = 0 describes the state where there are no particles
at the vertex, and 𝑠 = 𝑘 for an integer 𝑘 > 0 the state where there is a particle with energy k at the
vertex. Then 𝜉 (1)𝑋 (𝜂) for a configuration 𝜂 ∈ 𝑆𝑋∗ expresses the total energy of the particles in the
configuration, and 𝜉 (2)𝑋 (𝜂) expresses the total number of particles in the configuration.
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(4) For the process in Example 2.10 (4), s describes the spin of the particle at the vertex. Then for the
conserved quantity given by 𝜉 (𝑠) = 𝑠 for any 𝑠 ∈ 𝑆, the value 𝜉𝑋 (𝜂) for a configuration 𝜂 ∈ 𝑆𝑋∗
expresses the total spin of the configuration.

(5) For 𝑠 ∈ 𝑆 in the Glauber model in Example 2.10 (5), one interpretation is that 𝑠 = 0 describes the
state where there are no particles at the vertex, and 𝑠 = 1 describes the state where there is a single
particle at the vertex. Since the interaction allows for the creation and annihilation of particles,
there are no nontrivial conserved quantities. Another interpretation is that s describes the spin of
the particle at each vertex.

Remark 2.12. The hydrodynamic limits for the generalized exclusion process have been studied by
Kipnis-Landim-Olla [9]. See also [8, Chapter 7]. The case of lattice gas with energy has been studied by
Nagahata [11], and the stochastic process induced from the interaction in Example 2.10 (4) was studied
by Sasada [15]. In all of the known cases, the underlying locale is taken to be the Euclidean lattice.

The important notion of irreducibly quantified is defined as follows.

Definition 2.13. We say that an interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is irreducibly quantified if for any finite
locale (𝑋, 𝐸) and configurations 𝜂, 𝜂′ ∈ 𝑆𝑋 satisfying

𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′)

for all conserved quantities 𝜉 ∈ Consv𝜙 (𝑆), there exists a finite path �𝛾 from 𝜂 to 𝜂′ in 𝑆𝑋 .

Remark 2.14. If we consider 𝑆 = {0, 1} with base state ∗ = 0 and the interaction 𝜙 given by

𝜙((0, 0)) = (1, 1), 𝜙((1, 0)) = (0, 1), 𝜙((0, 1)) = (1, 0), 𝜙((1, 1)) = (0, 0),

then a function 𝜉 : 𝑆 → R satisfying 𝜉 (0) = 0 and (12) would imply that 𝜉 (1) = 0; hence, 𝜉 ≡ 0. In fact,
this interaction is not irreducibly quantified. In order to deal with such a model, it may be necessary to
consider conserved quantities with values in Z/2Z.

The remainder of this section is devoted to the proof of Proposition 2.19, which asserts that the
interactions given in Example 2.10 are all irreducibly quantified. For the proof, we first introduce the
notion of exchangeability.

Definition 2.15. We say that an interaction 𝜙 : 𝑆× 𝑆 → 𝑆× 𝑆 is exchangeable if for any (𝑠1, 𝑠2) ∈ 𝑆× 𝑆,
a suitable composition of maps 𝜙 and 𝜙 such that (𝑠1, 𝑠2) maps to (𝑠2, 𝑠1) ∈ 𝑆 × 𝑆. Here, if we write
𝜙(𝑠1, 𝑠2) = (𝜙1 (𝑠1, 𝑠2), 𝜙2(𝑠1, 𝑠2)) ∈ 𝑆 × 𝑆, then we let 𝜙(𝑠1, 𝑠2) � (𝜙2 (𝑠2, 𝑠1), 𝜙1(𝑠2, 𝑠1)) for any
(𝑠1, 𝑠2) ∈ 𝑆 × 𝑆. In other words, 𝜙 � 𝚤 ◦ 𝜙 ◦ 𝚤, where 𝚤 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is the bijection obtained by
exchanging the components of 𝑆 × 𝑆.

It is straightforward to check that the interactions in Example 2.10 are all exchangeable. Since
𝜙 ◦ 𝜙(𝑠1, 𝑠2) = (𝑠1, 𝑠2) if 𝜙(𝑠1, 𝑠2) ≠ (𝑠1, 𝑠2), the composition of Definition 2.15 is necessarily of the
form 𝜙𝑛 or 𝜙𝑛 for some integer 𝑛 ≥ 0. In what follows, consider a system (𝑋, 𝑆, 𝜙) and the associated
configuration space 𝑆𝑋∗ with transition structure. We first prepare some notations.

Definition 2.16. Let 𝜂 be a configuration in 𝑆𝑋∗ , and let 𝑥, 𝑦 be vertices in X.

1. We define 𝜂𝑥,𝑦 ∈ 𝑆𝑋∗ to be the configuration whose component outside 𝑥, 𝑦 ∈ 𝑋 coincides with that
of 𝜂, and the x and y components are given by 𝜂

𝑥,𝑦
𝑥 � 𝜂𝑦 and 𝜂

𝑥,𝑦
𝑦 � 𝜂𝑥 .

2. We define 𝜂𝑥�𝑦 to be the configuration whose component outside 𝑥, 𝑦 ∈ 𝑋 coincides with that of
𝜂, and the x and y components are given by 𝜂

𝑥�𝑦
𝑥 � 𝜙1(𝜂𝑥 , 𝜂𝑦) and 𝜂

𝑥�𝑦
𝑦 � 𝜙2(𝜂𝑥 , 𝜂𝑦), where

𝜙(𝜂𝑥 , 𝜂𝑦) = (𝜙1(𝜂𝑥 , 𝜂𝑦), 𝜙2(𝜂𝑥 , 𝜂𝑦)) ∈ 𝑆 × 𝑆 for the interaction 𝜙 on S.

A path in 𝑆𝑋∗ is a sequence of transitions, and a transition is induced by an interaction on some edge
of the locale. Hence, for a sequence of edges 𝒆 = (𝑒1, . . . , 𝑒𝑁 ) in E and 𝜂 ∈ 𝑆𝑋∗ , if we let 𝜂0 � 𝜂 and
𝜂𝑖 � (𝜂𝑖−1)𝑒

𝑖 for 𝑖 = 1, . . . , 𝑁 , then 𝜑𝑖 = (𝜂𝑖 , 𝜂𝑖+1) is a transition and �𝛾𝒆𝜂 � (𝜑1, . . . , 𝜑𝑁 ) gives a path
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from 𝜂 to 𝜂𝒆 � 𝜂𝑁 in 𝑆𝑋∗ . We call this path �𝛾𝒆𝜂 the path with origin 𝜂 induced by 𝒆, or a path obtained
by applying the edges 𝒆 to 𝜂.

We prove some existences of paths between certain configurations, when the interaction is
exchangeable.

Lemma 2.17. If an interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is exchangeable, then for any configuration 𝜂 ∈ 𝑆𝑋∗
and vertices 𝑥, 𝑦 ∈ 𝑋 , there exists a path �𝛾 from 𝜂 to 𝜂𝑥,𝑦 in 𝑆𝑋∗ .

Proof. Since X is connected, there exists a path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) from x to y. Note that by definition,
𝑥 = 𝑜(𝑒1) and 𝑦 = 𝑡 (𝑒𝑁 ). Since 𝜙 is exchangeable, applying 𝑒1 or 𝑒1 sufficiently many times to 𝜂, we
obtain a path from 𝜂 to 𝜂𝑜 (𝑒

1) ,𝑡 (𝑒1) . Repeating this process for 𝑒2, . . . , 𝑒𝑁 , we obtain a path �𝛾1 from 𝜂
to 𝜂′, where 𝜂′ is such that the components of 𝜂′ coincides with that of 𝜂 outside the vertices appearing
in the edges 𝑒1, . . . , 𝑒𝑁 , 𝜂′

𝑜 (𝑒𝑖)
= 𝜂𝑡 (𝑒𝑖) for 𝑖 = 1, . . . , 𝑁 − 1, and 𝜂′𝑦 = 𝜂𝑥 . Then, reversing the above

process, first by applying 𝑒𝑁−1 or 𝑒𝑁−1 sufficiently many times to 𝜂′, we obtain a path from 𝜂′ to
(𝜂′)𝑜 (𝑒

𝑁−1) ,𝑡 (𝑒𝑁−1) . Repeating this process for 𝑒𝑁−2, . . . , 𝑒1, we see that we obtain a path �𝛾2 from 𝜂′

to 𝜂𝑥.𝑦 . Then the composition �𝛾 � �𝛾1 �𝛾2 gives a path from 𝜂 to 𝜂𝑥,𝑦 in 𝑆𝑋∗ as desired. �

Lemma 2.18. If an interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 is exchangeable, then for any configuration 𝜂 ∈ 𝑆𝑋∗
and vertices 𝑥, 𝑦 ∈ 𝑋 , there exists a path �𝛾 from 𝜂 to 𝜂𝑥�𝑦 in 𝑆𝑋∗ .

Proof. Again, since X is connected, there exists a path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) from 𝑥 = 𝑜(𝑒1) to 𝑦 = 𝑡 (𝑒𝑁 ).
If we let 𝑥 ′ = 𝑜(𝑒𝑁 ), then 𝑥 ′ is a vertex connected to y by the edge 𝑒𝑁 . Then by construction, if we let
𝜂′ � (𝜂𝑥,𝑥

′
)𝑒𝑁 , then 𝜂′ is a configuration whose component outside 𝑥, 𝑥 ′, 𝑦 ∈ 𝑋 coincides with that of

𝜂, and the 𝑥, 𝑥 ′ and y components are given by 𝜂′𝑥 = 𝜂𝑥′ , 𝜂′𝑥′ = 𝜙1(𝜂𝑥 , 𝜂𝑦), and 𝜂′𝑦 = 𝜙2(𝜂𝑥 , 𝜂𝑦). Thus,
we have (𝜂′)𝑥,𝑥

′
= 𝜂𝑥�𝑦 . By Lemma 2.17, there exists a path �𝛾1 from 𝜂 to 𝜂𝑥,𝑥′ and a path �𝛾2 from 𝜂′ to

𝜂𝑥�𝑦 in 𝑆𝑋∗ . If we denote by �𝜑 the path given by a single transition 𝜑 = (𝜂𝑥,𝑥
′
, 𝜂′), then the composition

�𝛾 � �𝛾1 �𝜑�𝛾2 gives a path from 𝜂 to 𝜂𝑥�𝑦 in 𝑆𝑋∗ as desired. �

Using the above results, we may prove that various interactions are irreducibly quantified.

Proposition 2.19. The interactions of Example 2.10 are all irreducibly quantified.

Proof. By Example 2.10, we see that Consv𝜙 (𝑆) are finite dimensional. Let X be a locale and let
𝜂, 𝜂′ ∈ 𝑆𝑋∗ such that 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂

′) for any conserved quantity 𝜉 ∈ Consv𝜙 (𝑆). We prove the existence
of a path �𝛾 from 𝜂 to 𝜂′ by induction on the cardinality of the set Δ (𝜂, 𝜂′) � {𝑥 ∈ 𝑋 | 𝜂𝑥 ≠ 𝜂′𝑥}.
Note that Δ (𝜂, 𝜂′) is finite since the supports of 𝜂 and 𝜂′ are finite. If |Δ (𝜂, 𝜂′) | = 0, then 𝜂 = 𝜂′, and
there is nothing to prove. Suppose |Δ (𝜂, 𝜂′) | > 0 and that the assertion is proved for 𝜂′′, 𝜂′, where 𝜂′′
is any configuration in 𝑆𝑋∗ such that |Δ (𝜂′′, 𝜂′) | < |Δ (𝜂, 𝜂′) | and 𝜉𝑋 (𝜂

′′) = 𝜉𝑋 (𝜂
′) for any conserved

quantity 𝜉 ∈ Consv𝜙 (𝑆).

1. Consider the case of the multi-species exclusion process of Example 2.10 (1) with conserved quantity
𝜉 (1) , . . . , 𝜉 (𝑐𝜙) . Let 𝑥 ∈ Δ (𝜂, 𝜂′). If we let 𝜂𝑥 = 𝑖 ∈ 𝑆, then since 𝜉 (𝑖)𝑋 (𝜂) = 𝜉 (𝑖)𝑋 (𝜂′), there exists
𝑦 ∈ Δ (𝜂, 𝜂′) such that 𝜂′𝑦 = 𝑖. By Lemma 2.17, there exists a path �𝛾1 from 𝜂 to 𝜂𝑥,𝑦 . Note
that 𝜂𝑥,𝑦 coincides with 𝜂 outside 𝑥, 𝑦, and we have 𝜂

𝑥,𝑦
𝑦 = 𝜂𝑥 = 𝑖 = 𝜂′𝑦 , which implies that

𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
𝑥,𝑦) = 𝜉𝑋 (𝜂

′) for any conserved quantity and |Δ (𝜂𝑥,𝑦 , 𝜂′) | < |Δ (𝜂, 𝜂′) |. Hence, by the
induction hypothesis, there exists a path �𝛾2 from 𝜂𝑥,𝑦 to 𝜂′ in 𝑆𝑋∗ . Our assertion is proved by taking
�𝛾 � �𝛾1 �𝛾2.

2. Consider the case of the generalized exclusion process of Example 2.10 (2) with conserved quantity
𝜉 given by 𝜉 (𝑠) = 𝑠. Again, let 𝑥 ∈ Δ (𝜂, 𝜂′) such that 𝜂𝑥 > 𝜂′𝑥 . Since 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂

′), there exists
𝑦 ∈ Δ (𝜂, 𝜂′) such that 𝜂𝑦 < 𝜂′𝑦 . Let 𝑀 � min(𝜂𝑥 − 𝜂′𝑥 , 𝜂

′
𝑦 − 𝜂𝑦), and let 𝜂0 = 𝜂 and 𝜂𝑖 = (𝜂𝑖−1)𝑥�𝑦

for 𝑖 = 1, . . . , 𝑀 . By Lemma 2.18, there exists a path �𝛾𝑖 from 𝜂𝑖−1 to 𝜂𝑖 in 𝑆𝑋∗ for 1 < 𝑖 < 𝑀 . We have
𝜉𝑋 (𝜂

𝑀 ) = 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′), and since 𝜂𝑀𝑥 = 𝜂𝑥 − 𝑀 and 𝜂𝑀𝑦 = 𝜂𝑦 + 𝑀 , we have either 𝜂𝑀𝑥 = 𝜂′𝑥 or

𝜂𝑀𝑦 = 𝜂′𝑦 . This shows that |Δ (𝜂𝑀 , 𝜂′) | < |Δ (𝜂, 𝜂′) |. Hence, by the induction hypothesis, there exists
a path �𝛾′ from 𝜂𝑀 to 𝜂′ in 𝑆𝑋∗ . Our assertion is proved by taking �𝛾 � �𝛾1 · · · �𝛾𝑀 �𝛾′.
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3. Consider the case of the lattice gas with energy of Example 2.10 (3) with conserved quantity 𝜉 (1)

and 𝜉 (2) . Suppose there exists 𝑥 ∈ Δ (𝜂, 𝜂′) such that 𝜂′𝑥 = 0. Then, since 𝜉 (2)𝑋 (𝜂) = 𝜉 (2)𝑋 (𝜂′), there
exists 𝑦 ∈ Δ (𝜂, 𝜂′) such that 𝜂𝑦 = 0. Then 𝜂𝑥,𝑦 satisfies 𝜉𝑋 (𝜂

𝑥,𝑦) = 𝜉𝑋 (𝜂
′) for any conserved

quantity 𝜉, and |Δ (𝜂𝑥,𝑦 , 𝜂′) | < |Δ (𝜂, 𝜂′) |. Hence, by the induction hypothesis, there exists a path
�𝛾2 from 𝜂𝑥,𝑦 to 𝜂′ in 𝑆𝑋∗ . If we let �𝛾1 be the path from 𝜂 to 𝜂𝑥,𝑦 given in Lemma 2.17, then
�𝛾 � �𝛾1 �𝛾2 satisfies the desired property. Otherwise, we have 𝜂𝑥 ≠ 0 and 𝜂′𝑥 ≠ 0 for any 𝑥 ∈ Δ (𝜂, 𝜂′).
Since 𝜉 (1)𝑋 (𝜂) = 𝜉 (1)𝑋 (𝜂′), there exists 𝑥, 𝑦 ∈ Δ (𝜂, 𝜂′) such that 𝜂𝑥 > 𝜂′𝑥 and 𝜂𝑦 < 𝜂′𝑦 . As in (2), let
𝑀 � min(𝜂𝑥−𝜂′𝑥 , 𝜂′𝑦−𝜂𝑦), and let 𝜂0 = 𝜂 and 𝜂𝑖 = (𝜂𝑖−1)𝑥�𝑦 for 𝑖 = 1, . . . , 𝑀 . By Lemma 2.18, there
exists a path �𝛾𝑖 from 𝜂𝑖−1 to 𝜂𝑖 in 𝑆𝑋∗ for 1 < 𝑖 < 𝑀 . We have 𝜉𝑋 (𝜂𝑀 ) = 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂

′) and either
𝑠𝑀𝑥 = 𝜂′𝑥 or 𝑠𝑀𝑦 = 𝜂′𝑦 , which shows that |Δ (𝜂𝑀 , 𝜂′) | < |Δ (𝜂, 𝜂′) |. Hence, by the induction hypothesis,
there exists a path �𝛾′ from 𝜂𝑀 to 𝜂′ in 𝑆𝑋∗ . Our assertion is proved by taking �𝛾 � �𝛾1 · · · �𝛾𝑀 �𝛾′.

4. The case of Example 2.10 (4) is proved in a similar fashion as that of (1), but by first using the
interaction 𝜙((0, 0)) = (1,−1) and 𝜙((−1, 1)) = (0, 0) to equalize the number of vertices whose
states are at +1 and −1.

5. Consider the Glauber model of Example 2.10 (5). Since in this case, the only conserved quantity is
the zero map, the condition for the conserved quantity is always satisfied. Let 𝑥 ∈ Δ (𝜂, 𝜂′). If we let
𝑒 ∈ 𝐸 be any edge such that 𝑜(𝑒) = 𝑥, then 𝜂𝑒 coincides with 𝜂 outside x and we have 𝜂𝑒𝑥 = 𝜂′𝑥 . This
shows we have |Δ (𝜂𝑒, 𝜂′) | < |Δ (𝜂, 𝜂′) |. Hence, by the induction hypothesis, there exists a path �𝛾′

from 𝜂𝑒 to 𝜂′ in 𝑆𝑋∗ . Our assertion is proved by taking �𝛾 � �𝜑�𝛾′, where �𝜑 is the path given by the
transition 𝜑 = (𝜂, 𝜂𝑒). �

2.3. The cohomology of the configuration space

In this subsection, we consider the cohomology as graphs of a configuration space with transition
structure. See Appendix A for generalities concerning the homology and cohomology of graphs. Let
(𝑋, 𝐸) be a locale, and we let 𝑆𝑋∗ = (𝑆𝑋∗ ,Φ∗) be the configuration space with transition structure
associated to a system (𝑋, 𝑆, 𝜙). For any 𝜑 = (𝑜(𝜑), 𝑡 (𝜑)) ∈ Φ∗, we let �̄� � (𝑡 (𝜑), 𝑜(𝜑)) ∈ Φ∗, which
we call the opposite transition.

The cohomology defined in Definition A.1 of a configuration space with transition structure is given
as follows.

Definition 2.20. Let (𝑋, 𝑆, 𝜙) be a system. For the graph (𝑆𝑋∗ ,Φ∗), let

𝐶 (𝑆𝑋∗ ) � Map(𝑆𝑋∗ ,R), 𝐶1(𝑆𝑋∗ ) � Mapalt(Φ∗,R), (14)

where Mapalt(Φ∗,R) � {𝜔 : Φ∗ → R | ∀𝜑 ∈ Φ∗ 𝜔(�̄�) = −𝜔(𝜑)}. We define the differential

𝜕 : 𝐶 (𝑆𝑋∗ ) → 𝐶1(𝑆𝑋∗ ), 𝑓 ↦→ 𝜕 𝑓 (15)

by 𝜕 𝑓 (𝜑) � 𝑓 (𝜂𝑒) − 𝑓 (𝜂) for any 𝜑 = (𝜂, 𝜂𝑒) ∈ Φ∗. The cohomology of (𝑆𝑋∗ ,Φ∗) is given by

𝐻0(𝑆𝑋∗ ) = Ker 𝜕, 𝐻1 (𝑆𝑋∗ ) = 𝐶1(𝑆𝑋∗ )/𝜕𝐶 (𝑆𝑋∗ ),

and 𝐻𝑚(𝑆𝑋∗ ) = {0} for any 𝑚 ∈ N such that 𝑚 ≠ 0, 1.

We will often call an element in 𝐶1(𝑆𝑋∗ ) a form. We next show that the differential (15) coincides
with the differential given in §1.2. By the definition of Φ∗ in (11), we have a surjection 𝐸 × 𝑆𝑋∗ → Φ∗.
This shows that we have natural injections

𝐶1 (𝑆𝑋∗ )
� � �� Map(Φ∗,R)

� � �� Map(𝐸 × 𝑆𝑋∗ ,R).
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Hence, we may view a form𝜔 ∈ 𝐶1 (𝑆𝑋∗ ) as a family of functions𝜔 = (𝜔𝑒)𝑒∈𝐸 through the identification

Map(𝐸 × 𝑆𝑋∗ ,R) =
∏
𝑒∈𝐸

𝐶 (𝑆𝑋∗ ),

where 𝜔𝑒 : 𝑆𝑋∗ → R is the function defined as

𝜔𝑒 (𝜂) � 𝜔(𝜑), 𝜑 = (𝜂, 𝜂𝑒) ∈ Φ∗ ⊂ 𝑆𝑋∗ × 𝑆𝑋∗ .

Conversely, any family of functions (𝜔𝑒) ∈
∏
𝑒∈𝐸 𝐶 (𝑆𝑋∗ ) comes from an element 𝜔 in 𝐶1 (𝑆𝑋∗ ) if and

only if 𝜔𝑒 (𝜂) = 𝜔𝑒′ (𝜂) if 𝜂𝑒 = 𝜂𝑒
′ , 𝜔𝑒 (𝜂) = 0 if 𝜂𝑒 = 𝜂, and 𝜔𝑒 (𝜂) = −𝜔�̄� (𝜂

𝑒) for any (𝑒, 𝜂) ∈ 𝐸 × 𝑆𝑋∗ .
For any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), if we view 𝜕 𝑓 as an element 𝜕 𝑓 = ((𝜕 𝑓 )𝑒)𝑒∈𝐸 in

∏
𝑒∈𝐸 𝐶 (𝑆𝑋∗ ), then we see that

(𝜕 𝑓 )𝑒 is a function satisfying (𝜕 𝑓 )𝑒 (𝜂) = 𝑓 (𝜂𝑒) − 𝑓 (𝜂) for any 𝜂 ∈ 𝑆𝑋∗ . If we define the function
∇𝑒 𝑓 ∈ Map(𝑆𝑋∗ ,R) for any 𝑒 ∈ 𝐸 by

∇𝑒 ( 𝑓 ) (𝜂) � 𝑓 (𝜂𝑒) − 𝑓 (𝜂)

for any 𝜂 ∈ 𝑆𝑋∗ , then we have 𝜕 𝑓 = (∇𝑒 𝑓 )𝑒∈𝐸 by construction. Hence, our differential coincides with the
differential 𝜕 of §1.2. In what follows, we will often identify a form 𝜔 ∈ 𝐶1 (𝑆𝑋∗ ) with its representation
𝜔 = (𝜔𝑒)𝑒∈𝐸 in

∏
𝑒∈𝐸 𝐶 (𝑆𝑋∗ ).

We next use the conserved quantities of §2.2 to investigate the cohomology 𝐻0(𝑆𝑋∗ ). We say that a
function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is horizontal, if 𝜕 𝑓 = 0. We have the following.

Lemma 2.21. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is horizontal. Then if 𝜂, 𝜂′ ∈ 𝑆𝑋∗ are in the same connected
components of 𝑆𝑋∗ , then we have 𝑓 (𝜂) = 𝑓 (𝜂′). In particular, the function f is constant on the connected
components of 𝑆𝑋∗ .

Proof. This follows from Lemma A.2, applied to the graph (𝑆𝑋∗ ,Φ∗). �

Let 𝜉 be a conserved quantity in Consv𝜙 (𝑆). If we associate to 𝜉 the function 𝜉𝑋 : 𝑆𝑋∗ → R of (13),
then this induces a homomorphism of R-linear spaces Consv𝜙 (𝑆) → 𝐶 (𝑆𝑋∗ ). This homomorphism is
injective since for a fixed 𝑥 ∈ 𝑋 , if we let 𝜂 ∈ 𝑆𝑋∗ be the configuration with s in the x-component and at
base state in the other components, then we have 𝜉 (𝑠) = 𝜉𝑋 (𝜂); hence, 𝜉𝑋 = 𝜉 ′𝑋 implies that 𝜉 = 𝜉 ′ for
any 𝜉, 𝜉 ′ ∈ Consv𝜙 (𝑆).

Lemma 2.22. Let 𝜉 be a conserved quantity for the interaction 𝜙. Then the function 𝜉𝑋 ∈ 𝐶 (𝑆𝑋∗ ) defined
by (13) is horizontal. In particular, 𝜉𝑋 defines a class in 𝐻0(𝑆𝑋∗ ).

Proof. For any 𝜑 = (𝜂, 𝜂𝑒) ∈ Φ∗, we have

𝜕𝜉𝑋 (𝜑) � 𝜉𝑋 (𝜂
𝑒) − 𝜉𝑋 (𝜂) =

∑
𝑥∈𝑋

𝜉 (𝜂𝑒𝑥) −
∑
𝑥∈𝑋

𝜉 (𝜂𝑥).

