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Abstract

Consider a random graph, having a prespecified degree distribution F , but other than
that being uniformly distributed, describing the social structure (friendship) in a large
community. Suppose that one individual in the community is externally infected by an
infectious disease and that the disease has its course by assuming that infected individuals
infect their not yet infected friends independently with probability p. For this situation,
we determine the values of R0, the basic reproduction number, and τ0, the asymptotic
final size in the case of a major outbreak. Furthermore, we examine some different local
vaccination strategies, where individuals are chosen randomly and vaccinated, or friends
of the selected individuals are vaccinated, prior to the introduction of the disease. For the
studied vaccination strategies, we determine Rv , the reproduction number, and τv , the
asymptotic final proportion infected in the case of a major outbreak, after vaccinating a
fraction v.

Keywords: Degree distribution; epidemic model; final size; limit theorem; networks;
random graph; vaccination
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1. Introduction

Simple undirected random graphs can be used to describe the social network in a large
community (e.g. [20]), where the vertices correspond to individuals and the edges correspond
to some type of social structure, from now on referred to as friendships. Given such a graph,
a model for the spread of the disease may be defined, where individuals at first are susceptible
but may then become infected by a friend. An infected individual has the potential to spread the
disease to his or her not yet infected friends before he or she recovers and becomes immune.
The final outbreak, both its size and who becomes infected, depends on properties of the social
graph as well as on properties of disease transmission. In order to prevent an outbreak it is
possible to vaccinate, or immunise in some other way, individuals prior to the arrival of the
disease. Who and how many individuals are to be vaccinated specifies the vaccination strategy.

In the present paper we study questions arising from such modeling. In particular, we
consider random graphs where the degree distribution (i.e. the number of friends) follows some
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prespecified distribution F , typically having heavy tails, but where the random graph G is
otherwise uniformly distributed. The epidemic model is the simplest possible model for a
susceptible-infectious-removed disease (e.g. [2, 11–18]). One randomly selected individual is
initially externally infected. Any individual who becomes infected infects each of his or her
not yet infected friends independently with probability p, and after that the individual recovers
and becomes immune, a state called removed. For this graph and epidemic model, we study
different vaccination strategies: the uniform strategy and the acquaintance strategy [7]. In both
strategies individuals are chosen randomly from the community. In the uniform strategy the
selected individuals are vaccinated, and in the acquaintance strategy a randomly chosen friend
of the selected individual is vaccinated. Both vaccination strategies are local in the sense that
the global social network need not be known in order to perform the strategy. We also study a
vaccination strategy where, instead of selecting individuals at random, friendships are selected
and one or two of the corresponding friends become vaccinated.

As the population size n tends to ∞, we prove that the initial phase of the epidemic may be
approximated by a suitable branching process. The largest eigenvalue of the branching process,
often denoted by R0 and called the basic reproduction number when applied to epidemics
[2, 53–56], determines whether a major outbreak can occur or not: if R0 ≤ 1, only minor
outbreaks can occur, whereas if R0 > 1, outbreaks of order O(n) can also occur with positive
probability. In case of a major outbreak the total number of individuals infected during the
outbreak, the final size, is shown to satisfy a law of large numbers. The corresponding (random)
proportion is shown to converge in probability to a deterministic limit τ0. Similar results
are obtained when a vaccination strategy with vaccination coverage v has been performed
prior to disease introduction. In this situation, the strategy-specific reproduction number Rv ,
and the major outbreak size τv , are determined. From this it is possible to determine the
(strategy-specific) critical vaccination coverage vc, which determines the necessary proportion
to vaccinate in order to surely prevent a major outbreak, so vc = infv{v; Rv ≤ 1}.

Stochastic epidemic models on networks with prespecified degree distributions have mainly
been studied in the physics literature (e.g. [7], [17], and [19]), with [1] being one exception.
Some of the problems studied in the present paper have been analysed before whereas others
have not, in particular the final size proportion τv as a function of v. Besides contributing some
new results, in this paper we also aim to give formal proofs of results which have previously
only been obtained heuristically.

The rest of the paper is structured as follows. In Section 2 we define the models for the
random graph, the epidemic, and the vaccination strategies. In Section 3 we present the main
results and some heuristic motivations, and give some examples and illustrations. The proofs
are given in Sections 4 and 5.

