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In this paper we investigate the effect of stable stratification on plane Couette flow
when gravity is oriented in the spanwise direction. When the flow is turbulent we
observe near-wall layering and associated new mean flows in the form of large-scale
spanwise-flattened streamwise rolls. The layers exhibit the expected buoyancy scaling
lz ∼ U/N where U is a typical horizontal velocity scale and N the buoyancy
frequency. We associate the new coherent structures with a stratified modification
of the well-known large-scale secondary circulation in plane Couette flow. We find
that the possibility of the transition to sustained turbulence is controlled by the
relative size of this buoyancy scale to the spanwise spacing of the streaks. In parts of
parameter space transition can also be initiated by a newly discovered linear instability
in this system (Facchini et al., J. Fluid Mech., vol. 853, 2018, pp. 205–234). When
wall turbulence can be sustained the linear instability opens up new routes in phase
space for infinitesimal disturbances to initiate turbulence. When the buoyancy scale
suppresses turbulence the linear instability leads to more ordered nonlinear states,
with the possibility for intermittent bursts of secondary shear instability.

Key words: stratified turbulence, transition to turbulence

1. Introduction
When turbulence occurs in the presence of a stably stratified background gradient

of density, it is common to observe the spontaneous formation of layers of well-mixed
fluid separated by relatively sharp gradients or interfaces of density (Park, Whitehead
& Gnanadeskian 1994; Holford & Linden 1999a,b; Oglethorpe, Caulfield & Woods
2013; Falder, White & Caulfield 2016; Leclercq et al. 2016b; Thorpe 2016). Such
behaviour is of direct relevance to the atmosphere, oceans and various other
environmental and industrial flows as these interfaces act as barriers to mixing
and transport, and have a significant effect on the overall energetics of the flow.

Stratification also has a tendency to suppress vertical velocities due to the restoring
force of gravity, thereby creating an inherent anisotropy in the flow when the
stratification is large. Scaling arguments by Billant & Chomaz (2001) predict that
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6309-8808
https://orcid.org/0000-0002-3170-9480
mailto:d.lucas1@keele.ac.uk
https://doi.org/10.1017/jfm.2019.192
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such anisotropy occurs with a vertical ‘buoyancy’ length scale lz ∼ U/N where U is
a typical horizontal velocity scale and N is the buoyancy or Brunt–Väisälä frequency.
This scaling is observed ubiquitously in stratified flows exhibiting layers, although
relatively few well-defined physical mechanisms are able to make direct contact
with it.

The motivation of this work is primarily to increase the connectivity between
various approaches to the above problem of layer formation. The recent results
presented in Lucas, Caulfield & Kerswell (2017) (hereafter LCK) have demonstrated,
using a triply periodic domain, that nonlinear exact coherent structures associated
with layer formation can be traced through parameter space and connected to linear
instabilities of a horizontally varying basic flow. Here we will consider a more
physically realistic flow which has a base flow with horizontal shear. The flow is
forced naturally by moving boundaries in a plane Couette flow (pCf) system with
spanwise stratification (hereafter referred to as HSPC for horizontal stratified plane
Couette).

This paper constitutes, along with the recent paper by Facchini et al. (2018),
the first exploration of the effect of spanwise stratification on plane Couette flow
dynamics. Mainly considering flows at high Prandtl number, Facchini et al. (2018)
have shown that for the spanwise stratified version of plane Couette flow, a new linear
instability appears when the geometry permits resonances between internal gravity
waves. However, the instability only arises in geometries which allow the required
critical relationship between vertical and streamwise wavelengths, given by the
appropriately Doppler-shifted dispersion relationship. Therefore in many cases, and in
particular at sufficiently low stratifications, a subcritical transition scenario comparable
to unstratified pCf is observed. These two possible routes to turbulence make this
flow geometry a particularly attractive one to investigate further the mechanisms by
which stratification can affect turbulent flows, as well as identifying whether the initial
(subcritical or supercritical) transition mechanisms leave a qualitatively identifiable
imprint on the ensuing turbulent dynamics.

There is an increasing body of literature considering the similar configuration for
(axially) stratified Taylor–Couette flow (Molemaker, McWilliams & Yavneh 2001;
Shalybkov & Rüdiger 2005; Oglethorpe et al. 2013; Leclercq, Nguyen & Kerswell
2016a; Leclercq et al. 2016b; Park, Billant & Baik 2017; Park et al. 2018) from
experimental, numerical and theoretical approaches. The primary focus for this flow
has been the interplay between various instability mechanisms, in particular between
the so-called centrifugal and stratorotational instabilities (Molemaker et al. 2001;
Shalybkov & Rüdiger 2005; Leclercq et al. 2016a). In certain situations it is possible
to observe the formation of layers, often confined near the walls, the source of which
is the subject of continued debate. Part of the motivation of this work is to remove
the effects of rotation and curvature from this system by taking the narrow-gap limit
to try to uncover the universal, persistent features of such flows.

Also of interest is the comparison to the recently studied situation where the
shear and stratification gradients are aligned. This case has been examined to study
spatio-temporal dynamics, in particular the extent to which stratification can suppress
turbulence and lead to relaminarisation (Deusebio, Caulfield & Taylor 2015; Taylor
et al. 2016), irreversible mixing and layer robustness properties (Zhou, Taylor &
Caulfield 2017a; Zhou et al. 2017b) and the effect of stratification on underlying
exact coherent structures (Clever & Busse 1992, 2000; Deguchi 2017; Olvera &
Kerswell 2017).

In this paper we establish that, as in the vertically sheared case, only relatively
weak stratification (in a sense which we make precise below) leads to suppression of
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Plane Couette flow with spanwise stratification 99

the subcritical turbulence present in plane Couette flow, at least in flow geometries of
aspect ratio O(1–10). Perhaps unsurprisingly, when the flow is linearly unstable to the
instability identified by Facchini et al. (2018), yet is still below the relaminarisation
boundary, turbulent transition occurs supercritically. By considering flow geometries
at similar parameters that can either admit or not this linear instability, we conclude
that the supercritically triggered turbulent state is similar to the subcritically triggered
turbulent state, namely having the characteristics of the self-sustaining process or
wave–vortex interaction (SSP/VWI) mechanism (Hall & Smith 1991; Waleffe 1997;
Hall & Sherwin 2010). Furthermore, when the flow is linearly unstable, yet above
the relaminarisation boundary, although perturbations saturate at finite amplitude, they
remain relatively ordered, with only highly spatio-temporally intermittent ‘bursts’ of
disordered motions.

