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Abstract

In this paper, we explore potential surplus modelling improvements by investigating how well the available
models describe an insurance risk process. To this end, we obtain and analyse a real-life data set that is
provided by an anonymous insurer. Based on our analysis, we discover that both the purchasing process
and the corresponding claim process have seasonal fluctuations. Some special events, such as public holi-
days, also have impact on these processes. In the existing literature, the seasonality is often stressed in the
claim process, while the cash inflow usually assumes simple forms. We further suggest a possible way of
modelling the dependence between these two processes. A preliminary analysis of the impact of these pat-
terns on the surplus process is also conducted. As a result, we propose a surplus process model which
utilises a non-homogeneous Poisson process for premium counts and a Cox process for claim counts that
reflect the specific features of the data.
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1. Introduction

Modelling the cashflows of an insurer is the foundation of a substantial amount of actuarial
research. Among many different branches of actuarial science that require a surplus process
model, ruin theory is a branch that studies the risks leading to and resulting from possible insol-
vency of an insurer. The classical ruin model, also known as the compound-Poisson risk model, is
given by

N()

U(t) =u+ct—ZYi, u>0,
i=1

where u represents the initial surplus of the insurer, ¢ is the continuous premium rate, N(t) is a
counting process with initial value N(0) = 0 which counts the number of claims up to time ¢
and Y; is the i claim severity. Under the classical model, N () is a homogeneous Poisson process.
The homogeneous Poisson process has some properties that make mathematical analysis simpler
compared to other counting processes. This is why it has been thoroughly studied. See, for example,
Lundberg (1903), Cramér (1955), Dickson (1992), Gerber & Shiu (1998), and Lin & Willmot (2000).

Over the years, this model has been extended in many directions. In particular, Cramér (1955)
introduced an aggregate premium process to replace the deterministic premiums. In Sparre
Anderson (1957) proposed to use a renewal process for the claim counting process. Asmussen
(1989) introduced a Markovian environment where the claim inter-arrival times, the claim sizes
and the premiums were influenced by an external Markovian process. Embrechts & Schmidli
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(1994) studied a risk model where borrowing, investment and inflation were incorporated. Yang &
Zhang (2001) proposed modelling the insurer’s surplus using a spectrally negative Lévy process.
Lin et al. (2003) introduced an absorbing barrier to model a dividend strategy. Subsequently, Lin &
Pavlova (2006) extended this model to a threshold dividend strategy. Albrecher & Boxma (2004)
and Boudreault et al. (2006) explored dependence structures linking inter-claim times and claim
amounts. Dassios & Wu (2008) allowed the insurer to have negative surplus for a fixed amount of
time called Parisian delay. These are all theory-driven extensions of the classical ruin model.

In this paper, we offer some data-driven extensions of the classical model. We study two data
sets containing premium payments and claim payments. The goal of our study is to verify to what
extent the assumptions in the classical ruin model and its variants, especially the assumptions on
the counting processes, reflect the main features exhibited by the data.

The first data-driven modification of the classical model that we propose is related to the aggre-
gate premiums. Namely, under the compound Poisson surplus process, the cumulative premium
at time ¢ is assumed to be equal to ct, which implies that the insurer collects premiums at a con-
stant rate. This condition is also assumed in most of the ruin theory research. In practice, business
growth is standard, i.e., insurers sell policies at increasing rates. Moreover, our studies reveal sea-
sonality in the premium process. These characteristics would alter the rate at which the insurer
collects premiums. These findings agree with findings presented in previous works, such as Ellis
(1974), where the author analyses the time patterns of an American life insurance product.
To model these features, it may be appropriate to choose another stochastic process for the pre-
mium income. The major theoretical advances in this direction come from the model proposed
by Cramér (1955) where the premium process is a compound-Poisson process. This model
has been studied in further depth by Boikov (2002), Labbé et al. (2011), Zhao & Yin (2012)
and several others. After analysing our data, we propose to generalise the aggregate premium pro-
cess by replacing the homogeneous Poisson premium-counting process by a non-homogeneous
Poisson process.

Secondly, we find that similar behaviours are also exhibited in the claim process. Consequently,
we explore how this model should be further adapted to reflect the specific features of the data.
This choice of a claim-counting process is supported by the studies of Lu & Garrido (2005)
who demonstrate that such a model is an appropriate fit to hurricane data. Moreover, as noted
in Beard et al. (1984) and Daykin et al. (1994), the insurer’s risk process is often affected by
long-term trends and short-term variations: features that are also prominent in our data, which
exhibits a notable upward trend and seasonality. Our choice of claim-counting process is further
supported by Morales (2004), who demonstrates how seasonality may be incorporated in a
non-homogeneous Poisson process.