2. Models

2.1. Graphs

Let G denote a random multigraph, allowing for multiple edges and loops, and let n = |G|
denote the number of vertices of G, i.e. the population size. Later we shall consider limits as n

tends to ∞. We define our random multigraph as follows. Let n ∈ N, and let (di)
n
1 = (d

(n)
i )n1 be

a sequence of nonnegative integers such that
∑n

i=1 di is even. We define a random multigraph
with given degree sequence (di)

n
1, denoted by G∗(n, (di)

n
1), by the configuration model (see,

e.g. [18]): take a set of di half edges for each vertex i, and combine the half edges into pairs
by a uniformly random matching of the set of all half edges.
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Note that G∗(n, (di)
n
1) does not exactly have the uniform distribution over all multigraphs

with the given degree sequence; there is a weight with a factor 1/j ! for every edge of multi-
plicity j , and a factor 1

2 for every loop (see [12, Section 1]). However, conditioned on the
multigraph being a (simple) graph, we obtain a uniformly distributed random graph with the
given degree sequence, which we denote by G(n, (di)

n
1). It is also worth mentioning that the

distribution of G∗(n, (di)
n
1) is the same as the one obtained by sampling the edges as ordered

pairs of vertices uniformly with replacement, and then conditioning on the vertex degrees being
correct.

Let us write 2m := ∑n
i=1 di , so that m = m(n) is the number of edges in the multigraph

G∗(n, (di)
n
1). We assume that we are given (di)

n
1, satisfying the following regularity conditions;

cf. [15] and [16].

Condition 2.1. For each n, (di)
n
1 = (d

(n)
i )n1 is a sequence of nonnegative integers such that∑n

i=1 di is even and, for some probability distribution (pj )
∞
j=0 independent of n, and with

nj := #{i : di = j},
(i) nj/n → pj for every j ≥ 0 as n → ∞,

(ii) µ := ∑
j jpj ∈ (0, ∞),

(iii) 2m/n → µ as n → ∞,

(iv) p2 < 1.

Remark 2.1. Note that 2m = ∑
i di = ∑

j jnj . Thus, Condition 2.1 implies that the sum∑
j jnj /n converges uniformly for n ≥ 1, i.e.

lim
J→∞ sup

n

∑
j>J

jnj

n
= 0. (2.1)

Conversely, (2.1) together with Condition 2.1(i) and Condition 2.1(ii) implies Condition 2.1(iii).
(This follows from, e.g. [8, Theorem 5.5.4], taking Xn to be the degree of a random vertex.)

Note that our condition is slightly weaker than the one in [15] and [16]; they also assume
(in an equivalent formulation) that if

∑
j j2pj < ∞ then the sums

∑
j j2nj/n converge

uniformly; moreover, they assume that j2nj/n → j2pj uniformly.

Condition 2.1 is all we need to study the random multigraph G∗(n, (di)
n
1). In order to

treat the random simple graph G(n, (di)
n
1), which is our main model, we need an additional

assumption.

Condition 2.2.
∑

i d2
i = O(n).

Note that
∑

i d2
i = ∑

j j2nj , so Conditions 2.1 and 2.2 imply, by Fatou’s lemma, that∑
j j2pj < ∞; in other words, the asymptotic degree distribution has finite variance.
When Conditions 2.1 and 2.2 hold, the probability that G∗(n, (di)

n
1) is a simple graph (i.e.

without loops or multiple edges) is bounded away from 0 (see Section 5.2 for details) and, thus,
all results that can be stated in terms of convergence in probability for G∗(n, (di)

n
1) transfer to

the random simple graph G(n, (di)
n
1) too.

2.2. Alternative graph models

In the remainder of the paper we will consider G(n, (di)
n
1) as our underlying graph model,

but we believe that similar results also hold for other random graph models and that they could be
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proved by suitable modifications of the branching process arguments below. Good candidates
are the classical random graphs, G(n, p) and G(n, m), with p = µ/n and m = nµ/2 (rounded
to an integer), and random graphs of the general type G(n, κ) defined in [5]. We will not
pursue this here, and leave such attempts at modifying the proofs to the interested reader, but
we will discuss one interesting case (including G(n, p)), where the result easily follows from
the results proved below for G(n, (di)

n
1).

