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THE CENTERS OF A RADICAL RING 

XIANKUN DU 

ABSTRACT. It is shown that the nth center of a radical ring coincides with that of 
its adjoint group, from which a result of Jennings is sharpened and a conjecture of his 
is confirmed. 

Jennings [1] proved that the associated Lie ring of a radical ring is nilpotent if and 
only if its adjoint group is nilpotent, and he conjectured that the nilpotent classes of them 
are the same in this case. The conjecture was verified partially by Laue [2]. In this note, 
we prove that the nth center of a radical ring coincides with that of its adjoint group. This 
theorem has been conjectured and proved for n = 2 by Laue [2]. As a corollary of our 
result, Jennings' conjecture is proved and his result is improved. 

Let R be a Jacobson radical ring. Then (/?, o) is a group, called the adjoint group of R, 
with respect to the composition a o b = a + b — ab for a, b G R. Also, (R, +,[,])is a Lie 
ring, called the associated Lie ring of R where [a, b] = ab — ba for a,b G R. The inverse 
of a € R in (/?, o) will be denoted by a'. The nth center Zn of the ring R (respectively, Yn 

of the group (R, o)) is defined inductively as follows, 

Zo = 0, Zn = {aeR\ [a,x] G Zn-X for all x G R}, n>\. 

(respectively, Y0 = 0, Yn = {aeR\afox/oaoxe Yn-X for all x G R}, n > 1). 
For brevity, we shall write [x\, JC2,...,xn] for [• • • [x\,xi\,...,xn\ n > 2, and use the 

formal identity 1. The identities of commutators such as [xy, z] = x[y, z] + [JC, z]y and 
[xy, z] + [yz, x] + [zx, y] = 0 will be used freely. 

The main result of this paper is the following theorem. 

THEOREM. Let R be a radical ring. Then Zn = Yn for any natural number n. 

To prove the theorem, the following lemmas due to Laue [2] will be required. 

LEMMA 1. For all a G Zn andx,y G R with [x,y] = 0, we have y[a,x] G Zn_i and 
( l - jOta,*] EZn-L 

PROOF. See the proof of [2, Lemma 2]. 

LEMMA 2. Zn is a radical subring ofR and (I — x)Zn(\ — x1) C Zn for all x G R. 

PROOF. It is clear from [2, Lemma 1,2]. 
We proceed with a sequence of lemmas for our further work. 
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LEMMA 3. Zn c Yn. 

PROOF. The proof is by induction on n. There is nothing to prove for n = 1. Let 
n > 1 and assume Zn-\ C Yn-\- For a G Zn,x,y G R, easy calculations yield 

[a ox' oaox,y] = —[(1 — a'){\ — x!)[a,x\,y\ 

= [ f l , * , ( i - f l ' M i - y ) ] 

- M i - A ^ i - ^ ) ] 

- [ ( l - y ) [ a , j c ] , ( l - £ i / ) j ] 

- j ( l - j t % i , * ] V , ; y ] . 

By Lemma 1,(1—y)[a,x] G Zn-\.Thus[a'ox,oaox,y] G Z„_2andthen<2/ojc/oaojc G 
Zn-\. By the inductive hypothesis, we have af o x/ o a o x G Yn-\. Hence a G Yn and 
Z„ C F„, as desired. 

We shall prove the inclusion Yn C Zn. We begin with 

LEMMA 4. IfYn-\ C Zrt_i, f/œn 2F„ c Zn. 

PROOF. For a G Yn9 we have 

(1) (1 -Vofl 'Xa,!] GZn_i for all* G fl, 

since 
(1 - y o a')[a,x] = (a'oxf oao x)' G y„_i C Zn-X for all JC G /?. 