Lastly, incorporating the policy purchasing process and the claim process, we propose a new
surplus process model. Special consideration is given to the dependence between the purchasing
and the claims. Under this new framework, the claim counting process becomes a Cox process, or
doubly stochastic Poisson process, which has been constructed via different approaches in the exist-
ing literature, see for example Asmussen (1989), Guillou et al. (2015), Albrecher et al. (2020) and
Avanzi et al. (2021). This framework provides an intuitive way of incorporating the risk exposure
born by the insurer into the surplus process model, and allows for separate consideration of time
patterns in the purchasing process and the claim process. A comparison of goodness-of-fit
between different candidate models shows that the proposed model captures more of the exhibited
features in our data sets than other models that have been considered in the past. A simulation
study is also conducted to evaluate some quantities of interest under the new model.

It should be noted that we are not aiming to provide an in-depth statistical analysis of the data:
this should be done in a subsequent study. Instead, we want to verify to what extent theory-driven
ruin models are supported by the data. Subsequently, we suggest ways of improving the existing
models that would account for specific features of the data. Again, further theoretical study of this
model is delegated to subsequent works.
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This paper is structured as follows. The data set is described briefly in Section 2. In Section 3, we
study temporal patterns of the premium-counting and claim-counting processes implied by the
data sets. We propose a new surplus process model to incorporate the characteristics we find. In
Section 4, we obtain some ruin theory results using simulation. We also compare the proposed
model with existing models. Conclusions are drawn in Section 5.

2. Data

We obtained two data sets for the purpose of this paper. Both data sets are provided by a regional
insurance company who wishes to remain anonymous.

The first data set contains detailed information on the timing of the cash flows, including the
timing of premium payments and claim payments. Consequently, the first data set is useful for
building counting processes, which is the main goal of this paper. For this reason, the first data set
is used extensively in this paper. We present this data set in this section.

The second data set is from a different region. It contains more details on the premium, such as
when the premium was paid, and when the coverage started. Since it lacks necessary details on the claim
payments, it is not used for the purpose of building counting processes in this paper. Instead, it is used
to validate the assumptions we use in the modelling process. This data set is described in Section 3.3.

The first data set contains 54,218 records of a one-year auto-insurance policy. The coverages of
these policies started between January 1, 2013 and December 31, 2015. The policies are bundles of
compulsory third-party liability coverage and additional coverage chosen by the policyholder. The
covered perils include damage suffered by a third party and damage suftered by the policyholder.

The recorded information is:

o Vehicle identifier: uniquely identifies the vehicle.

o Premium: the single premium for the policy. The premium is paid in a lump sum.

o Premium date: the date when the premium was collected.

o Accident date: the date when an accident occurred. There are multiple records associated
with the same policy if multiple accidents occur during the effective period.

o Claim date: the date when the claim was paid out.

o Claim amount: the amount that was paid to the policyholder to cover accident-related
expenses.

The exact effective dates of these policies are not known, only the years in which these policies became
effective are recorded. We use the premium date as a proxy to calculate the exposure at any given time.

This data set provides detailed information on premium date and claim date. Hence it is useful
for building models for the premium-counting process and the claim-counting process. Although
it is not the goal of this paper, we may also build models for premium sizes and claim severities
from recorded premium amounts and claim sizes. From the ruin theory perspective, this should be
sufficient to fit a risk model.

A brief summary of the first data set is given in Table 1.

It may be further deduced that, based on the vehicle identifier, 6,152 customers who purchased
this policy in 2013 also purchased a policy in 2014; 9,223 customers who purchased this policy in
2014 continued their coverage in 2015. There are 4,808 customers who appeared in all three years.

3. Methodology

The second data set provides much more detail on the timing of premiums, but little information
on accident time and claim sizes. As a result, unless specifically stated, the following conclusions
are all deduced from the first data set.
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Table 1. Summary of the first data set

Year Number of records Number of claims
2013 13,180 4,442
2014 17,632 5,527
2015 23,406 4,792

cumulative prmeium (unit currency)

0.0e+00 5.0e+07 1.0e+08 1.5e+08

= T T T
2013 2014 2015 2016

time (calendar year)

Figure 1. Cumulative premium with dashed auxiliary lines to show the convexity of the plot.

Specifying the premium process and the claim process should be sufficient for modelling the
surplus process as the latter can be derived directly from the first two processes.

3.1 Characteristics of the Premium Process

To verify how appropriate the classical ruin model is with respect to real premium processes, we
first examine the premium process of our data. In the classical model, this process is simply rep-
resented by a straight line ct. Using the data, the cumulative premium over time may be easily
obtained. A plot is given in Figure 1.

Two dashed parallel auxiliary lines are added to emphasise the convexity of the cumulative
premium. The convexity in the plot suggests that the insurer collects premium at an increasing
rate. Increasing premium amount and/or increasing purchasing rate may cause the convexity that
is observed on the graph. To investigate whether there is a change in the premium amount, we
group the data by policy year and analyse the premium distribution for different years. The empir-
ical distributions of the premiums are given in Figure 2.

There is no evidence from the empirical distribution that the premiums are different for
different years. More specifically, a summary of the data is given in Table 2.