In general, we observe that stratification always appears to have an effect on the
dynamics, by altering the large-scale secondary flow patterns. These modified mean
flows induce the formation of density layers near the walls which exhibit the familiar
U/N buoyancy scaling, although the physical mechanism leading to their formation
is different from that underlying the previously identified ‘zig-zag’-like instabilities
(Billant & Chomaz 2000a, LCK). At fixed Reynolds number, we demonstrate that the
relaminarisation boundary as the stratification becomes relatively stronger corresponds
to the intersection of this buoyancy scale of the secondary flow and the length scale
associated with the spacing of the streaks. This implies that subcritical turbulence
transition is controlled by a different competition of length scales compared to
the wall-normal stratified case where Deusebio et al. (2015) demonstrated that the
competition between the Monin–Obukhov length scale and the (inner) viscous scale
controls relaminarisation and intermittency.

Interestingly, we find that for sufficiently large Reynolds numbers, the critical
strength of stratification leading to relaminarisation is higher in the spanwise stratified
case considered here than in the wall-normal stratified case of Deusebio et al. (2015).
This observation of turbulence ‘surviving’ at higher stratification is consistent with
the commonly observed phenomenon that shear flows where the velocity gradient is
orthogonal to the density gradient (usually referred to as ‘horizontal shear’) allow for
stronger injection of perturbation kinetic energy from this shear into ensuing turbulent
flows (Jacobitz & Sarkar 1998), than in flows with ‘vertical shear’ where the velocity
and density gradients are parallel. Furthermore, although at higher Reynolds number
in some appropriate flow geometries, turbulence can be triggered supercritically via
the linear instability identified by Facchini et al. (2018), rather than subcritically, the
ultimate sustained turbulent attractor is, as expected, the same.

To illustrate these various issues and observations, the rest of this paper is organised
as follows. Section 2 provides the formulation of the numerical simulation and defines
the various parameters of interest. Section 3 presents the results of the numerical
simulations conducted when the base flow is linearly stable, in particular discussing
the formation of layers and their influence on relaminarisation. Section 4 considers
linearly unstable flows and how the relaminarisation boundary affects the nonlinear
dynamics. Finally, § 5 provides some further discussion and conclusions.

2. Formulation
We begin by considering the following version of the wall-forced, incompressible,

Boussinesq equations

∂u∗

∂t∗
+ u∗ ·∇∗u∗ +

1
ρ0
∇
∗p∗ = ν∆∗u∗ −

ρ∗g
ρ0

ẑ, (2.1)
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∂ρ∗

∂t∗
+ u∗ ·∇∗ρ∗ + u∗ ·∇∗ρB = κ∆

∗ρ∗, (2.2)

∇
∗ · u∗ = 0. (2.3)

where u∗(x, y, z, t) = u∗x̂ + v∗ŷ + w∗ẑ is the three-dimensional velocity field,
ν is the kinematic viscosity, κ is the molecular diffusivity, p∗ is the pressure,
ρ0 is an appropriate reference density and ρ∗(x, y, z, t) the varying part of the
density away from the background linear density profile ρB = −βz, i.e. ρtotal =

ρ0+ ρB(z)+ ρ∗(x, y, z, t). We impose periodic boundary conditions in the streamwise,
x, and spanwise, z, directions with no-slip walls for u∗ and no flux for ρ∗ in y:

u∗(x, y=−Ly, z)= (−Uy, 0, 0), u∗(x, y= Ly, z)= (Uy, 0, 0), (2.4a,b)

∂ρ∗

∂y

∣∣∣∣
y=−Ly

=
∂ρ∗

∂y

∣∣∣∣
y=Ly

= 0 (2.5)

and consider domains (x, y, z) ∈ [0, Lx] × [−Ly, Ly] × [0, Lz]. Within this coordinate
system, gravity may be thought of as pointing in the (negative) vertical direction, and
the pCf induces horizontal shear, hence we refer to the flow as HSPC.

The system is naturally non-dimensionalised using the characteristic length scale Ly,
characteristic time scale Uy/Ly and density gradient scale β =−∇ρB · ẑ to give

∂u
∂t
+ u · ∇u+∇p=

1
Re
1u− F−2

h ρ ẑ, (2.6)

∂ρ

∂t
+ u · ∇ρ =w+

1
Re Pr

1ρ, (2.7)

∇ · u= 0, (2.8)

where we define the Reynolds number Re, an appropriate background horizontal
Froude number Fh, the Prandtl number Pr and buoyancy frequency N as

Re :=
UyLy

ν
, Fh :=

Uy

NLy
, Pr :=

ν

κ
, N2

:=
gβ
ρ0
. (2.9a−d)

We choose to use the (horizontal) Froude number Fh as the appropriate measure
of the relative strength of the background shear to the background stratification as
this is exactly in the same form as the Froude number considered by Facchini et al.
(2018). For the flow considered by Deusebio et al. (2015), where the shear and density
gradient are parallel, the natural parameter is the bulk Richardson number Ri, which
is mathematically equivalent, within this formulation, to the inverse square of the
Froude number, i.e. Ri≡F−2

h . It must always be remembered that for the flow we are
considering here, the stratification does not act directly against wall-normal motions,
and so the conventional interpretation of a Richardson number (or equivalently the
inverse square of a Froude number) as quantifying the relative significance of potential
energy to kinetic energy in the background shear must be done with care, and in
particular there is no a priori reason why large values of Ri (or small values of Fh)
will lead to the flow being stable. However, it is reasonable to draw some analogies
between the flow considered here and the flow considered in Deusebio et al. (2015),
as their parameter Ri and our parameter Fh are both ratios of the characteristic time
scales associated with the background density and velocity distributions. Furthermore,
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Plane Couette flow with spanwise stratification 101

as is apparent from the governing equations, it is the inverse square of the Froude
number which quantifies the coupling between the density and velocity fields.

To characterise the basic energetics of the flows we define

K := 1
2 〈|u

′
|
2
〉V, ε :=

1
Re
〈|∇u′|2〉V, (2.10a,b)

χ :=
1

Pr Re
〈|∇ρ|2〉V, uτ :=

√
τw/ρ0; τw := ν

∂u
∂y

∣∣∣∣
y=±1

, (2.11a,b)

where u′ = u− 〈u〉x is the fluctuation velocity, K is the turbulent kinetic energy, ε is
the turbulent dissipation rate, χ is the dissipation rate of density variance and uτ is
the friction velocity defined in terms of the wall shear stress τw. In these definitions,
〈(·)〉V :=

∫∫∫
(·) dx dy dz/(2LxLz) denotes a volume average, 〈(·)〉x :=

∫
(·) dx/Lx denotes

a streamwise average 〈·〉t = [
∫ T

0 (·) dt]/T denotes a time average, where T is normally
close to the full simulation time (having removed the initial transient spin-up from the
initial condition).