Now, for y G /?, by Lemma 1, we obtain 

y(\-x)[(\ -x/ oa')[a,x\,y(\ - x)] G Z„_2, 

(1 - y o x)[{\ - x! o a')[a,x\y o x\ e Zn-2, 

or, 
[y[a,(l-af)xly(l-x)]eZn-2, 

[(l-y)[a,(l-a')xlyox]eZn-2-
Hence, the sum [a, (I — a')x,y(l — x)] + [(1 — y)[a, (1 — d)x],x] is in Zn_2. However, 

(2) [a, ( 1 - a')*, *] € Z„_2 for all x G fl, 

because (1 — JC)[(1 — JC7 o a')[a, JC], x] G Zrt_2 by Lemma 1. Therefore, 

(3) [a, (1 — a')x,y — yx] — [y[<z, (1 — a')*],*] G Z„_2 for all x,y £ R. 

Replacing x by — x in (3) gives 

-[a , (1 - a')*,)7 + yx] - [y[a,(\ - a')x],x] G Zn_2. 

which together with (3) implies 2[a,(l — d)x,y] G Zn_2; that is, [2a,(l — af)x,y] G Zn_2 
for all x,y G R. Thus, we get 2« G Zn, since /? is a radical ring. The proof is complete. 

REMARK. AS pointed out by the referee, by an easy induction on n, Lemma 3 and 
Lemma 4 give a surprisingly short proof of the theorem in case 2R — R, or in particular, 
R is an algebra over a field F with ch F ^ 2. 

The following lemma is of independent interest. 
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LEMMA5. Zn = {aER | (1 -jJ)[a,x\ G Z„_i for ail x G R}. 

PROOF. Set 

An = {a eR | (1 -x')[a,x] G Zn_i for ail JC e R}. 

Then the inclusionZ„ C An follows from [2, Lemma 2] since (1 — x/)[a,x] = a—x1 oaox. 
Conversely, we prove An C Zn by induction on n > 1. This is clear for n — 1. Let n > 1 
and assume An-\ C Z„_i. Then we have to prove a G Zn for any a G An. Let a £ An. 
Since 

[2a,jc,y] = v(l - JC)[(1 -y>[a,x],v(l - JC) ] 

+ (1 - y OJC)[(1 -x,)[a,x],yox] 

- y(l + jc)[(l - (-jc)')[a,-jc],y(l +*)] 

- (l - y o (-*)) [(l - (-Jc)')[a, -x],y o (-*)], 

by Lemma 1, we get [2a,x,y] G Zn_2. Thus 

(4) 2a G Z„. 

By Lemma 1, we have 

[a,x,x] = (1 -*)[(1 ~y)[a,x],x] GZ„_2, 

the linearalization of which yields [a,Jc,y] + [a,y,x] G Z„_2 for all jc,y G /?, and in 
particular, 

(5) [a,x,y(l -x/)] + [a,y(l -x/),x] G Z„_2 for all JC,y G #. 

It is routine to check 

[(1 -x/)[a,xly] = (1 -x/)[[a,ylx}+(l-xf)([a,x,y(l -x1)} 

+ [a,y(l-xf),x])(\-x) 

- ( 1 -jc/)[2a,y(l - A * ] ( l -JC) , 

from which (1 — JcO^y], JC] G Zn_2 by (4), (5), Lemma 2 and Lemma 4. Thus, by the 
inductive hypothesis, we have [<2,y] G Zn_i for all y G /?, and so a G Zn, as desired. 

Now we prove the inclusion Yn C Zn, which is recorded as Lemma 6. 

LEMMA 6. yn c Z„. 

PROOF. The proof is by induction on n > 1. For n — \ there is nothing to prove. 
Let n > 1 and assume yw_i C Z„_i. Then the proof of Lemma 4 is available. Hence for 
a G y„, using (1) and Lemma 1, we have 

[a,x,a ox] = (1 — a ojc)[(l — JC' oa)[a,x],a OJC] G Z„_2. 
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One sees that 

[a, x, a] — [a, x — a', ao(x — a')] — [a,JC, a o JC], 

[a9x,d] = -[a,(l-(/)x(l-c/),àl. 

Thus we have 

(6) [a, x, a] G Zn_2, [a, JC, af] G Z„_2 for all x G /?. 