We may conclude then that the premium amount does not change over time, as all these sta-
tistics essentially point in that direction. It is also noteworthy that the inflation rate in the region
where the insurer operates was relatively low during the studied period (1% — 2% annually). The
impact of inflation on the premium amounts over such a short period is negligible.

To check the trend in the purchasing process, we first investigate the daily sales of the policy
that are illustrated in Figure 3. Since most sales happened during workdays, we see a strong weekly
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Table 2. Summary of premium sizes by year

Year 1%t quartile Median Mean 3 quartile
2013 2,282 3,047 3,668 4,392
2014 2,290 3,039 3,593 4,363
2015 2,370 3,084 3,571 4,364
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Figure 2. The empirical distribution of the premium sizes for different years.
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Figure 3. Left: observed daily sales of the policy with 7-day moving average. Right: observed cumulative sales of the policy,
vertical short lines indicate public holidays.

pattern. To show the yearly fluctuation, a 7-day moving average is added. The figure shows sig-
nificant time structures, suggesting a more flexible premium income model would be more
realistic.

One way to extend the classical risk model is to use another compound Poisson process for
the premium income. This model was proposed at the beginning of the 21* century, and has
since generated further research. See, for example, Boikov (2002), Labbé & Sendova (2009)
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and Temnov (2014). We extend the model considered in these works by using a non-homogeneous
Poisson process to allow for seasonal variations.

Different algorithms are developed to estimate the intensity function of a non-homogeneous
Poisson process. For early references, see, for example, Leemis (1991), Arkin & Leemis (2000) and
Henderson (2003). Asymptotic properties of these estimators as the number of observations
increases to infinity are derived in these works. Chernobai et al. (2007) demonstrate that when
dealing with one realisation of a non-homogeneous Poisson process, the cumulative number of
arrivals can be used as an estimate of the cumulative intensity function. A detailed algorithm is
also given therein. Using daily data, the plot of the estimated cumulative intensity function is given
in the right panel of Figure 3. In this plot, we use vertical short solid lines to indicate public holi-
days in the region where the insurance company operates.

Some patterns in the data are immediately noticeable in Figure 3. There is a clear yearly cycle in
the sales of the policy, which means that the premium income is not uniform over the year. The
estimated cumulative intensity function is convex, suggesting that the corresponding intensity
function is increasing. Peaks are also observed around major public holidays, suggesting that these
events affect the premium income.

We want to emphasise that the goal here is to simply observe whether there is any temporal
pattern in the purchasing process. The methods employed here are sufficient to illustrate the exis-
tence of seasonalities but may be improved if one is interested in fitting the proposed model to
their own data. For instance, one may use more sophisticated predictive models to better under-
stand what drives these periodic patterns in their specific data set. For the purpose of this paper,
we use simpler methods because the interpretation of their results is more straightforward.

For the estimated cumulative intensity function, we first apply a polynomial regression model.
We obtain the smoothly increasing component of the cumulative intensity function, and by sub-
tracting this growth component from the overall intensity, we obtain the remaining cyclical com-
ponent. To this end, we fit the curve

@O =yo +nit+ vt

by minimising the squared error.

We also apply certain time-series techniques to separate the long-term trend and the season-
ality. Detrending is a topic that is explored in the time-series literature and is often needed in
practice. Different algorithms are developed, and many of them are readily available in various
statistical programming languages. We use the mFilter package for R in our analysis (Balcilar et al.
2019). Similar packages are available for different languages, such as the statsmodels module for
Python (Seabold & Perktold 2010). The filters we use are:

o Hodrick-Prescott filter. This model assumes that a time series y; can be viewed as the sum of
a growth component g; and a cyclical component ¢,

V=g +¢, t=1,..,T

In addition, the growth component is assumed to be smooth. The objective is to find the
trend component

T
g = argmin Z{(yt —g)+ A [(gt+1 —8)— (& _gt—l)]z}a
=1

where the positive parameter A controls the smoothness of g;. A closed-form expression for
g exists and may be expressed as matrix calculation. For the detailed algorithm, see Hodrick
& Prescott (1997). Ravn & Uhlig (2002) showed that the parameter A should be adjusted
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Figure 4. Left: Comparison of the long-term trend of the cumulative intensity function of insurance policy purchases
captured by different algorithms. Right: comparison of the seasonalities of the cumulative intensity function of insurance
policy purchases captured by different algorithms, dotted vertical lines mark the public holidays in the region where the
insurance company operates.

according to the fourth power of the frequency of observations. Based on this result, we
choose 1 = 1600 x 90* for our daily data.

o Christiano-Fitzgerald filter. This is a special case of the band-pass filters. It is an approxi-
mation to the ideal infinite band-pass filter. This method analyses cycles with different
frequencies in a time-series data set. By setting cutoff frequencies, we may separate
short-term shock and long-term trend. For details, see Christiano & Fitzgerald (2003).
As it is clear from Figure 3 that the period of the seasonality is approximately one year,
we define cycles with period greater than 365 days to be long-term trend, and other cycles
to be seasonality.