We fix Pr = 1 throughout and solve the equations numerically using the DIABLO
direct numerical simulation (DNS) code (Taylor 2008) which is mixed pseudospectral
in (x, z) with second-order finite difference in the wall-normal direction and uses
fourth-order Runge–Kutta (for the nonlinear and buoyancy terms) and Crank–Nicolson
(for the diffusion terms) time stepping. The resolution (Nx, Ny, Nz) is defined such
that Nx and Nz are the number of Fourier collocation points in each direction and Ny
the number of finite difference points which are clustered near the wall. Following
Moin & Mahesh (1998) and Deusebio et al. (2015), we maintain spatial convergence
by ensuring that 1x+ . 8, 1z+ . 4 and y+10 . 10 where y+10 is the tenth point from
the wall and the ‘+’ superscript represents the usual viscous scaling l+ = uτ l/ν.
The simulations to follow are initialised with a broad band uniform spectrum of
perturbations having randomised phases with large enough amplitude (10–20 % of the
wall velocity) to trigger (subcritically) sustained turbulence.

3. Direct numerical simulations: subcritical turbulence
We begin by presenting two sets of direct numerical simulations which were carried

out to survey the (Re, Fh) parameter space near subcritical transition to sustained
turbulence, with different choices of streamwise domain length. Table 1 outlines the
parameters and some single point statistics. Figure 1(b) shows 〈K〉t in (Re,Fh) space,
indicating the laminar–turbulent boundary (note the relaminarised cases are not shown
in table 1). We find that a similar picture to the vertically shearing case of Deusebio
et al. (2015) emerges in that only relatively weak stratification is required to shift
the critical Reynolds number required for sustained turbulence, and that stratification
reduces the overall turbulent kinetic energy of the flow. Comparing specific values,
we note that with horizontal mean shear, larger stratifications for turbulent flows are
achievable than for the vertical case for sufficiently high flow Reynolds numbers, as
we also plot on the figure the curve associated with the formula derived using Monin–
Obukhov theory which predicts the intermittency boundary well in Re–Fh space for
(wall-normal) stratified plane Couette flow, as shown in figure 18 of Deusebio et al.
(2015). Although this curve actually delineates the onset of intermittency, as Deusebio
et al. (2015) show in their figure 18, it is also a good estimate of the boundary
between flows exhibiting some turbulence and flows which completely relaminarise.

Our runs probe as high as Re= 15 000. In principle, such large Reynolds numbers
may allow the consideration of (still turbulent) flows with large enough stratifications
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FIGURE 1. (Colour online) (a) Schematic showing the base flow and the background
stratification for HSPC. (b) (Re, F−2

h ) parameter space from the DNS in table 1 coloured
with turbulent kinetic energy 〈K〉t showing the sustenance of the turbulence, where
black dots represent 〈K〉t = 0 where the flow has relaminarised. Symbols corresponds
to the groups of table 1; circles have Lx = 4π, squares have Lx = π and triangles
the domains permitting the linear instability as discussed in § 4. The dashed blue
line marks the theoretical model (using Monin–Obukhov theory) which predicts the
intermittency boundary well for wall-normal stratified pCf as reported in Deusebio et al.
(2015). The bulk Richardson number Ri in this model is equated to F−2

h for ease of
comparison. The grey shaded region denotes the region of parameter space where the
flow relaminarises, while the green region approximately denotes the region where the
flow (for some combination of streamwise and vertical wavenumbers) is prone to the
primary linear instability identified by Facchini et al. (2018). The dashed grey curve
extends the relaminarisation boundary into the linearly unstable region, extrapolating the
anticipated boundary now between linearly unstable, yet ordered dynamics, and sustained
wall turbulence. A triangle at Re = 10 000, F−2

h = 0.7 denotes the case where the flow
is linearly unstable but the SSP/VWI mechanism is suppressed leading to qualitatively
different (and non-turbulent) flows, as discussed in § 4.

to potentially approach the so-called layered anisotropic stratified turbulence LAST
regime (Brethouwer et al. 2007; Falder et al. 2016). In the LAST regime, there is a
clear separation between the Kolmogorov viscous microscale η, the Ozmidov scale lO

(i.e. the largest vertical scale which is not strongly affected by the background
stratification) and the typical large buoyancy layering scale of the turbulent flow. This
scale separation implies the existence of a highly anisotropic strongly stratified yet
still turbulent flow for scales between this buoyancy layering scale and the Ozmidov
scale, with essentially isotropic turbulence for scales between lO and η.

However, it is not at all clear that the LAST regime can be accessed in flows
with wall forcing, as all previous numerical investigations of this regime have (to the
authors’ knowledge) involved various numerical body-forcing protocols to ensure the
maintenance of turbulent motions in sufficiently strongly stratified flows. However, our
intention here is not to investigate any properties of this regime. Rather, we wish to
investigate the effect of intermediate (spanwise) stratification on the underlying plane
Couette flow dynamics, and also whether this flow geometry can remain turbulent at
sufficiently strong stratifications to allow the possibility of transition towards the LAST
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FIGURE 2. (Colour online) Streamwise velocity, u, for the case Re = 5000, F−2
h = 0.1,

Pr = 1, Lx = 4π, Lz = 2π from set 1 of DNS in table 1. Left panel shows the flow at
the mid-gap y = 0 and the right panel shows the flow for x = 0. Seen are the streaks
of high/low speed fluid which have been lifted from near the walls by streamwise rolls,
as one expects in plane Couette flow. In these images there is no discernible effect of
stratification on the dynamics.

regime. We discuss the emergent scale separation and the definitions and emergence
of vertical length scales in the following section.

Furthermore, we have conducted a linear stability analysis of this flow (with Pr= 1)
and as shown by the green shaded region, at sufficiently high Re and small Fh, the
flow is linearly unstable (provided of course that the unstable vertical and streamwise
wavelengths of the instability can ‘fit’ into the chosen computational domain) and so
the apparent suppression of the subcritical route to turbulence no longer precludes
the possibility of turbulence being sustained. This linear instability is the analogous
instability (for flows with unit Prandtl number) to the instability identified by Facchini
et al. (2018) at infinite Schmidt number.