As ( l -y ) [ f l , ^ , j c ] = [ ( l - y o f l O t ^ ^ ^ o x j - C l - ^ t ^ C l - ^ f l l C l - j c X f r o m C l ) , 

(6) and Lemma 2, we deduce (1 — JC7)^, JC, JC] G Z„_2, and then 

[tf,;t,jc,;c] = (1 — JC)[(1 —xf)[a,x,x],x\ G Z„_3 

by Lemma 1. Hence 

[a, x, x, a'] = [a,x + a\x + a\x + d\ — [a, JC, JC, JC] 

— [a,x,d,af] — [a,x,a',x] G Zn_3. 

By the Jacobi identity, [[a,jc], [« ' , JC] ]= [a,x,a\x] — [a,x,x,d]. It follows that 

(7) [[a, JC], [a7, JC]] G Zrt_3 for all JC G R. 

Now, replacing JC by JC + a1 in (3), one has 

[<z,(1 — a')x,y — y(x + af)] — \y[a,(1 — a')x],x + af\ G Z„_2, 

which shows that 

[a, (1 - af)x,ya'] + [y[a, (1 - a')x], a'] G Z„_2 for all jc,y G fl. 

This is equivalent to 

(8) [a,x,yaf] + [.y[tf,Jc]V] G Z„_2 for al\x,y G /?, 

since /? is a radical ring. Oberving that 

[tfa,*],*!7] = [a,x,dy] - [a,xd,y], 

we can see that [a,x9yaf] + [a,x,a'y] — [a, xaf, y] G Z„_2; that is, 

[[a,x], [d,y]] + [2a,x,ya'] - [a,xa\y] G Z„_2, 

in which taking y — x and then using (7) and Lemma 4, we have 

(9) [a, xa', JC] G Zn_2 for all JC G /?. 

It is easy to see that 

—(1 — af ox')[a,x] = afoxfoaoxe Yn-\ CZn-\. 
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Thus, (1 - x/)[a,x](l - a') G (1 - «)Zn_i(l - a') G Zn_i by Lemma 2, and so, 
[a,jc(l - af)9x] = (1 - JC)[(1 - jc/)[a,x](l - a'),*] G Z„_2 by Lemma 1. Clearly, 

[<2,JC,;C] = [a,x(\ — d),x] + [a,xa',x], 

whence, by (9), 

(10) [a,x,x] G Z„_2 for all x e R. 

Linearizing (2) and (10), we get 

[a, (1 - a)x,y] + [a, (1 - a')y,x] G Z„_2 for all x,y E R, 

[a,x,y] + [a,y,x] G Z„_2 for all JC, y G /?, 

respectively. From the latter, in particular, it follows that 

[a,x, (1 - a')y] + [a, (1 - a')?»*] G Z„_2. 

Hence, 

(11) [ f l , ( l - a > , y ] -[a,x,(l -a)y] G Zn_2 for all x, y e R. 

One can verify that 

[(l-a'ox!)[a,x],y] = [(1 - x')[a,x],(l - a)y] 

+ [a,(l -dfycyO -* ' ) ] 

-[a, jc,( l - ^ M l - V ) ] 

+ [(l-*/)[a,jc],a',;y] 

- [«,x,a7,y(l -x 7 ) ] . 

Now we claim that [(1 — xf)[a, JC], (1 — a')}-] G Z„_2. For, 

[(1 —a' ojc')[a,Jc],yl = —\d od oaox,y\ G Z„_2; 

[a,(l - aV,v(l - V ) ] - [A,JC,(1 - a')y(l - V ) ] G Zn_2, 

by applying (11) withy(l — JC7) instead of y; 

[(1 -xf)[a,xla\y} = [(1 - a)[(l - d oj\a,x\d\y\ G Z„_3, 

by Lemma 1; and [a, JC, d,y(l — JC7)] G Z„_3 by (6). Thus we conclude that 

(12) (1 - x!)[a,x] G Zn_! for all x G /?, 

since /? is a radical ring. Now Lemma 5 forces a G Z„. Therefore, F„ C Z„, completing 
the proof. 

Now, the theorem follows from Lemmas 3 and 6. 
The following corollary gives a result of Jennings in a sharper form and confirms a 

conjecture of his. 

COROLLARY. The associated Lie ring of a radical ring is nilpotent of class n if and 
only if its adjoint group is nilpotent of class n. 
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