The seasonality and long-term trend of the cumulative intensity function captured by different
algorithms are given in Figure 4.

The long-term trends captured by different algorithms are practically identical. The convexity
of the trend implies that the insurance company sells policies at an increasing rate. Although the
HP filter and the CF filter are developed based on different mechanisms, they yield virtually iden-
tical seasonality components. This further confirms the existence of the seasonal fluctuations in
the data set. The polynomial regression model yields a slightly different result. This is expected
since the HP filter and the CF filter are non-parametric estimates and hence, they tend to be more
flexible. All three curves have similar shapes. The derivatives of these curves are positive at the
beginning and at the end of a year, and are negative in the middle of a year. Since the derivative of
the cumulative intensity function is the intensity function, this result means that fewer policies are
sold in the middle of a year compared to other times of the year.

We observe that there are peaks in the seasonality curve in Figure 4. Although public holidays
usually fall on the same dates from year to year and hence, are themselves periodic, we may sepa-
rate these events from the overall seasonality and quantify their impact. Two types of holidays are
observed in the region where the insurance company operates. Most public holidays are 3 days
in length, i.e., long weekends, while two holidays are 7 days in length. We only consider major
public holidays that are 7 days in length. As these holidays are longer, they have a larger impact on
consumer behaviours.
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September 24 October 1 October 8 October 15

pre-holiday holiday post-holiday

Figure 5. Illustration of three time periods around a public holiday (assume October 1 - October 7 are public holidays).

We study the change of policy purchases for three periods around a holiday: 7 days prior to a
public holiday, during public holidays, and 7 days immediately after the public holiday. We choose
7 days to eliminate possible weekly fluctuation in purchases. Figure 5 gives an illustration of these
three periods assuming that October 1-October 7 is a public holiday.

Analysing the impact of a specific event is frequently conducted across different disciplines. For
count data, a generalised linear model is often used. Since we use a non-homogeneous Poisson
process to model the sales of the policy, it is natural to use a Poisson regression model. This
approach and its variations are explored in many works, for example Chang et al. (2018). In light
of our findings so far, we incorporate in our analysis components that reflect the long-term trend,
the seasonality and the impact of weekends, together with the impact of public holidays.
We assume

{ H(t) ~ Poisson(Z(t))
log ¢(t) = Bolo(t) + Buli (1) + BoLa(t) + BsIs(t) + Vo + Y1t + Veos €08(Z= 1) + Van sin(Z 1),

(1)

where H(t) is the number of policies sold on day ¢, and I, I;,I,,I; are indicator functions
defined as

I() = 1 day ¢t is in a pre-holiday perlod
Y710 otherwise
__ |1 day tis holiday
L) = {0 otherwise

L(t) = 1 day tis in a post-holiday perlod
227710 otherwise

1 day ¢t is weekend
0 otherwise '

L) = {

The maximum likelihood estimates of these parameters are given in Table 3.

The values of 8;,i = 0, 1, 2, 3, capture the impact of public holidays and weekends. On average,
there is a 31% increase of the sales prior to a holiday, an 84% decrease during a holiday and an 8%
decrease after a holiday. These fluctuations explain the peaks that we observe in Figure 4. We also
notice that there is a 67% decrease on weekends, which explains the pattern observed in Figure 3.

The phase of the seasonality may be obtained by the estimates of y,, and y;,. By trigonometry,

we have
2 27‘( 2
Veos COS 365 ~+ P sin 365 = o cos %t +w
where
w= arctan(ysm) — 0.0249 ~ 0.00797, )
yCOS
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Coefficients Estimate exp(Estimate) Significance level
Bo 0.2701 1.310039

By —1.8147 0.162894

B, —0.0872 0.916525

3 —-1.1192 0.326527 e

o 3.5940 36.37954

o1 0.0008 1.000787 e

Veos 0.2486 1.282246

Ysin 0.0062 1.006248

Table 4. A summary of the claims by season: spring (March-May), summer (June-August), fall (September-November),
winter (December-February)

Year Spring Summer Fall Winter Total
2013 1,072 1,003 1,094 1,273 4,442
2014 1,334 1,221 1,335 1,637 5,527
2015 1,088 1,165 1,211 1,328 4,792
Total 3,494 3,389 3,640 4,238 14,761
Percentage 23.67% 22.96% 24.66% 28.71%
o =L = 02487
cos(w)

Equation 2 indicates that the seasonality component is a cosine function. This is consistent with

the seasonality obtained in Figure 4.

Using the estimates in Table 3, the parameter (1) becomes

log £(t) = 0.271y(t) — 1.811,(t) + —0.09L,(t) — 1.125(t)

This estimate is used later as the intensity function in the simulation study.

2
+3.5940 + 0.0008¢ + 0.2487 sin(3—6”5 (t+ 89.8)).

3)

In this section, we considered different components in the purchasing process. As shown in

Figures 3 and 4, and subsequent analysis, the intensity function of the Poisson process should

incorporate long-term trend, seasonalities and impact of public holidays.