Figure 2 shows some typical flow field snapshots at Re=5000 and F−2
h =0.1, which

is near to the largest possible stratification possible at this Reynolds number for which
subcritically triggered turbulence can be sustained. At first inspection there appears to
be little obvious influence of stratification on the typical plane Couette flow dynamics,
as we still observe streaky flow, with streamwise waves propagating along the streaks.

3.1. Layers
Despite the apparent weak dependence of the flow on the stratification, some
differences can be observed. Figure 3 shows spatio-temporal diagrams of the
perturbation density ρ (a,b) and ρtot (c,d) in (z, t)-planes at fixed x and y for
the case Re= 5000, F−2

h = 0.1, Lx= 4π, Lz= 2π. We show x=π and two y locations:
y=−0.98, i.e. near wall; and y= 0, mid-gap. The near-wall profiles clearly show the
spontaneous formation of layers of alternately stronger and weaker stratification which
are robust in time. By contrast, the flow in the centre of the channel is uniformly
stratified with broadly isotropic fluctuations.

Given the robustness in time of the near-wall structures, in figure 4 we plot the time-
and streamwise-averaged densities in a (y, z)-plane i.e. 〈ρ〉xt for this case and several
others from table 1. As Re and F−2

h are increased, coherent layers are observed, offset
across the gap, and with decreasing vertical scale. Associated with this layering is a
coherent pattern in the mean flows. Relatively large-scale flattened streamwise vortices
develop with enhanced density gradients located between them, near the walls.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.192


104 D. Lucas, C. P. Caulfield and R. R. Kerswell

Re F−2
h ReB urms lo lz lS ε χ Fr 〈K〉t Reτ T

500 0.001 2192 0.177 16.7 2.33 2.74 0.0044 2.1e-5 4.37 0.0195 36.5 862
600 0.002 1196 0.164 9.44 2.34 2.42 0.0040 3.5e-5 3.30 0.0169 41.9 852
700 0.002 1316 0.157 9.17 2.18 2.13 0.0038 3.4e-5 3.43 0.0159 46.9 887
1000 0.005 740 0.138 4.58 1.53 1.59 0.0037 6.9e-5 2.75 0.0136 63.0 378
2000 0.005 1201 0.121 4.13 1.51 0.862 0.0030 6.56e-5 5.80 0.0115 116 363
2000 0.01 562 0.118 2.36 1.37 0.893 0.00281 1.04e-4 2.01 0.0107 112 356
3000 0.01 749 0.108 2.24 1.29 0.629 0.00250 9.78e-5 2.15 0.0097 159 292
3000 0.05 107 0.102 0.567 0.952 0.741 0.00179 1.35e-4 0.774 0.0072 135 379
5000 0.1 72.9 0.096 0.215 0.729 0.488 0.0015 1.30e-4 0.498 0.0062 205 453

5000 0.005 2445 0.113 2.63 1.375 0.385 0.0024 4.35e-5 2.71 0.0099 260 424
5000 0.01 1135 0.105 1.51 1.122 0.398 0.0022 7.27e-05 2.06 0.00879 250 452
5000 0.0175 619 0.104 0.970 0.985 0.4032 0.0022 9.97e-05 1.51 0.0085 248 586
5000 0.025 406 0.102 0.717 0.995 0.416 0.0020 1.15e-4 1.24 0.0079 241 482
5000 0.0375 262 0.102 0.521 0.866 0.426 0.0019 1.28e-4 0.98 0.0077 237 621
5000 0.05 176 0.097 0.397 0.859 0.442 0.0018 1.36e-4 0.837 0.00696 225 540
5000 0.075 102 0.095 0.273 0.770 0.474 0.0015 1.29e-4 0.617 0.00628 211 730
5000 0.1 63 0.093 0.200 0.672 0.541 0.0013 9.73e-5 0.463 0.00559 189 666

10 000 0.2 59.1 0.0813 0.115 0.467 0.273 0.0012 1.27e-4 0.40 0.00461 366 450
15 000 0.4 26.8 0.0759 0.053 0.319 0.234 7.14e-4 7.02e-05 0.20 0.00349 427 239

10 000 0.2 64.0 0.0852 0.119 0.540 0.263 0.0013 1.25e-4 0.39 0.0049 380 566
10 000 0.7 4.6 0.0804 0.022 0.311 0.53 3.22e-4 2.33e-5 0.06 0.0041 188 2500

TABLE 1. Some DNS diagnostics. Top group has Lx = 4π, Lz = 2π, Nx = 256, Nz = 256,
Ny = 129. Middle group has Lx = π, Lz = 2π, with Nx = 64, apart from Re = 10 000
and 15 000 which required Nx = 128, Nz = 512 and Ny = 161. Bottom group is the two
linearly unstable cases F−2

h = 0.2 having Lx= 16.5, Lz= 5.8 and F−2
h = 0.7 having Lx= 12,

Lz = 4. All have Pr = 1. Averages in time are taken after the initial transient, the time
averaging window is given as T in the table. The time averaging window for the linearly
unstable case Re = 10 000, F−2

h = 0.2 is taken once sustained wall turbulence is reached
for comparison to the linearly stable values. ReB = ε Re F2

h , Fr = εFh/(u2
rms), lO =

√
εF3

h ,
Reτ = Lyuτ/ν, u2

rms = 〈u
′2
〉V with lz computed as discussed in § 3.1.

Considering again the case Re= 5000, F−2
h = 0.1, Pr= 1 and Lx = 4π and Lz= 2π,

figure 5 shows the streamwise- and time-averaged velocity components of the mean
flow. The apparent vortical structure leads to vertical motions and hence buoyancy
fluxes localised near the walls and an associated ‘zig-zag’ pattern in the streamwise
velocity perturbation. This flow structure bears some resemblance to the exact coherent
structures discussed in LCK as alternating spanwise velocities once again redistribute
the background shear. A difference in this case is that the wall confinement causes the
streamlines to form closed loops rather than penetrate through the periodic boundary
as in LCK.