If we let 𝑒 = (𝑥1, 𝑥2) ∈ 𝐸 ⊂ 𝑋 × 𝑋 , then by definition of 𝜙𝑒 given in Lemma 2.5, we have (𝜂𝑒𝑥1 , 𝜂
𝑒
𝑥2) =

𝜙(𝜂𝑥1 , 𝜂𝑥2) and 𝜂𝑒𝑥 = 𝜂𝑥 for 𝑥 ≠ 𝑥1, 𝑥2. This shows that

𝜕𝜉𝑋 (𝜑) =
∑
𝑥∈𝑋

𝜉 (𝜂𝑒𝑥) −
∑
𝑥∈𝑋

𝜉 (𝜂𝑥) =
(
𝜉
(
𝜂𝑒𝑥1

)
+ 𝜉

(
𝜂𝑒𝑥2

) )
−
(
𝜉 (𝜂𝑥1) + 𝜉 (𝜂𝑥2 )

)
= 0

as desired, where the last equality follows from (2). �

Lemma 2.22 shows that (13) induces an injective homomorphism of R-linear spaces

Consv𝜙 (𝑆) ↩→ 𝐻0 (𝑆𝑋∗ ). (16)
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Remark 2.23. We remark that𝐻0(𝑆𝑋∗ ) is in general very large, containing theR-algebra generated by the
image of Consv𝜙 (𝑆). For example, the function (𝜉𝑋 )

2 on 𝑆𝑋∗ for any conserved quantity 𝜉 ∈ Consv𝜙 (𝑆)
also defines an element of 𝐻0(𝑆𝑋∗ ). The property (12) ensures that 𝜉𝑋 is an extensive quantity (i.e.,
additive with respect to the size of the system). We will prove in Theorem 5.8 that under suitable
conditions, (16) gives an isomorphism between Consv𝜙 (𝑆) and the 0-th uniform cohomology of the
configuration space with transition structure.

Let 𝜂 = (𝜂𝑥) and 𝜂′ = (𝜂′𝑥) be configurations in 𝑆𝑋∗ , and let �𝛾 be a finite path from 𝜂 to 𝜂′. If 𝜉 is a
conserved quantity for the interaction 𝜙, then Lemma 2.22 and Lemma 2.21 give the equality

𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′).

This shows that 𝜉𝑋 is constant on each of the connected components of 𝑆𝑋∗ . From now until the end of
this subsection, we assume that X is an infinite locale. We define a monoid to be any set with a binary
operation that is associative and has an identity element. We say that a monoid is commutative if the
operation is commutative.

Definition 2.24. Assume for simplicity that Consv𝜙 (𝑆) is finite dimensional, and fix an R-linear basis
𝜉 (1) , . . . , 𝜉 (𝑐𝜙) of Consv𝜙 (𝑆). We define the map

𝝃𝑋 : 𝑆𝑋∗ → R𝑐𝜙

by 𝝃𝑋 (𝜂) � (𝜉 (1)𝑋 (𝜂), . . . , 𝜉
𝑐𝜙
𝑋 (𝜂)) for any 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ , where 𝜉 (𝑖)𝑋 (𝜂) �

∑
𝑥∈𝑋 𝜉 (𝑖) (𝜂𝑥) for

any 𝑖 = 1, . . . , 𝑐𝜙 . Assuming that X is an infinite locale, we let M � 𝝃𝑋 (𝑆
𝑋
∗ ), which we view as

a commutative monoid with operation induced from the addition on R𝑐𝜙 . Then the monoid M is
determined independently up to a natural isomorphism of the choice of the basis (𝜉 (1) , . . . , 𝜉 (𝑐𝜙) ).

Remark 2.25. We may define the commutative monoid M of Definition 2.24 intrinsically as an additive
submonoid of HomR (Consv𝜙 (𝑆),R) as follows. We define a map

𝝃univ
𝑋 : 𝑆𝑋∗ → HomR(Consv𝜙 (𝑆),R)

by 𝜂 ↦→ (𝜉 ↦→ 𝜉𝑋 (𝜂)), and we let M � 𝝃univ
𝑋 (𝑆𝑋∗ ). In fact, the monoid M is defined independently

of the choice of the infinite locale X. In what follows, we will denote the map 𝝃univ
𝑋 : 𝑆𝑋∗ → M simply

by 𝝃𝑋 . If Consv𝜙 (𝑆) is finite dimensional, a choice of a basis 𝜉 (1) , . . . , 𝜉 (𝑐𝜙) of Consv𝜙 (𝑆) gives an
isomorphism HomR(Consv𝜙 (𝑆),R) � R𝑐𝜙 , and the monoid M maps to the M of Definition 2.24
through this isomorphism.

By Lemma 2.22 and Lemma 2.21, if the configurations 𝜂, 𝜂′ ∈ 𝑆𝑋∗ are connected by a path, then it
is in the same fiber of the map 𝝃𝑋 . However, the condition that the interaction is irreducibly quantified
implies that the fibers of the map 𝝃𝑋 are connected. Thus, in this case, the connected components of 𝑆𝑋∗
correspond bijectively with the elements of M. The authors thank Hiroyuki Ochiai for suggesting this
formulation.

By Remark 2.25, if the interaction is irreducibly quantified, then the connected components of 𝑆𝑋∗
correspond bijectively with the elements of the image M of 𝝃𝑋 . In particular, if 𝑐𝜙 = 0, then 𝑆𝑋∗ is
connected. However, if 𝑐𝜙 > 0, then we have dimR 𝐻0 (𝑆𝑋∗ ) = ∞. Although 𝐻𝑚(𝑆𝑋∗ ) is the standard
cohomology of 𝑆𝑋∗ and reflects the topological structure of the graph (𝑆𝑋∗ ,Φ∗), it is not so useful in
the sense that it is in general infinite dimensional over infinite locales. In §3, we will define the notion
of uniform functions which gives a certain subspace 𝐶unif (𝑆

𝑋 ) ⊂ 𝐶 (𝑆𝑋∗ ), and we will define in §5 the
uniform cohomology 𝐻𝑚

unif (𝑆
𝑋 ) by replacing the functions and forms of (14) with uniform functions and

forms. For uniform cohomology, the inclusion of (16) induces an isomorphism Consv𝜙 (𝑆) � 𝐻0
unif (𝑆

𝑋 );
hence, 𝐻0

unif (𝑆
𝑋 ) is finite dimensional if 𝑐𝜙 is finite.

For the first cohomology, the group 𝐻1(𝑆𝑋∗ ) is in general also large since there are many linearly
independent forms which are not exact. For example, 𝐻1 may be infinite dimensional as follows.
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Remark 2.26. Let 𝑋 = (Z𝑑 ,E𝑑) and 𝑆 = {0, 1, . . . , 𝜅} for an integer 𝑑 > 1 and some natural number
𝜅 > 0. If we let 𝑆𝑋∗ be the configuration space for S on X with transition structure for the multi-species
exclusion process of Example 1.3, then we have dimR 𝐻1 (𝑆𝑋∗ ) = ∞.

This may be seen as follows. For any 𝑥 ∈ 𝑋 , let 1𝑥 ∈ 𝑆𝑋∗ be the configuration with 1 in the x
component and 0 in the other components. For any edge 𝑒 = (𝑥, 𝑥 ′) ∈ E, the configuration 1𝑒𝑥 is the
configuration 1𝑥′ with 1 in the 𝑥 ′ component and 0 in the other components; hence, 1𝑒 � (1𝑥 , 1𝑥′ ) is a
transition of 𝑆𝑋∗ . If we let 𝜔 ∈ 𝐶1(𝑆𝑋∗ ) = Mapalt (Φ∗,R) be the form given by 𝜔(1𝑒) = −𝜔(1�̄�) = 1 and
𝜔(𝜑) = 0 for 𝜑 ≠ 1𝑒, 1�̄�, then we may prove that 𝜔 gives a nonzero element in 𝐻1(𝑆𝑋∗ ). In addition, we
may prove that such 𝜔 for a finite set of edges in E which do not share common vertices give linearly
independent elements of 𝐻1(𝑆𝑋∗ ), giving our assertion.

In considering uniform cohomology, we will consider a class of forms called closed forms, which
are in fact always exact. We recall that a finite path on a graph 𝑆𝑋∗ is a finite sequence (𝜑1, . . . , 𝜑𝑁 ) of
transitions of 𝑆𝑋∗ such that 𝑡 (𝜑𝑖) = 𝑜(𝜑𝑖+1) for any integer 0 < 𝑖 < 𝑁 . As in (54), for a form 𝜔 ∈ 𝐶1 (𝑆𝑋∗ )
on 𝑆𝑋∗ , we define the integral of 𝜔 with respect to the path �𝛾 = (𝜑1, . . . , 𝜑𝑁 ) by∫

�𝛾
𝜔 �

𝑁∑
𝑗=1

𝜔(𝜑 𝑗 ).

As in Definition A.3, we define a closed form as follows.
Definition 2.27. We say that a form 𝜔 ∈ 𝐶1 (𝑆𝑋∗ ) = Mapalt(Φ∗,R) is closed if for any closed path �𝛾 in
𝑆𝑋∗ , we have ∫

�𝛾
𝜔 = 0.

We say that a form 𝜔 ∈ 𝐶1 (𝑆𝑋∗ ) is exact if there exists a function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 = 𝜔. By
Lemma A.4, a form is exact if and only if it is closed.
Lemma 2.28. A form 𝜔 ∈ 𝐶1(𝑆𝑋∗ ) is exact if and only if it is closed.
Proof. This follows from Lemma A.4 applied to the graph (𝑆𝑋∗ ,Φ∗). �

We will denote by 𝑍1 (𝑆𝑋∗ ) the space of closed forms on (𝑆𝑋∗ ,Φ∗). Closed forms will play a role in
the definition of uniform cohomology.

3. Uniform functions and uniform forms

In this section, we will define the notion of uniform functions and uniform forms, which are functions
and forms which reflect the geometry of the underlying locale. We will then investigate its properties,
including a criterion for a function to be uniform.

3.1. Uniform functions on the configuration space

For any system (𝑋, 𝑆, 𝜙), let 𝑆𝑋 =
∏
𝑥∈𝑋 𝑆 be the configuration space for S on X. We let 𝑆𝑋∗ ⊂ 𝑆𝑋 be the

subset consisting of configurations with finite support. In this subsection, we will prove the existence
of a canonical expansion of functions in 𝐶 (𝑆𝑋∗ ) in terms of local functions with exact support (see
Definition 3.1), and we will introduce the notion of uniform functions, which are functions which reflect
the geometry of the underlying locale.

For a finite Λ ⊂ 𝑋 , there exists a natural inclusion 𝜄Λ : 𝑆Λ ↩→ 𝑆Λ×𝑆𝑋\Λ
∗ = 𝑆𝑋∗ given by 𝜂Λ ↦→ (𝜂Λ, ★)

for any 𝜂Λ ∈ 𝑆Λ, where ★ ∈ 𝑆𝑋\Λ is the element whose components are all at base state. By abuse of
notation, we will often denote 𝜄Λ (𝜂 |Λ) by 𝜂 |Λ. This inclusion induces a homomorphism

𝜄Λ : 𝐶 (𝑆𝑋∗ ) → 𝐶 (𝑆Λ) ⊂ 𝐶 (𝑆𝑋∗ ), (17)
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which may be regarded as an R-linear operator on the set of functions 𝐶 (𝑆𝑋∗ ). Note that we have
𝜄Λ 𝑓 (𝜂) = 𝑓 (𝜂 |Λ) for any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) and 𝜂 ∈ 𝑆𝑋 . By definition, if 𝑓 ∈ 𝐶 (𝑆Λ), then we have 𝜄Λ 𝑓 = 𝑓 .
For any Λ,Λ′ ⊂ 𝑋 , we have 𝜄Λ𝜄Λ′

= 𝜄Λ
′
𝜄Λ = 𝜄Λ∩Λ

′ .

Definition 3.1. For any finite Λ ⊂ 𝑋 , we let

𝐶Λ (𝑆
𝑋 ) �

{
𝑓 ∈ 𝐶 (𝑆Λ) | 𝑓 (𝜂) = 0 if ∃𝑥 ∈ Λ such that 𝜂𝑥 = ∗

}
.

We call any function 𝑓 ∈ 𝐶Λ (𝑆
𝑋 ) a local function with exact support Λ.

Any function in 𝐶 (𝑆𝑋∗ ) has a unique expansion in terms of local functions with exact support, as will
be shown in Proposition 3.3. We first start with the following lemma.

Lemma 3.2. Let ( 𝑓Λ) be a set of functions such that 𝑓Λ ∈ 𝐶Λ (𝑆
𝑋 ) for any finite Λ ⊂ 𝑋 . Then the sum

𝑓 �
∑

Λ⊂𝑋, |Λ |<∞

𝑓Λ

defines a function in 𝐶 (𝑆𝑋∗ ).

Proof. By definition, for any 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ , the support Supp(𝜂) ⊂ 𝑋 satisfies | Supp(𝜂) | < ∞. Then
we have

𝑓 (𝜂) �
∑

Λ⊂𝑋, |Λ |<∞

𝑓Λ (𝜂) =
∑

Λ⊂Supp(𝜂)
𝑓Λ (𝜂),

where the last sum is defined since it is a finite sum. We see that the sum defines a function 𝑓 : 𝑆𝑋 → R,
as desired. �

The expansion of functions in𝐶 (𝑆𝑋∗ ) in terms of local functions with exact support is given as follows.

Proposition 3.3. For any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), there exists a unique expansion

𝑓 =
∑

Λ⊂𝑋, |Λ |<∞

𝑓Λ, (18)

in terms of local functions with exact support 𝑓Λ ∈ 𝐶Λ (𝑆
𝑋 ) for finite Λ ⊂ 𝑋 .

Proof. We construct 𝑓Λ by induction on the cardinality of Λ. Suppose an expansion of the form (18)
exists. Note that for any Λ,Λ′ ⊂ 𝑋 such that Λ′ ⊄ Λ, we have 𝜄Λ 𝑓Λ′ = 0 since 𝑓Λ′ ∈ 𝐶Λ′ (𝑆𝑋 ); hence, if
we apply the R-linear operator 𝜄Λ of (17) on (18), then we obtain the equality

𝜄Λ 𝑓 =
∑
Λ′ ⊂Λ

𝑓Λ′ .

Hence, this shows that assuming the existence of the expansion, 𝑓Λ is uniquely given inductively for the
set Λ by

𝑓Λ = 𝜄Λ 𝑓 −
∑
Λ′�Λ

𝑓Λ′ . (19)

We will prove by induction on the cardinality of Λ that the function 𝑓Λ inductively given by (19) is a
function in 𝐶Λ (𝑆

𝑋 ). We let ★ ∈ 𝑆𝑋 be the base state. For Λ = ∅, equation (19) gives 𝑓∅ = 𝜄∅ 𝑓 , which
shows that 𝑓∅ is an element in 𝐶∅ (𝑆

𝑋 ). Note that 𝑓∅ is the constant function given by 𝑓∅ (𝜂) = 𝑓 (★) for
any 𝜂 ∈ 𝑆𝑋 . For |Λ| > 0, suppose 𝑓Λ′ ∈ 𝐶Λ′ (𝑆𝑋 ) for any Λ′ � Λ. Then by (19), the function 𝑓Λ is a
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function in 𝐶 (𝑆Λ). Next, we prove that 𝑓 ∈ 𝐶Λ (𝑆
𝑋 ). Suppose 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋 satisfies 𝜂𝑥 = ∗ for some

𝑥 ∈ Λ. If Λ′ � Λ and 𝑥 ∈ Λ′, then we have 𝑓Λ′ (𝜂) = 0 since 𝑓Λ′ ∈ 𝐶Λ′ (𝑆𝑋 ). Hence, by (19), we have

𝑓Λ (𝜂) = 𝜄Λ 𝑓 (𝜂) −
∑

Λ′ ⊂Λ\{𝑥 }

𝑓Λ′ (𝜂).

Note that since 𝜂𝑥 = ∗, we have 𝜄Λ 𝑓 (𝜂) = 𝜄Λ\{𝑥 } 𝑓 (𝜂) by definition of 𝜄Λ; hence, we have

𝑓Λ (𝜂) = 𝜄Λ\{𝑥 } 𝑓 (𝜂) −
∑

Λ′ ⊂Λ\{𝑥 }

𝑓Λ′ (𝜂) =

(
𝜄Λ\{𝑥 } 𝑓 (𝜂) −

∑
Λ′�Λ\{𝑥 }

𝑓Λ′ (𝜂)

)
− 𝑓Λ\{𝑥 } (𝜂)

= 𝑓Λ\{𝑥 } (𝜂) − 𝑓Λ\{𝑥 } (𝜂) = 0.

This proves that 𝑓Λ ∈ 𝐶Λ (𝑆
𝑋 ), as desired. The sum (18) gives the function f in 𝐶 (𝑆𝑋∗ ) since for any

𝜂 ∈ 𝑆𝑋 , we have 𝑓 (𝜂) = 𝜄Supp(𝜂) 𝑓 (𝜂) =
∑

Λ⊂Supp(𝜂) 𝑓Λ(𝜂). �

Corollary 3.4. If 𝑓 ∈ 𝐶 (𝑆Λ) for some finite Λ ⊂ 𝑋 , then we have a unique expansion

𝑓 =
∑
Λ′ ⊂Λ

𝑓Λ′ ,

in terms of local functions with exact support 𝑓Λ′ ∈ 𝐶Λ′ (𝑆𝑋 ) for Λ′ ⊂ Λ.

Proof. Our statement follows by applying the R-linear operator 𝜄Λ to the expansion (18) of
Proposition 3.3, noting that 𝜄Λ 𝑓 = 𝑓 and 𝜄Λ 𝑓Λ′ = 0 if Λ′ ⊄ Λ. �

For any Λ ⊂ 𝑋 , we define the diameter diam(Λ) of Λ by

diam(Λ) � sup
𝑥,𝑥′ ∈Λ

𝑑𝑋 (𝑥, 𝑥
′).

Since X is connected, if Λ ⊂ 𝑋 is finite, then we have diam(Λ) < ∞. Uniform functions are defined as
follows.

Definition 3.5. We say that a function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is uniform if there exists 𝑅 > 0 such that the canonical
expansion of (18) is given by

𝑓 =
∑
Λ⊂𝑋

diam(Λ) ≤𝑅

𝑓Λ.

In other words, 𝑓Λ = 0 in the expansion (18) if diam(Λ) > 𝑅. We denote by 𝐶unif (𝑆
𝑋 ) the R-

linear subspace of 𝐶 (𝑆𝑋∗ ) consisting of uniform functions, and by 𝐶0
unif (𝑆

𝑋 ) the subspace of 𝐶unif (𝑆
𝑋 )

consisting of functions satisfying 𝑓 (★) = 0.

For any 𝑥 ∈ 𝑋 and Λ ⊂ 𝑋 , we let 𝑑𝑋 (𝑥,Λ) � inf𝑥′ ∈Λ 𝑑𝑋 (𝑥, 𝑥 ′), and for Λ,Λ′ ⊂ 𝑋 , we let
𝑑𝑋 (Λ,Λ′) � inf (𝑥,𝑥′) ∈Λ×Λ′ 𝑑𝑋 (𝑥, 𝑥

′).

Remark 3.6. Suppose 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ) so that there exists some 𝑅 > 0 such that 𝑓Λ ≡ 0 in the expansion
(18) if diam(Λ) > 𝑅. Let Λ and Λ′ be subsets of X such that 𝑑𝑋 (Λ,Λ′) > 𝑅. By Corollary 3.4, we have
𝜄Λ∪Λ

′
𝑓 =

∑
Λ′′ ⊂Λ∪Λ′ 𝑓Λ′′ , 𝜄Λ 𝑓 =

∑
Λ′′ ⊂Λ 𝑓Λ′′ and 𝜄Λ

′
𝑓 =

∑
Λ′′ ⊂Λ′ 𝑓Λ′′ . Note that if Λ′′ ⊂ Λ ∪ Λ′ satisfies

Λ′′ ∩ Λ ≠ ∅ and Λ′′ ∩ Λ′ ≠ ∅, then we have diam(Λ′′) > 𝑅; hence, 𝑓Λ′′ = 0 from our choice of R. This
shows that we have 𝜄Λ∪Λ′

𝑓 = 𝜄Λ 𝑓 + 𝜄Λ
′
𝑓 , where we have used the fact that 𝑓 (★) = 𝜄∅ 𝑓 = 0.
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3.2. Horizontal uniform functions

Consider the system (𝑋, 𝑆, 𝜙). From now until the end of §3, we assume that the interaction 𝜙 is
irreducibly quantified in the sense of Definition 2.13. The purpose of this subsection is to prove the
following theorem.

Theorem 3.7. For the system (𝑋, 𝑆, 𝜙), assume that X is an infinite locale and the interaction 𝜙 is
irreducibly quantified. Let f be a uniform function in 𝐶0

unif (𝑆
𝑋 ). If f is horizontal (i.e., if 𝜕 𝑓 = 0), then

there exists a conserved quantity 𝜉 : 𝑆 → R such that

𝑓 (𝜂) =
∑
𝑥∈𝑋

𝜉 (𝜂𝑥)

for any 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋 .

Theorem 3.7 implies that assuming that X is infinite and 𝜙 is irreducibly quantified, any uniform
function which is constant on the connected components of 𝑆𝑋∗ coincides with 𝜉𝑋 for some conserved
quantity 𝜉 ∈ Consv𝜙 (𝑆). We will give the proof of Theorem 3.7 at the end of this subsection. We first
prove the following lemma.

Lemma 3.8. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), and for any 𝑥 ∈ 𝑋 , let 𝑓{𝑥 } be the function with exact supportΛ = {𝑥}
in the canonical expansion (18). If f is horizontal, then the functions

𝜄{𝑥 } 𝑓{𝑥 } : 𝑆 → R

are all equal as x varies over X.

Proof. Consider the expansion

𝑓 =
∑

Λ⊂𝑋, |Λ |<∞

𝑓Λ

of (18). We let s be any element in S. For 𝑥, 𝑥 ′ ∈ 𝑋 , we let 𝜂 � 𝜄{𝑥 } (𝑠) and 𝜂′ � 𝜄{𝑥
′ } (𝑠) be the

configuration in 𝑆𝑋∗ with s respectively in the x and 𝑥 ′ components, and base state ∗ in the other
components. This implies that ∑

𝑥∈𝑋

𝜉 (𝜂𝑥) =
∑
𝑥∈𝑋

𝜉 (𝜂′𝑥) = 𝜉 (𝑠),

in other words, that 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′) for any conserved quantity 𝜉 ∈ Consv𝜙 (𝑆). Hence, from the

fact that the interaction is irreducibly quantified, there exists a finite path �𝛾 from 𝜂 to 𝜂′ in 𝑆𝑋∗ . By
Lemma 2.21, noting that 𝜕 𝑓 = 0, we have

𝜄{𝑥 } 𝑓{𝑥 } (𝑠) = 𝑓 (𝜂) = 𝑓 (𝜂′) = 𝜄{𝑥
′ } 𝑓{𝑥′ } (𝑠),

which shows that 𝜄{𝑥 } 𝑓{𝑥 } : 𝑆 → R is independent of the choice of 𝑥 ∈ 𝑋 as desired. �

Next, we prove the following lemma.

Lemma 3.9. Assume that X is an infinite locale, and suppose f is a uniform function in 𝐶0
unif (𝑆

𝑋 ).
If f is horizontal, then we have

𝑓 =
∑
𝑥∈𝑋

𝑓{𝑥 },

where 𝑓{𝑥 } is the function with exact support Λ = {𝑥} in the canonical expansion (18).

https://doi.org/10.1017/fms.2024.61 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.61


Forum of Mathematics, Sigma 27

Proof. Since f is uniform, there exists an 𝑅 > 0 such that 𝑓Λ ≡ 0 if diam(Λ) > 𝑅. By Proposition 3.3,
it is sufficient to prove that for any finite Λ ⊂ 𝑋 satisfying |Λ| > 1, we have 𝑓Λ ≡ 0 in the expansion
of (18). We will prove this by induction on the cardinality of Λ ⊂ 𝑋 . We consider a finite Λ ⊂ 𝑋
such that 𝑛 � |Λ| > 1, and assume that 𝑓Λ′ ≡ 0 for any Λ′ ⊂ 𝑋 such that 1 < |Λ′ | < 𝑛. Note that
this condition is trivially true for 𝑛 = 2. We let Λ𝑛 ⊂ 𝑋 be a subset of X with n elements such that
diam(Λ𝑛) > 𝑅. Such Λ𝑛 exists since X is a locally finite infinite graph that is connected. Then by
construction, we have 𝑓Λ𝑛 ≡ 0. We fix a bijection between the set {1, · · · , 𝑛} and the sets Λ and Λ𝑛,
which induces bijections 𝑆𝑛 � 𝑆Λ and 𝑆𝑛 � 𝑆Λ𝑛 . For any (𝜂𝑖) ∈ 𝑆𝑛, which we view as an element in 𝑆Λ

and 𝑆Λ𝑛 , we let 𝜂 � 𝜄Λ ((𝜂𝑖)) and 𝜂′ � 𝜄Λ𝑛 ((𝜂𝑖)). Then for any conserved quantity 𝜉 : 𝑆 → R, we have

∑
𝑥∈𝑋

𝜉 (𝜂𝑥) =
∑
𝑥∈𝑋

𝜉 (𝜂′𝑥) =
𝑛∑
𝑖=1

𝜉 (𝜂𝑖).

In other words, 𝜉𝑋 (𝜂) = 𝜉𝑋 (𝜂
′). Since the interaction is irreducibly quantified, there exists a finite path

�𝛾 from 𝜂 to 𝜂′ in 𝑆𝑋∗ . By Lemma 2.21 and our condition that 𝜕 𝑓 = 0, we have 𝑓 (𝜂) = 𝑓 (𝜂′). Note
that by Lemma 3.8, if we let 𝜁 � 𝜄{𝑥 } 𝑓{𝑥 } : 𝑆 → R, then 𝜁 is independent of the choice of 𝑥 ∈ 𝑋 .
Corollary 3.4 implies that we have

𝑓 (𝜂) = 𝜄Λ 𝑓 (𝜂) = 𝑓Λ(𝜂) +
∑
Λ′�Λ

𝑓Λ′ (𝜂) = 𝑓Λ(𝜂) +
∑
𝑥∈Λ

𝑓{𝑥 } (𝜂) = 𝑓Λ (𝜂) +
𝑛∑
𝑖=1

𝜁 (𝜂𝑖)

𝑓 (𝜂′) = 𝜄Λ𝑛 𝑓 (𝜂′) = 𝑓Λ𝑛 (𝜂
′) +

∑
Λ′�Λ𝑛

𝑓Λ′ (𝜂′) =
∑
𝑥∈Λ𝑛

𝑓{𝑥 } (𝜂
′) =

𝑛∑
𝑖=1

𝜁 (𝜂𝑖).