3.2 Characteristics of the Claim Process

We next analyse the patterns exhibited by the claim process over time. In this subsection, we study

the claim process as a stand-alone process. In Subsection 3.3, we explore a possible relationship
between the purchasing process and the claim process. Analysing and improving the claim process

of a risk model is the focus of a great deal of research. As shown in many papers, the seasonal trend

in the claim process is prominent. As the technique we use here is identical to that in Subsection
3.1, we omit the technical details and simply state the results.
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Figure 6. Left: estimated cumulative intensity function. Right: seasonal patterns of the claim process.

Table 4 summarises the claims by year and season. As shown in this table, more claims hap-
pened in winter. A Chi-square test yields a test statistic of 117.02 with 3 degrees of freedom. The
corresponding p-value is almost 0. We reject the null hypothesis that the claims are uniformly
distributed within a year and believe that the claim frequency varies by season.

Using the same algorithms, the estimated cumulative intensity function and the seasonality are
plotted in Figure 6. The cumulative intensity function is again convex, which means that claims
are paid increasingly frequently. A possible explanation is explored in Section 3.3. Also, there are
more claims in winter than in summer, which is consistent with Table 4.

We notice that the seasonal pattern in the first year is different from that in the last two years.
As mentioned in Section 2, only policies that became effective after the year 2013 are included in the
data set. As a result, the claim information for the policies that became effective in the year 2012 but
extended to the year 2013 is not available. In other words, the data set does not contain all the claims
for the year 2013. The incomplete claim information needs to be considered in tandem with the
purchasing information to be reasonable. We commence this analysis in the next section.

3.3 Relations between the Two Processes

In this subsection, we investigate a possible relationship between the two counting processes. We
discover in Sections 3.1 and 3.2 that both counting processes have increasing intensity, and that
seasonal patterns are present in both processes. It is natural that both the arrival of premiums and
the arrival of claims become more frequent as the business grows. On the other hand, it is not
immediately evident whether the same driver causes the seasonalities in both premiums and
claims. Indeed, if the insurer is responsible for more policyholders for some time of year, then
one would expect more claims in that period. In light of this, we explore the evolution of the
exposure of the insurer over time. This is a natural extension to the collective risk model
(Chapter 9 of Klugman et al. (2012)).

Let M(t) denote the non-homogeneous Poisson process for the premium arrivals and let p(t)
be the intensity function of M(t). Based on the results in Section 3.2, let

n(t) =k +g(t) + s(1),

where « is a constant representing the initial business scale and g(¢) and s(f) are two generic
functions representing the growth component and the seasonality component, respectively.
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Figure 7. Estimated exposure, using policy purchasing dates as effective dates.

Let s(¢) have a period of 1, i.e., s(t + 1) = s(¢) for all t > 0. Let ¢ be the term of the insurance
policy. We further assume that the policy is in force immediately upon purchasing. The exposure
of the insurer at time ¢, denoted by &(¢), is then

M), t</{
é(t)_{1\4(15)—1\4’(15—5),t>£'

Notice that the exposure is again a stochastic process that is driven by M(t). The expected
exposure at time ¢ and its derivative is then

| JE () dr, t</t
MMF{ﬂMmm,»r

d e+ g@) + s(t), t<{
a0 = (e ko S0 W

Consider [s(t) — s(t — £)] in Equation 4. This component equals 0 if and only if the term of the
insurance policy is an integer. The result may be easily extended to the scenario where s(t) has a
period other than 1. We conclude that the exposure process does not have seasonality if the term
of the insurance policy is a multiplier of the period of the seasonality exhibited in the premium
arrival process. Given that the period of both the premium arrival process and the claim process is
1 year in the data set, the exposure process does not have seasonal fluctuation. Figure 7 is the
observed exposure from the data set. A linear function is fitted to the estimated exposure using
the least-squares-error estimates. There is no evidence of yearly fluctuation.

Another simplifying assumption we make is that an insurance policy becomes effective imme-
diately upon purchase. Usually a policy is purchased some days prior to when it becomes effective.
We note that the date of purchasing is usually a good proxy for the effective date. To this end, we
examine the second data set, which contains both the date when a policy is sold and the date when
the policy becomes effective. Figure 8 gives the histogram of the difference between these two
dates. More precisely, 56% of the policies became effective on the same day or the second day
of purchasing, while 80% of the policies became effective within one week.

In conclusion, if the seasonal fluctuation remains the same for different years, and the term of
the insurance policy is a multiplier of the period of the seasonality of the premium process, then
the exposure does not have seasonal fluctuations. Otherwise, the seasonality in the premium
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Figure 8. Histogram of the time difference between purchasing and effective date.

process will impact the claim process. One may track different drivers of seasonality for different
processes and determine whether there is an interaction between them based on the specification
of the portfolio.