This example is a random graph defined in [6, Section 3], see also [5, Subsection 16.4], as
follows. Let W be a nonnegative random variable with finite expectation µW := E W . Firstly,
we assign random weights Wi , i = 1, . . . , n, to the vertices; these weights are independent and
identically distributed with the same distribution as W . Secondly, given {Wi}n1, we draw an
edge between vertices i and j with probability

pij := WiWj

n + WiWj

; (2.2)

this is done independently (conditioned on {Wi}) for all pairs {i, j} with 1 ≤ i < j ≤ n. We
denote this random graph by GW(n). It is easily seen that [6] (2.2) implies that all graphs with
a given degree sequence (di)

n
1 have the same probability; in fact, if G is any graph with degree

sequence (di)
n
1 then

P(GW(n) = G | (Wi)
n
i=1) = n(n

2)−(1/2)
∑

i di
∏

i W
di

i∏
i<j (n + WiWj )

.

Hence, if we denote the (random) vertex degrees by D1, . . . , Dn then, conditioned on Di =
di , i = 1, . . . , n, we have a random graph G(n, (di)

n
1). Moreover, it is not difficult to

verify that Condition 2.1 holds in probability, with (pj )
∞
0 the Po(µWW) mixed Poisson

distribution and µ = µ2
W ; see [5, Theorem 3.13] and [6, Theorem 3.1]. In other words,

nj/n
p−→ pj and 2m/n = n−1 ∑

i di
p−→ µ, where ‘

p−→’ denotes convergence in probability.
From now on assume that E W 2 < ∞; it may then be shown, by similar arguments, that
n−1 ∑

i d2
i

p−→ µ2
w(E W 2 + 1). Using the Skorohod coupling theorem (see, e.g. [13, Theo-

rem 4.30]), we can assume that these limits hold almost surely (a.s.); hence, Conditions 2.1
and 2.2 hold a.s. Consequently, by conditioning on (D1, . . . , Dn), we can apply the results
proved in the present paper for G(n, (di)

n
1), and it follows that the theorems, below, hold for

the random graph GW(n) too, with (pj ) and µ as given above.
Furthermore, it is easy to see that this remains true if (2.2) is modified to

pij := min

(
WiWj

n
, 1

)
; (2.3)

we may use suitable couplings and compare the random graph defined by (2.3) with the ones
defined by (2.2) for the same Wi (giving a lower bound), or by (2.2) with Wi replaced by
(1 + ε)Wi (giving an upper bound, assuming, as we may, that Wi ≤ √

εn), and then letting
ε ↘ 0; we omit the details. More precisely, it can be shown that [10] under the assumptions
given above on (Wi), the random graphs defined by (2.2) and (2.3) are asymptotically equivalent
in a strong sense (i.e. the total variation distance tends to 0). Random graphs defined by (2.3)
and minor variations of it have been studied by several authors; see [5, Subsection 16.4] and the
references therein. Note that the special (deterministic) case in which W = √

µ for a constant
µ > 0 gives the classical random graph G(n, µ/n). The results in this paper thus hold for
G(n, µ/n) too, with (pj ) a Po(µ) distribution; in other words, with D defined as in Section 3,
D ∼ Po(µ).
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2.3. Epidemic model

We consider an infectious disease that spreads along the edges of a graph G. In this paper
we will assume that G = G(n, (di)

n
1) is the random graph defined above, where we condition

the graph G∗(n, (di)
n
1) on being simple. The vertices of G represent the individuals in the

population, and the edges represent friendships through which the infection might spread.
The disease has its course in the following way. Initially, one randomly chosen individual

(vertex) is infected from the outside. This individual then spreads the disease to each of his
or her friends independently and with the same probability p. Those who become infected
make up the first generation infected in the epidemic. These individuals then do the same
thing to their not yet infected friends thus infecting a second generation, and so forth. Note
that an individual can only become infected once—we then consider such an individual either
recovered and immune (or dead). This epidemic continues until there are no new infections
in a generation, when it stops. Since the population is finite, this occurs after a finite number
of generations (less than or equal to n, where n = |G| is the size of the population). The
individuals who become infected during the course of the epidemic make up the total outbreak,
and the number of such individuals is called the final size of the epidemic.