Hence, we have 𝑓Λ(𝜂) = 0. Since this was true for any (𝜂𝑖) ∈ 𝑆𝑛, we have 𝑓Λ ≡ 0, as desired. Our
assertion now follows by induction on n. �

We may now prove Theorem 3.7.

Proof of Theorem 3.7. Let 𝜉 � 𝜄{𝑥 } 𝑓{𝑥 } : 𝑆 → R, which by Lemma 3.8 is independent of the choice of
𝑥 ∈ 𝑋 . Then by Lemma 3.9 and the definition of 𝜄{𝑥 } 𝑓{𝑥 }, we have

𝑓 (𝜂) =
∑
𝑥∈𝑋

𝜉 (𝜂𝑥)

for any 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ . It is sufficient to show that 𝜉 is a conserved quantity. First, note that we have
𝜉 (∗) = 𝑓{𝑥 } (∗) = 0 for any 𝑥 ∈ 𝑋 since 𝑓{𝑥 } has exact support {𝑥}. Consider an edge 𝑒 = (𝑜(𝑒), 𝑡 (𝑒)) ∈
𝐸 ⊂ 𝑋 × 𝑋 , and for (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆, let 𝜂 ∈ 𝑆𝑋∗ be the configuration with 𝑠1 in the 𝑜(𝑒) component,
𝑠2 in the 𝑡 (𝑒) component, and base states ∗ at the other components. Then 𝜂𝑒 is the configuration with
𝑠′1 in the 𝑜(𝑒) component, 𝑠′2 in the 𝑡 (𝑒) component, and base states at the other components, where
(𝑠′1, 𝑠

′
2) = 𝜙(𝑠1, 𝑠2). If we let 𝜑 = (𝜂, 𝜂𝑒) be the transition from 𝜂 to 𝜂𝑒, then 𝜕 𝑓 = 0 implies that

𝜕 𝑓 (𝜑) = 𝑓 (𝜂𝑒) − 𝑓 (𝜂) = (𝜉 (𝑠′1) + 𝜉 (𝑠′2)) − (𝜉 (𝑠1) + 𝜉 (𝑠2)) = 0.

This shows that 𝜉 satisfies (12); hence, it is a conserved quantity as desired. �

3.3. Pairings for functions with uniform differentials

Let X be an infinite locale and assume that the interaction is irreducibly quantified. In this subsection,
we first define the notion of uniform forms. Next, we will prove Proposition 3.18, which associates a
certain pairing ℎ 𝑓 : M × M → R to any function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) whose differential 𝜕 𝑓 ∈ 𝐶1 (𝑆𝑋∗ ) is a
uniform form, where M is the commutative monoid given in Definition 2.24 (see also Remark 2.25).
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A ball in X is a set of the form 𝐵(𝑥, 𝑅) � {𝑥 ′ ∈ 𝑋 | 𝑑𝑋 (𝑥, 𝑥
′) ≤ 𝑅} for some 𝑥 ∈ 𝑋 and constant

𝑅 > 0. We say that x is the center and 𝑅 > 0 is the radius of 𝐵(𝑥, 𝑅). If B is a ball in X, then we denote by
𝑟 (𝐵) the radius of B. For any Λ ⊂ 𝑋 , we let 𝐵(Λ, 𝑅) �

⋃
𝑥∈Λ 𝐵(𝑥, 𝑅), which we call the R-thickening of

Λ. In particular, for any edge 𝑒 = (𝑜(𝑒), 𝑡 (𝑒)) ∈ 𝐸 ⊂ 𝑋 × 𝑋 , we let 𝐵(𝑒, 𝑅) � 𝐵(𝑜(𝑒), 𝑅) ∪ 𝐵(𝑡 (𝑒), 𝑅).
For any 𝑅 > 0, we define the set of R-uniform forms 𝐶1

𝑅 (𝑆
𝑋 ) ⊂ 𝐶1 (𝑆𝑋∗ ) ⊂

∏
𝑒∈𝐸 Map(𝑆𝑋∗ ,R) by

𝐶1
𝑅 (𝑆

𝑋 ) � 𝐶1 (𝑆𝑋∗ ) ∩
∏
𝑒∈𝐸

𝐶
(
𝑆𝐵 (𝑒,𝑅) ) .

Definition 3.10. We define the space of uniform forms on 𝑆𝑋 to be the R-linear space

𝐶1
unif (𝑆

𝑋 ) �
⋃
𝑅>0

𝐶1
𝑅 (𝑆

𝑋 ).

We define a closed uniform form to be a uniform form which is closed in the sense of Definition 2.27.
We will denote by 𝑍1

unif (𝑆
𝑋 ) the space of closed uniform forms.

For any subset 𝑌 ⊂ 𝑋 , we denote by pr𝑌 the map of sets pr𝑌 : 𝑆𝑋∗ → 𝑆𝑌∗ induced from the natural
projection pr𝑌 : 𝑆𝑋 → 𝑆𝑌 . For any 𝜂 ∈ 𝑆𝑋∗ , we will often denote pr𝑌 (𝜂) by 𝜂 |𝑌 . By abuse of notation, we
often write 𝜂 |𝑌 for the configuration 𝜄𝑌 (𝜂 |𝑌 ) in 𝑆𝑋∗ . We say that the configurations 𝜂, 𝜂′ ∈ 𝑆𝑋∗ coincide
outside Y if 𝜂 |𝑌 𝑐 = 𝜂′ |𝑌 𝑐 for 𝑌 𝑐 � 𝑋 \ 𝑌 .

For any conserved quantity 𝜉 : 𝑆 → R and 𝑊 ⊂ 𝑋 , we define the function 𝜉𝑊 : 𝑆𝑋∗ → R by
𝜉𝑊 (𝜂) �

∑
𝑥∈𝑊 𝜉 (𝜂𝑥) for any 𝜂 ∈ 𝑆𝑋∗ . The following result concerns the values of functions whose

differentials are uniform.
Lemma 3.11. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), and assume that 𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for some 𝑅 > 0. Let𝑌 ⊂ 𝑋 be a sublocale,

and suppose 𝜂, 𝜂′ ∈ 𝑆𝑋∗ are configurations which coincide outside Y and satisfy 𝜉𝑌 (𝜂) = 𝜉𝑌 (𝜂
′) for any

conserved quantity 𝜉 ∈ Consv𝜙 (𝑆). Suppose that the interaction is irreducibly quantified. If 𝑌 is any
subset of X such that 𝐵(𝑌, 𝑅) ⊂ 𝑌 , then we have

𝑓 (𝜂′) − 𝑓 (𝜂) = 𝑓 (𝜂′|𝑌 ) − 𝑓 (𝜂 |𝑌 ).

Proof. Since 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ), we have ∇𝑒 𝑓 ∈ 𝐶
(
𝑆𝐵 (𝑒,𝑅)

)
. Hence, since 𝐵(𝑌, 𝑅) ⊂ 𝑌 , we have

∇𝑒 𝑓 (𝜂) = ∇𝑒 𝑓 (𝜂 |𝑌 ) (20)

for any 𝑒 ⊂ 𝑌 . The condition 𝜉𝑌 (𝜂) = 𝜉𝑌 (𝜂
′) implies that 𝜉𝑌 (𝜂 |𝑌 ) = 𝜉𝑌 (𝜂

′ |𝑌 ) for any conserved
quantity 𝜉. Since the interaction is irreducibly quantified, there exists a path �𝛾 |𝑌 from 𝜂 |𝑌 to 𝜂′ |𝑌 in 𝑆𝑌∗ .
If we let 𝒆 = (𝑒1, . . . , 𝑒𝑁 ) be the sequence of edges in Y such that �𝛾 |𝑌 = �𝛾𝒆

𝜂 |𝑌
, then since 𝜂 and 𝜂′

coincide outside Y, the path �𝛾 � �𝛾𝒆𝜂 gives a path from 𝜂 to 𝜂′ and the path �𝛾 |𝑌 � �𝛾𝒆
𝜂 |𝑌

gives a path
from 𝜂 |𝑌 to 𝜂′ |𝑌 . Note that for any 𝑒 ∈ 𝐸 , by definition, ∇𝑒 𝑓 (𝜂) = 𝑓 (𝜂𝑒) − 𝑓 (𝜂). Hence,

𝑓 (𝜂′) − 𝑓 (𝜂) =
𝑁∑
𝑖=1

∇𝑒𝑖 𝑓 (𝜂
𝑖−1), 𝑓 (𝜂′ |𝑌 ) − 𝑓 (𝜂 |𝑌 ) =

𝑁∑
𝑖=1

∇𝑒𝑖 𝑓 (𝜂
𝑖−1 |𝑌 ),

where we let 𝜂0 � 𝜂 and 𝜂𝑖 � (𝜂𝑖−1)𝑒
𝑖 for 𝑖 = 1, . . . , 𝑁 . Our assertion now follows from (20). �

For the remainder of this article, we consider the map

𝝃𝑋 : 𝐶 (𝑆𝑋∗ ) → M

given in Remark 2.25. For finite Λ, we denote by M |Λ | � 𝝃Λ(𝑆
𝑋
∗ ) ⊂ M the image of 𝑆𝑋∗ with respect

to the map 𝝃Λ. As the notation suggests, the set M |Λ | as a subset of M depends only on the cardinality
of Λ. We have the following.
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Proposition 3.12. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), and suppose 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ) for some 𝑅 > 0. Then for any finite
connected Λ,Λ′ ⊂ 𝑋 such that 𝑑𝑋 (Λ,Λ′) > 𝑅, there exists a function ℎΛ,Λ

′

𝑓 : M |Λ | ×M |Λ′ | → R such
that

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = ℎΛ,Λ
′

𝑓

(
𝝃Λ (𝜂), 𝝃Λ′ (𝜂)

)
for all 𝜂 ∈ 𝑆𝑋∗ .

Proof. Let Λ,Λ′ be finite connected subsets of X such that 𝑑𝑋 (Λ,Λ′) > 𝑅. Noting that 𝜄𝑊 𝑓 (𝜂) =
𝑓 (𝜂 |𝑊 ) for any𝑊 ⊂ 𝑋 , it is sufficient to prove the statement for 𝜂 ∈ 𝑆𝑋∗ with support in Λ∪Λ′. Consider
configurations 𝜂, 𝜂′ ∈ 𝑆𝑋∗ such that Supp(𝜂), Supp(𝜂′) ⊂ Λ ∪ Λ′, and satisfying 𝝃Λ (𝜂) = 𝝃Λ(𝜂

′) and
𝜂 |Λ′ = 𝜂′ |Λ′ . Then by construction, we have 𝝃𝑋 (𝜂) = 𝝃𝑋 (𝜂

′). Since the interaction is irreducibly
quantified and the configurations 𝜂 and 𝜂′ coincide outside Λ, by Lemma 3.11 applied to 𝑌 � Λ, which
is a locale, and 𝑌 � 𝐵(Λ, 𝑅), we have

𝑓 (𝜂′) − 𝑓 (𝜂) = 𝑓 (𝜂′ |𝐵 (Λ,𝑅) ) − 𝑓 (𝜂 |𝐵 (Λ,𝑅) ).

Since 𝜂′ = 𝜂′ |Λ∪Λ′ and 𝜂 = 𝜂 |Λ∪Λ′ , noting that (Λ ∪ Λ′) ∩ 𝐵(Λ, 𝑅) = Λ, we have

𝑓 (𝜂′ |Λ∪Λ′ ) − 𝑓 (𝜂′|Λ) = 𝑓 (𝜂 |Λ∪Λ′ ) − 𝑓 (𝜂 |Λ).

This shows that the function 𝜄Λ∪Λ
′
𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) depends only on 𝝃Λ (𝜂) and 𝜂 |Λ′ if 𝑑𝑋 (Λ,Λ′) > 𝑅.

Since 𝜄Λ′
𝑓 (𝜂) also depends only on 𝜂 |Λ′ , we see that

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) (21)

is a function which depends only on 𝝃Λ (𝜂) and 𝜂 |Λ′ . Due to symmetry, we can also see that (21) depends
only on 𝝃Λ′ (𝜂) and 𝜂 |Λ. This implies that (21) only depends on 𝝃Λ(𝜂) and 𝝃Λ′ (𝜂); hence, there exists a
function ℎΛ,Λ

′

𝑓 : M|Λ | ×M|Λ′ | → R such that

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = ℎΛ,Λ
′

𝑓

(
𝝃Λ (𝜂), 𝝃Λ′ (𝜂)

)
for any 𝜂 ∈ 𝑆𝑋∗ , as desired. �

Lemma 3.13. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) and 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ) for some 𝑅 > 0. For finite connected subsets Λ,Λ′,Λ′′

in X, suppose Λ′ and Λ′′ are in the same connected component of 𝑋 \ 𝐵(Λ, 𝑅). Then the functions ℎΛ,Λ
′

𝑓

and ℎΛ,Λ
′′

𝑓 of Proposition 3.12 satisfy

ℎΛ,Λ
′

𝑓 (𝛼, 𝛽) = ℎΛ,Λ
′′

𝑓 (𝛼, 𝛽)

for any 𝛼 ∈ M |Λ | and 𝛽 ∈ M |Λ′ | ∩M |Λ′′ | .

Proof. Let 𝛼 ∈ M |Λ | and 𝛽 ∈ M |Λ′ | ∩M |Λ′′ | . Then since Λ ∩ Λ′ = Λ ∩ Λ′′ = ∅, there exist states 𝜂′
and 𝜂′′ ∈ 𝑆𝑋 at base state outside Λ ∪ Λ′ and Λ ∪ Λ′′, respectively, satisfying 𝝃Λ(𝜂

′) = 𝝃Λ (𝜂
′′) = 𝛼

and 𝝃Λ′ (𝜂′) = 𝝃Λ′′ (𝜂′′) = 𝛽. Moreover, we may choose 𝜂′ and 𝜂′′ so that they coincide on Λ. Let Y be
a sublocale of X containing Λ′ ∪ Λ′′ such that 𝑑𝑋 (𝑌,Λ) > 𝑅. By our choice of 𝜂′ and 𝜂′′, we have
𝝃𝑋 (𝜂

′) = 𝝃𝑋 (𝜂
′′) = 𝛼 + 𝛽. Since the interaction is irreducibly quantified, by Lemma 3.11 applied to Y

and 𝑌 = 𝐵(𝑌, 𝑅), we have

𝑓 (𝜂′′) − 𝑓 (𝜂′) = 𝑓 (𝜂′′ |𝐵 (𝑌 ,𝑅) ) − 𝑓 (𝜂′ |𝐵 (𝑌 ,𝑅) ). (22)
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Since 𝜂′ and 𝜂′′ are at base state outside Λ∪Λ′ and Λ∪Λ′′ and Λ∩ 𝐵(𝑌, 𝑅) = ∅, we have 𝜂′ = 𝜂′ |Λ∪Λ′ ,
𝜂′′ = 𝜂′′ |Λ∪Λ′′ , 𝜂′ |𝐵 (𝑌 ,𝑅) = 𝜂′ |Λ′ , and 𝜂′′ |𝐵 (𝑌 ,𝑅) = 𝜂′′ |Λ′′ . Noting that 𝜄𝑊 𝑓 (𝜂) = 𝑓 (𝜂 |𝑊 ) for any𝑊 ⊂ 𝑋 ,
Equation (22) gives

𝜄Λ∪Λ
′′

𝑓 (𝜂′′) − 𝜄Λ
′′

𝑓 (𝜂′′) = 𝜄Λ∪Λ
′

𝑓 (𝜂′) − 𝜄Λ
′

𝑓 (𝜂′).

Noting also that 𝜄Λ 𝑓 (𝜂′) = 𝜄Λ 𝑓 (𝜂′′) since 𝜂′ and 𝜂′′ coincide on Λ, by the definition of ℎΛ,Λ
′

𝑓 and ℎΛ,Λ
′′

𝑓 ,
we have

ℎΛ,Λ
′

𝑓 (𝛼, 𝛽) � 𝜄Λ∪Λ
′

𝑓 (𝜂′) − 𝜄Λ 𝑓 (𝜂′) − 𝜄Λ
′

𝑓 (𝜂′)

= 𝜄Λ∪Λ
′′

𝑓 (𝜂′′) − 𝜄Λ 𝑓 (𝜂′′) − 𝜄Λ
′′

𝑓 (𝜂′′) = ℎΛ,Λ
′′

𝑓 (𝛼, 𝛽),

as desired. �

Let M be the commutative monoid defined in Definition 2.24. We will next construct a well-defined
pairing ℎ 𝑓 : M ×M → R. We first consider some conditions on the locale.

Definition 3.14. We say that a locale X is weakly transferable if for any ball 𝐵 ⊂ 𝑋 , the complement
𝑋 \𝐵 is a nonempty finite disjoint union of connected infinite graphs. In particular, if 𝑋 \𝐵 is a connected
infinite graph for any ball 𝐵 ⊂ 𝑋 , then we say that X is strongly transferable.

Immediate from the definition, weakly transferable locales are infinite locales.

Remark 3.15. Consider the Euclidean lattice given in Example 2.2 (1). Then Z𝑑 = (Z𝑑 ,E𝑑) for 𝑑 > 1
is strongly transferable. The Euclidean lattice Z = (Z,E) is weakly transferable, but not strongly
transferable.

For any 𝑅 > 0, consider the set

ℱ𝒞𝑅 � {(Λ,Λ′) | Λ,Λ′ : finite nonempty connected ⊂ 𝑋, 𝑑𝑋 (Λ,Λ
′) > 𝑅}.

For any (Λ1,Λ′
1), (Λ2,Λ′

2) ∈ ℱ𝒞𝑅, we denote (Λ1,Λ′
1) ↔ (Λ2,Λ′

2) if Λ1 = Λ2 and Λ′
1 and Λ′

2 are in
the same connected component of 𝑋 \ 𝐵(Λ1, 𝑅) = 𝑋 \ 𝐵(Λ2, 𝑅), or Λ′

1 = Λ′
2 and Λ1 and Λ2 are in the

same connected component of 𝑋 \ 𝐵(Λ′
1, 𝑅) = 𝑋 \ 𝐵(Λ′

2, 𝑅). Note that we have (Λ1,Λ′
1) ↔ (Λ2,Λ′

2)
if and only if (Λ′

1,Λ1) ↔ (Λ′
2,Λ2).

Definition 3.16. We denote by 𝒜𝑅 the subset of ℱ𝒞𝑅 consisting of pairs (Λ,Λ′) such that at least one
of Λ and Λ′ are balls.

From now until the end of this subsection, we assume that X is strongly transferable. In this case,
we will prove that the pairing ℎΛ,Λ

′

𝑓 : M |Λ | × M |Λ′ | → R of Proposition 3.12 associated with f is
independent of the choice of (Λ,Λ′) ∈ 𝒜𝑅 and defines a well-defined pairing ℎ 𝑓 : M × M → R

satisfying a certain cocycle condition. We will address the weakly transferable case in §4.

Lemma 3.17. Suppose X is strongly transferable. Then for any (Λ1,Λ′
1), (Λ2,Λ′

2) ∈ 𝒜𝑅, we have

ℎ
Λ1 ,Λ′

1
𝑓 (𝛼, 𝛽) = ℎ

Λ2 ,Λ′
2

𝑓 (𝛼, 𝛽)

for any 𝛼 ∈ M |Λ1 | ∩M |Λ2 | and 𝛽 ∈ M |Λ′
1 |
∩M |Λ′

2 |
.

Proof. We first consider the case whenΛ1,Λ′
1,Λ2,Λ′

2 are all balls. Note that for a ball B, the R-thickening
𝐵(𝐵, 𝑅) is also a ball. Let B be a ball such that |𝐵 | ≥ |Λ𝑖 | and 𝑑𝑋 (Λ𝑖 , 𝐵) > 𝑅 for 𝑖 = 1, 2. Then since X
is strongly transferable, the sets 𝑋 \ 𝐵(Λ1, 𝑅), 𝑋 \ 𝐵(Λ2, 𝑅) and 𝑋 \ 𝐵(𝐵, 𝑅) are all sublocales; hence,
we have

(Λ1,Λ
′
1) ↔ (Λ1, 𝐵) ↔ (Λ2, 𝐵) ↔ (Λ2,Λ

′
2).
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Our assertion follows from Lemma 3.13. Now, consider the case for general (Λ𝑖 ,Λ′
𝑖) ∈ 𝒜𝑅. By replacing

the component which is not a ball with a ball of sufficiently large size in the complement, we see that
there exists a pair of balls (𝐵𝑖 , 𝐵

′
𝑖) ∈ 𝒜𝑅 such that |𝐵𝑖 | ≥ |Λ𝑖 |, |𝐵′

𝑖 | ≥ |Λ′
𝑖 | for 𝑖 = 1, 2 satisfying

(Λ𝑖 ,Λ′
𝑖) ↔ (𝐵𝑖 , 𝐵

′
𝑖). Again by Lemma 3.13, we see that ℎΛ𝑖 ,Λ′

𝑖

𝑓 (𝛼, 𝛽) = ℎ
𝐵𝑖 ,𝐵

′
𝑖

𝑓 (𝛼, 𝛽) for any 𝛼 ∈ M |Λ𝑖 |

and 𝛽 ∈ M |Λ′
𝑖 |

. Our assertion now follows from our assertion for balls. �

Proposition 3.18. For the system (𝑋, 𝑆, 𝜙), assume that X is strongly transferable and that the interaction
𝜙 is irreducibly quantified. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) be a function such that 𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for some constant

𝑅 > 0. Then there exists a pairing

ℎ 𝑓 : M ×M → R

such that for any (Λ,Λ′) ∈ 𝒜𝑅, we have

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = ℎ 𝑓 (𝜉Λ(𝜂), 𝜉Λ′ (𝜂)) (23)

for any 𝜂 ∈ 𝑆𝑋 . Moreover, the pairing ℎ 𝑓 is symmetric – in other words, ℎ 𝑓 (𝛼, 𝛽) = ℎ 𝑓 (𝛽, 𝛼) for any
𝛼, 𝛽 ∈ M – and satisfies the cocycle condition

ℎ 𝑓 (𝛼, 𝛽) + ℎ 𝑓 (𝛼 + 𝛽, 𝛾) = ℎ 𝑓 (𝛽, 𝛾) + ℎ 𝑓 (𝛼, 𝛽 + 𝛾) (24)

for any 𝛼, 𝛽, 𝛾 ∈ M.

Proof. Note that for any 𝛼, 𝛽 ∈ M, there exists 𝑘 ∈ N such that 𝛼, 𝛽 ∈ M𝑘 . By Lemma 3.17, the
pairing ℎΛ,Λ

′

𝑓 : M |Λ | ×M |Λ′ | → R of Proposition 3.12 associated with f is independent of the choice
of (Λ,Λ′) ∈ 𝒜𝑅; hence, we have a pairing ℎ 𝑓 : M × M → R. The equality of (23) follows from
Proposition 3.12. In addition, for (Λ,Λ′) ∈ 𝒜𝑅, we have (Λ′,Λ) ∈ 𝒜𝑅, which by (23) implies that ℎ 𝑓
is symmetric. In order to prove the cocycle condition, fix an arbitrary 𝛼, 𝛽, 𝛾 ∈ M, and let 𝑘 ∈ N be
such that 𝛼, 𝛽, 𝛾 ∈ M𝑘 . Let 𝐵1 be any ball with |𝐵1 | > 𝑘 . Since X is strongly transferable, 𝑋 \ 𝐵(𝐵1, 𝑅)
is a locale. Take any ball 𝐵2 with |𝐵2 | > 𝑘 in 𝑋 \ 𝐵(𝐵1, 𝑅). Let B be a ball sufficiently large containing
both 𝐵1 and 𝐵2. Then again, since X is strongly transferable, 𝑋 \ 𝐵(𝐵, 𝑅) is a locale. Take any ball 𝐵3
with |𝐵3 | > 𝑘 in 𝑋 \ 𝐵(𝐵, 𝑅). Then the balls 𝐵1, 𝐵2, 𝐵3 ⊂ 𝑋 satisfy |𝐵𝑖 | ≥ 𝑘 and 𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 𝑅 for
𝑖 ≠ 𝑗 . Since 𝛼, 𝛽, 𝛾 ∈ M𝑘 , there exists 𝜂 ∈ 𝑆𝑋 such that 𝜉𝐵1 (𝜂) = 𝛼, 𝜉𝐵2 (𝜂) = 𝛽, 𝜉𝐵3 (𝜂) = 𝛾 and is at
base state outside 𝐵1 ∪ 𝐵2 ∪ 𝐵3. We let Λ ⊂ 𝑋 \ 𝐵(𝐵3, 𝑅) be a finite connected subset of X such that
𝐵1 ∪ 𝐵2 ⊂ Λ, and let Λ′ ⊂ 𝑋 \ 𝐵(𝐵1, 𝑅) be a finite connected subset of X such that 𝐵2 ∪ 𝐵3 ⊂ Λ′. For
example, we may take Λ to be the union of 𝐵1, 𝐵2 and points on a path in 𝑋 \ 𝐵(𝐵3, 𝑅) from the center
of 𝐵1 to the center of 𝐵2, and similarly for Λ′. Note by construction, we have (𝐵1,Λ′), (Λ, 𝐵3) ∈ 𝒜𝑅.
Then by Lemma 3.13 and the definition of h, we have

ℎ 𝑓 (𝛼, 𝛽) = ℎ𝐵1 ,𝐵2
𝑓 (𝛼, 𝛽) = 𝜄𝐵1∪𝐵2 𝑓 (𝜂) − 𝜄𝐵1 𝑓 (𝜂) − 𝜄𝐵2 𝑓 (𝜂)

ℎ 𝑓 (𝛼 + 𝛽, 𝛾) = ℎΛ,𝐵3
𝑓 (𝛼 + 𝛽, 𝛾) = 𝜄Λ∪𝐵3 𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄𝐵3 𝑓 (𝜂)

ℎ 𝑓 (𝛽, 𝛾) = ℎ𝐵2 ,𝐵3
𝑓 (𝛼, 𝛽) = 𝜄𝐵2∪𝐵3 𝑓 (𝜂) − 𝜄𝐵2 𝑓 (𝜂) − 𝜄𝐵3 𝑓 (𝜂)

ℎ 𝑓 (𝛼, 𝛽 + 𝛾) = ℎ𝐵1 ,Λ′

𝑓 (𝛼, 𝛽 + 𝛾) = 𝜄𝐵1∪Λ′

𝑓 (𝜂) − 𝜄𝐵1 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂).