3.4 A Cox Process Modelling the Claim Arrivals

We argue in Section 3.3 that the claim process needs to be considered in tandem with the pur-
chasing process. We now explore an alternative model for the claim process that encompasses the
intrinsic interactions between the purchasing of insurance and the resulting claims, namely a Cox
process model.

We assume that the claim experiences for different policyholders are independent, and that the
claim arrivals for each exposure follow a non-homogeneous Poisson process with intensity func-
tion r(¢). As before, suppose the exposure at time ¢ is £(¢). Let N(¢) be the total number of claims at
time ¢ for the entire portfolio.

Proposition 3.1.. Suppose N;, N,, ... are independent non-homogeneous Poisson processes with
common intensity function r(¢), and let £(f) be a stochastic process with integer values. Then
ng N; is a Cox process.

Proof. It is known that the superposition of independent non-homogeneous Poisson processes
is a non-homogeneous Poisson process. Suppose £(t) = k, then the claims resulting from these k
exposures follow a non-homogeneous Poisson process with intensity function k - r(¢). The claim-
counting process, conditional on the exposure £(t), is a Poisson process, and thus the uncondi-
tional process is a Cox process. O

To compare the performance of different models, various models are fitted to the first data set
introduced in Section 2. The models for the claim process are (1) compound Poisson process
(HPP); (2) non-homogeneous Poisson process with seasonal claim rate (NHPP); (3) Cox process.
Notice that among the three models, only the Cox process model allows for the adjustment to the
exposure. Since we only have partial information for the exposure for year 2013, the other two
models would be unsuitable. For comparison reasons, all three models are fitted to the data from
the last two years that are available and then projected to all three years.

The estimates are obtained by maximising the likelihood function in a similar way to the anal-
ysis in Section 3.1. While fitting the Cox process, the observed exposure, as shown in Figure 7, is
used as the offset. Figure 9 compares the outputs of the three different models. The Cox model is
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Figure 9. Comparison of three different numbers of claims. Three models are fitted to the data, then the predicted number
of claims is calculated and plotted for each model.

Table 5. Summary statistics for model comparison

Statistics for 2014-2015 HPP NHPP Cox
Y e? 72,361 71,664 68,724
AlC 6,250 6,221 6,083
statistics for 2013-2015 HPP NHPP Cox
> e,-2 120,737 119,788 80,018
AIC 11,205 11,154 8,123

sufficiently flexible for modelling both the increasing trend and the seasonality in the claim pro-
cess. Furthermore, the Cox model predicts more variability in the claim process caused by the
fluctuations in the exposure. Among these three different models, the Cox model provides the
closest fit to the data.

Some basic summary statistics are provided in Table 5. We compare the sum of squared error
and the Akaike information criteria for different models. As shown by these statistics, the Cox
process yields the smallest error, and hence is the closest to the data.

Remark 1. The differences between any two models in terms of error statistics for this data set are
relatively small. This is because the data set covers a short time period. The increment in the expo-
sure is relatively small compared to its magnitude, and as a result all three models provide a rea-
sonable fit. We choose the Cox model because it is closest to the data, and it allows us to investigate
the dependence between the purchasing process and the claim process. We also point out that by
allowing the claim rate to increase with time, we could obtain better results under the NHPP
model. But doing so implies that the claim experience is deteriorating indefinitely, which is
not realistic. L
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Table 6. VaR and TVaR of loss in millions at quarter ends under different models

Quarter Measure M1 M2 M3
Q1 VaR (99.5) -2.790 -0.849 -2.863
TVaR (99.5) -2.354 -0.432 -2.450
Q2 VaR (99.5) -4.690 -4.619 -4.804
TVaR (99.5) -4.081 -3.424 -4.197
Q3 VaR (99.5) -7.874 -9.729 -7.993
TVaR (99.5) -5.964 -5.690 -6.019
Q4 VaR (99.5) -13.855 -13.876 -13.975
TVaR (99.5) -8.499 -7.205 -8.559

4. A Surplus Process Model with Dual Seasonalities and Simulation Studies

Integrating our findings in the previous sections, we propose to modify the classical ruin model to
reflect the patterns exhibited in the data set as follows:

M(t) N()

UM =u+) X—) Y, u=0, (5)
k=1 i=1

where  is the initial surplus, M () is a non-homogeneous Poisson process that counts the number
of policies sold by time ¢, X, is the premium charged for the k-th policy, N(¢) is a Cox process that
counts the number of claims by time ¢ and Y; is the size of the i claim. Denote the intensity
functions of M(t) and N(t) by u(t) and v(t), respectively. The dependence structure between
M(t) and N(¢) is given by

v(t) = r(t) - §(t) = r(t) - [M(t) — M(t — 0)],

where &(¢) is the exposure at time ¢, £ is the duration of the insurance policy and r(¢) is a periodic
function that accounts for different claim rates in a year.