Note that each edge is a possible path of infection at most once, namely, when the first of
its endpoints has been infected. Hence, for every edge in G, we may just as well determine in
advance whether it will spread the disease or not, provided that one of the endpoints becomes
infected. Equivalently, we may consider the graph Gp obtained by randomly deleting edges
from G, with each edge kept with probability p, independently of the others. The final size of
the epidemic is thus the size of the component of Gp containing the initially infected individual.

2.4. Vaccination strategies

Now assume that a perfect vaccine is available. By this we mean that an individual who is
vaccinated is completely protected from (i.e. immune to) the disease and is not able to spread
the disease further. We assume that a part of the population is vaccinated before the epidemic
starts, or as soon as the first individual is infected. The epidemic progresses as defined above,
with the only difference that infected individuals can only infect unvaccinated friends.

Note that for the study of the epidemic in the vaccinated population, we may simply remove
all vaccinated individuals from G (and edges connected to these individuals). If we let Gv denote
the remaining graph, and we assume that the initially infected individual x is not vaccinated, the
final size of the epidemic is thus the size of the component of Gv;p := (Gv)p that contains x.
Thus, we have to study the combined effect on G of vertex deletion by the vaccination and edge
deletion by the randomness of infection.

The goal is to contain the disease, so that the final size of the epidemic is small, and
it is preferable to do this with a rather small number of vaccinations. For this we look at
different local vaccination strategies. The first two strategies are local in the sense that they
require no global knowledge of the social network G (which is rarely available in applications,
[18, Section 8.2]), and the latter two strategies select friendships rather than individuals at
random, which may also be thought of as needing only local information. We let V denote the
(usually random) number of vaccinations.

2.4.1. Uniform vaccination. Let us assume that we sample a fraction c ∈ [0, 1] chosen uni-
formly in the population without replacement and that this fraction is immunised, so that the
fraction v being immunised satisfies v = c. This vaccination strategy is the most commonly
studied vaccination strategy owing to its simplicity [18, Section 8.2].
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More precisely, for convenience, we assume that each individual is vaccinated with a given
probability v, independently of each other. The number of vaccinations V is thus Bi(n, v),
and V/n

p−→ v as n → ∞ (with v fixed). We denote the remaining graph of unvaccinated
individuals by GU

v ; this is thus obtained from G by random vertex deletions. Remember that
our main concern is with the graph GU

v;p = (GU
v )p; this is obtained from G by random vertex

and edge deletions, independently for all vertices and edges. (In this case it does not matter
whether we delete edges or vertices first.)

2.4.2. Acquaintance vaccination. It is intuitively clear that a better vaccination strategy would
be to vaccinate the individuals with the highest degrees (i.e. with the most friends) since this
would reduce potential spread the most. However, for this targeted vaccination strategy to
be achievable the whole social graph (or at least the degrees of all individuals) would have
to be known, and this is rarely the case [18, Section 8.2]. A different strategy aiming at
vaccinating individuals with high degree, but still only using local graph-knowledge from
selected individuals, proposed by Cohen et al. [7], goes under the name of acquaintance
vaccination. In this vaccination strategy a fraction c of individuals are sampled and, for
each sampled individual, one of his or her friends, chosen randomly among all friends, is
vaccinated. Of course it may happen that some individuals are chosen more than once for
immunisation (being selected as friends of more than one individual) so the fraction v = v(c)

actually immunised is smaller than c. This vaccination strategy has two slightly different
variants depending on whether the ‘fraction’ c is chosen with or without replacement. We will
use the version with replacement. For this case, the ‘fraction’ c may in fact exceed 1 without
having everyone vaccinated (individuals who are selected more than once are asked for friends
independently each time and the friends not yet immunised are vaccinated). To be precise,
we let the number of individuals sampled be Poisson distributed Po(cn), with c ∈ [0, ∞).
Equivalently, each individual is sampled Po(c) times, and each time reports a randomly chosen
friend. Again, for simplicity, we assume that each individual does this with replacement.
Consequently, an individual with degree d will report each of his or her friends Po(c/d) times,
and these random numbers are all independent. (An individual that is sampled but has no
friends is ignored. An individual is only vaccinated once, even if he or she is reported several
times.)