There is also some similarity to the linear modes discovered in this system by
Facchini et al. (2018) insofar as there are density perturbations concentrated near
the walls. However the length scales and driving mechanisms for these near-wall
perturbations are completely different as can be seen in § 4, and so it may well
be that the similarity is merely coincidental. At the largest Reynolds number and
stratification considered there is some indication of an additional modulation to
this layering pattern, the rightmost panel of figure 4 showing an approximately
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FIGURE 3. (Colour online) Spatio-temporal diagram in (z, t) for profiles of density for
x= Lx/2 and two y locations: near wall y=−0.98 (a,c) and mid-gap y= 0 (b,d), for the
case Re= 5000, F−2

h = 0.1, Pr= 1, Lx = 4π, Lz = 2π from set 1 of DNS in table 1. The
top panels show the perturbation density ρ in red/yellow, while the bottom panels show
the total density ρtot = ρ − z in grey scale. Note that layers are visible near the wall but
there is only well-mixed fluid in the mid-channel.
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FIGURE 4. (Colour online) Streamwise- and time-averaged perturbation density 〈ρ〉x,t for
4 cases from set 1 of DNS in table 1 as labelled. Notice the layers near the walls which
are offset from each other across the gap.

mode 3 structure on top of the much finer near-wall layers. We now seek to clarify
the underlying mechanism for forming this persistent large-scale flow, and also to
investigate how it influences the overall flow dynamics.

Having established that this large-scale structure is streamwise invariant in the
relatively long streamwise domain Lx = 4π, i.e. in the averages of figure 5, we study
flows with higher Re and fixed Re = 5000 with variable F−2

h in a shortened domain
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FIGURE 5. (Colour online) Streamwise- and time-averaged total velocities 〈u〉xt − yx̂ for
Re= 5000 F−2

h = 0.1, Pr= 1, Lx= 4π, Lz= 2π from set 1 of DNS in table 1. Streamwise
vortices emerge as a coherent structure coupled to the density layering.

Lx = π to reduce the computational expense. These are shown in the second set of
results in table 1. Note that even the least energetic of these cases has Reτ ≈ 190
corresponding to L+x ≈ 600 in viscous units, which should be comfortably above the
minimal distance (Jimènez & Moin 1991).

Insight into the properties of these large-scale structures is gained by considering
the limit Fh→∞. In unstratified plane Couette flow, streamwise-invariant large-scale
structures are known to exist at larger Reynolds number as weak secondary flows
(Papavassiliou & Hanratty 1997; Toh & Itano 2005; Tsukahara, Kawamura & Shingai
2006). Figure 6 shows snapshots of streamwise-averaged wall-normal velocity 〈v〉x
for F−2

h = 0, 0.05 and 0.1 for Re = 5000, which shows this large-scale structure in
the unstratified case and the reduction in the vertical length scale of this structure as
Fh decreases. These secondary streamwise rolls have been understood as essentially
a large-scale condensate of an inverse cascade of quasi-two-dimensional streamwise
vorticity. These structures are mostly inviscid, except near the walls and therefore
require only relatively small energy flux to maintain them. A self-sustenance between
the Reynolds stresses of the turbulence and the large-scale secondary flow allows the
structure to persist in space and time.

Due to their large scales, in the vertical in particular, these are the first coherent
structures to feel the effect of stratification. As Fh is decreased, this large-scale flow
becomes constrained in the vertical, z, direction by the vertical buoyancy scale lz.
The buoyancy length scale is commonly observed to scale as lz∼U/N (where U is a
typical horizontal velocity scale) which has been predicted by scaling arguments of the
governing equations Billant & Chomaz (2001) and also by linear instabilities (Billant
& Chomaz (2001), LCK). Here we also observe this characteristic U/N scaling as
shown in figure 7, where we have estimated lz using a wavenumber centroid method
on the spectra of 〈v〉x,y,t similar to the approach described in LCK, and chosen
U = vrms.

3.2. Relaminarisation
This interpretation of the layering and influence of the buoyancy scale on this system
allows for further interpretation of the relaminarisation boundary. The next largest
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FIGURE 6. (Colour online) Streamwise-averaged wall-normal velocity 〈v〉x for Re= 5000,
Pr = 1, Lx = π, Lz = 2π for F−2

h = 0, F−2
h = 0.05 and F−2

h = 0.1 from DNS in table 1.
The large-scale flow observed in unstratified plane Couette flow is shown in the leftmost
panel, with the middle and right panels showing how stratification confines the secondary
flow to a shallower vertical scale, decreasing with decreasing Fh.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 10-110-2

2.5

2.0

1.5

1.0

0.5

1.4
1.2
1.0
0.8
0.6
0.4
0.2

lSlz

lz l

10010-1

3
2
1
0

U/N Fh
-2

(a) (b)

FIGURE 7. (Colour online) (a) Estimate of the vertical length scale of the mean
streamwise roll, computed by a centroid of the Fourier transform of mean wall-normal
velocity, plotted against an estimate of U/N where U ≡ vrms and N = F−1

h . A linear fit
is shown where lz = 1.44U/N + 0.39 and data are given from all cases in table 1. Inset
shows the same plotted with U/N on a log axis to better show the cluster of points for
U/N < 0.4. (b) Vertical length scales against F−2

h for the case of fixed Re = 5000 from
the second set of DNS in table 1. lz is given as in the left plot, along with lS = 100ν/uτ .
Decreasing Fh beyond the values given here results in relaminarisation of this subcritically
triggered turbulent flow, which may be interpreted as occurring due to the intersection of
the buoyancy scale with the streak spacing and subsequent disruption of the SSP/VWI
mechanism by stratification.

spanwise length scale in pCf dynamics is the inner streak spacing. This spacing has
been established as lS = 100ν/uτ (see e.g. Kline et al. (1967), Kim, Moin & Moser
(1987), Hamilton, Kim & Waleffe (1995)). By examining the case of fixed Re= 5000
and varying only Fh we plot in figure 7 the buoyancy length scale lz and the streak
spacing lS. As Fh is decreased the two length scales become closer in value, and their
intersection represents the relaminarisation point with respect to Fh at this Re.
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FIGURE 8. (Colour online) Spanwise spectra of U+ plotted against y+, the distance from
the wall in viscous units. The spectra are constructed from kx = 2π/Lx i.e. the largest
streamwise length scale which is optimal for picking out the signature of the near-wall
regeneration cycle at λ+z = 100 and the buoyancy scale (λ+z ≈ 400 at F−2

h = 0.005). Various
values of Fh from the DNS of table 1 are shown, decreasing from (a) to ( f ). As Fh
decreases the near-wall peak stays fixed but the buoyancy scale shifts towards it, i.e.
decreasing λ+z ≈ and y+. At F−2

h = 0.1 the peaks intersect and further decreases in Fh
result in overlap of these scales and relaminarisation.