We illustrate some properties of this model by employing Monte-Carlo simulation. We first
investigate how the proposed model affects quarterly risk measures. We consider three different
surplus process models: Model 1 (M1) has dual seasonalities and Cox claim arrivals, Model 2 (M2)
uses stochastic premiums but the seasonality is only present in the claim process and Model 3
(M3) has dual seasonalities and uses deterministic premium income and non-homogeneous
Poisson claim arrivals. For simulation purposes we use the previous estimate in Equation 3 with-
out the terms representing growth or impact of holidays. An estimate of the claim rate function
r(t) is also obtained from the data set. More specifically, the intensity functions used in the simu-
lation are

u(t) = 365 exp[3.5940 + 0.2487 - sin(27(t 4 0.246027))], (6)

V(f) = &(t) - [0.488972 + 0.074706 - sin(27(t 4 0.120373))], ?)

where £(#) is the exposure at time t. Notice that to determine the evolution of the exposure, we
need to know when the existing policies expire, which depends on the premium arrivals in the
previous year. To this end, for models using the Cox process, we simulate the premium arrivals for
the interval [—1, 1] in order to obtain a sample path of the exposure on [0, 1]. Finally, we use the
empirical premium-size distribution and the empirical claim-size distribution. We simulate
1,000,000 sample paths for each surplus model. The quarterly risk measures are given in Table 6.
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Since the insurer charges sufficiently high premiums for this policy, all the risk measures are
negative. The differences between Model 1 and Model 2 are due to the effect of the seasonality in
the premium arrivals, while the differences between Model 1 and Model 3 are due to the effect of
using a stochastic premium process. We observe that the seasonality in the premium arrivals
causes differences in the risk measures. The impact of using a stochastic premium process is mild
in this case. This is because the intensity functions used in the simulation have very large values.
Consequently, the non-homogeneous Poisson premium arrivals may be well approximated by a
deterministic function. For further discussion, see Temnov (2004), Section 5. We note that the
differences between Model 1 and Model 3 may be greater for other types of insurance whose pre-
mium arrivals and claim arrivals are less frequent.

We may also consider the probability of ruin, that is the probability that an insurer is depleted
of available funds to settle claims. For the following simulation, we allow the seasonal components
of Equations 6 and 7 to shift horizontally. In other words, the intensity functions we use in the
following simulation are

w(t) = 365exp(3.5940 + 0.2487 - sin(2x(t — a))),
(t) = £(t) - [0.488972 + 0.074706 - sin(27(t — b)),

where v(¢) is the exposure at time t. We allow the sinusoidal functions to shift horizontally to
capture the impact of different combinations of seasonalities. Although in the data set that we
analysed, premium arrivals and claim arrivals have peak seasons around the same time of year,
it is possible that the two seasonalities are overall unsynchronised. By shifting the functions rep-
resenting the seasonalities along the horizontal axis, we are able to accommodate such a difference.
The initial surplus u is assumed to be 0 in the simulation, and empirical distributions are used for
premium sizes and claim sizes. We define the time of ruin 7 as the first passage time when the
surplus drops below 0, i.e.,

v =inf{t: U(t) < 0}.
The one-year ruin probability is then
W(u;1) = P{t < 1|U(0) = u}.

We consider different combinations of a and b. The one-year ruin probability is given in
Figure 10. Previously, similar work has been done for the case where seasonality is only present
in the claim process. See, for example, Morales (2004). Figure 10 shows that the seasonality in the
premium process also has impact on the riskiness of the business.

4.1 Discussions and Comparisons

We note that the seasonality in the claim process is well observed, and has been the focus of many
industry studies and research papers. For example, an industry study, CAS, PCI, and SOA (2018),
examines the drivers of collision and comprehensive frequency and severity. A number of
externals factors, such as natural disasters and hailstorms, are identified to have impact on the
claim process. Clear seasonal fluctuations are also documented. Many researchers use non-
homogeneous Poisson processes to model these characteristics. For example, Lu & Garrido
(2005) use a NHPP with both long-term trend and short-term fluctuation to model hurricane
arrivals. Morales (2004) considers a risk process where the claim arrivals are modelled by a peri-
odic NHPP and derives a simulation method to obtain the probability of ruin.

If the claim process is assumed to be directed by an observable or unobservable driver, then a
more flexible counting process than NHPP is needed. Specifically, if the driver is itself stochas-
tic, then a Cox process is a natural choice for modelling. Albrecher et al. (2020) construct a Cox
process by using a subordinator and demonstrate the success of this model using Dutch fire
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Figure 10. Contour plot of one-year ruin probability with different combinations of seasonalities: a represents the initial
season of the premium process, b represents the initial season of the claim process.

insurance claims. Avanzi et al. (2021) construct a Markov-modulated Poisson process to
account for both known information and unobservable drivers. In this study, the underlying
environmental process that impacts the event arrival intensity is assumed to be unobservable
and is modelled by a continuous-time Markov chain, while the known exposure process serves
as an input in the hidden Markov chain calibration. While the model is different, similar results
are obtained in this paper.