For any initial graph G and 0 ≤ c < ∞, we denote the remaining graph of unvaccinated
individuals by GA

c . Furthermore, we write GA
c;p = (GA

c )p for the graph obtained by additional
edge deletions. (For acquaintance vaccination, the order of the deletions is important, since the
vaccination strategy uses all edges, without knowing whether they may be selected to transmit
the disease or not.)

2.4.3. Edgewise vaccination. In some situations it may be possible to observe, or at least sample,
the edges representing friendships. If this is the case, another reasonable vaccination strategy
is to sample a number of the edges and then either vaccinate both endpoints or one (randomly
selected) endpoint; we denote these two versions by E1 and E2, respectively.

For E2, we assume that we sample each edge with probability 1 − α, where α ∈ (0, 1] is a
fixed number. (Equivalently, we sample Po(cm) edges with replacement, with α = e−c.) For
E1, we assume, for simplicity, that we sample Po(2cm) edges with replacement; thus, each
end of each edge is sampled with probability 1 − α = 1 − e−c, independently of all other edge
ends. Hence, for both versions, a vertex with degree d is unvaccinated with probability αd ,
and, for E1, this is independent of all other vertices.
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For an initial graph G and 0 < α ≤ 1, we denote the remaining graph of unvaccinated
individuals by G

E1

α and G
E2

α , for the two versions. Furthermore, we write, for j = 1, 2,
G

Ej

α;p = (G
Ej

α )p for the graph obtained by additional edge deletions.

3. Main results

We now state our main results together with heuristic motivations. We assume that the
underlying graph is the random graph G(n, (di)

n
1) and that Conditions 2.1 and 2.2 hold.

Complete proofs are given in Section 5.

3.1. Original epidemic model

Assume that n, the number of nodes, is large. The regularity assumption on the degrees of
the graph (Condition 2.1) implies that no separate node will contain a large fraction of all edges;
see (2.1). This in turn implies that self loops, multiple edges, and short cycles will be rare.

The epidemic starts by a randomly selected individual being infected from outside, so this
individual has (approximately) the degree distribution (pj )

∞
j=0. The friends of this individual,

or friends of any given individual, have the size biased degree distribution (p̃j )
∞
j=0, where

p̃j = jpj∑
k kpk

. (3.1)

Let D and D̃ be random variables having degree distributions (pj )
∞
j=0 and (p̃j )

∞
j=0, respectively.

Thus (asymptotically), we can interpret D as the number of friends of a random person, while
we can interpret D̃ as the number of friends of a random friend of a given person. Then, given
that D = d, the number of individuals that the initially infected individual infects is Bi(d, p),
and the unconditional distribution is hence mixed binomial MixBi(D, p). Those then infected,
as well as the infected in the following generations, have degree distribution (p̃j )

∞
j=0. Given

that D̃ = d̃, the number of individuals an infected individual infects in the next generation has
distribution Bi(d̃ − 1, p). This follows because the infected individual was infected by one of
his or her friends (which cannot become reinfected) and, since short cycles are rare, it is very
unlikely that any of the remaining d̃−1 friends have already been infected. Unconditionally, the
number infected in the next generation is hence MixBi(D̃−1, p). Furthermore, the property that
short cycles are unlikely implies that the number of infections caused by different individuals
are (approximately) independent random variables.

The above paragraph motivates why the early stages of the epidemic may be approximated
by a branching process (e.g. [3]), as is common for epidemic models (e.g. [2, Chapter 3]), where
‘giving birth’ corresponds to infecting someone. The branching process is a simple Galton–
Watson process starting with one ancestor having offspring distribution X ∼ MixBi(D, p)

and the following generations having offspring distribution X̃ ∼ MixBi(D̃ − 1, p). The mean
of this latter offspring distribution plays an important role in branching process theory and
also in epidemic theory where it is denoted by R0 and called the basic reproduction number.
Using (3.1), we obtain

R0 = E(X̃) = p E(D̃ − 1) = p

(∑
j j2pj

µ
− 1

)
= p

(
µ + var(D) − µ

µ

)
, (3.2)

where µ = E(D) = ∑
k kpk and var(D) = ∑

j j2pj − µ2 (a closely related expression
is obtained in [1]). The branching process is subcritical, critical, or supercritical depending
on whether R0 < 1, R0 = 1, or R0 > 1, respectively. For the epidemic, this means that a
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major outbreak infecting a nonnegligible fraction of the community is possible if and only if
R0 > 1. Note that, for fixed µ, R0 is increasing in var(D), so the more variance in the degree
distribution, the higher R0, and if the degree distribution has infinite variance then R0 = ∞ (a
case not treated in the present manuscript owing to Condition 2.2).