To analyse this scale convergence more carefully, we plot in figure 8 the spanwise
spectra with y of the normalised mean streamwise velocity Û+ = 〈û〉t/uτ (where
.̂ denotes the Fourier transform) for streamwise wavenumber kx = 2π/Lx. This choice
is made to pick out the signature of the largest-scale streamwise mean flow and the
near-wall fluctuations. For relatively large Fh, there are two peaks, the inner streak
scale corresponding to lS = 100ν/uτ , i.e. at λ+z = 100 and y+ ∼ 10 and the large-scale
secondary flow further from the wall (in this measure) and with larger spanwise
wavelength. As Fh is decreased, the spanwise buoyancy scale reduces and begins to
penetrate towards the wall, such that for Fh =

√
10 the two peaks have essentially

merged. Further reducing Fh causes the buoyancy scale to envelop completely and
overlap the inner streak scale. In other words, the small-scale streaks become strongly
influenced by the buoyancy scale so that the SSP/VWI mechanism is disrupted and
turbulence is unable to maintain itself.

The discussion of the influence of stratification on SSP/VWI dynamics is developed
in detail in Deguchi (2017) and Olvera & Kerswell (2017). Although both these
studies focus on wall-normal stratification, the leading effect identified there is the
same in spanwise stratification: the presence of stratification in either the wall-normal
or spanwise direction inhibits the streamwise rolls which underpin SSP/VWI (e.g.
equations (3.12) and (3.13) of Olvera & Kerswell 2017). This is because in both cases
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the rolls of the streak–roll–wave-sustaining cycle are most strongly penalised by the
potential energy burden of overcoming gravity. By weakening the rolls, stratification
directly reduces the lift-up effect so that the streaks are smaller amplitude and, at
some point, may not support instabilities to re-energise the rolls.

The ultimate suppression mechanism is, however, qualitatively different from the
essentially wall-dominated mechanism for (wall-normal) stratified pCf discussed in
detail in Deusebio et al. (2015). There, the key mechanism, as previously identified
by Flores & Riley (2010), is the suppression by stratification of vertical momentum
transport essential to the maintenance of turbulence from the near-wall boundary
layers, as quantified by the magnitude of the so-called Monin–Obukhov length in
wall units. Here, in the spanwise stratification case, suppression comes through
the disruption of the SSP/VWI mechanism near the wall by the large-scale flow.
Figure 7(b) indicates that this disruption occurs when the larger buoyancy scale lz

approaches the streak scaling lS.
Also, in contrast to the triply periodic body-forced case with horizontal shear

discussed in LCK, the layers are a relatively simple modification of an existing
secondary flow, and not the result of new instabilities or nonlinear exact coherent
structures. As indicated above, the stratified version of the self-sustaining process of
pCf (i.e. SSP/VWI) still persists at scales below lz and turbulence is destroyed at
larger stratifications. Care is required, however, when interpreting the hierarchy of
scales present at small Fh. Brethouwer et al. (2007) detail conditions for ‘layered
anisotropic stratified turbulence’ (LAST) to be observed based on a separation of
scales such that η� lO < lz� lh where lO =

√
εF3

h is the Ozmidov scale, the largest
vertical scale largely unaffected by stratification, η = (ν3/ε)1/4 is the Kolmogorov
microscale and lh is some appropriate horizontal scale. This ordering of scales
indicates that an established inertial dynamic range of essentially isotropic scales
must exist below lO with the LAST regime operating between lz and lO.

In table 1 a standard estimate of lO is given. It shows that for the largest
stratifications lO < lS, from which we might incorrectly infer that the streaks
are strongly affected by stratification. This arises from the false assumption that
the flow is isotropic below lO. In this flow, even when unstratified, the inherent
streamwise–spanwise anisotropy of the SSP/VWI configuration results in weaker
fluctuations of spanwise (or vertical) velocity relative to the streamwise velocity
fluctuations, and so for a given level of dissipation and stratification, the vertical
velocity is less confined than in a similarly energetic isotropic flow. For this reason
we argue that the pertinent vertical length scale of interest is the buoyancy scale lz

as discussed above and the classical interpretation of the Ozmidov scale as defined
here should be made with care.

It is conceivable that with increased computational resources this system may
possibly continue into an equivalent LAST regime with larger Re and smaller Fh, and
we conjecture that the large scale coherent structures discussed here will persist and
the scaling lz ∼ U/N will become clearer. In principle a region in parameter space
with lz > l′O > lS > η should be observed, where l′O is a suitably redefined Ozmidov
scale for this inherently anisotropic case (i.e. the true scale below which stratification
has no influence). As the relaminarisation boundary is approached we assume the
three-way balance lz ∼ lS ∼ l′O will be attained. Importantly, we stress that as in
LCK, we have shown yet another example of stratification influencing the flow and
spontaneously producing layered structures outside of this strict asymptotic regime,
driven by an altogether different mechanism to LCK.
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4. Linear instability and supercritical transition
Heretofore, in our discussion of the DNS we have neglected the influence of the

stratified linear instability which can appear in this system, as described in Facchini
et al. (2018). We have only considered flows where the dynamics below lz is similar
to the SSP/VWI subcritically triggered turbulence observed without stratification. This
can be justified by considering the results of an independent linear stability analysis,
leading to the estimate of the neutral curve on the (Fh, Re) plane for Pr= 1 plotted
in figure 1. This curve represents the boundary above which (shaded in green) it
is possible to find wavenumber combinations kx and kz for which the basic flow is
unstable. Note that for all the cases discussed above, we have deliberately chosen
domains which do not support the linear instability. In addition to this, it is clear that
only for Re> 5000 is the relaminarisation boundary disrupted by the linear instability.

At larger Re and smaller Fh it is necessary to consider the influence of the
linear instability on the relaminarisation and the sustenance of turbulence. In order
to investigate the potentially supercritically triggered turbulent dynamics above the
projected relaminarisation boundary of the subcritically triggered turbulence, we
have performed a simulation at Re = 10 000, F−2

h = 0.7 in a geometry Lx = 12,
Lz = 4, denoted with a triangle symbol in figure 1. In this geometry the fastest
growing linear mode has one wavelength in the streamwise x-direction and four
wavelengths in the vertical z-direction. The initial exponential growth rate of the
linear normal modes is essentially constant and eventually gives way to nonlinear
dynamics at finite amplitude as shown by snapshots of u and w in figure 10. (See
also accompanying movie (Movie 1.gif) in the supplementary material available at
https://doi.org/10.1017/jfm.2019.192.)