Other research projects are dedicated to improving premium modelling. The seasonality in the
premium is discussed by Asmussen & Rolski (1994), where the constant premium income is
replaced by a deterministic periodic function. The authors point out that one may obtain an equiv-
alent risk model with constant premium rate by using a change of timeline technique. This
approach works if the premium is deterministic. Some recent papers study the stochastic premium
model, see for example Boikov (2002), Labbé & Sendova (2009) and Temnov (2014). These studies
use homogeneous Poisson processes to model both the premium arrival and the claim arrival, and
some theoretical results are obtained. While this approach extends the classical model, the pre-
mium arrival is assumed to be stationary, and the premium and the claims are assumed to be
independent. Consequently, these models are unable to capture more variability in the risk pro-
cess, such as seasonalities and dependence between premiums and claims.

By using the proposed model (5), we are able to incorporate the characteristics of the data set in
the risk model, as well as to explicitly connect the claim process with the premium. The depen-
dence has impact on the riskiness of the portfolio, especially when the premium arrivals have
larger variation. For example, assume the intensity function for the premium arrivals is given by

2t
w(t) = 100 + 25 cos(2n(t — a)) + 25 cos (%)7

where an additional periodic function is added to represent economic cycles. This additional com-
ponent adds more variation to the premium arrivals. Recall that in this case, the term of the
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10-year ruin probability with Cox process 10-year ruin probability with NHPP

Figure 11. Contour plot of 10-year ruin probability with different combinations of seasonality of the premiums (a) and
seasonality of the claims (b). Left: the claim arrivals from a Cox process Right: the claim arrivals from a NHPP.

insurance policy is not a multiplier of the period of the seasonality, and hence, the exposure itself
has fluctuations. Consider two different claim arrival process:

Cox model : v(t) = &(t) - [0.1 + 0.05 cos(2n(t — b))],

NHPP model : v(t) = 100 -[0.1 + 0.05 cos(2n(t — b))],

i.e., the dependence between the premium and the claim is only considered in the Cox model. The
10-year ruin probabilities using these two models are given in Figure 11. In this scenario, the
model with dependence is able to capture the additional risk.

One possible application of the proposed model is to provide insights into how to determine
the capital that an insurer is required to hold. Insurance companies are subject to the regulations
applicable in the jurisdiction where they operate. For instance, Solvency II codifies the European
Union insurance regulations, insurers in the United States are required to meet risk-based capital
requirements, while the Life Insurance Capital Adequacy Test developed by Canadian regulators
measures the capital adequacy of an insurer. These insurance regulations are focused primarily on
solvency. Using Solvency II as an example, insurers are required to hold eligible own funds cov-
ering the solvency capital requirement (SCR). An insurer may use full or partial internal models,
upon approval from supervisory authorities, to better align the SCR calculation to its operation.
The proposed model in this paper may contribute to the understanding of various components of
the calculation. For example, the model directly contributes to the understanding of “the risk of
loss resulting from fluctuations in the timing, frequency and severity of insured events, and in the
timing and amount of claim settlements” (Solvency II, Article 105). The proposed model may also
serve to link different components of the SCR. For example, insurers are required to consider the
operational risk. During peak seasons, due to the elevated pressure on the resources needed for
processing new policy purchases or settling claims, the insurer might face higher operational risk.
An industry study by Institute of Risk Management (2015) found that among insurance compa-
nies who use internal models for operational risk, a significant proportion of them are taking the
approach of modelling frequency and severity separately. The proposed model allows an
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insurance company to investigate the correlation between the operational risk and other risks,
which improves the accuracy of the internal models. With a more representative model of their
cash flows, insurers are better positioned to manage their assets to meet their future obligations.
This could improve both the insurer’s ability to withstand the risk of loss due to fluctuations in
their business, and potentially the profitability.

5. Conclusion

In this paper, we study the time patterns of the premium and claim processes of an insurer. We
find that both processes exhibit increasing intensities with seasonal fluctuations. Major public hol-
idays also have an impact on these intensities. Further, we find that, under certain conditions, the
seasonality in the claim process is independent of the seasonality in the purchasing process. Based
on these characteristics exhibited in the data set, we propose a new model for the surplus process
that utilises both a non-homogeneous Poisson process and a Cox process as counting processes.

The model suggested in this paper allows one to gain more flexibility in modelling the surplus
process. The special choice of non-homogeneous Poisson process for the purchasing process
reflects the arrival of purchasing more closely. The Cox process used in the claim process takes
into consideration the change of exposure over time and therefore is capable of modelling more
variability. As this model is intuitive and each component in it has a direct interpretation, the
parameters of this model are also easy to estimate from the data. By studying the time patterns
of cash inflow and cash outflow, insurers are in a better position to optimally manage their assets,
to achieve both higher profitability and financial security.

Due to the lack of appropriate data, the authors did not examine data from different regions.
Although the proposed model is general enough to handle different situations, it might be the case
that the specific time patterns are different in different regions. To this end, more data should be
examined. Theoretical results are yet to be derived under this model. Simulation techniques may
be employed to obtain the results of interest.
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