The probability π that the branching process dies out is derived in the standard way as
follows. First we derive the probability π̃ that a branching process with all individuals having
offspring distribution X̃ dies out. This is obtained by conditioning on the number of individuals
born in the first generation: for the branching process to die out, all branching processes initiated
by the individuals of the first generation must die out, i.e.

π̃ =
∞∑

k=0

π̃ k P(X̃ = k).

Let f
X̃
(·) denote the probability generating function for X̃, and let fD(·) denote the probability

generating function of the original degree distribution D. Then we see that π̃ is a solution to the
equation f

X̃
(t) = t , and it is known, from branching process theory (e.g. [3, Theorem I.5.1]),

that it is the smallest nonnegative such solution. The fact that X̃ is MixBi(D̃ − 1, p) implies that

f
X̃
(t) = E(tX̃) = E(E(tX̃ | D̃)) = E((pt + 1 − p)D̃−1) = E((1 − p(1 − t))D̃−1).

Furthermore, for 0 < a < 1,

E(aD̃−1) =
∑

k

ak−1 kpk

µ
= d

da

∑
k

ak pk

µ
= d

da

fD(a)

µ
= f ′

D(a)

µ
= f ′

D(a)

f ′
D(1)

.

In terms of fD(·) the probability π̃ that the branching process dies out is hence the smallest
nonnegative solution to

f ′
D(1 − p(1 − π̃))

f ′
D(1)

= π̃ . (3.3)

The probability π that the branching process, in which the ancestor has different offspring
distribution X, dies out is obtained from π̃ by conditioning on the number of offspring of the
ancestor:

π =
∑

k

π̃k P(X = k)

= E(π̃X)

= E(E(π̃X | D))

= E((pπ̃ + 1 − p)D)

= fD(1 − p(1 − π̃)). (3.4)

We now look at the final size of the epidemic in case it takes off, corresponding to the case
that the branching process grows beyond all limits. We do this by considering the epidemic
from a graph representation. The social structure was represented by a random graph G. If
this graph is thinned by removing each edge independently with probability 1 − p, we obtain
a thinned graph denoted by Gp. Edges in Gp represent the potential spread of infection: if
one of the nodes becomes infected from elsewhere, its neighbour will become infected. As a
consequence, the final outbreak of the epidemic will consist of all nodes in Gp that are connected
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to the initially infected. From random graph theory, it is known that if R0 > 1, there will be
exactly one connected component of order n, the giant component, and all remaining connected
components will be of smaller order. If R0 ≤ 1, there will be no giant component. The initially
infected individual was chosen uniformly in the community, so he or she will belong to the giant
component with a probability that equals the relative size of the giant component. Conversely,
the initially infected individual belongs to the giant component if and only if its branching
process of new infections grows beyond all limits, and from before we know that this happens
with probability 1 − π , where π is as defined in (3.4). From this it follows that the asymptotic
final proportion infected, τ , equals 1 −π . So, τ is both the probability of a major outbreak and
the relative size of the outbreak in case a major outbreak occurs.

The above arguments motivate the following theorem, which we prove in Section 5, and
where Zn denotes the final number infected in the epidemic.

Theorem 3.1. If R0 ≤ 1 then Zn/n
p−→ 0. If R0 > 1 then Zn/n converges to a two-point

distribution Z for which

P(Z = 0) = π and P(Z = τ) = τ,

where π is defined by (3.3) and (3.4), and τ = 1 − π .