Since 𝜂 is at base state outside 𝐵1 ∪ 𝐵2 ∪ 𝐵3, we have

𝜄Λ∪𝐵3 𝑓 (𝜂) = 𝜄𝐵1∪Λ′

𝑓 (𝜂) = 𝜄𝐵1∪𝐵2∪𝐵3 𝑓 (𝜂), 𝜄Λ 𝑓 (𝜂) = 𝜄𝐵1∪𝐵2 𝑓 (𝜂), 𝜄Λ
′

𝑓 (𝜂) = 𝜄𝐵2∪𝐵3 𝑓 (𝜂),

which proves our assertion. �
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3.4. Criterion for uniformity

In this subsection, we prove Proposition 3.19, which gives a criterion for a function 𝑓 ∈ 𝐶 (𝑆𝑋∗ )
to be uniform when X is strongly transferable. The weakly transferable case will be addressed in
Proposition 4.14. This result will play an essential role in the proof of Theorem 5.2. As in §3.3, we
assume here that the interaction is irreducibly quantified.

Proposition 3.19. For the system (𝑋, 𝑆, 𝜙), assume that X is strongly transferable and that the interaction
𝜙 is irreducibly quantified. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) be a function such that 𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for some 𝑅 > 0, and

let ℎ 𝑓 : M ×M → R be the pairing given in Proposition 3.18. If ℎ 𝑓 ≡ 0, then we have 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ).

We first prove a lemma to characterize the functions in 𝐶0
unif (𝑆

𝑋 ), which does not require X to be
strongly transferable. For any ball 𝐵(𝑥, 𝑅), we denote by B∗(𝑥, 𝑅) � 𝐵(𝑥, 𝑅) \ {𝑥} the punctured ball.

Lemma 3.20. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ). Then 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ) if and only if there exists 𝑅 > 0 such that for
any finite Λ ⊂ 𝑋 and 𝑥 ∈ Λ, we have

𝜄Λ 𝑓 − 𝜄Λ\{𝑥 } 𝑓 = 𝜄Λ∩𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∩B
∗ (𝑥,𝑅) 𝑓 . (25)

Proof. First observe that for any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), we have

𝜄Λ 𝑓 =
∑
Λ′ ⊂Λ

𝑓Λ′ =
∑

Λ′ ⊂Λ\{𝑥 }

𝑓Λ′ +
∑

Λ′ ⊂Λ,𝑥∈Λ′

𝑓Λ′ = 𝜄Λ\{𝑥 } 𝑓 +
∑

Λ′ ⊂Λ,𝑥∈Λ′

𝑓Λ′

where 𝑓Λ is the local function with exact support in the canonical expansion (18).
Suppose 𝑓 ∈ 𝐶0

unif (𝑆
𝑋 ). Then there exists 𝑅 > 0 such that 𝑓Λ′ ≡ 0 for any finite Λ′ ⊂ 𝑋 safisfying

diam(Λ′) > 𝑅. Then for any finite Λ ⊂ 𝑋 and 𝑥 ∈ Λ, we have∑
Λ′ ⊂Λ,𝑥∈Λ′

𝑓Λ′ =
∑

Λ′ ⊂Λ∩𝐵 (𝑥,𝑅) ,𝑥∈Λ′

𝑓Λ′ =
∑

Λ′ ⊂Λ∩𝐵 (𝑥,𝑅)

𝑓Λ′ −
∑

Λ′ ⊂Λ∩B∗ (𝑥,𝑅)

𝑓Λ′

= 𝜄Λ∩𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∩B
∗ (𝑥,𝑅) 𝑓 .

This gives (25). Next, we prove the converse. By the same argument, if (25) holds, then we have∑
Λ′ ⊂Λ,𝑥∈Λ′

𝑓Λ′ =
∑

Λ′ ⊂Λ∩𝐵 (𝑥,𝑅) ,𝑥∈Λ′

𝑓Λ′

for any finite Λ ⊂ 𝑋 and 𝑥 ∈ Λ. Suppose there exists finite Λ ⊂ 𝑋 such that diam(Λ) > 𝑅 and 𝑓Λ � 0.
By iteratively replacing Λ′ ⊂ Λ by Λ if necessary, we may assume that for any Λ′ � Λ, we have 𝑓Λ′ ≡ 0
or diam(Λ′) ≤ 𝑅. However, for this Λ and any 𝑥 ∈ Λ such that there exists 𝑦 ∈ Λ with 𝑑𝑋 (𝑥, 𝑦) > 𝑅,
we have ∑

Λ′ ⊂Λ,𝑥∈Λ′

𝑓Λ′ = 𝑓Λ +
∑

Λ′�Λ,𝑥∈Λ′

𝑓Λ′ = 𝑓Λ +
∑

Λ′ ⊂Λ∩𝐵 (𝑥,𝑅) ,𝑥∈Λ′

𝑓Λ′ .

Comparing with the previous equality, we see that 𝑓Λ ≡ 0. This contradicts our hypothesis that 𝑓Λ � 0;
hence, our assertion is proved. �

Before the proof of Proposition 3.19, we prepare an additional lemma. Here, we will assume that X
is strongly transferable. The weakly transferable case will be treated in §4.

Lemma 3.21. For the system (𝑋, 𝑆, 𝜙), assume that X is strongly transferable and that the interaction 𝜙 is
irreducibly quantified. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) and 𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for some 𝑅 > 0, and let ℎ 𝑓 : M×M → R

https://doi.org/10.1017/fms.2024.61 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.61


Forum of Mathematics, Sigma 33

be the pairing given in Proposition 3.18. If ℎ 𝑓 ≡ 0, then for any 𝑥 ∈ 𝑋 and finite Λ ⊂ 𝑋 such that
𝑑𝑋 (𝑥,Λ) > 𝑅, we have

𝜄Λ∪𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∪B
∗ (𝑥,𝑅) 𝑓 = 𝜄𝐵 (𝑥,𝑅) 𝑓 − 𝜄B

∗ (𝑥,𝑅) 𝑓 .

Proof. Note that by the definition of the pairing ℎ 𝑓 given in (23), we have

𝜄Λ∪Λ
′

𝑓 = 𝜄Λ 𝑓 + 𝜄Λ
′

𝑓 (26)

for any (Λ,Λ′) ∈ 𝒜𝑅. If Λ is a ball, then (Λ, 𝐵(𝑥, 𝑅)) and (Λ,B∗(𝑥, 𝑅)) are both pairs in 𝒜𝑅; hence, our
assertion immediately follows by applying (26) to the left-hand side. Consider a general finite Λ ⊂ 𝑋
such that 𝑑𝑋 (𝑥,Λ) > 𝑅. It is sufficient to prove that

𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂 |𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |B∗ (𝑥,𝑅) ) (27)

for any 𝜂 ∈ 𝑆𝑋∗ such that Supp(𝜂) ⊂ Λ∪𝐵(𝑥, 𝑅). Since X is strongly transferable, 𝑋\𝐵(𝑥, 2𝑅) is a locale.
Let 𝐵 ⊂ 𝑋 \ 𝐵(𝑥, 2𝑅) be a ball whose cardinality is greater than that of Λ and satisfying 𝑑𝑋 (Λ, 𝐵) > 𝑅.
Such a set B exists since 𝑋 \ 𝐵(𝑥, 2𝑅) is infinite. Now choose a 𝜂′ ∈ 𝑆𝑋∗ such that 𝜂′ coincides with 𝜂
outside Λ ∪ 𝐵, is at base state on Λ, and 𝝃𝐵 (𝜂

′) = 𝝃Λ(𝜂). This implies that 𝝃𝑋 (𝜂′) = 𝝃𝑋 (𝜂). Since X is
strongly transferable, the complement𝑌 � 𝑋\𝐵(𝑥, 𝑅) is a locale. From our condition that the interaction
is irreducibly quantified, by Lemma 3.11 applied to 𝑌 = 𝑋 \ 𝐵(𝑥, 𝑅) and 𝑌 = 𝑋 \ {𝑥}, we have

𝑓 (𝜂′) − 𝑓 (𝜂) = 𝑓 (𝜂′ |𝑋\{𝑥 }) − 𝑓 (𝜂 |𝑋\{𝑥 }).

Noting that 𝜂′ = 𝜂′ |𝐵∪𝐵 (𝑥,𝑅) and 𝜂 = 𝜂 |Λ∪𝐵 (𝑥,𝑅) , we see that

𝑓 (𝜂′|𝐵∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) = 𝑓 (𝜂′ |𝐵∪B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ). (28)

Since 𝐵 ⊂ 𝑋 \ 𝐵(𝑥, 2𝑅), we have 𝑑𝑋 (𝐵, 𝐵(𝑥, 𝑅)) > 𝑅; hence, (𝐵, 𝐵(𝑥, 𝑅)) and (𝐵,B∗(𝑥, 𝑅)) are both
pairs in 𝒜𝑅. Our condition (26) on f applied to this pair implies that

𝑓 (𝜂′|𝐵∪𝐵 (𝑥,𝑅) ) = 𝑓 (𝜂′|𝐵) + 𝑓 (𝜂′ |𝐵 (𝑥,𝑅) ), 𝑓 (𝜂′ |𝐵∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂′ |𝐵) + 𝑓 (𝜂′|B∗ (𝑥,𝑅) ).

Hence, (28) gives

𝑓 (𝜂′ |𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) = 𝑓 (𝜂′ |B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ).

Our assertion (27) follows from the fact that 𝜂 and 𝜂′ coincide on 𝐵(𝑥, 𝑅). �

We may now prove Proposition 3.19.

Proof of Proposition 3.19. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) and 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ), and that ℎ 𝑓 ≡ 0 for the pairing ℎ 𝑓
of Proposition 3.18. By Lemma 3.20, it is sufficient to check that for any fixed finite subset Λ ⊂ 𝑋 and
𝑥 ∈ Λ, we have

𝜄Λ 𝑓 − 𝜄Λ\{𝑥 } 𝑓 = 𝜄Λ∩𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∩B
∗ (𝑥,𝑅) 𝑓 .

We let Λ′ � Λ \ (Λ ∩ 𝐵(𝑥, 𝑅)). Then the above equation may be written as

𝜄Λ
′∪(Λ∩𝐵 (𝑥,𝑅)) 𝑓 − 𝜄Λ

′∪(Λ∩B∗ (𝑥,𝑅)) 𝑓 = 𝜄Λ∩𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∩B
∗ (𝑥,𝑅) 𝑓 . (29)

In order to prove this, it is sufficient to prove that

𝜄Λ
′∪𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ

′∪B∗ (𝑥,𝑅) 𝑓 = 𝜄𝐵 (𝑥,𝑅) 𝑓 − 𝜄B
∗ (𝑥,𝑅) 𝑓 , (30)
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since (29) may be obtained by applying 𝜄Λ
′∪(Λ∩𝐵 (𝑥,𝑅)) to both sides of (30). Hence, it is sufficient to

prove that for any finite Λ ⊂ 𝑋 such that Λ ∩ 𝐵(𝑥, 𝑅) = ∅, we have

𝜄Λ∪𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∪B
∗ (𝑥,𝑅) 𝑓 = 𝜄𝐵 (𝑥,𝑅) 𝑓 − 𝜄B

∗ (𝑥,𝑅) 𝑓 ,

which is precisely Lemma 3.21. �

4. Pairing and criterion in the weakly transferable case

In this section, we will extend Proposition 3.18 concerning the construction of the pairing ℎ 𝑓 and
Proposition 3.19 concerning the criterion for uniformity to the case when the locale X is weakly
transferable. The reader interested only in the strongly transferable case may skip to §5. We first start
with the classification of objects in ℬ𝑅 which generalizes the set of pairs 𝒜𝑅 given in Definition 3.16

4.1. Equivalence relation for pairs

Let 𝑅 > 0. In this subsection, we investigate a certain equivalence relation for certain pairs (𝐵, 𝐵′) in a
subset of ℱ𝒞𝑅. The result of this subsection is concerned only with the underlying graph structure of
the locale X. We define a variant of 𝒜𝑅 of Definition 3.16 as follows.

Definition 4.1. For any 𝑟 ∈ N, we denote by ℬ𝑟
𝑅 the subset of ℱ𝒞𝑅 consisting of pairs of balls (𝐵, 𝐵′)

such that the radii of B and 𝐵′ are at least r. Furthermore, we let ℬ𝑅 � ℬ0
𝑅.

We define the relation ∼𝑟 to be the equivalence relation in ℬ𝑟
𝑅 generated by the relations (𝐵, 𝐵′) ↔

(𝐵, 𝐵′′) and (𝐵′, 𝐵) ↔ (𝐵′′, 𝐵). In this subsection, we first study the equivalence relation ∼𝑟 on ℬ𝑟
𝑅.

In particular, we have the following.

Proposition 4.2. For any 𝑟 ∈ N, there are at most two equivalence classes with respect to the equivalence
relation ∼𝑟 in ℬ𝑟

𝑅. Moreover, there is only one equivalence class if (𝐵, 𝐵′) ∼𝑟 (𝐵′, 𝐵) for some
(𝐵, 𝐵′) ∈ ℬ𝑟

𝑅.

The following observation will be used throughout this section.

Remark 4.3. Let X be a weakly transferable locale, and let 𝐵 ⊂ 𝑋 be a ball.

1. For any finite setΛ ⊂ 𝑋 and 𝑟, 𝑅 > 0, there exists a ball 𝐵′ of radius at least r such that 𝑑𝑋 (Λ, 𝐵′) > 𝑅
and 𝐵′ ⊂ (𝑋 \ 𝐵).

2. For any finite connected set Λ ⊂ 𝑋 \ 𝐵 and 𝑟, 𝑅 > 0, there exists a ball 𝐵′ of radius at least r such
that 𝑑𝑋 (𝐵, 𝐵′) > 𝑅 and 𝐵′ and Λ are in the same connected component of 𝑋 \ 𝐵.

In order to prove Proposition 4.2, we first prove Lemma 4.4 and Lemma 4.5.

Lemma 4.4. For any 𝑟 ∈ N, suppose there exists three balls 𝐵1, 𝐵2, 𝐵3 of radii at least r in X such that
𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 2𝑅 for 𝑖 ≠ 𝑗 . Then either (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3) or (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2) holds.

Proof. Suppose 𝐵2 and 𝐵3 are not in the same connected component of 𝑋 \ 𝐵(𝐵1, 𝑅). Since X is
connected, there exists a path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) such that 𝑜( �𝛾) ∈ 𝐵2 and 𝑡 ( �𝛾) ∈ 𝐵3. We take the shortest
among such paths, and let 𝑝𝑖 = 𝑡 (𝑒𝑖) for 𝑖 = 1, . . . , 𝑁 . Since 𝐵2 and 𝐵3 are not in the same connected
component of 𝑋 \ 𝐵(𝐵1, 𝑅), there exists j such that 𝑝 𝑗 ∈ 𝐵(𝐵1, 𝑅). Since 𝑑𝑋 (𝐵1, 𝐵2) > 2𝑅, we have
𝑝 𝑗 ∉ 𝐵(𝐵2, 𝑅); hence, 𝑗 > 𝑅. Then for any 𝑖 ≥ 𝑗 , we have 𝑝𝑖 ∈ 𝑋 \ 𝐵(𝐵2, 𝑅) since we have taken �𝑝 to
be the shortest path from a vertex in 𝐵2 to a vertex in 𝐵3. Then �𝑝′ = (𝑝 𝑗 , 𝑝 𝑗+1, . . . , 𝑝𝑁 ) gives a path in
𝑋 \𝐵(𝐵2, 𝑅) from 𝑝 𝑗 to a vertex in 𝐵3. Since 𝑝 𝑗 ∈ 𝐵(𝐵1, 𝑅), there exists a path in 𝑋 \𝐵(𝐵2, 𝑅) from an
element in 𝐵1 to the vertex 𝑝 𝑗 . The combination of this path with �𝑝′ gives a path in 𝑋 \ 𝐵(𝐵2, 𝑅) from a
vertex in 𝐵1 to a vertex in 𝐵3; hence, 𝐵1 and 𝐵3 are in the same connected component of 𝑋 \ 𝐵(𝐵2, 𝑅),
as desired. �
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Lemma 4.5. For any 𝑟 ∈ N, suppose there exists three balls 𝐵1, 𝐵2, 𝐵3 of radii at least r in X such that
𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 2𝑅 for 𝑖 ≠ 𝑗 . Then (𝐵1, 𝐵2) ∼𝑟 (𝐵1, 𝐵3) or (𝐵1, 𝐵2) ∼𝑟 (𝐵3, 𝐵1) holds.

Proof. By Lemma 4.4, at least one of (𝐵1, 𝐵2) ∼𝑟 (𝐵1, 𝐵3) or (𝐵1, 𝐵2) ∼𝑟 (𝐵3, 𝐵2) holds. Also, by
reversing the roles of 𝐵2 and 𝐵3, we see that at least one of (𝐵1, 𝐵3) ∼𝑟 (𝐵1, 𝐵2) or (𝐵1, 𝐵3) ∼𝑟 (𝐵2, 𝐵3)
holds. Hence, if (𝐵1, 𝐵2) �𝑟 (𝐵1, 𝐵3), then we have (𝐵1, 𝐵2) ∼𝑟 (𝐵3, 𝐵2) and (𝐵1, 𝐵3) ∼𝑟 (𝐵2, 𝐵3),
where the last equivalence implies that (𝐵3, 𝐵2) ∼𝑟 (𝐵3, 𝐵1) by symmetry. This implies that (𝐵1, 𝐵2) ∼𝑟
(𝐵3, 𝐵2) ∼𝑟 (𝐵3, 𝐵1), as desired. �

We may now prove Proposition 4.2.

Proof of Proposition 4.2. We fix a pair (𝐵1, 𝐵
′
1) ∈ ℬ𝑟

𝑅. We let 𝐵′′
1 ⊂ 𝑋 \ 𝐵(𝐵1, 2𝑅) be a ball of

radius at least r which is in the same connected component as 𝐵′
1 in 𝑋 \ 𝐵(𝐵1, 𝑅). Then we have

(𝐵1, 𝐵
′
1) ∼𝑟 (𝐵1, 𝐵

′′
1 ). Consider any (𝐵2, 𝐵

′
2) ∈ ℬ𝑟

𝑅. We let B be a ball sufficiently large containing
𝐵1 ∪ 𝐵′′

1 . Then 𝐵(𝐵, 2𝑅) is also a ball, and 𝑋 \ 𝐵(𝐵, 2𝑅) decomposes into a finite sum of locales. We
let 𝐵3 ⊂ 𝑋 \ 𝐵(𝐵, 2𝑅) be a close ball of radius at least r which is in the same connected component
as 𝐵2 in 𝑋 \ 𝐵(𝐵′

2, 𝑅). Then by definition, we have (𝐵2, 𝐵
′
2) ∼𝑟 (𝐵3, 𝐵

′
2). Finally, we let 𝐵′ be the ball

sufficiently large containing 𝐵1 ∪ 𝐵′′
1 ∪ 𝐵3, and we let 𝐵′′

3 ⊂ 𝑋 \ 𝐵(𝐵′, 2𝑅) be a ball of radius at least
r which is in the same connected component of 𝑋 \ 𝐵(𝐵3, 𝑅) as 𝐵′

2. Then by construction, we have
(𝐵2, 𝐵

′
2) ∼𝑟 (𝐵3, 𝐵

′
2) ∼𝑟 (𝐵3, 𝐵

′′
3 ).

By our construction of 𝐵′′
1 and 𝐵′′

3 and Lemma 4.5, either (𝐵1, 𝐵
′′
1 ) ∼𝑟 (𝐵1, 𝐵

′′
3 ) or (𝐵1, 𝐵

′′
1 ) ∼𝑟

(𝐵′′
3 , 𝐵1) holds. Furthermore, either (𝐵1, 𝐵

′′
3 ) ∼𝑟 (𝐵3, 𝐵

′′
3 ) or (𝐵′′

3 , 𝐵1) ∼𝑟 (𝐵′′
3 , 𝐵3). Combining the

two, noting that (𝐵2, 𝐵
′
2) ∼𝑟 (𝐵3, 𝐵

′′
3 ), we obtain our assertion. �

As a consequence of Proposition 4.2, we have the following.

Proposition 4.6. Let 𝑋 = (𝑋, 𝐸) be a weakly transferable locale, and let 𝑅 > 0. For any integer 𝑟 ∈ N,
we choose an equivalence 𝒞𝑟

𝑅 in ℬ𝑟
𝑅 with respect to the equivalence relation ∼𝑟 . Then one of the

following holds.

1. For any 𝑟 ∈ N, we have ℬ𝑟
𝑅 = 𝒞𝑟

𝑅.
2. There exists 𝑟0 ∈ N such that for any 𝑟 < 𝑟0, we have ℬ𝑟

𝑅 = 𝒞𝑟
𝑅, and for 𝑟 ≥ 𝑟0, we have

ℬ𝑟
𝑅 = 𝒞𝑟

𝑅 ∪𝒞
𝑟

𝑅, (31)

where 𝒞
𝑟

𝑅 � {(Λ′,Λ) | (Λ,Λ′) ∈ 𝒞𝑟
𝑅}.

Moreover, we may choose 𝒞𝑟
𝑅 so that 𝒞𝑟

𝑅 = 𝒞𝑟0
𝑅 ∩ℬ𝑟

𝑅 for any 𝑟 ≥ 𝑟0, where we let 𝑟0 = 0 when (1) holds.

Proof. Suppose (1) does not hold. Then by Proposition 4.2, there exists 𝑟 ∈ N such that for any
(𝐵, 𝐵′) ∈ ℬ𝑟

𝑅, we have (𝐵, 𝐵′) �𝑟 (𝐵′, 𝐵). Then for any 𝑟 ′ ≥ 𝑟 and (𝐵, 𝐵′) ∈ ℬ𝑟 ′

𝑅 , if (𝐵, 𝐵′) ∼𝑘′ (𝐵
′, 𝐵),

then this would imply that (𝐵, 𝐵′) ∼𝑟 (𝐵′, 𝐵). Hence, our assumption implies that (𝐵, 𝐵′) �𝑟 ′ (𝐵
′, 𝐵).

We take 𝑟0 to be the minimum of such r. Then (31) follows from Proposition 4.2.
Note that for any 𝑟 ≥ 𝑟0 and (𝐵1, 𝐵

′
1) and (𝐵2, 𝐵

′
2) in ℬ𝑟

𝑅, we have (𝐵1, 𝐵
′
1) ∼𝑟0 (𝐵2, 𝐵

′
2) if and

only if (𝐵1, 𝐵
′
1) ∼𝑟 (𝐵2, 𝐵

′
2). This may be proved as follows. It is immediate from the definition that

if ∼𝑟 holds, then ∼𝑟0 holds. However, if (𝐵1, 𝐵
′
1) ∼𝑟0 (𝐵2, 𝐵

′
2) and if (𝐵1, 𝐵

′
1) �𝑟 (𝐵2, 𝐵

′
2), then we

would have (𝐵1, 𝐵
′
1) ∼𝑟 (𝐵′

2, 𝐵2), which would imply that (𝐵1, 𝐵
′
1) ∼𝑟0 (𝐵′

2, 𝐵2). Then we would have
(𝐵2, 𝐵

′
2) ∼𝑟0 (𝐵′

2, 𝐵2), contradicting our choice of 𝑟0.
If we choose an equivalence class 𝒞𝑟0

𝑅 of ℬ𝑟0
𝑅 with respect to the equivalence ∼𝑟0 , then we may take

𝒞𝑟
𝑅 � 𝒞𝑟0

𝑅 ∩ℬ𝑟
𝑅 for any 𝑟 ≥ 𝑟0, which gives an equivalence class of ℬ𝑟

𝑅 with respect to the equivalence
∼𝑟 satisfying the condition of our assertion. �

Definition 4.7. Let 𝑋 = (𝑋, 𝐸) be a weakly transferable locale, and let 𝑅 > 0. If (1) of Proposition 4.6
holds, then we say that ℬ𝑅 has a unique class, and we define the integer 𝑟0 to be one. If (2) of
Proposition 4.6 holds, then we say that ℬ𝑅 is split, and we define 𝑟0 to be the minimum integer
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satisfying (31). Moreover, we will fix an equivalence class 𝒞𝑟
𝑅 of ℬ𝑟

𝑅 with respect to the equivalence
relation ∼𝑟 so that 𝒞𝑟

𝑅 = 𝒞𝑟0
𝑅 ∩ℬ𝑟

𝑅 for 𝑟 ≥ 𝑟0.

4.2. Pairing for functions in the weakly transferable case

In this subsection, we will construct and prove the cocycle condition for the pairing ℎ 𝑓 : M×M → R.
We let X be a weakly transferable locale. We let ℬ𝑟

𝑅 as in Definition 4.1, and we fix an equivalence
class 𝒞𝑟

𝑅 of ℬ𝑟
𝑅 with respect to the equivalence relation ∼𝑟 as in Definition 4.7. We define the pairing

ℎ 𝑓 as follows.

Definition 4.8. Let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ) for some 𝑅 > 0. We define the pairing
ℎ 𝑓 : M × M → R as follows. For any 𝛼, 𝛽 ∈ M, we let 𝑘 ≥ 𝑟0 such that 𝛼, 𝛽 ∈ M𝑘 . By taking an
arbitrary (𝐵, 𝐵′) ∈ 𝒞𝑘

𝑅, we let

ℎ 𝑓 (𝛼, 𝛽) � ℎ𝐵,𝐵
′

𝑓 (𝛼, 𝛽),

where ℎ𝐵,𝐵
′

𝑓 is the pairing ℎΛ,Λ
′

𝑓 defined in Proposition 3.12 for (Λ,Λ′) = (𝐵, 𝐵′). Note that we have
|𝐵 | ≥ 𝑟 (𝐵) and |𝐵′ | ≥ 𝑟 (𝐵′); hence, |𝐵 |, |𝐵′ | ≥ 𝑘 .