Since we are above the relaminarisation boundary for SSP/VWI turbulence, the
nonlinear dynamics remains somewhat more regular than below the boundary in
the sense of being supported by narrower spectra in space and time. The traces
of energetic quantities (figure 9) have longer time scales with larger amplitude
fluctuations, with larger K and smaller ε than the SSP/VWI turbulence at the same
Re. The snapshots of the flow show larger-scale internal wave motions, compared to
the smaller-scale SSP/VWI turbulence as can be seen through comparison of figure 10
(t= 980 panel) and figure 11 (t= 1136 panel).

There are also episodes of more turbulent behaviour where the dissipation rate and
mixing efficiency increase and smaller scales are observed in the flow fields. The times
of maxima in the turbulent kinetic energy, dissipation and mixing are coincident with
local accelerations of the flow and shear-induced overturns associated with instability
of the internal waves (see the bottom two panels of figure 10), due presumably to
either wave–wave or wave–mean flow resonance (see Grimshaw 1977; McComas &
Bretherton 1977; Sutherland 2001), and will be a topic of future research. There is
also some suggestion of a characteristic recurrence time scale for the bursting events
in the energetics shown in figure 9, drawing some similarity to the bursts described in
LCK (see in particular § A.1), which we may expect to recur if the simulation were
continued.

At Re = 10 000, F−2
h = 0.2 it is actually possible to choose a geometry which

supports the (supercritical) linear instability while still remaining below the boundary
for SSP/VWI turbulence. This particular flow geometry allows us to consider
the competition between the nonlinear dynamics and different possible routes to
turbulence. We perform another DNS at this Re and Fh with Lx = 16.5 and Lz = 5.8
(now with Nx=Nz= 512) and initialised with a large-scale yet small-amplitude initial
condition. In this geometry we also expect the fastest growing linear mode to have
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FIGURE 9. (Colour online) Variation with time of: turbulent kinetic energy K;
dissipation ε; mixing efficiency E = χ/χ + ε (a,c,e) and root-mean-square (r.m.s.)
velocities (b,d, f ) for three flows with Re = 10 000 and: F−2

h = 0.7 (a,b); F−2
h = 0.2 in a

linearly stable geometry with (Lx=π, Lz= 2π) (c,d); F−2
h = 0.2 linearly unstable geometry

with (Lx = 16.5, Lz = 5.8) (e, f ). Striking are the large fluctuations associated with the
nonlinear saturation of the linear instability compared to the SSP/VWI turbulence below
the relaminarisation boundary which is the long-time attractor for both F−2

h = 0.2 cases.
Note the very different time limits for the three simulations.

one wavelength in the x-direction and four wavelengths in the z-direction. In this case
we see again the initial exponential growth of the linear normal mode, saturating with
the nonlinear internal wave dynamics, and spending a significant time there (as shown
in the top two panels of figure 11).
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FIGURE 10. (Colour online) Snapshots of w in (y, z) planes (left) and u in (x, z)
planes (right) at various times for the linearly unstable Re = 10 000, F−2

h = 0.7 flow
geometry: (a) early time t= 160 shows the signal of linear normal modes; (b) intermediate
time t = 980 shows the growth of wave-induced shear and smaller wavelengths;
(c) intermediate time t = 995 shows the development of Kelvin–Helmholtz-type
overturning; (d) intermediate time t = 1000 shows the transient growth of streaky flow;
(e) late time t= 1120 shows the eventual return to the more regular nonlinear wave state.
See also accompanying movie (Movie 1.gif) in the supplementary material.

However, this is not the long-time attractor. Significantly, the finite amplitudes
reached are sufficient to seed the SSP/VWI sustained turbulence which was observed
in the linearly stable geometry. In other words, apparently, the linear instability simply
provides another route to what appears to be the same attractor at these parameter
values. This is borne out by the flow fields in figure 11 and the energetics of figure 9
(see also accompanying movie (Movie 2.gif) in the supplementary material). We find
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FIGURE 11. (Colour online) Snapshots of w in (y, z) planes (left) and u in (x, z) planes
(right) at various times for the linearly unstable Re = 10 000, F−2

h = 0.2 flow geometry:
(a) early time t = 337 shows the signal of linear normal modes; (b) intermediate time
t= 725 shows nonlinear internal waves; (c) intermediate time t= 1048 shows the growth
of wave-induced shear and smaller vertical wavelengths; (d) intermediate time t = 1070
shows the ensuing Kelvin–Helmholtz-type overturning; (e) late time t = 1335 shows the
eventual and sustained growth of streaky flow indicative of the SSP/VWI attractor. See
also accompanying movie (Movie 2.gif) in the supplementary material.

that when the local accelerations are energetic enough to give rise to overturns (as in
the flow with F−2

h = 0.7) the transfer of energy to small scales initiates the near-wall
regeneration mechanism and sustained SSP/VWI turbulence is established as the late
time attractor (see bottom 3 panels of figure 11). The energetics in figure 9 also
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approach the values associated with the linearly stable flow, which has undergone
subcritical transition at late times, though there is undoubtedly a very significant
(and long-lived) transient adjustment. It is worth noting that the flow fields after
overturning in the F−2

h = 0.7 case appear to show some transient growth towards
an SSP/VWI configuration before stratification suppresses the spanwise streak scale,
the small scales decay viscously and the internal wave regime recurs. This can be
partially observed in the final panel of figure 10 and in the r.m.s., energetics and
mixing efficiency reaching similar levels as observed in the wall-localised turbulence
case in figure 9. Extrapolating then towards the relaminarisation boundary we expect
such transient growth to increase until the boundary is crossed and the streaky flow
becomes sustained.

We conclude that below the relaminarisation criterion described in § 3.1 the
turbulent attractor looks unaffected by the new linear instability, although it is
undoubtedly important that a new linear instability mechanism has been identified to
provide a route for small perturbations to excite turbulence.