For the remainder of this subsection, we let 𝑅 > 0, and we fix a 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ).
If (𝐵1, 𝐵

′
1), (𝐵2, 𝐵

′
2) ∈ 𝒞𝑘

𝑅, then we have (𝐵1, 𝐵
′
1) ∼𝑘 (𝐵2, 𝐵

′
2); hence, by Lemma 3.13, we see that

ℎ
𝐵1 ,𝐵

′
1

𝑓 (𝛼, 𝛽) = ℎ
𝐵2 ,𝐵

′
2

𝑓 (𝛼, 𝛽)

for any 𝛼, 𝛽 ∈ M𝑘 . Since 𝒞𝑘
𝑅 = 𝒞𝑟0

𝑅 ∩ℬ𝑘
𝑅, this shows that ℎ 𝑓 is independent of the choices of 𝑘 ≥ 𝑟0

satisfying 𝛼, 𝛽 ∈ M𝑘 and the pair (𝐵, 𝐵′) ∈ 𝒞𝑘
𝑅.

When X is weakly transferable, the pairing ℎ 𝑓 may not be symmetric.

Lemma 4.9. If ℬ𝑅 has a unique class, then the pairing ℎ 𝑓 is symmetric.

Proof. If ℬ𝑅 has a unique class, then (𝐵, 𝐵′) ∈ 𝒞𝑘
𝑅 implies that (𝐵′, 𝐵) ∈ 𝒞𝑘

𝑅. This shows that for any
𝑘 ≥ 𝑟0 and 𝛼, 𝛽 ∈ M𝑘 , we have

ℎ 𝑓 (𝛼, 𝛽) = ℎ𝐵,𝐵
′

𝑓 (𝛼, 𝛽) = ℎ𝐵
′,𝐵
𝑓 (𝛽, 𝛼) = ℎ 𝑓 (𝛽, 𝛼),

as desired. �

Remark 4.10. If ℬ𝑅 is split, then ℎ 𝑓 may not necessarily be symmetric.

The pairing ℎ 𝑓 may be calculated as follows.

Proposition 4.11. For any (Λ,Λ′) ∈ 𝒜𝑅 and for any 𝛼 ∈ M |Λ | and 𝛽 ∈ M |Λ′ | , we have

ℎ 𝑓 (𝛼, 𝛽) = ℎΛ,Λ
′

𝑓 (𝛼, 𝛽) or ℎ 𝑓 (𝛽, 𝛼) = ℎΛ,Λ
′

𝑓 (𝛼, 𝛽).

In particular, if ℎ 𝑓 is symmetric, then we have

ℎ 𝑓 (𝛼, 𝛽) = ℎΛ,Λ
′

𝑓 (𝛼, 𝛽).

Proof. Fix an arbitrary (Λ,Λ′) ∈ 𝒜𝑅 and 𝛼 ∈ M |Λ | , 𝛽 ∈ M |Λ′ | . Let 𝑘 ≥ 𝑟0 such that
𝑘 ≥ max{|Λ|, |Λ′ |}. Assume without loss of generality that Λ is a ball. Since X is weakly transfer-
able, the connected component of 𝑋 \ 𝐵(Λ, 𝑅) containing Λ′ is infinite and hence contains a closed
ball 𝐵′ such that 𝑟 (𝐵′) ≥ 𝑘 . Then (Λ,Λ′) ↔ (Λ, 𝐵′). Again, the connected component of 𝑋 \ 𝐵(𝐵′, 𝑅)
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containing Λ is infinite and hence contains a ball B such that 𝑟 (𝐵) ≥ 𝑘 . Then (Λ, 𝐵′) ↔ (𝐵, 𝐵′). By
construction, (𝐵, 𝐵′) ∈ ℬ𝑘

𝑅. If (𝐵, 𝐵′) ∈ 𝒞𝑘
𝑅, then by Lemma 3.13, noting that |𝐵 |, |𝐵′ | ≥ 𝑘 , we have

ℎΛ,Λ
′

𝑓 (𝛼, 𝛽) = ℎ𝐵,𝐵
′

𝑓 (𝛼, 𝛽) = ℎ 𝑓 (𝛼, 𝛽).

If (𝐵, 𝐵′) ∉ 𝒞𝑘
𝑅, then (𝐵′, 𝐵) ∈ 𝒞𝑘

𝑅; hence, we have

ℎΛ,Λ
′

𝑓 (𝛼, 𝛽) = ℎ𝐵,𝐵
′

𝑓 (𝛼, 𝛽) = ℎ𝐵
′,𝐵
𝑓 (𝛽, 𝛼) = ℎ 𝑓 (𝛽, 𝛼),

as desired. �

In order to prove the cocycle condition of ℎ 𝑓 , we will prepare the following lemma concerning
the existence of a triplet of balls 𝐵1, 𝐵2, 𝐵3 sufficiently large and sufficiently apart satisfying the
condition (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3). Note that if X is strongly transferable, then this condition
is automatically satisfied if 𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 𝑅 for 𝑖 ≠ 𝑗 .

Lemma 4.12. For any 𝑟 ∈ N, there exists balls 𝐵1, 𝐵2, 𝐵3 of radii at least r in X such that 𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 𝑅
for 𝑖 ≠ 𝑗 and

(𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3). (32)

Moreover, we may take 𝐵1, 𝐵2, 𝐵3 so that (𝐵1, 𝐵2), (𝐵1, 𝐵3), (𝐵2, 𝐵3) ∈ 𝒞𝑟
𝑅.

Proof. Take 𝐵1 to be a ball in X such that 𝑟 (𝐵1) ≥ 𝑟 . We then take 𝐵2 to be an arbitrary ball in
𝑋 \ 𝐵(𝐵1, 2𝑅) such that 𝑟 (𝐵2) ≥ 𝑟 . Finally, we take a ball Λ containing 𝐵1 and 𝐵2, and let 𝐵3 be a ball
in 𝑋 \ 𝐵(Λ, 2𝑅) with 𝑟 (𝐵3) ≥ 𝑟 . By construction, we have 𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 2𝑅 for 𝑖 ≠ 𝑗 . By Lemma 4.5,
the following holds.

1. Either (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3) or (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2).
2. Either (𝐵1, 𝐵3) ↔ (𝐵1, 𝐵2) or (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3).
3. Either (𝐵2, 𝐵3) ↔ (𝐵2, 𝐵1) or (𝐵2, 𝐵3) ↔ (𝐵1, 𝐵3).

From this observation, we see that at least one of the following holds.

(a) (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3) and (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3).
(b) (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2) and (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3).
(c) (𝐵1, 𝐵3) ↔ (𝐵1, 𝐵2) and (𝐵2, 𝐵3) ↔ (𝐵2, 𝐵1).

In fact, if (a) does not hold, then either (𝐵1, 𝐵2) � (𝐵1, 𝐵3) or (𝐵1, 𝐵3) � (𝐵2, 𝐵3) holds. If (𝐵1, 𝐵2) �
(𝐵1, 𝐵3), then by (1), we have (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2), and by (2), we have (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3); hence,
(b) holds. If (𝐵1, 𝐵3) � (𝐵2, 𝐵3), then by (2), we have (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2), and by (3), we have
(𝐵2, 𝐵3) ↔ (𝐵2, 𝐵1); hence, (c) holds.

If (a) holds, then we have (32). If (b) holds, then we obtain (32) by taking 𝐵1 to be 𝐵2 and 𝐵2 to be
𝐵1, If (c) holds, then we obtain (32) by taking 𝐵2 to be 𝐵3 and 𝐵3 to be 𝐵2. Our last assertion is proved
if (𝐵1, 𝐵2) ∈ 𝒞𝑟

𝑅. If (𝐵1, 𝐵2) ∉ 𝒞𝑟
𝑅, our assertion is proved by taking 𝐵1 to be 𝐵3 and 𝐵3 to be 𝐵1. �

We are now ready to prove the cocycle condition for our ℎ 𝑓 .

Proposition 4.13. Assume that X is a weakly transferable locale. Let 𝑅 > 0, and let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such
that 𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ). Then the pairing ℎ 𝑓 : M ×M → R satisfies

ℎ 𝑓 (𝛼, 𝛽) + ℎ 𝑓 (𝛼 + 𝛽, 𝛾) = ℎ 𝑓 (𝛽, 𝛾) + ℎ 𝑓 (𝛼, 𝛽 + 𝛾).

for any 𝛼, 𝛽, 𝛾 ∈ M.
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Proof. For an arbitrary 𝛼, 𝛽, 𝛾 ∈ M, there exists 𝑘 ≥ 𝑟0 such that 𝛼, 𝛽, 𝛾, ∈ M𝑘 . Let 𝐵1, 𝐵2, 𝐵3 be balls
in X satisfying the condition of Lemma 4.12 for 𝑟 = 𝑘 . Then since 𝛼, 𝛽, 𝛾 ∈ M𝑘 , there exists 𝜂 ∈ 𝑆𝑋

such that 𝜉𝐵1 (𝜂) = 𝛼, 𝜉𝐵2 (𝜂) = 𝛽, 𝜉𝐵3 (𝜂) = 𝛾 and is at base state outside 𝐵1 ∪ 𝐵2 ∪ 𝐵3. Then since
(𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3), there exists a finite connected subset Λ ⊂ 𝑋 \ 𝐵(𝐵3, 𝑅) such that 𝐵1 ∪ 𝐵2 ⊂ Λ,
and since (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3), there exists a finite connected subset Λ′ ⊂ 𝑋 \ 𝐵(𝐵1, 𝑅) such that
𝐵2 ∪ 𝐵3 ⊂ Λ′. Note by construction, we have (𝐵1,Λ′), (Λ, 𝐵3) ∈ 𝒜𝑅 and (𝐵1, 𝐵2), (𝐵2, 𝐵3) ∈ 𝒞𝑘

𝑅.
Then by Lemma 3.13 and the definition of h, we have

ℎ 𝑓 (𝛼, 𝛽) = ℎ𝐵1 ,𝐵2
𝑓 (𝛼, 𝛽) = 𝜄𝐵1∪𝐵2 𝑓 (𝜂) − 𝜄𝐵1 𝑓 (𝜂) − 𝜄𝐵2 𝑓 (𝜂)

ℎ 𝑓 (𝛼 + 𝛽, 𝛾) = ℎΛ,𝐵3
𝑓 (𝛼 + 𝛽, 𝛾) = 𝜄Λ∪𝐵3 𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄𝐵3 𝑓 (𝜂)

ℎ 𝑓 (𝛽, 𝛾) = ℎ𝐵2 ,𝐵3
𝑓 (𝛼, 𝛽) = 𝜄𝐵2∪𝐵3 𝑓 (𝜂) − 𝜄𝐵2 𝑓 (𝜂) − 𝜄𝐵3 𝑓 (𝜂)

ℎ 𝑓 (𝛼, 𝛽 + 𝛾) = ℎ𝐵1 ,Λ′

𝑓 (𝛼, 𝛽 + 𝛾) = 𝜄𝐵1∪Λ′

𝑓 (𝜂) − 𝜄𝐵1 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂).

Since 𝜂 is at base state outside 𝐵1 ∪ 𝐵2 ∪ 𝐵3, we have

𝜄Λ∪𝐵3 𝑓 (𝜂) = 𝜄𝐵1∪Λ′

𝑓 (𝜂) = 𝜄𝐵1∪𝐵2∪𝐵3 𝑓 (𝜂), 𝜄Λ 𝑓 (𝜂) = 𝜄𝐵1∪𝐵2 𝑓 (𝜂), 𝜄Λ
′

𝑓 (𝜂) = 𝜄𝐵2∪𝐵3 𝑓 (𝜂),

which proves our assertion. �

4.3. Criterion for uniformity in the weakly transferable case

In this subsection, we will prove Proposition 4.14, which is a weakly transferable version of
Proposition 3.19.

Proposition 4.14. Assume that the locale X is weakly transferable. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) satisfies
𝜕 𝑓 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for 𝑅 > 0, and let ℎ 𝑓 : M ×M → R be the pairing defined in Definition 4.8. If ℎ 𝑓 ≡ 0,

then we have 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ).

The proof of Proposition 4.14 is the same as that of Proposition 3.19, but by using Lemma 4.15
below which is valid even when X is weakly transferable, instead of Lemma 3.21, which assumed that
X is strongly transferable.

Lemma 4.15. Assume that X is weakly transferable. Suppose 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) and 𝜕 𝑓 ∈ 𝐶1
𝑅 (𝑆

𝑋 ), and let
ℎ 𝑓 : M × M → R be the pairing defined in Definition 4.8. If ℎ 𝑓 ≡ 0, then for any 𝑥 ∈ 𝑋 and finite
Λ ⊂ 𝑋 such that 𝑑𝑋 (𝑥,Λ) > 𝑅, we have

𝜄Λ∪𝐵 (𝑥,𝑅) 𝑓 − 𝜄Λ∪B
∗ (𝑥,𝑅) 𝑓 = 𝜄𝐵 (𝑥,𝑅) 𝑓 − 𝜄B

∗ (𝑥,𝑅) 𝑓 ,

where B∗(𝑥, 𝑅) � 𝐵(𝑥, 𝑅) \ {𝑥} is the punctured ball.

Proof. Since ℎ 𝑓 ≡ 0, by the definition of the pairing ℎ 𝑓 given in Definition 4.8 and Proposition 3.12,
we have

𝜄Λ∪Λ
′

𝑓 = 𝜄Λ 𝑓 + 𝜄Λ
′

𝑓 (33)

for any (Λ,Λ′) ∈ 𝒜𝑅. Again, if B is a ball, then (𝐵, 𝐵(𝑥, 𝑅)) and (𝐵,B∗(𝑥, 𝑅)) are both pairs in 𝒜𝑅;
hence, our assertion immediately follows by applying (33) to the left-hand side. Consider a general finite
Λ ⊂ 𝑋 such that 𝑑𝑋 (𝑥,Λ) > 𝑅. It is sufficient to prove that

𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂 |𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |B∗ (𝑥,𝑅) ) (34)

for any 𝜂 ∈ 𝑆𝑋∗ such that Supp(𝜂) ⊂ Λ ∪ 𝐵(𝑥, 𝑅). Since X is weakly transferable, 𝑌 � 𝑋 \ 𝐵(𝑥, 𝑅)
decomposes into a finite number of locales 𝑌 = 𝑌1 ∪ · · · ∪𝑌𝐾 . We may reorder the 𝑌𝑖 so that there exists
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integer k such that 𝑌𝑖 ∩ Λ ≠ ∅ for 𝑖 ≤ 𝑘 and 𝑌𝑖 ∩ Λ = ∅ for 𝑖 > 𝑘 . Let Λ𝑖 � Λ ∩ 𝑌𝑖 . Then we have
Λ = Λ1 ∪ · · · ∪ Λ𝑘 .

Let 𝐵′
1 be a ball such that 𝐵(Λ, 𝑅) ∪ 𝐵(𝑥, 𝑅) ⊂ 𝐵′

1. Let 𝐵1 ⊂ (𝑋 \ 𝐵(𝐵′
1, 𝑅)) ∩ 𝑌1, 𝑑𝑋 (Λ, 𝐵1) > 𝑅

be a ball whose cardinality is greater than that of Λ1. Such a set 𝐵1 exists since 𝑌1 is an infinite set.
Now choose a 𝜂′ ∈ 𝑆𝑋∗ such that 𝜂′ coincides with 𝜂 outside Λ1 ∪ 𝐵1, is as base state on Λ1, and
𝝃𝐵1 (𝜂

′) = 𝝃Λ1 (𝜂). This implies that 𝝃𝑋 (𝜂′) = 𝝃𝑋 (𝜂). Since the transition is irreducibly quantified, by
Lemma 3.11 applied to 𝑌1 and 𝑌1 � 𝑋 \ {𝑥}, we have

𝑓 (𝜂′) − 𝑓 (𝜂) = 𝑓 (𝜂′ |𝑋\{𝑥 }) − 𝑓 (𝜂 |𝑋\{𝑥 }).

Noting that 𝜂′ = 𝜂′ |𝐵1∪𝐵
′
1

and 𝜂 = 𝜂 |𝐵′
1
, we see that

𝑓 (𝜂′|𝐵1∪𝐵
′
1
) − 𝑓 (𝜂 |𝐵′

1
) = 𝑓 (𝜂′ |𝐵1∪(𝐵

′
1\{𝑥 })

) − 𝑓 (𝜂 |𝐵′
1\{𝑥 }

). (35)

By our choice of 𝐵1, we have 𝑑𝑋 (𝐵1, 𝐵
′
1) > 𝑅; hence, (𝐵1, 𝐵

′
1) and (𝐵1, 𝐵

′
1 \ {𝑥}) are both pairs in 𝒜𝑅.

Our condition (33) on f applied to this pair implies that

𝑓 (𝜂′|𝐵1∪𝐵
′
1
) = 𝑓 (𝜂′|𝐵1 ) + 𝑓 (𝜂′ |𝐵′

1
), 𝑓 (𝜂′|𝐵1∪(𝐵

′
1\{𝑥 })

) = 𝑓 (𝜂′ |𝐵1 ) + 𝑓 (𝜂′ |𝐵′
1\{𝑥 }

).

Hence, (35) gives 𝑓 (𝜂′ |𝐵′
1
) − 𝑓 (𝜂 |𝐵′

1
) = 𝑓 (𝜂′|𝐵′

1\{𝑥 }
) − 𝑓 (𝜂 |𝐵′

1\{𝑥 }
). In particular, since 𝜂′ is at base

state outside 𝐵1 ∪ Λ2 ∪ · · · ∪ Λ𝑘 ∪ 𝐵(𝑥, 𝑅) and 𝜂 is at base state outside Λ ∪ 𝐵(𝑥, 𝑅), we have

𝑓 (𝜂′|Λ2∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂′|Λ2∪···∪Λ𝑘∪B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ).

Note that 𝜂′ |Λ2∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) = 𝜂 |Λ2∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) since 𝜂′ and 𝜂 coincides outside Λ1 ∪ 𝐵′′
1 . Hence, we

see that

𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂 |Λ2∪···∪Λ𝑘∪B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ2∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) ).

By applying the same argument with Λ replaced by Λ2 ∪ · · · ∪ Λ𝑘 and Λ1 replaced by Λ2, we have

𝑓 (𝜂 |Λ2∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ2∪···∪Λ𝑘∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂 |Λ3∪···∪Λ𝑘∪B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ3∪···∪Λ𝑘∪𝐵 (𝑥,𝑅) ).

By repeating this process, we see that

𝑓 (𝜂 |Λ∪𝐵 (𝑥,𝑅) ) − 𝑓 (𝜂 |Λ∪B∗ (𝑥,𝑅) ) = 𝑓 (𝜂 |B∗ (𝑥,𝑅) ) − 𝑓 (𝜂 |𝐵 (𝑥,𝑅) ).

Our assertion (34) follows from the fact that 𝜂 is supported on Λ ∪ 𝐵(𝑥, 𝑅) and the fact that 𝜄𝑊 𝑓 (𝜂) =
𝑓 (𝜂 |𝑊 ) for any 𝑊 ⊂ 𝑋 . �

4.4. Transferability

In this subsection, we will introduce the notion of transferability for a locale X, which ensures that the
pairing ℎ 𝑓 defined in Definition 4.8 is symmetric.

Definition 4.16. Let X be a locale. We say that X is transferable if X is weakly transferable and satisfies
either one of the following conditions.

(a) There exists a ball B such that 𝑋 \ 𝐵 has three or more disjoint connected components (which are
all infinite since X is weakly transferable).

(b) For any 𝑟 ∈ N, there exists a ball B of radius at least r such that 𝑋 \ 𝐵 is connected.

Note that by (b), if X is strongly transferable, then it is transferable.
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Figure 6. Examples of transferable but not strongly transferable locales.

Example 4.17. The following subgraphs 𝑋 = (𝑋, 𝐸) of the Euclidean latticeZ2 = (Z2,E) give examples
of locales which are transferable but not strongly transferable (see Figure 6).
1. Let 𝑋 � {(𝑥1, 𝑥2) ∈ Z2 | 𝑥1𝑥2 = 0} and 𝐸 � (𝑋 × 𝑋) ∩ E. Then (𝑋, 𝐸) is transferable by

Definition 4.16 (a).
2. Let 𝑋 � {(𝑥1, 𝑥2) ∈ Z

2 | 𝑥1 ≥ 0} ∪ {(𝑥1, 𝑥2) ∈ Z
2 | 𝑥2 = 0} and 𝐸 � (𝑋 × 𝑋) ∩ E. Then (𝑋, 𝐸) is

transferable by Definition 4.16 (b).
Remark 4.18. The locale Z = (Z,E) is weakly transferable but not transferable since the complements
of balls always have exactly two connected components. The locale Z𝑑 = (Z𝑑 ,E𝑑) for 𝑑 > 1 is
transferable since it is strongly transferable.

Remark 4.19. Let G be a finitely generated free group G with set of generators S , and let (𝐺, 𝐸S ) be
the Cayley graph given in Example 2.2 (4). If the number of free generators of G is equal to one, then
𝐺 = Z; hence, (𝐺, 𝐸S ) is weakly transferable but not transferable. If the number of free generators of G
is 𝑑 > 1, then (𝐺, 𝐸S ) is transferable. This follows from Definition 4.16 (a) and the fact that 𝐺 \ {id𝐺}
has exactly 2𝑑 connected components (see Figure 1 for the case 𝑑 = 2).

More generally, for a finitely generated infinite group G, it is known that the number of ends of a
Cayley graph (𝐺, 𝐸S ) is either 1, 2 or infinity, and the number of ends is 2 if and only if it has an infinite
cyclic subgroup of finite index (see [4, (1.6) Theorem]). In the case that (𝐺, 𝐸S ) is weakly transferable,
then it is strongly transferable, not transferable, or transferable if and only if the number of ends is
respectively 1, 2, or infinity.
Proposition 4.20. Suppose X is weakly transferable. Then X is transferable if an only if ℬ𝑅 has a unique
equivalence class for any 𝑅 > 0 in the sense of Definition 4.7.
Proof. Suppose (a) of Definition 4.16 holds for the ball B. Let 𝑌1, 𝑌2, 𝑌3 be three distinct connected
components (there may be more) of 𝑋 \ 𝐵. For any 𝑟 ∈ N, there exists balls 𝐵1, 𝐵2, 𝐵3 of radii at
least r such that 𝐵(𝐵𝑖 , 𝑅) ⊂ 𝑌𝑖 for 𝑖 = 1, 2, 3 and 𝑑𝑋 (𝐵𝑖 , 𝐵 𝑗 ) > 𝑅 for any 𝑖 ≠ 𝑗 . In particular, by
exchanging the numberings 𝑖 = 1, 2 if necessary, we may assume that (𝐵1, 𝐵2) ∈ 𝒞𝑟

𝑅. By construction,
there exists paths from B to 𝑌1 and B to 𝑌3 which do not pass through 𝑌2; hence, 𝑌1 and 𝑌3 are in
the same connected component of 𝑋 \ 𝑌2. Hence, in particular, 𝐵1 and 𝐵3 are in the same connected
component of 𝑋 \ 𝐵(𝐵2, 𝑅), and we have (𝐵1, 𝐵2) ↔ (𝐵3, 𝐵2). In the same manner, we may prove
that (𝐵1, 𝐵3) ↔ (𝐵1, 𝐵2), and (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3). This shows that we have (𝐵1, 𝐵2) ∼𝑟 (𝐵3, 𝐵2) ∼𝑟
(𝐵3, 𝐵1) ∼𝑟 (𝐵2, 𝐵1). By Proposition 4.2, we see that ℬ𝑟

𝑅 has a unique equivalence class with respect
to the equivalence relation ∼𝑟

Next, suppose (b) of Definition 4.16 holds. Fix a 𝑟 ∈ N and 𝑅 > 0, and let 𝐵(𝑥, 𝑅′) be the ball given by
(2) of radius 𝑅′ ≥ 𝑘+𝑅 such that 𝑋\𝐵(𝑥, 𝑅′) is connected. If we let 𝐵1 � 𝐵(𝑥, 𝑅′−𝑅), then 𝐵1 is a ball of
radius at least r such that 𝑋\𝐵(𝐵1, 𝑅) is connected. Take a ball 𝐵2 of radius at least r and 𝑑𝑋 (𝐵1, 𝐵2) > 𝑅,
and a finite connectedΛ such that 𝐵1∪𝐵2 ⊂ Λ. Since X is weakly transferable, 𝑋 \𝐵(𝐵2, 𝑅) decomposes
into a finite number of locales. We let Y be the connected component of 𝑋 \ 𝐵(𝐵2, 𝑅) containing 𝐵1,
and we take 𝐵3 to be a ball of radius at least r satisfying 𝐵3 ⊂ 𝑌 \ 𝐵(𝐵1, 𝑅) and 𝑑𝑋 (Λ, 𝐵3) > 𝑅.
Since 𝑋 \ 𝐵(𝐵1, 𝑅) is connected by our construction of 𝐵1, we have (𝐵1, 𝐵2) ↔ (𝐵1, 𝐵3). Also since
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𝐵1, 𝐵3 ⊂ 𝑌 , we have (𝐵2, 𝐵1) ↔ (𝐵2, 𝐵3). Moreover, since 𝐵(𝐵3, 𝑅) ∩ Λ = ∅ and Λ is connected, we
have (𝐵1, 𝐵3) ↔ (𝐵2, 𝐵3). This shows that (𝐵1, 𝐵2) ∼𝑟 (𝐵1, 𝐵3) ∼𝑟 (𝐵2, 𝐵3) ∼𝑟 (𝐵2, 𝐵1), which by
Proposition 4.2 shows thatℬ𝑟

𝑅 has a unique equivalence class with respect to the equivalence relation∼𝑟 .
Finally, we prove that if there exists 𝑟 ∈ N such that for any ball B of radius at least r, the set 𝑋 \ 𝐵

has exactly two connected components, then for any 𝑅 > 0, there are two equivalence classes in ℬ𝑟
𝑅

with respect to ∼𝑟 . We first prove that in this situation, for any ball B of radius at least r, there exists
a decomposition 𝑋 \ 𝐵 = 𝑌+

𝐵 ∪ 𝑌−
𝐵 into infinite locales, where 𝑌±

𝐵 ∩ 𝑌±
𝐵′ are infinite sets and 𝑌±

𝐵 ∩ 𝑌∓
𝐵′

are finite sets for any balls 𝐵, 𝐵′ of radius at least r. This follows from the fact that one of 𝑌+
𝐵 ∩ 𝑌+

𝐵′ or
𝑌+
𝐵 ∩ 𝑌−

𝐵′ must be infinite since 𝑌+
𝐵 is infinite. If both are infinite, then there exists a ball B satisfying

𝐵 ∪ 𝐵′ ⊂ 𝐵 and 𝑋 \ 𝐵 has at least three disjoint connected components in 𝑌+
𝐵 ∩ 𝑌+

𝐵′ , 𝑌+
𝐵 ∩ 𝑌−

𝐵′ and 𝑌−
𝐵 ,

contradicting our assertion. Hence, exactly one of𝑌+
𝐵 ∩𝑌

+
𝐵′ and𝑌+

𝐵 ∩𝑌
−
𝐵′ is infinite and the other is finite.

So we choose the ± label of 𝐵′ so that 𝑌+
𝐵 ∩ 𝑌+

𝐵′ is infinite and 𝑌+
𝐵 ∩ 𝑌−

𝐵′ is finite.
Consider any 𝑅 > 0. For each (𝐵, 𝐵′) ∈ ℬ𝑟

𝑅, we denote 𝐵 < 𝐵′ if 𝐵′ ⊂ 𝑌+
𝐵. This is equivalent to the

condition that 𝐵 ⊂ 𝑌−
𝐵′ for the following reason. Consider 𝑥 ∈ 𝑌−

𝐵 ∩ 𝑌−
𝐵′ and 𝑦 ∈ 𝐵′ ⊂ 𝑌+

𝐵. Since X is
connected, there exists a path �𝑝 from x to y, which must go through B since 𝑌−

𝐵 and 𝑌+
𝐵 are disjoint and

connected by B. This shows that x hence 𝑌−
𝐵′ is connected to B in 𝑋 \ 𝐵′. Hence, for any (𝐵, 𝐵′) ∈ ℬ𝑟

𝑅,
either one of 𝐵 < 𝐵′ or 𝐵 > 𝐵′ hold. Moreover, if 𝐵 < 𝐵′, then 𝐵′ ⊂ 𝑌+

𝐵 (𝐵,𝑅)
and 𝐵 ⊂ 𝑌−

𝐵 (𝐵′,𝑅)
.

This shows that for any (𝐵1, 𝐵
′
1), (𝐵2, 𝐵

′
2) ∈ ℬ𝑟

𝑅, we have (𝐵1, 𝐵
′
1) ↔ (𝐵2, 𝐵

′
2) if and only if we have

𝐵1 < 𝐵′
1 and 𝐵2 < 𝐵′

2, or 𝐵1 > 𝐵′
1 and 𝐵2 > 𝐵′

2. In other words, pairs are in the same equivalence
class if and only if their order is preserved. This proves that ℬ𝑟

𝑅 has exactly two equivalence classes as
desired. �

Corollary 4.21. If X is transferable, then for any 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 ∈ 𝐶1
unif (𝑆

𝑋 ), the pairing ℎ 𝑓
defined in Definition 4.8 is symmetric.
Proof. By Proposition 4.20, if X is transferable, then ℬ𝑅 has a unique class for any 𝑅 > 0 in the sense
of Definition 4.7. Our assertion now follows from Lemma 4.9. �

5. Uniform cohomology and the main theorem

In this section, we will introduce and calculate the uniform cohomology of a configuration space with
transition structure satisfying certain conditions. We will then consider a free action of a group G on
the locale and prove our main theorem, Theorem 5.17, which coincides with Theorem 1 of §1.3.

5.1. Uniform cohomology of the configuration space

In this subsection, we will define the uniform cohomology of a configuration space with transition
structure. We will then prove our key theorem, Theorem 5.2, which states that under certain conditions,
any closed uniform form is integrable by a uniform function. This result is central to the proof of our
main theorem.

Consider the system (𝑆, 𝑋, 𝜙) and the associated configuration space with transition structure. In what
follows, we denote by 𝑍1 (𝑆𝑋∗ ) be the set of closed forms of 𝑆𝑋∗ , and 𝑍1

unif (𝑆
𝑋 ) � 𝐶1

unif (𝑆
𝑋 ) ∩ 𝑍1 (𝑆𝑋∗ )

the set of uniform closed forms. We first prove the following.
Lemma 5.1. Let 𝑓 ∈ 𝐶0

unif (𝑆
𝑋 ). Then we have 𝜕 𝑓 ∈ 𝑍1

unif (𝑆
𝑋 ).

Proof. By the definition of 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ), there exists 𝑅 > 0 such that

𝑓 =
∑

Λ⊂𝑋, diam(Λ) ≤𝑅

𝑓Λ

for 𝑓Λ ∈ 𝐶Λ (𝑆
𝑋 ) ⊂ 𝐶 (𝑆Λ). Then for any 𝑒 ∈ 𝐸 , we have ∇𝑒 𝑓Λ ∈ 𝐶 (𝑆Λ∪𝑒) and ∇𝑒 𝑓Λ ≡ 0 if Λ ∩ 𝑒 = ∅;

hence, 𝜕 𝑓 ∈ 𝐶1
𝑅+1(𝑆

𝑋 ) ⊂ 𝐶1
unif (𝑆

𝑋 ). The fact that 𝜕 𝑓 ∈ 𝑍1 (𝑆𝑋∗ ) follows from Lemma 2.28, which
states that exact forms are closed. �
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Lemma 5.1 shows that the differential 𝜕 induces an homomorphism

𝜕 : 𝐶0
unif (𝑆

𝑋 ) → 𝑍1
unif (𝑆

𝑋 ). (36)

As in Definition 1.6, we define the uniform cohomology 𝐻𝑚
unif (𝑆

𝑋 ) of the configuration space 𝑆𝑋 with
transition structure to be the cohomology of the complex (36). Our choice for 𝐶0

unif (𝑆
𝑋 ) of restricting

to functions satisfying 𝑓 (★) = 0 implies that uniform cohomology is philosophically the reduced
cohomology in the sense of topology of the pointed space consisting of the configuration space 𝑆𝑋 and
base configuration ★ ∈ 𝑆𝑋 .

Now, let X be a locale which is weakly transferable in the sense of Definition 4.16, and assume
that the interaction is irreducibly quantified. Let 𝑐𝜙 = dimR Consv𝜙 (𝑆). Our theorem concerning the
integration of uniform forms is as follows.

Theorem 5.2. Let (𝑋, 𝑆, 𝜙) be a system such that the interaction 𝜙 is irreducibly quantified. If the locale
X is transferable, or the interaction 𝜙 is simple and X is weakly transferable, then for any 𝜔 ∈ 𝑍1

unif (𝑆
𝑋 ),

there exists 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ) such that 𝜕 𝑓 = 𝜔.

The proof of Theorem 5.2 is based on Lemma 5.5 and Lemma 5.6 below. A homomorphism of
monoids is a map of sets preserving the binary operation and the identity element. We say that a monoid
ℰ with operation +ℰ satisfies the (right)-cancellation property if 𝑎 +ℰ 𝑏 = 𝑎′ +ℰ 𝑏 implies that 𝑎 = 𝑎′

for any 𝑎, 𝑎′, 𝑏 ∈ ℰ. Note that any monoid obtained as a submonoid of a group satisfies the cancellation
property. We will first prove the following lemma concerning commutative monoids satisfying the
cancellation property.

Lemma 5.3. Assume that ℰ is a commutative monoid with operation +ℰ satisfying the cancellation
property. If there exists an injective homomorphism of monoids

𝜄 : R ↩→ℰ,

where we view R as a an abelian group via the usual addition, then there exists a homomorphism of
monoids 𝜋 : ℰ → R such that 𝜋 ◦ 𝜄 = idR.

Proof. The statement follows from the fact that R is a divisible abelian group (see Remark 5.4). We will
give a proof for the sake of completeness. We consider the set of pairs (𝒩, 𝜋𝒩), where𝒩 is a submonoid
of ℰ containing 𝑖(R) and 𝜋𝒩 : 𝒩 → R is an homomorphism of monoids such that 𝜋𝒩 ◦ 𝜄 = idR.

We consider an order on the set of such pairs such that (𝒩, 𝜋𝒩) ≤ (𝒩′, 𝜋𝒩′ ) if and only if 𝒩 ⊂ 𝒩′

and 𝜋𝒩′

��
𝒩

= 𝜋𝒩 . Let ((𝒩𝑖 , 𝜋𝒩𝑖 ))𝑖∈𝐼 be a totally ordered set of such pairs. If we let 𝒩 �
⋃
𝑖∈𝐼 𝒩𝑖 , and

if we let 𝜋𝒩 : 𝒩 → R be a homomorphism of monoids obtained as the collection of 𝜋𝒩𝑖 , then we have
𝜋𝒩 ◦ 𝜄 = idR. Hence, (𝒩, 𝜋𝒩) is a maximal element of the totally ordered set ((𝒩𝑖 , 𝜋𝒩𝑖 ))𝑖∈𝐼 . By Zorn’s
lemma, there exists a maximal pair (ℳ, 𝜋ℳ) in the set of all such pairs.

We will prove by contradiction that ℳ = ℰ. Suppose ℳ � ℰ. Let 𝑤 ∈ ℰ such that 𝑤 ∉ ℳ, and
let ℳ′ � ℳ +ℰ N𝑤. Note that since ℰ is commutative if there exists a nontrivial algebraic relation
between elements of ℳ and N𝑤, then there would exist 𝑎, 𝑏 ∈ ℳ such that 𝑎 +ℰ 𝑚𝑤 = 𝑏 +ℰ 𝑛𝑤 for
some 𝑚, 𝑛 ∈ N. By the cancellation property ofℰ, this implies that 𝑎 +ℰ 𝑛𝑤 = 𝑏 for some 𝑎, 𝑏 ∈ ℳ and
integer 𝑛 > 0. In the case that there exists an integer 𝑛 > 0 and 𝑎, 𝑏 ∈ ℳ such that 𝑎 +ℰ 𝑛𝑤 = 𝑏, we
define u be an element in R such that

𝑛𝑢 =
(
𝜋ℳ (𝑏) − 𝜋ℳ (𝑎)

)
∈ R.

If 𝑛′, 𝑎′, 𝑏′ satisfies the same condition, then we have 𝑛′𝑎 +ℰ 𝑛′𝑛𝑤 = 𝑛′𝑏 and 𝑛𝑎′ +ℰ 𝑛𝑛′𝑤 = 𝑛𝑏′.
Combining this equality, we have

𝑛′𝑎 +ℰ 𝑛′𝑛𝑤 +ℰ 𝑛𝑏′ = 𝑛′𝑏 +ℰ 𝑛𝑎′ +ℰ 𝑛𝑛′𝑤.
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Hence, 𝑛′𝑎 +ℰ 𝑛𝑏′ = 𝑛′𝑎 +ℰ 𝑛𝑏′ since ℰ is commutative and satisfies the cancellation property. This
shows that we have

𝑛′(𝜋ℳ (𝑏) − 𝜋ℳ (𝑎)) = 𝑛(𝜋ℳ (𝑏′) − 𝜋ℳ (𝑎′)),

which implies that u is independent of the choice of 𝑎, 𝑏 ∈ ℳ and 𝑛 > 0. However, if for any integer
𝑛 > 0 and 𝑎, 𝑏 ∈ ℳ, we have 𝑎 +ℰ 𝑛𝑤 ≠ 𝑏, then we let 𝑢 = 0. In both cases, we define the function
𝜋ℳ′ : ℳ′ → R by 𝜋ℳ′ (𝑎 + 𝑛𝑤) = 𝜋ℳ (𝑎) + 𝑛𝑢 for any 𝑎 ∈ ℳ and 𝑛 ∈ N. This gives a homomorphism
of monoids satisfying 𝜋ℳ′ ◦ 𝜄 = idR; hence, we have (ℳ, 𝜋ℳ) < (ℳ′, 𝜋ℳ′ ), which contradicts the fact
that (ℳ, 𝜋ℳ) is maximal for such pairs.

This shows that we have ℳ =ℰ. Then 𝜋 � 𝜋ℳ : ℰ → R is a homomorphism of monoids satisfying
𝜋 ◦ 𝜄 = idR, as desired. �

Remark 5.4. Assume that D is a divisible abelian group; that is, for any 𝑣 ∈ 𝐷 and integer 𝑛 > 0, there
exists 𝑢 ∈ 𝐷 such that 𝑢𝑛 = 𝑣. Then we may prove that if 𝜄 : 𝐷 ↩→ ℰ is an injective homomorphism
into a commutative monoid ℰ satisfying the cancellation property, then there exists a homomorphism
of monoids 𝜋 : ℰ → 𝐷 such that 𝜋 ◦ 𝜄 = id𝐷 . Indeed, by the Grothendieck construction, the monoid
𝐴 � (ℰ ×ℰ)/∼ defined via the equivalence relation (𝑎, 𝑏) ∼ (𝑎′, 𝑏′) if 𝑎 +ℰ 𝑏′ = 𝑎′ +ℰ 𝑏 for any
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ ℰ ×ℰ is an abelian group since ℰ satisfies the cancellation property. In addition, we
have an injective homomorphismℰ ↩→ 𝐴 given by mapping 𝑎 ∈ ℰ to the class of (𝑎, 0) in A. Since the
composition 𝜄𝐴 : 𝐷 ↩→ ℰ ↩→ 𝐴 is an injective homomorphism of abelian groups, from the fact that D
is divisible and hence an injective object in the category of abelian groups (see [14, 4.1.2]), there exists
a homomorphism 𝜋𝐴 : 𝐴 → 𝐷 such that 𝜋𝐴 ◦ 𝜄𝐴 = id𝐷 . Then 𝜋 � 𝜋𝐴 |ℰ satisfies 𝜋 ◦ 𝜄 = id𝐷 as desired.
The authors thank Kei Hagihara and Shuji Yamamoto for discussion concerning this remark as well as
the proof of Lemma 5.3.

Next, let M be a commutative monoid with operation + and identity element 0. We first give a
construction of extensions of monoids arising from a pairing 𝐻 : M ×M → R satisfying 𝐻 (0, 0) = 0
and

𝐻 (𝛼, 𝛽) + 𝐻 (𝛼 + 𝛽, 𝛾) = 𝐻 (𝛽, 𝛾) + 𝐻 (𝛼, 𝛽 + 𝛾) (37)

for any 𝛼, 𝛽, 𝛾 ∈ M. We let ℰ � M × R, and we denote an element of ℰ by [𝛼, 𝑢] for 𝛼 ∈ M and
𝑢 ∈ R. Define the binary operation +ℰ on ℰ by

[𝛼, 𝑢] +ℰ [𝛽, 𝑣] � [𝛼 + 𝛽, 𝑢 + 𝑣 − 𝐻 (𝛼, 𝛽)]

for any 𝛼, 𝛽 ∈ M and 𝑢, 𝑣 ∈ R. The element [0, 0] is an identity element with respect to +ℰ , and the
cocycle condition (37) ensures that +ℰ is associative. Hence,ℰ is a monoid with respect to the operation
+ℰ , which fits into the exact sequence of monoids

0 �� R �� ℰ �� M �� 0. (38)

Here, the arrows are homomorphisms of monoids with the injection R→ ℰ given by 𝑢 ↦→ [0, 𝑢], and
the surjection ℰ → M given by [𝛼, 𝑢] ↦→ 𝛼. If the pairing H is symmetric, then we see that ℰ is a
commutative monoid. Note that if M satisfies the right cancellation property, then ℰ also satisfies the
right cancellation property. In fact, if [𝛼, 𝑢] +ℰ [𝛽, 𝑣] = [𝛼′, 𝑢] +ℰ [𝛽, 𝑤] for some 𝛼, 𝛼′, 𝛽 ∈ M and
𝑢, 𝑢′, 𝑣 ∈ R, then we have

[𝛼 + 𝛽, 𝑢 + 𝑣 − 𝐻 (𝛼, 𝛽)] = [𝛼′ + 𝛽, 𝑢′ + 𝑣 − 𝐻 (𝛼′, 𝛽)] .

This shows that 𝛼 + 𝛽 = 𝛼′ + 𝛽; hence, 𝛼 = 𝛼′ since M satisfies the right cancellation property. Then
we have 𝑢 + 𝑣 − 𝐻 (𝛼, 𝛽) = 𝑢′ + 𝑣 − 𝐻 (𝛼′, 𝛽) = 𝑢′ + 𝑣 − 𝐻 (𝛼, 𝛽) in R; hence, 𝑢 = 𝑢′. This shows that
[𝛼, 𝑢] = [𝛼′, 𝑢′], proving that the monoid ℰ satisfies the right cancellation property.
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Lemma 5.5. Let M be a commutative monoid satisfying the cancellation property, and let 𝐻 : M ×
M → R be a symmetric pairing satisfying the cocycle condition (37). Then there exists a function

ℎ : M → R

such that 𝐻 (𝛼, 𝛽) = ℎ(𝛼) + ℎ(𝛽) − ℎ(𝛼 + 𝛽) for any 𝛼, 𝛽 ∈ M.

Proof. If we prove our assertion for the pairing 𝐻 (𝛼, 𝛽) � 𝐻 (𝛼, 𝛽) −𝐻 (0, 0) and show that there exists
a function ℎ̃ : M → R satisfying our condition, then our assertion is proved also for 𝐻 (𝛼, 𝛽) by taking
ℎ(𝛼) � ℎ̃(𝛼) + 𝐻 (0, 0). Hence, by replacing H by 𝐻, we may assume that 𝐻 (0, 0) = 0. Consider the
extension ℰ given in (38) corresponding to the pairing H. Then ℰ is a commutative monoid since H
is symmetric. Hence by Lemma 5.3, there exists a homomorphism of monoids 𝜋 : ℰ → R such that
𝜋([0, 𝑢]) = 𝑢 for any 𝑢 ∈ R. For any 𝛼 ∈ M, choose an arbitrary 𝑢 ∈ R, and let

�̃� � [𝛼, 𝑢] +ℰ [0,−𝜋([𝛼, 𝑢])] ∈ ℰ. (39)

If 𝑣 ∈ R, then we have [𝛼, 𝑣] = [𝛼, 𝑢] +ℰ [0, 𝑤] for some 𝑤 ∈ R since the classes of [𝛼, 𝑣] and [𝛼, 𝑢]
coincide on M � ℰ/R; hence,

[𝛼, 𝑣] +ℰ [0,−𝜋([𝛼, 𝑣])] = [𝛼, 𝑢] +ℰ [0, 𝑤] +ℰ [0,−𝜋([𝛼, 𝑢] +ℰ [0, 𝑤])]
= [𝛼, 𝑢] +ℰ [0, 𝑤] +ℰ [0,−𝜋([𝛼, 𝑢])] +ℰ [0,−𝜋([0, 𝑤])]
= [𝛼, 𝑢] +ℰ [0, 𝑤] +ℰ [0,−𝜋([𝛼, 𝑢])] +ℰ [0,−𝑤]
= [𝛼, 𝑢] +ℰ [0,−𝜋([𝛼, 𝑢])] = �̃�.

Hence, �̃� is independent of the choice of 𝑢 ∈ R. We define ℎ : M → R to be the function defined by

�̃� = [𝛼, ℎ(𝛼)] .

Note that by (39), for any 𝛼, 𝛽 ∈ M, we have

�̃� +ℰ 𝛽 = [𝛼, 𝑢] +ℰ [0,−𝜋([𝛼, 𝑢])] +ℰ [𝛽, 𝐻 (𝛼, 𝛽)] +ℰ [0,−𝜋([𝛽, 𝐻 (𝛼, 𝛽)])]

= [𝛼 + 𝛽, 𝑢] +ℰ [0,−𝜋([𝛼, 𝑢]) − 𝜋([𝛽, 𝐻 (𝛼, 𝛽)])]

= [𝛼 + 𝛽, 𝑢] +ℰ [0,−𝜋([𝛼 +ℰ 𝛽, 𝑢])] = �𝛼 + 𝛽.

This shows that

[𝛼 + 𝛽, ℎ(𝛼 + 𝛽)] = �𝛼 + 𝛽 = �̃� +ℰ 𝛽

= [𝛼, ℎ(𝛼)] +ℰ [𝛽, ℎ(𝛽)] = [𝛼 + 𝛽, ℎ(𝛼) + ℎ(𝛽) − 𝐻 (𝛼, 𝛽)] .

Hence, we have ℎ(𝛼 + 𝛽) = ℎ(𝛼) + ℎ(𝛽) − 𝐻 (𝛼, 𝛽) for any 𝛼, 𝛽 ∈ M, as desired. �

Next, we consider the case when M � N or M � Z.

Lemma 5.6. Assume that M � N or M � Z, viewed as a commutative monoid with respect to addition,
and let 𝐻 : M×M → R be a pairing satisfying the cocycle condition (37). Then there exists a function

ℎ : M → R

such that 𝐻 (𝛼, 𝛽) = ℎ(𝛼) + ℎ(𝛽) − ℎ(𝛼 + 𝛽) for any 𝛼, 𝛽 ∈ M.

Proof. Again, as in the proof of Lemma 5.6, by replacing the pairing H by 𝐻 −𝐻 (0, 0), we may assume
that 𝐻 (0, 0) = 0. We first treat the case M � N, which we regard as a commutative monoid with respect
to the usual addition. Consider the extension ℰ given in (38) corresponding to the pairing H. Note that
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[1, 0] gives an element inℰ. For any 𝛼 ∈ M corresponding to 𝑛 ∈ N, we define ℎ(𝛼) to be the element
in R given by the formula

𝑛[1, 0] = [1, 0] +ℰ · · · +ℰ [1, 0] = [𝛼, ℎ(𝛼)],

where 𝑛[1, 0] is the n-fold sum of [1, 0] with respect to the operator +ℰ . Then for 𝛽 ∈ M corresponding
to 𝑛′ ∈ N, we have 𝑛′ [1, 0] = [𝛽, ℎ(𝛽)] and

[𝛼, ℎ(𝛼)] +ℰ [𝛽, ℎ(𝛽)] = (𝑛 + 𝑛′) [1, 0] = [𝛼 + 𝛽, ℎ(𝛼 + 𝛽)] . (40)

By the definition of the operation +ℰ , we have

[𝛼, ℎ(𝛼)] +ℰ [𝛽, ℎ(𝛽)] = [𝛼 + 𝛽, ℎ(𝛼) + ℎ(𝛽) − 𝐻 (𝛼, 𝛽)] .

Since the operation +ℰ is associative, comparing this equality with (40), we have ℎ(𝛼 + 𝛽) = ℎ(𝛼) +
ℎ(𝛽) − 𝐻 (𝛼, 𝛽) for any 𝛼, 𝛽 ∈ M. Hence, we see that ℎ : M → R satisfies the requirement of our
assertion. The case for M � Z may be proved precisely in the same manner. In this case, we regard M
and ℰ as abelian groups instead of commutative monoids. �

Remark 5.7. For the case that M is an abelian group, the extension ℰ in Lemma 5.5 corresponding to
the symmetric cocycle 𝐻 : M×M → R is a commutative group. The existence of ℎ : M → R for this
case corresponds to the well-known fact that such an extensionℰ splits since the additive group of R is
divisible and hence an injective object in the category of abelian groups (see [14, 4.1.2]). The statement
for Lemma 5.6 corresponds to the fact that the group cohomology 𝐻2(Z,R) = {0}. The existence of
ℎ : M → R ensures that the cocycle 𝐻 : M ×M → R is in fact symmetric in this case.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Suppose 𝜔 ∈ 𝑍unif (𝑆
𝑋 ) = 𝐶1

unif (𝑆
𝑋 ) ∩ 𝑍1 (𝑆𝑋∗ ). Since 𝜔 ∈ 𝑍1 (𝑆𝑋∗ ), by

Lemma 2.28, there exists 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) such that 𝜕 𝑓 = 𝜔. Furthermore, since 𝜔 ∈ 𝐶1
unif (𝑆

𝑋 ), there
exists 𝑅 > 0 such that 𝜕 𝑓 = 𝜔 ∈ 𝐶1

𝑅 (𝑆
𝑋 ). Hence, by Definition 4.8 and Proposition 4.13 (see also

Proposition 3.18), there exists a pairing ℎ 𝑓 : M × M → R satisfying the cocycle condition (24). By
Lemma 4.9, if X is transferable (see also Proposition 3.18) and by Remark 5.7 if the interaction is
simple, we see that ℎ 𝑓 is symmetric. Note that here we have used the fact that M � N or M � Z if the
interaction is simple. Hence, by Proposition 4.11 (see also Proposition 3.18), we have

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = ℎ 𝑓 (𝝃Λ(𝜂), 𝝃Λ′ (𝜂))

for any (Λ,Λ′) ∈ 𝒜𝑅 and 𝜂 ∈ 𝑆𝑋 . Note thatM satisfies the cancellation property since it is a submonoid
of an abelian group. Hence, by Lemma 5.5, there exists ℎ : M → R such that

ℎ 𝑓 (𝛼, 𝛽) = ℎ(𝛼) + ℎ(𝛽) − ℎ(𝛼 + 𝛽) (41)

for any 𝛼, 𝛽 ∈ M. We define the function 𝑔 ∈ 𝐶 (𝑆𝑋∗ ) by

𝑔 � 𝑓 + ℎ ◦ 𝝃𝑋 .

We will prove that g is uniform. By Lemma 2.22, for any conserved quantity 𝜉 : 𝑆 → R, the function
𝜉𝑋 ∈ 𝐶 (𝑆𝑋∗ ) is horizontal. This implies that ∇𝑒𝜉𝑋 = 0; hence, 𝜉𝑋 (𝜂𝑒) = 𝜉𝑋 (𝜂) for any 𝑒 ∈ 𝐸 . This
shows that ℎ◦𝝃𝑋 (𝜂𝑒) = ℎ◦𝝃𝑋 (𝜂) for any 𝑒 ∈ 𝐸 ; hence, ∇𝑒 (ℎ◦𝝃𝑋 ) = 0, which implies that 𝜕 (ℎ◦𝝃𝑋 ) = 0.
This gives the formula 𝜕𝑔 = 𝜕 𝑓 = 𝜔. Furthermore, noting that 𝜄Λ (ℎ◦𝝃𝑋 (𝜂)) = ℎ◦𝝃Λ (𝜂) for any Λ ⊂ 𝑋 ,
we have
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𝜄Λ∪Λ
′

𝑔(𝜂) − 𝜄Λ𝑔(𝜂) − 𝜄Λ
′

𝑔(𝜂) = 𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂)

+ ℎ ◦ 𝝃Λ∪Λ′ (𝜂) − ℎ ◦ 𝝃Λ(𝜂) − ℎ ◦ 𝝃Λ′ (𝜂) = 0

for any (Λ,Λ′) ∈ 𝒜𝑅 and 𝜂 ∈ 𝑆𝑋 , where we have used the coboundary condition (41) and the fact
that 𝝃Λ∪Λ′ (𝜂) = 𝝃Λ(𝜂) + 𝝃Λ′ (𝜂). From the definition of the pairing given in Definition 4.8, we see that
ℎ𝑔 ≡ 0. Hence, by Proposition 4.14, we see that 𝑔 ∈ 𝐶0

unif (𝑆
𝑋 ). Our assertion is now proved by replacing

f by g. �

By using Theorem 5.2, we may calculate the uniform cohomology of 𝑆𝑋 as follows.