5. Discussion and conclusions

The computations performed here have revealed another example of coherent
layering of an initially linear density distribution at moderate stratification. This has
more than a passing resemblance to the exact coherent structures isolated in LCK:
shear-wise flow advects the streamwise velocity component to create an alternating,
or zig-zagging structure. Confinement by the walls results in the shear-wise flow
being associated with a streamwise vortex, whereas in the periodic geometry the
shear-wise flow is periodic in y. This is analogous to the rotation/advection of
the vortex dipole necessary for the zig-zag instability (Billant & Chomaz 2000b).
Importantly however, in the wall-bounded case the basic flow profile remains linearly
stable in the parameter regimes studied here, meaning that the layering structures
have a different generating mechanism. (In theory it may be possible to perform a
homotopy of an exact coherent structure from a system with a stress-free boundary
condition and horizontally shearing base flow which experiences a zig-zag-type linear
instability and thus connect to the no-slip boundary condition considered here.)

The results here bear some similarity to the buoyancy patterns described in Leclercq
et al. (2016b) for the axially stratified Taylor–Couette flow case, in so far as having
sharper gradients confined near the walls and offset across the gap. We have also
associated these density perturbations with a large-scale vortical flow, however it
seems that the underlying mechanisms producing these structures are different again.
Here we find the large-scale flow to be the modification of an existing secondary
flow in plane Couette flow, whereas the suggestion in Leclercq et al. (2016b) is of
a different nonlinear mechanism incorporating spiral modes, associated with various
linear instabilities of the underlying flow, as also discussed in Park et al. (2017) and
Park et al. (2018). How these two mechanisms connect as the narrow-gap limit is
approached is therefore an interesting open question.

The other main finding of this work is the extent to which the laminar–turbulent
boundary becomes affected by stratification in this flow geometry and in particular
how the mechanism responsible for shutting off turbulence as stratification is
increased has a fundamentally different interpretation from the flow with vertical
shear/wall-normal stratification. Here, the intersection of a buoyancy-dominated large
scale and the smaller inner scale of the near-wall regeneration mechanism is the key
process by which relaminarisation occurs. This is in contrast to the vertical shearing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.192


Plane Couette flow with spanwise stratification 115

case where the length scale associated with the flux of momentum into the interior
is modified by stratification, as quantified by the magnitude of the Monin–Obukhov
length in wall units (see Flores & Riley (2010) and Deusebio et al. (2015) for more
details) and found to predict relaminarisation. One may also make the observation
that in the vertically shearing case buoyancy directly penalises the wall-normal flow
responsible for lifting up the wall fluid to form the streaks. On the other hand, in
the horizontally shearing orientation this wall-normal flow is indirectly penalised via
its coupling with spanwise velocity in the streamwise rolls. Both cases limit the rolls,
however the subtle, but crucial, difference regarding the velocity components is the
reason for higher buoyancy forces (i.e. F−2

h or Ri) at large Reynolds number allowing
sustained turbulence in the spanwise stratified orientation.

Two important features of subcritical transition which we have not investigated
thoroughly are computational domain size and initial conditions. We conjecture that
our relaminarisation boundary may also be considered an ‘intermittency boundary’
and that there will only be some weak dependence of the turbulent fraction with Fh
at a given Re (similar to figure 18 in Deusebio et al. 2015). Recall, the mechanism
is ultimately the suppression of streamwise rolls by buoyancy. This can be considered
a local, high Reynolds number process, independent of viscosity. We may then
conjecture that this relaminarisation mechanism is (largely) independent of box size
and therefore we may only expect intermittency when lz≈ lS. Likewise we expect the
effect of initial conditions to be modest. We have shown how the turbulent attractor
is disrupted by stratification and have not concerned ourselves with the particular
pathways to that attractor. A more thorough investigation of these aspects is left for
future research.

The results presented here open a number of further research questions and
opportunities. It would be of interest if these inherently nonlinear (i.e. not obviously
and directly connected to a linear formation mechanism) and turbulent layers are
observable in a laboratory experiment similar to those conducted by Facchini et al.
(2018). We note here that all of the physical and numerical experiments conducted
by Facchini et al. (2018), with the exception of cases where Fh=∞, are well above
the relaminarisation boundary for subcritical turbulence that we have established.
This may open a new avenue for connecting laboratory and numerical experiments
involving layers and pattern formation in stratified turbulence. Robustness of these
layers to changes in Prandtl number is therefore an obvious consideration; using salt
as a stratifying agent increases the Prandtl number, or more precisely the Schmidt
number, to ≈700. It is at least plausible that even sharper gradients of density might
arise in flows at larger Pr, and it is also conceivable that these layers might penetrate
further into the interior.

Furthermore, the boundary conditions on ρ are chosen to satisfy a no-flux condition.
However, if heat were used as the stratifying agent then it might be expected that
there would be some heat loss through the side walls. A test case (results not shown)
suggests that applying an insulating boundary condition, i.e. setting ρ|y=−Ly=ρ|y=Ly=0
yields very similar near-wall layers and large-scale mean flows, suggesting a certain
robustness of the bulk flow features reported here.

Our results also highlight an interesting question concerning the role of the
orientation of shear in more general environmental and industrial flows. For example,
in pipes and ducts the mean flow will generically have shear at some non-trivial
angle to the orientation of gravity. As noted previously, horizontal shear, particularly
at sufficiently high Re, is a more effective route to transfer energy from the mean
flow to the turbulence (Jacobitz & Sarkar 1998) than purely vertical shear, and as
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we have shown the turbulence suppression mechanisms are quite different for each
case. The question then arises as to how these mechanisms compete, and also how
turbulence is deformed by stratification in more generic situations. Just to mention
one example, it has recently been observed that horizontal confinement in a duct, and
hence the inevitable introduction of spanwise shear to the Holmboe instability of a
principally vertically sheared (relatively ‘sharp’) density interface gives rise to a new
robust long-lived nonlinear coherent structure in the form of a ‘confined Holmboe
wave’ (Lefauve et al. 2018). It remains to be seen how similar confinement might
affect turbulent flows, even without the sharp density interface typically required for
the initial occurrence of Holmboe-type instabilities.

Finally, Taylor et al. (2016) have shown how stratification can be a useful tool
for studying the localisation and control of turbulence in vertically sheared flows.
It is widely understood that large scale flows play some role in pattern formation
and the transient growth and/or decay of localised turbulence (Duguet & Schlatter
2013; Lemoult, Aider & Wesfreid 2013; Couliou & Monchaux 2015). Here we have
demonstrated how relaminarisation can be controlled by the buoyancy scale. It is
therefore clearly of interest to investigate how the modification of large-scale flows
discovered here influences the spatio-temporal behaviour of localised turbulence, and
to what extent the control method of Taylor et al. (2016) can be utilised to facilitate
such an investigation. We intend to report the results of just such an investigation in
due course.
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