Theorem 5.8. Let X be a locale, and assume that the interaction is irreducibly quantified. If either X is
transferable, or the interaction is simple and X is weakly transferable, then we have

𝐻𝑚
unif (𝑆

𝑋 ) �

{
Consv𝜙 (𝑆) 𝑚 = 0,
{0} 𝑚 ≠ 0.

In particular, we have dimR 𝐻0
unif (𝑆

𝑋 ) = dimR Consv𝜙 (𝑆).

Proof. As stated in §1.4, Theorem 5.8 is equivalent to the fact that the sequence

0 �� Consv𝜙 (𝑆) �� 𝐶0
unif (𝑆

𝑋 )
𝜕 �� 𝑍1

unif (𝑆
𝑋 ) �� 0 (42)

is exact. A conserved quantity 𝜉 : 𝑆 → R defines a uniform function 𝜉𝑋 : 𝑆𝑋 → R whose definition
𝜉𝑋 �

∑
𝑥∈𝑋 𝜉𝑥 is the canonical expansion (18) with each 𝜉𝑥 ∈ 𝐶{𝑥 } (𝑆

𝑋 ). This shows that 𝜉𝑋 is uniform
satisfying 𝜉𝑋 (★) = 0; hence, (16) induces an inclusion

Consv𝜙 (𝑆) ↩→ 𝐶0
unif (𝑆

𝑋 ). (43)

However, if 𝑓 ∈ 𝐶0
unif (𝑆

𝑋 ) satisfies 𝜕 𝑓 = 0, then by Theorem 3.7, there exists a conserved quantity
𝜉 : 𝑆 → R such that 𝑓 (𝜂) = 𝜉𝑋 (𝜂), which shows that f is in the image of (43). This proves that we have
an isomorphism

Consv𝜙 (𝑆) � Ker 𝜕 = 𝐻0
unif (𝑆

𝑋 ). (44)

From Theorem 5.2, we see that the differential 𝜕 is surjective; hence, the short exact sequence (42) is
exact. Our assertion now follows from the definition of uniform cohomology given in Definition 1.6. �

Remark 5.9. The fact that 𝐻𝑚
unif = {0} for 𝑚 ≠ 0 reflects the fact that we are viewing the configuration

space as modeling a space with a simple topological structure whose only topological feature is its con-
nected components. The 𝐻0

unif is expressed in terms of the conserved quantities and is finite dimensional
if Consv𝜙 (𝑆) is finite dimensional.

Example 5.10. In each of the examples of Example 2.10, we have the following.

1. In the case of the multi-species exclusion process, we have 𝐻0
unif (𝑆

𝑋 ) � R𝜅 , where 𝜅 > 0 is such
that 𝑆 = {0, . . . , 𝜅}.

2. In the case of the generalized exclusion process, we have 𝐻0
unif (𝑆

𝑋 ) � R.
3. In the case of the lattice gas with energy process, we have 𝐻0

unif (𝑆
𝑋 ) � R2.

4. For the interaction of Example 2.10 (4), we have 𝐻0
unif (𝑆

𝑋 ) � R.
5. For the Glauber Model of Example 2.10 (5), we have 𝐻0

unif (𝑆
𝑋 ) � {0}.
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5.2. Group action on the configuration space

In this subsection, we first review basic definitions and results concerning group cohomology of a group
G acting on an R-linear space V. We will then consider the action of a group G on the locale X.

We say that an R-linear space V is a G-module if any 𝜎 ∈ 𝐺 gives an R-linear homomorphism
𝜎 : 𝑉 → 𝑉 such that (𝜏𝜎) (𝑣) = 𝜏(𝜎(𝑣)) = 𝜏 ◦ 𝜎(𝑣) for any 𝜎, 𝜏 ∈ 𝐺 and 𝑣 ∈ 𝑉 . In what follows, we
will often simply denote 𝜎(𝑣) by 𝜎𝑣. For any G-module V, we denote by 𝑉𝐺 the G-invariant subspace
of V, defined by 𝑉𝐺 � {𝑣 ∈ 𝑉 | 𝜎𝑣 = 𝑣 ∀𝜎 ∈ 𝐺}.

Definition 5.11. Let V be a G-module. The zeroth group cohomology 𝐻0(𝐺,𝑉) of G with coefficients
in V is given as

𝐻0(𝐺,𝑉) � 𝑉𝐺 .

Furthermore, we let

𝑍1 (𝐺,𝑉) � {𝜓 : 𝐺 → 𝑉 | 𝜓(𝜎𝜏) = 𝜎𝜓(𝜏) + 𝜓(𝜎) ∀𝜎, 𝜏 ∈ 𝐺},

𝐵1(𝐺,𝑉) � {𝜓 ∈ 𝑍1 (𝐺,𝑉) | ∃𝑣 ∈ 𝑉, 𝜓(𝜎) = (𝜎 − 1)𝑣 ∀𝜎 ∈ 𝐺},

where 1 is the identity element of G. Then the first group cohomology 𝐻1(𝐺,𝑉) of G with coefficients
in V is given as

𝐻1(𝐺,𝑉) � 𝑍1 (𝐺,𝑉)/𝐵1(𝐺,𝑉).

In particular, if the action of G on V is trivial – in other words, if 𝜎𝑣 = 𝑣 for any 𝑣 ∈ 𝑉 and 𝜎 ∈ 𝐺 –
then we have 𝐻0 (𝐺,𝑉) = 𝑉 and

𝐻1(𝐺,𝑉) = Hom(𝐺,𝑉), (45)

where Hom(𝐺,𝑉) denotes the set of homomorphisms of groups from G to V.

Remark 5.12. The group cohomology of G with coefficients in V is usually defined using the right
derived functor of the functor HomZ[𝐺 ] (Z,−) applied to V. In other words, 𝐻𝑚(𝐺,𝑉) � Ext𝑚

Z[𝐺 ]
(Z, 𝑉)

for any integer 𝑚 ∈ Z (see, for example, [1, §1]). Definition 5.11 is the well-known description of this
cohomology group in terms of explicit cocycles (see [1, §2]).

Let V and 𝑉 ′ be G-modules. We say that an R-linear homomorphism

𝜋 : 𝑉 → 𝑉 ′

is a G-homomorphism if 𝜋(𝜎𝑣) = 𝜎𝜋(𝑣) for any 𝜎 ∈ 𝐺 and 𝑣 ∈ 𝑉 . By definition, we have 𝜋(𝑉𝐺) ⊂
𝜋(𝑉)𝐺 , where 𝜋(𝑉) is the G-submodule of V defined to be the image of V with respect to 𝜋. Note that
𝜋 gives an exact sequence

0 �� Ker 𝜋 �� 𝑉 �� 𝜋(𝑉) �� 0

of G-modules, which by the standard theory of cohomology of groups (see, for example, [1, (1.3)])
gives rise to the long exact sequence

0 �� (Ker 𝜋)𝐺 �� 𝑉𝐺
𝜋 �� 𝜋(𝑉)𝐺

𝛿 �� 𝐻1(𝐺,Ker 𝜋) �� 𝐻1(𝐺,𝑉) �� · · · . (46)

The homomorphism 𝛿 is given explicitly as follows. For any 𝜔 ∈ 𝜋(𝑉)𝐺 , choose a 𝑣 ∈ 𝑉 such that
𝜋(𝑣) = 𝜔. Then 𝛿(𝜔) ∈ 𝐻1(𝐺,Ker 𝜋) is the class given by the cocycle satisfying

𝛿(𝜔) (𝜎) = (1 − 𝜎)𝑣 (47)
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for any 𝜎 ∈ 𝐺 (see [1, §2 p.97]). Note that since 𝜔 = 𝜋(𝑣) is invariant under the action of G, we have
𝜋(𝛿(𝜔) (𝜎)) = (1 − 𝜎)𝜋(𝑣) = 0; hence, 𝛿(𝜔) (𝜎) ∈ Ker 𝜋 for any 𝜎 ∈ 𝐺. Our choice of the sign of the
homomorphism 𝛿 in (47) is to ensure compatibility with standard sign conventions used in probability
theory.

In what follows, let X be a locale, and let G be a group.
Definition 5.13. An automorphism of a locale X is a bijective map of sets 𝜎 : 𝑋 → 𝑋 such that
𝜎(𝐸) = 𝐸 ⊂ 𝑋 × 𝑋 . The set Aut(𝑋) of all automorphisms of X form a group with respect to the
operation given by composition of automorphisms. We say that X has an action of G if there exists a
homomorphism of groups 𝐺 → Aut(𝑋) so that any 𝜎 ∈ 𝐺 induces an automorphism 𝜎 : 𝑋 → 𝑋 .
Example 5.14.
1. Let d be an integer > 0. Consider the Euclidean lattice 𝑋 = (Z𝑑 ,E𝑑), and let 𝐺 = Z𝑑 . For any 𝜏 ∈ 𝐺,

if we define the automorphism 𝜏 : 𝑋 → 𝑋 by 𝜏(𝑥) � 𝑥 + 𝜏 for any 𝑥 ∈ 𝑋 , then this gives an action
of G on X.

2. The group 𝐺 = Z2 acts on the triangular and hexagonal lattices via translation. The group 𝐺 = Z3

acts on the diamond lattice also via translation.
3. If G is a finitely generated group with set of minimal generators S , then left multiplication by

elements of G gives an action of the group G on the Cayley graph (𝐺, 𝐸S ).
From now until the end of §5.3, we assume that X has an action of a group G. If we denote the

group action from the left, then 𝑆𝑋∗ = (𝑆𝑋∗ ,Φ∗) has a natural G-action given by 𝜂𝜎 � (𝑠𝜎 (𝑥) ) for any
𝜂 = (𝜂𝑥) and 𝜎 ∈ 𝐺. Then 𝐶0 (𝑆𝑋∗ ) = 𝐶 (𝑆𝑋∗ ) and 𝐶1 (𝑆𝑋∗ ) have natural G-actions given for any 𝜎 ∈ 𝐺
by 𝜎( 𝑓 ) = 𝑓 ◦ 𝜎 for any function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ), and 𝜎(𝜔) = 𝜔 ◦ 𝜎 for any form 𝜔 ∈ 𝐶1 (𝑆𝑋∗ ). Since the
action of G preserves the distance on the locale X and preserves closed forms on 𝐶1 (𝑆𝑋∗ ), the groups
𝐶unif (𝑆

𝑋 ) and 𝑍1
unif (𝑆

𝑋 ) have induced G-module structures.
In case of functions and forms, we will use the term shift-invariant interchangeably with the term

G-invariant when the group G is understood. We say that a subset Λ0 ⊂ 𝑋 is a fundamental domain of
X for the action of G if it represents the set of orbits of the vertices of X for the action of G.
Lemma 5.15. Suppose X has an action of a group G, and assume that the set of orbits of the vertices of
X for the action of G is finite. Then for any shift-invariant uniform function 𝐹 ∈ 𝐶0

unif (𝑆
𝑋 ), there exists

a local function 𝑓 ∈ 𝐶loc (𝑆
𝑋 ) satisfying 𝑓 (★) = 0 such that

𝐹 =
∑
𝜏∈𝐺

𝜏( 𝑓 ) (48)

in 𝐶0
unif (𝑆

𝑋 ).
Proof. By definition, 𝐹 (★) = 0. Since F is uniform, there exists 𝑅 > 0 such that the expansion (18) of
F in terms of local functions with exact support is given by

𝐹 =
∑

Λ⊂𝑋,diam(Λ) ≤𝑅

𝐹Λ.

Since F is shift-invariant, we have 𝜏(𝐹Λ) = 𝜏(𝐹)𝜏 (Λ) = 𝐹𝜏 (Λ) for any 𝜏 ∈ 𝐺. Let ℐ∗
𝑅 be the set of

nonempty finite Λ ⊂ 𝑋 such that diam(Λ) ≤ 𝑅. Then ℐ∗
𝑅 has a natural action of G. We denote by

∼ the equivalence relation on ℐ∗
𝑅 given by Λ ∼ Λ′ if Λ′ = 𝜏(Λ) for some 𝜏 ∈ 𝐺. Let Λ0 ⊂ 𝑋 be a

fundamental domain of X for the action of G. Then any equivalence class of ℐ∗
𝑅 with respect to the

relation ∼ contains a representative that intersects with Λ0. Since Λ0 is finite, and the diameters of the
sets in ℐ∗

𝑅 are bounded, this implies that ℐ∗
𝑅 /∼ is finite. For each equivalence class C of ℐ∗

𝑅 /∼, let
𝐶0 � {Λ ∈ 𝐶 | Λ ∩ Λ0 ≠ ∅}, which is again finite. If we let

𝑓𝐶 �
1

|𝐶0 |

∑
Λ∈𝐶0

𝐹Λ,
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then it is a finite sum and hence gives a local function in 𝐶loc(𝑆
𝑋 ). Then since ℐ∗

𝑅 /∼ is finite,

𝑓 �
∑

𝐶∈ℐ∗
𝑅/∼

𝑓𝐶

again defines a local function in 𝐶loc(𝑆
𝑋 ), which by construction satisfies (48) as desired. �

The action of G on Consv𝜙 (𝑆) viewed as a subspace of 𝐶0
unif (𝑆

𝑋 ) is given by the trivial action.
Applying (46) to the short exact sequence (42), we obtain the long exact sequence

0 �� Consv𝜙 (𝑆) �� (𝐶0
unif (𝑆

𝑋 )
)𝐺 𝜕 �� (𝑍1

unif (𝑆
𝑋 )

)𝐺
𝛿 �� 𝐻1 (𝐺,Consv𝜙 (𝑆)

) �� 𝐻1 (𝐺,𝐶0
unif (𝑆

𝑋 )
) �� · · · .

(49)

Moreover, since G acts trivially on Consv𝜙 (𝑆), by (45), we have

𝐻1(𝐺,Consv𝜙 (𝑆)) = Hom(𝐺,Consv𝜙 (𝑆)).

Remark 5.16. We may view the cohomology group 𝐻1 (𝐺,Consv𝜙 (𝑆)
)

as a group which philosophi-
cally reflects the first reduced cohomology group of the quotient space 𝑆𝑋/𝐺 with fixed base point★/𝐺.
Intuitively, we are viewing 𝑆𝑋 as a model of the configuration space on X which we view as an infinitely
magnified version of a point in a macroscopic space. In this context, the cohomology 𝐻1 (𝐺,Consv𝜙 (𝑆)

)
is regarded as representing the flow of the conserved quantities at this point induced from the action
of G. More generally, for 𝑚 ∈ Z, we may view the m-th group cohomology 𝐻𝑚

(
𝐺,Consv𝜙 (𝑆)

)
as a

group philosophically reflecting the m-th reduced cohomology group of the quotient space 𝑆𝑋/𝐺 with
fixed base point ★/𝐺.

5.3. Group cohomology of the configuration space

In this subsection, we will prove Theorem 5.17, which is the main theorem of this article. We say that an
action of a group G on a locale X is free if 𝜎(𝑥) = 𝜏(𝑥) implies that 𝜎 = 𝜏 for any 𝑥 ∈ 𝑋 and 𝜎, 𝜏 ∈ 𝐺.
Throughout this subsection, we assume that X has a free action of a group G.

As in §1.2, denote by C =
(
𝑍1

unif (𝑆
𝑋 )

)𝐺 the space of shift-invariant closed uniform forms, and by
E = 𝜕

(
𝐶0

unif (𝑆
𝑋 )𝐺

)
the image by 𝜕 of the space of shift-invariant uniform functions. The main theorem

of this article is the following, given as Theorem 1 in §1.3.
Theorem 5.17. Let the system (𝑋, 𝑆, 𝜙) be as in Theorem 5.8, and assume that the action of G on the
locale X is free. Then the boundary morphism 𝛿 of (49) gives a canonical isomorphism

C/E � Hom(𝐺,Consv𝜙 (𝑆)). (50)

Moreover, a choice of a fundamental domain for the action of G on X gives an R-linear homomorphism
𝜆 : Hom(𝐺,Consv𝜙 (𝑆)) → C such that 𝛿 ◦ 𝜆 = id, which gives a decomposition

C � E ⊕ Hom(𝐺,Consv𝜙 (𝑆)).

In order to prove Theorem 5.17, we first prove Proposition 5.18 concerning the existence of a section
of 𝛿. Let Λ0 be a fundamental domain of X for the action of G. Since the action of G on X is free, any
𝑥 ∈ 𝑋 may be uniquely written as 𝜎(𝑥0) for some 𝑥0 ∈ Λ0 and 𝜎 ∈ 𝐺. Then for 𝜉 ∈ Consv𝜙 (𝑆), we have

𝜉𝑋 =
∑
𝜎∈𝐺

𝜉𝜎 (Λ0) ,

where 𝜉𝑊 �
∑
𝑥∈𝑊 𝜉𝑥 for any 𝑊 ⊂ 𝑋 .
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Proposition 5.18. Let X be a locale with a free action of a group G, and let Λ0 ⊂ 𝑋 be a fundamental
domain of X for the action of G. For any 𝜓 ∈ 𝑍1 (𝐺,Consv𝜙 (𝑆)

)
, we let 𝜔𝜓 � 𝜕 (𝜃𝜓), where

𝜃𝜓 �
∑
𝜏∈𝐺

𝜓(𝜏)𝜏 (Λ0) ∈ 𝐶0
unif (𝑆

𝑋 ).

Then we have 𝛿(𝜔𝜓) = 𝜓.
Proof. By definition, the map is R-linear. Since 𝜓 is a cocycle with values in Consv𝜙 (𝑆) and the group
G acts trivially on Consv𝜙 (𝑆), we have 𝜓(𝜎𝜏) = 𝜓(𝜏) + 𝜓(𝜎) for any 𝜎, 𝜏 ∈ 𝐺. Note that

𝜎(𝜃𝜓) =
∑
𝜏∈𝐺

𝜎
(
𝜓(𝜏)𝜏 (Λ0)

)
=
∑
𝜏∈𝐺

𝜓(𝜏)𝜎𝜏 (Λ0)

=
∑
𝜏∈𝐺

(
𝜓(𝜎𝜏)𝜎𝜏 (𝑥0) − 𝜓(𝜎)𝜎𝜏 (Λ0)

)
=
∑
𝜏∈𝐺

(
𝜓(𝜏)𝜏 (Λ0) − 𝜓(𝜎)𝜏 (Λ0)

)
= 𝜃𝜓 − 𝜓(𝜎)𝑋 .

Hence, we have (1 − 𝜎)𝜃𝜓 = 𝜓(𝜎)𝑋 for any 𝜎 ∈ 𝐺. Since 𝜓(𝜎) is a conserved quantity, 𝜓(𝜎)𝑋 is
horizontal by Lemma 2.22; hence, we have (1 − 𝜎)𝜔𝜓 = (1 − 𝜎)𝜕𝜃𝜓 = 𝜕𝜓(𝜎)𝑋 = 0 for any 𝜎 ∈ 𝐺.
This implies that we have 𝜔𝜓 ∈ C. By the explicit description of the homomorphism 𝛿 in (47), we see
that 𝛿(𝜔𝜓) = 𝜓, as desired. �

We may now prove Theorem 5.17.

Proof of Theorem 5.17. By the definition of C and E , the long exact sequence (49) gives the exact
sequence

0 �� E �� C 𝛿 �� Hom(𝐺,Consv𝜙 (𝑆)).

By Proposition 5.18, for any 𝜓 ∈ Hom(𝐺,Consv𝜙 (𝑆)), there exists 𝜔𝜓 ∈ C such that 𝛿(𝜔𝜓) = 𝜓.
This implies that 𝛿 is surjective. By construction, the map 𝜓 ↦→ 𝜔𝜓 is R-linear; hence, we have a
decomposition C � E ⊕ Hom(𝐺,Consv𝜙 (𝑆)), given explicitly by mapping any 𝜔 ∈ C to the element
(𝜔 − 𝜔𝜓 , 𝜓) ∈ E ⊕ Hom(𝐺,Consv𝜙 (𝑆)), where 𝜓 � 𝛿(𝜔). �

As a corollary of Theorem 5.17, we have the following result, which coincides with Corollary 2 of
the introduction.
Corollary 5.19. Let the system (𝑋, 𝑆, 𝜙) and the G-action be as in Theorem 5.17. Assume in addition
that the abelian quotient 𝐺ab of G is of finite rank d. If we choose a generator of the free part of 𝐺ab,
then we have an isomorphism Hom(𝐺,Consv𝜙 (𝑆)) �

⊕𝑑
𝑗=1 Consv𝜙 (𝑆). A choice of a fundamental

domain of X for the action of G gives a decomposition

C � E ⊕

𝑑⊕
𝑗=1

Consv𝜙 (𝑆). (51)

Proof. We have

Hom(𝐺,Consv𝜙 (𝑆)) = Hom
(
𝐺ab/𝐺ab

tors,Consv𝜙 (𝑆)
)
,

where 𝐺ab
tors is the torsion subgroup of 𝐺ab, and the equality follows from the fact that Consv𝜙 (𝑆) is

abelian and torsion free. This implies that any element in Hom(𝐺,Consv𝜙 (𝑆)) is determined by the
image of the generators of the free part of 𝐺ab; hence, if we fix such a set of generators, then we have
an isomorphism

Hom(𝐺,Consv𝜙 (𝑆)) �
𝑑⊕
𝑗=1

Consv𝜙 (𝑆).

Our assertion now follows from Theorem 5.17. �
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Remark 5.20. Let the system (𝑋, 𝑆, 𝜙) be as in Theorem 5.8, and assume that 𝐺 = Z𝑑 and that the
action of G on X is free. The standard basis of 𝐺 = Z𝑑 gives an isomorphism Hom(𝐺,Consv𝜙 (𝑆)) �⊕𝑑

𝑗=1 Consv𝜙 (𝑆), by associating to the element

𝜓 = (𝜁 (1) , . . . , 𝜁 (𝑑) ) ∈
𝑑⊕
𝑗=1

Consv𝜙 (𝑆)

the cocycle 𝜓 : 𝐺 → Consv𝜙 (𝑆) given by 𝜓(𝜏) �
∑𝑑
𝑗=1 𝜏𝑗 𝜁

( 𝑗) for any 𝜏 = (𝜏𝑗 ) ∈ Z𝑑 . If we fix a
fundamental domain Λ0 of X for the action of G, then the map 𝜃𝜓 in Proposition 5.18 is given by

𝜃𝜓 =
𝑑∑
𝑗=1

(∑
𝜏∈𝐺

𝜏𝑗 𝜁
( 𝑗)
𝜏 (Λ0)

)
.

Hence, the form in C corresponding to 𝜓 = (𝜁 (1) , . . . , 𝜁 (𝑑) ) is given by the form 𝜔𝜓 =

𝜕
(∑𝑑

𝑗=1
∑
𝜏∈𝐺 𝜏𝑗 𝜁

( 𝑗)
𝜏 (Λ0)

)
as stated in (7) of §1.4. Then Corollary 5.19 implies that any shift-invariant

closed local form 𝜔 decomposes as

𝜔 = 𝜕
(
𝐹 + 𝜃𝜓

)
= 𝜕𝐹 + 𝜔𝜓 (52)

for some shift-invariant uniform function F in 𝐶0
unif (𝑆

𝑋 ) and 𝜓 ∈
⊕𝑑

𝑗=1 Consv𝜙 (𝑆). For the case
when 𝑐𝜙 = dimR Consv𝜙 (𝑆) is finite, if we fix a basis 𝜉 (1) , . . . , 𝜉 (𝑐𝜙) of Consv𝜙 (𝑆), then we have
𝜁 ( 𝑗) =

∑𝑐𝜙
𝑖=1 𝑎𝑖 𝑗𝜉

(𝑖) for some 𝑎𝑖 𝑗 ∈ R, 𝑖 = 1, . . . , 𝑐𝜙 , 𝑗 = 1, . . . , 𝑑. This shows that

𝜃𝜓 =
𝑐𝜙∑
𝑖=1

𝑑∑
𝑗=1

𝑎𝑖 𝑗

(∑
𝜏∈𝐺

𝜏𝑗𝜉
(𝑖)
𝜏 (Λ0)

)
,

which with (52) gives the representation of Theorem 5 of the introduction.

A. The cohomology of graphs

In this section, we review well-known facts concerning the definition of the cohomology of a graph. A
cohomology is an algebraic method to extract invariants of a mathematical object. Let (𝑋, 𝐸) be any
symmetric directed graph. Following [17, §4.6], we define the cohomology of (𝑋, 𝐸) as follows.

Definition A.1. For any symmetric directed graph (𝑋, 𝐸), we let

𝐶 (𝑋) � Map(𝑋,R), 𝐶1(𝑋) � Mapalt (𝐸,R),

where Mapalt (𝐸,R) � {𝜔 : 𝐸 → R | ∀𝑒 ∈ 𝐸 𝜔(𝑒) = −𝜔(𝑒)}. Furthermore, we define the differential

𝜕 : 𝐶 (𝑋) → 𝐶1(𝑋), 𝑓 ↦→ 𝜕 𝑓 (53)

by 𝜕 𝑓 (𝑒) � 𝑓 (𝑡 (𝑒)) − 𝑓 (𝑜(𝑒)) for any 𝑒 ∈ 𝐸 . We define the cohomology of (𝑋, 𝐸) by

𝐻0(𝑋) � Ker 𝜕, 𝐻1 (𝑋) � 𝐶1 (𝑋)/𝜕𝐶 (𝑋),

and 𝐻𝑚(𝑋) � {0} for any 𝑚 ∈ N such that 𝑚 ≠ 0, 1.

We call any 𝜔 in 𝐶1 (𝑋) a form on (𝑋, 𝐸). A form is the analogue of a differential form. We say
that a form 𝜔 is exact if there exists 𝑓 ∈ 𝐶 (𝑋) such that 𝜔 = 𝜕 𝑓 . Then the cohomology 𝐻1(𝑋) is the
quotient space of the space of forms by the space of exact forms.
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The cohomology 𝐻𝑚(𝑋) reflects the topology of the graph (𝑋, 𝐸). In fact, classes of the 0-th
cohomology 𝐻0(𝑋) correspond to functions constant on each connected components of (𝑋, 𝐸), and
the classes of the 1-st cohomology 𝐻1(𝑋) correspond to functions on closed paths in (𝑋, 𝐸). In what
follows, we will make these statements precise.

The statement for 𝐻0 (𝑋) may be given as follows.

Lemma A.2. For any 𝑓 ∈ 𝐶 (𝑋), the function f is horizontal (i.e., 𝜕 𝑓 = 0) if and only if f is constant on
the connected components of (𝑋, 𝐸).

Proof. Let 𝑓 ∈ 𝐻0(𝑋) = ker 𝜕 so that 𝜕 𝑓 = 0. Suppose 𝑥, 𝑥 ′ ∈ 𝑋 are in the same connected components
of (𝑋, 𝐸). Then there exists a path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) from x to 𝑥 ′ such that 𝑜(𝑒1) = 𝑥, 𝑡 (𝑒𝑁 ) = 𝑥 ′, and
𝑡 (𝑒𝑖) = 𝑜(𝑒𝑖+1) for 0 < 𝑖 < 𝑁 . Then

𝑓 (𝑥 ′) − 𝑓 (𝑥) =
𝑁∑
𝑖=1

( 𝑓 (𝑡 (𝑒𝑖)) − 𝑓 (𝑜(𝑒𝑖))).

Since 𝜕 𝑓 = 0, we have 𝑓 (𝑡 (𝑒𝑖)) − 𝑓 (𝑜(𝑒𝑖)) = 0 for any 0 < 𝑖 < 𝑁; hence, this implies that 𝑓 (𝑥 ′) = 𝑓 (𝑥).
This shows that f is constant on the connected components of (𝑋, 𝐸). Conversely, if f is constant on the
connected components of (𝑋, 𝐸), then we have 𝜕 𝑓 = 0. This shows that 𝐻0(𝑋) = Ker 𝜕 corresponds to
the R-linear space of functions on X which are constant on the connected components. �

As an analogy of the line integral of differential forms, we may define an integration of forms along
a path in (𝑋, 𝐸). For any path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) in (𝑋, 𝐸) and form 𝜔 ∈ 𝐶1 (𝑋), we define the integral
of 𝜔 along �𝑝 by ∫

�𝑝
𝜔 �

𝑁∑
𝑖=1

𝜔(𝑒𝑖). (54)

We say that a path �𝑝 in (𝑋, 𝐸) is closed if 𝑜( �𝑝) = 𝑡 ( �𝑝).

Definition A.3. We say that a form 𝜔 ∈ 𝐶1(𝑋) is closed if
∫
�𝑝
𝜔 = 0 for any closed path �𝑝 in (𝑋, 𝐸).

Lemma A.4. A form 𝜔 ∈ 𝐶1 (𝑋) is exact if and only if it is closed.

Proof. Suppose 𝜔 = 𝜕 𝑓 for some 𝑓 ∈ 𝐶 (𝑋). Then for any closed path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ), we have∫
�𝑝
𝜔 =

𝑁∑
𝑖=1

𝜔(𝑒𝑖) =
𝑁∑
𝑖=1

( 𝑓 (𝑡 (𝑒𝑖)) − 𝑓 (𝑜(𝑒𝑖))) = 𝑓 (𝑡 ( �𝑝)) − 𝑓 (𝑜( �𝑝)) = 0.

This shows that 𝜔 is closed. Conversely, suppose 𝜔 is closed. Fix 𝑥0 ∈ 𝑋 for each connected component
of X. For any 𝑥 ∈ 𝑋 , let �𝑝𝑥0 ,𝑥 be the path from 𝑥0 to x, where 𝑥0 is the fixed point in the connected
component containing x. Let

𝑓 (𝑥) �
∫
�𝑝𝑥0 ,𝑥

𝜔.

Since 𝜔 is closed, the integral is independent of the choice of the path �𝑝𝑥0 ,𝑥 . By construction, for any
𝑒 ∈ 𝐸 , we have

𝜕 𝑓 (𝑒) = 𝑓 (𝑡 (𝑒)) − 𝑓 (𝑜(𝑒)) =
∫
�𝑝𝑥0 ,𝑡 (𝑒)

𝜔 −

∫
�𝑝𝑥0 ,𝑜 (𝑒)

𝜔 =
∫
�𝑝𝑜 (𝑒) ,𝑡 (𝑒)

𝜔 = 𝜔(𝑒),

where �𝑝𝑜 (𝑒) ,𝑡 (𝑒) = (𝑒) is the path of length 1 from 𝑜(𝑒) to 𝑡 (𝑒). This shows that 𝜔 = 𝜕 𝑓 ∈ 𝐶1(𝑋);
hence, 𝜔 is exact as desired. �
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Let 𝑍1 (𝑋) ⊂ 𝐶1(𝑋) be the space of closed forms on X. By Lemma A.4, we have 𝑍1 (𝑋) = 𝜕𝐶 (𝑋);
hence, 𝐻1(𝑋) = 𝐶1 (𝑋)/𝑍1 (𝑋). For any closed path �𝑝 in (𝑋, 𝐸), the integration along �𝑝 gives a well-
defined homomorphism ∫

�𝑝
: 𝐻1(𝑋) → R, 𝜔 ↦→

∫
�𝑝
𝜔. (55)

In fact, the first homology 𝐻1 (𝑋,Z) consists of finite formal sums of closed paths of (𝑋, 𝐸), and we have

𝐻1(𝑋) = HomZ(𝐻1 (𝑋,Z),R), (56)

where HomZ(𝐻1 (𝑋,Z),R) denotes the space of group homomorphisms from 𝐻1 (𝑋,Z) to R. In the
equality (56), a class of a form 𝜔 ∈ 𝐻1(𝑋) maps to a a homomorphism 𝐻1(𝑋,Z) → R mapping a
closed path �𝑝 to

∫
�𝑝
𝜔. To further make this statement precise, we next review the construction of the

homology groups 𝐻0(𝑋,Z) and 𝐻1(𝑋,Z) of the graph (𝑋, 𝐸).
Following [17, §4.1], let

𝐶0 (𝑋,Z) �
⊕
𝑥∈𝑋

Z𝑥 =

{finite∑
𝑥∈𝑋

𝑎𝑥𝑥 | 𝑎𝑥 ∈ Z

}
,

𝐶1 (𝑋,Z) �
alt⊕
𝑒∈𝐸

Z𝑒 =

{finite∑
𝑒∈𝐸

𝑏𝑒𝑒 | 𝑏𝑒 ∈ Z

}
/∼,

where ∼ is the equivalence relation given by 𝑒 ∼ −𝑒 for any 𝑒 ∈ 𝐸 . In other words, 𝐶0 (𝑋,Z) and
𝐶1 (𝑋,Z) are free abelian groups generated by the set of vertices and edges of (𝑋, 𝐸) (i.e., certain sets
of finite formal sums over the set of vertices and edges of (𝑋, 𝐸)). We call any element of 𝐶0 (𝑋,Z) or
𝐶1 (𝑋,Z) a chain. We define the boundary morphism

𝑑 : 𝐶1 (𝑋,Z) → 𝐶0 (𝑋,Z) (57)

to be the group homomorphism given by 𝑑 (𝑒) � 𝑡 (𝑒) − 𝑜(𝑒). In other words,

𝑑
(∑
𝑒∈𝐸

𝑏𝑒𝑒
)
=
∑
𝑒∈𝐸

𝑏𝑒 (𝑡 (𝑒) − 𝑜(𝑒)) ∈ 𝐶0 (𝑋,Z)

for any
∑
𝑒∈𝐸 𝑏𝑒𝑒 ∈ 𝐶1 (𝑋,Z).

Definition A.5. We define the homology of (𝑋, 𝐸) by

𝐻0(𝑋,Z) � 𝐶0 (𝑋,Z)/𝑑𝐶1 (𝑋,Z), 𝐻1(𝑋,Z) � Ker 𝑑,

and 𝐻𝑚(𝑋,Z) = {0} for 𝑚 ≠ 0, 1.

Note that lower numberings (as in 𝐻0, 𝐻1, . . .) are used for objects pertaining to homology, in
contrast with upper numberings (as in 𝐻0, 𝐻1, . . .) for objects pertaining to cohomology. The homology
𝐻0 (𝑋,Z) is related to the connected components of (𝑋, 𝐸) as follows.

Lemma A.6. If we denote by 𝜋0 (𝑋) the set of connected components of the graph (𝑋, 𝐸), then we have
𝐻0 (𝑋,Z) �

⊕
𝐶∈𝜋0 (𝑋 ) Z𝐶.

Proof. Our assertion follows from the fact that the classes in 𝐻0(𝑋,Z) corresponding to vertices
𝑥, 𝑥 ′ ∈ 𝑋 coincide if and only if there exists a path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) from x to 𝑥 ′ – in other words, if
and only if x and 𝑥 ′ are in the same connected component of (𝑋, 𝐸). �
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Figure 7. Example of calculation of homology.

The first homology 𝐻1 (𝑋,Z) is related to closed paths as follows. A path �𝑝 = (𝑒1, . . . , 𝑒𝑁 ) in (𝑋, 𝐸)
defines a chain 𝛼 � 𝑒1 + · · · + 𝑒𝑁 in 𝐶1 (𝑋,Z). Then

𝑑 (𝛼) =
𝑁∑
𝑖=1

(𝑡 (𝑒𝑖) − 𝑜(𝑒𝑖)) = 𝑡 ( �𝑝) − 𝑜( �𝑝) ∈ 𝐶0 (𝑋,Z),

where 𝑡 ( �𝑝) = 𝑡 (𝑒𝑁 ) and 𝑜( �𝑝) = 𝑜(𝑒1). In particular, if the path �𝑝 is closed, then we have 𝑑 (𝛼) = 0.
This shows that any closed path �𝑝 in (𝑋, 𝐸) defines a homology class 𝛼 ∈ 𝐻1 (𝑋,Z) = Ker 𝑑. Moreover,
we have the following.

Lemma A.7. Any chain 𝛼 ∈ 𝐻1(𝑋,Z) may be expressed as a sum of closed paths.

Proof. This fact is proved in [17, §4.2]. �

In the example of Figure 7, let 𝑋 = {𝑥1, . . . , 𝑥7} and 𝐸 = {𝑒1, . . . , 𝑒7} ∪ {𝑒1, . . . , 𝑒7}. Then the pair
(𝑋, 𝐸) for a symmetric directed graph. Then �𝑝1 = (𝑒1, 𝑒2, 𝑒3) and �𝑝2 = (𝑒4, 𝑒5, 𝑒6) are closed paths
of (𝑋, 𝐸). The vertices 𝑥1, 𝑥2, 𝑥3 are in one connected component, and 𝑥4, 𝑥5, 𝑥6, 𝑥7 are in a different
connected component. Hence, 𝜋0 (𝑋) = {𝐶 (𝑥1), 𝐶 (𝑥4)}, where 𝐶 (𝑥) denotes the connected component
of X containing 𝑥 ∈ 𝑋 . This shows that

𝐻0(𝑋) = Z𝐶 (𝑥1) ⊕ Z𝐶 (𝑥4) � Z ⊕ Z.

If we let 𝛼1 � 𝑒1 + 𝑒2 + 𝑒3 ∈ 𝐶1 (𝑋,Z), then

𝑑 (𝛼1) = 𝑑 (𝑒1 + 𝑒2 + 𝑒3) = 𝑑 (𝑒1) + 𝑑 (𝑒2) + 𝑑 (𝑒3) = (𝑥2 − 𝑥1) + (𝑥3 − 𝑥2) + (𝑥1 − 𝑥3) = 0.

Hence, 𝛼1 ∈ 𝐻1 (𝑋). Similarly, 𝛼2 � 𝑒4 + 𝑒5 + 𝑒6 ∈ 𝐻1 (𝑋). In fact, we have

𝐻1(𝑋) = Z𝛼1 ⊕ Z𝛼2 � Z ⊕ Z.

The relation between homology and cohomology is given as follows.

Proposition A.8. Let (𝑋, 𝐸) be a symmetric directed graph. We have

𝐻0 (𝑋) = HomZ(𝐻0 (𝑋,Z),R), 𝐻1(𝑋) = HomZ(𝐻1 (𝑋,Z),R).

Proof. Note that a homomorphism HomZ(𝐶0 (𝑋,Z),R) is determined by the image of 𝑥 ∈ 𝑋 , and we
have HomZ(𝐶0 (𝑋,Z),R) = Map(𝑋,R). Similarly, we have HomZ(𝐶1 (𝑋,Z),R) = Mapalt(𝐸,R). Thus,
by (14), we have

𝐶0 (𝑋) = HomZ(𝐶0 (𝑋,Z),R), 𝐶1 (𝑋) = HomZ(𝐶1 (𝑋,Z),R).

The differential 𝜕 : 𝐶0 (𝑋) → 𝐶1 (𝑋) of (53) is the homomorphism induced via pull-back of the
differential 𝑑 : 𝐶1 (𝑋,Z) → 𝐶0 (𝑋,Z) of (57). Hence, by duality, we have
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𝐻0(𝑋) = Ker
(
𝜕 : HomZ(𝐶0 (𝑋,Z),R) → HomZ(𝐶1 (𝑋,Z),R)

)
= HomZ

(
𝐶0 (𝑋,Z)/𝑑𝐶1(𝑋,Z),R

)
= HomZ(𝐻0 (𝑋,Z),R),

𝐻1(𝑋) = HomZ(𝐶1 (𝑋,Z),R)/𝜕HomZ(𝐶1 (𝑋,Z),R))

= HomZ(Ker 𝑑,R) = HomZ (𝐻1(𝑋,Z),R).

This proves our assertion. �

By Proposition A.8, we see that Lemma A.2 is in fact a consequence of Lemma A.6. In particular,
dimR 𝐻0(𝑋) corresponds to the number of connected components of (𝑋, 𝐸). Moreover, by Proposi-
tion A.8 and Lemma A.7, we see that a class in 𝐻1(𝑋) corresponds to the space of functions on closed
paths of (𝑋, 𝐸) given by integration as in (55).

B. Examples

B.1. The exclusion process

In this subsection, we focus on the exclusion process and give explicit descriptions of objects newly
introduced in this article, such as the uniform functions, uniform forms and uniform cohomology.

Consider 𝑆 = {0, 1} with the base state ∗ = 0 and 𝜙(𝑠, 𝑠′) = (𝑠′, 𝑠). We consider any locale
𝑋 = (𝑋, 𝐸). For this setting, Consv𝜙 (𝑆) = {𝜉 : {0, 1} → R; 𝜉 (0) = 0} and so 𝑐𝜙 = 1. The class of
functions with exact support Λ, which is defined in 3.1 and denoted by 𝐶Λ (𝑆

𝑋 ), is explicitly given as

𝐶Λ (𝑆
𝑋 ) = { 𝑓 : 𝑆𝑋 → R | 𝑓 (𝜂) = 𝑎Π𝑥∈Λ𝜂𝑥 , 𝑎 ∈ R}.

Namely, it is a one-dimensional space. Then, Proposition 3.3 implies that any function 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) is
uniquely given as

𝑓 =
∑

Λ⊂𝑋, |Λ |<∞

𝑎ΛΠ𝑥∈Λ𝜂𝑥

for some 𝑎Λ ∈ R for each Λ. In particular, the space of uniform functions for this case is given as the set
of functions of the form

𝑓 =
∑
Λ⊂𝑋

diam(Λ) ≤𝑅

𝑎ΛΠ𝑥∈Λ𝜂𝑥

for some 𝑅 > 0. In particular,
∑
𝑥∈𝑋 𝜂𝑥 is a uniform function. Also, if 𝑋 = Z𝑑 , then

∑
𝑥∈Z𝑑 𝑥 𝑗𝜂𝑥 is a

uniform function for 𝑗 = 1, 2, . . . , 𝑑.
The zeroth cohomology 𝐻0

unif (𝑆
𝑋 ) is the space of functions 𝑓 ∈ 𝐶0

unif (𝑆
𝑋 ) such that ∇𝑒 𝑓 = 0

for any 𝑒 ∈ 𝐸 . Theorem 3.7 claims that 𝐻0
unif (𝑆

𝑋 ) coincides with the one-dimensional space
{𝑎

∑
𝑥∈𝑋 𝜂𝑥 | 𝑎 ∈ R}.

Next, we give some examples of the pairing ℎ 𝑓 in Proposition 3.18. First note that M = {0, 1, 2, . . . }
for this setting. Let 𝑓 = (

∑
𝑥∈𝑋 𝜂𝑥)

2 =
∑
𝑥,𝑦∈𝑋 𝜂𝑥𝜂𝑦 ∈ 𝐶 (𝑆𝑋∗ ). Then 𝜕 𝑓 = 0 ∈ 𝐶1

𝑅 (𝑆
𝑋 ) for any 𝑅 > 0.

For any Λ,Λ′ such that 𝑑𝑋 (Λ,Λ′) > 0, we have

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) =
( ∑
𝑥∈Λ∪Λ′

𝜂𝑥

)2
−
(∑
𝑥∈Λ

𝜂𝑥

)2
−
(∑
𝑥∈Λ′

𝜂𝑥

)2
= 2

∑
𝑥∈Λ

𝜂𝑥
∑
𝑦∈Λ′

𝜂𝑦

= 2𝜉Λ (𝜂)𝜉Λ′ (𝜂).

Namely, ℎ 𝑓 (𝛼, 𝛽) = 2𝛼𝛽 for any 𝛼, 𝛽 ∈ M. Note that ℎ 𝑓 ≠ 0 in this case.
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B.2. Counterexample for the case when 𝑋 = (Z,E) and 𝑐𝜙 = 2.

In Theorem 5.2, we assumed that the interaction is simple in the weakly transferable case. In this
subsection, we give an example of a weakly transferable locale X and an interaction 𝜙 that is irreducibly
quantified and satisfies 𝑐𝜙 > 1, but the uniform cohomology 𝐻1

unif (𝑆
𝑋 ) does not satisfy the conclusion

of Theorem 5.2. More precisely, we prove the following.
Proposition B.1. Suppose 𝜅 = 2 so that 𝑆 = {0, 1, 2}, and let 𝑋 = (Z,E), which is weakly transferable.
If we consider the configuration with transition structure 𝑆𝑋 for the interaction 𝜙 : 𝑆 × 𝑆 → 𝑆 × 𝑆 given
in Example 1.3 (2), then we have 𝐻1

unif (𝑆
𝑋 ) ≠ 0.

Proof. We will explicitly construct a form 𝜔 ∈ 𝑍1
unif (𝑆

𝑋 ) which is not integrable by a function
𝐹 ∈ 𝐶0

unif (𝑆
𝑋 ). For any 𝑊 ⊂ 𝑆𝑋∗ , let 1𝑊 be the characteristic function of W on 𝑆𝑋∗ . Let 𝜔 = (𝜔𝑒)𝑒∈𝐸 ∈

Map(Φ,R) such that

𝜔𝑒 � 1{𝜂𝑜 (𝑒)=2,𝜂𝑡 (𝑒)=1} − 1{𝜂𝑜 (𝑒)=1,𝜂𝑡 (𝑒)=2}

if 𝑡 (𝑒) ≥ 𝑜(𝑒) and 𝜔𝑒 � 𝜔�̄� otherwise. We let 𝑓 ∈ 𝐶 (𝑆𝑋∗ ) be the function

𝑓 =
∑
𝑦>𝑥

1{𝜂𝑥=1,𝜂𝑦=2} .

Then for any 𝜂 ∈ 𝑆𝑋∗ and 𝑒 ∈ E, we have

∇𝑒 𝑓 (𝜂) = 𝑓 (𝜂𝑒) − 𝑓 (𝜂) =
∑
𝑦>𝑥

1{𝜂𝑥=1,𝜂𝑦=2} (𝜂
𝑒) −

∑
𝑦>𝑥

1{𝜂𝑥=1,𝜂𝑦=2} (𝜂).

If we suppose 𝑡 (𝑒) ≥ 𝑜(𝑒), then the sum of ∇𝑒 𝑓 (𝜂) cancels outside 𝑒 = (𝑥, 𝑦), and we have

∇𝑒 𝑓 (𝜂) = 1{𝜂𝑜 (𝑒)=2,𝜂𝑡 (𝑒)=1} (𝜂) − 1{𝜂𝑡 (𝑒)=1,𝜂𝑜 (𝑒)=2} (𝜂) = 𝜔𝑒 .

Furthermore, we have ∇�̄� 𝑓 (𝜂) = 𝜔𝑒 = 𝜔�̄�; hence, 𝜕 𝑓 = 𝜔, which by Lemma 2.28 shows that
𝜔 ∈ 𝑍1 (𝑆𝑋∗ ). By definition, we have 𝜔 ∈ 𝐶1

0 (𝑆
𝑋 ) ⊂ 𝐶1

unif (𝑆
𝑋 ); hence, 𝜔 ∈ 𝑍1

unif (𝑆
𝑋 ).

We prove our assertion by contradiction. Suppose there exists 𝐹 ∈ 𝐶0
unif (𝑆

𝑋 ) such that 𝜕𝐹 = 𝜔. By
taking 𝐹 − 𝐹 (∗) if necessary, we may assume that 𝐹 (∗) = 0. For any 𝜂, 𝜂′ ∈ 𝑆𝑋∗ , if 𝝃𝑋 (𝜂) = 𝝃𝑋 (𝜂

′),
then since the interaction is irreducibly quantified by Proposition 2.19, there exists a path �𝛾 from 𝜂
to 𝜂′. Since 𝜕 ( 𝑓 − 𝐹) = 0, by Lemma 2.21, we have ( 𝑓 − 𝐹) (𝜂) = ( 𝑓 − 𝐹) (𝜂′). This shows that
there exists ℎ : M → R such that 𝑓 (𝜂) − 𝐹 (𝜂) = ℎ ◦ 𝝃𝑋 (𝜂) for any 𝜂 ∈ 𝑆𝑋∗ . By Remark 3.6, we have
𝜄Λ∪Λ

′
𝐹 = 𝜄Λ𝐹 + 𝜄Λ

′
𝐹 for any pair (Λ,Λ′) ∈ 𝒜𝑅. Hence,

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = 𝜄Λ∪Λ
′

( 𝑓 − 𝐹) (𝜂) − 𝜄Λ ( 𝑓 − 𝐹) (𝜂) − 𝜄Λ
′

( 𝑓 − 𝐹) (𝜂)

= ℎ ◦ 𝝃Λ∪Λ′ (𝜂) − ℎ ◦ 𝝃Λ (𝜂) − ℎ ◦ 𝝃Λ′ (𝜂)

= ℎ ◦ (𝝃Λ (𝜂) + 𝝃Λ′ (𝜂)) − ℎ ◦ 𝝃Λ (𝜂) − ℎ ◦ 𝝃Λ′ (𝜂).

In particular, for 𝜂, 𝜂′ ∈ 𝑆𝑋∗ , if 𝝃Λ (𝜂) = 𝝃Λ′ (𝜂′) and 𝝃Λ(𝜂
′) = 𝝃Λ′ (𝜂), then we have

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) = 𝜄Λ∪Λ
′

𝑓 (𝜂′) − 𝜄Λ 𝑓 (𝜂′) − 𝜄Λ
′

𝑓 (𝜂′).

In what follows, we prove that this it not the case. For any (Λ,Λ′) ∈ 𝒜𝑅, we have

𝜄Λ∪Λ
′

𝑓 − 𝜄Λ 𝑓 − 𝜄Λ
′

𝑓 =
∑
𝑦>𝑥

𝑥,𝑦∈Λ∪Λ′

1{𝜂𝑥=1,𝜂𝑦=2} −
∑
𝑦>𝑥
𝑥,𝑦∈Λ

1{𝜂𝑥=1,𝜂𝑦=2} −
∑
𝑦>𝑥
𝑥,𝑦∈Λ′

1{𝜂𝑥=1,𝜂𝑦=2}

=
∑
𝑦>𝑥

𝑦∈Λ,𝑥∈Λ′

1{𝜂𝑥=1,𝜂𝑦=2} +
∑
𝑦>𝑥

𝑥∈Λ,𝑦∈Λ′

1{𝜂𝑥=1,𝜂𝑦=2} .
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Since Λ and Λ′ are connected, replacing Λ by Λ′ if necessary, we may assume that 𝑦 > 𝑥 for any 𝑦 ∈ Λ
and 𝑥 ∈ Λ′. Then we have

𝜄Λ∪Λ
′

𝑓 − 𝜄Λ 𝑓 − 𝜄Λ
′

𝑓 =
∑
𝑦>𝑥

𝑦∈Λ,𝑥∈Λ′

1{𝜂𝑥=1,𝜂𝑦=2} = 𝜉 (1)Λ′ 𝜉
(2)
Λ ,

where 𝜉 (1) and 𝜉 (2) are the conserved quantities defined in Example 1.3 (2). Fix 𝑦 ∈ Λ and 𝑦′ ∈ Λ′. We
let 𝜂 = (𝜂𝑥) ∈ 𝑆𝑋∗ be an element such that 𝜂𝑦′ = 1, 𝜂𝑦 = 2 and is at base state outside y and 𝑦′, and we
let 𝜂′ = (𝜂′𝑥) ∈ 𝑆𝑋∗ be an element such that 𝜂′𝑦′ = 2, 𝜂′𝑦 = 1 and is at base state outside y and 𝑦′. Then
we have 𝜉 (1)Λ′ (𝜂)𝜉

(2)
Λ′ (𝜂) = 1, but 𝜉 (1)Λ′ (𝜂

′)𝜉 (2)Λ′ (𝜂
′) = 0; hence, we have

𝜄Λ∪Λ
′

𝑓 (𝜂) − 𝜄Λ 𝑓 (𝜂) − 𝜄Λ
′

𝑓 (𝜂) ≠ 𝜄Λ∪Λ
′

𝑓 (𝜂′) − 𝜄Λ 𝑓 (𝜂′) − 𝜄Λ
′

𝑓 (𝜂′),

which gives a contradiction, as desired. �
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