3.2. Uniform vaccination

Prior to the arrival of the infectious disease, each individual is vaccinated independently and
with the same probability v, which implies that the total number vaccinated V is Bi(n, v) and,
from the law of large numbers, the random proportion vaccinated V/n

p−→ v.
Vaccinated individuals, and the edges connecting them, can be removed from the graph since

there will be no spreading between these individuals and their friends in either direction. As
a consequence, an individual who originally had d friends now has Bi(d, 1 − v) unvaccinated
friends. If an individual becomes infected during the early stages of the epidemic, he or she
will infect each of his or her unvaccinated friends independently with probability p. Given
that the initially infected individual has degree d, he or she will hence infect Bi(d, p(1 − v))

friends, so without the conditioning he or she will infect a mixed binomial number Xv ∼
MixBi(D, p(1 − v)). Similarly, during the early stages, an infected individual with degree d

will infect Bi(d − 1, p(1 − v)), and unconditionally an individual has degree distribution {p̃k},
so the unconditional number he or she will infect, X̃v , will be MixBi(D̃ − 1, p(1 − v)).

It is seen that we have the same type of distributions as in the case without vaccination. As
a consequence, all results for the case with uniform vaccination can be obtained from the case
without vaccination simply by replacing p by p(1 − v). Hence, we find that the reproduction
number RU

v;p after vaccinating a fraction v chosen uniformly satisfies

RU
v;p = E(X̃v) = (1 − v)R0 = p(1 − v)

(
µ + var(D) − µ

µ

)
.

The probability π̃U
v;p that the epidemic never takes off, assuming that the initially infected

individual has X̃v unvaccinated friends, is the smallest solution to

f ′
D(1 − p(1 − v)(1 − π̃U

v;p))

f ′
D(1)

= π̃U
v;p. (3.5)
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The probability πU
v;p that the epidemic never takes off, if the initially infected individual is

selected randomly among the unvaccinated, is given by

πU
v;p = fD(1 − p(1 − v)(1 − π̃U

v;p)), (3.6)

where π̃U
v;p is the smallest solution to (3.5). Finally, the final size is determined from the

probability of a major outbreak, as before. This means that the final proportion infected (among
the unvaccinated!) will converge to 1 − πU

v;p in case of a major outbreak. We have the following
corollary, where ZU

n (v) denotes the final number infected in the epidemic, where each individual
was vaccinated independently with probability v (0 ≤ v < 1) prior to the outbreak, and where
the initially infected individual was chosen randomly among the unvaccinated.

Theorem 3.2. If RU
v;p ≤ 1 then ZU

n (v)/((1 − v)n)
p−→ 0. If RU

v;p > 1 then ZU
n (v)/((1 − v)n)

converges to a two-point distribution ZU
v;p for which

P(ZU
v;p = 0) = πU

v;p and P(ZU
v;p = τU

v;p) = τU
v;p,

where πU
v;p is defined by (3.5) and (3.6), and τU

v;p = 1 − πU
v;p.

3.3. Acquaintance vaccination

Recall that each individual is sampled, independently, Po(c) number of times, where 0 ≤
c < ∞, so in total Po(nc) individuals are sampled. Each time an individual is sampled, a
randomly chosen friend of the individual is selected and vaccinated (unless they have already
been vaccinated). The effect of this strategy is that vaccinated individuals, being selected as
somebody’s friend, have the size biased degree distribution (p̃j )

∞
j=0, where p̃j = jpj/

∑
k kpk ,

rather than the original degree distribution {pk} for uniformly selected individuals. The propor-
tion vaccinated, v = v(c), is obtained as follows. An individual avoids being vaccinated if he
or she is not vaccinated ‘through’ any of his or her friends. The friends of the individual have
independent degree distributions (p̃j )

∞
j=0, and the probability of not being vaccinated ‘through’

an individual with degree k is e−c/k (the number of vaccination attempts on a specific friend is
Po(c/k)). It follows that the probability of avoiding being vaccinated from one friend equals

α = α(c) =
∞∑

k=1

e−c/kp̃k =
∞∑

k=1

e−c/k kpk

µ
. (3.7)

(Note that α has the same interpretation as for α introduced for the edgewise strategies, but
it is a different function of c.) If the individual in question has j friends, it hence avoids
being vaccinated with probability αj . The proportion 1 − v(c) not being vaccinated equals the
probability that a randomly selected individual is not vaccinated, which hence equals

1 − v(c) =
∞∑

j=0

αjpj = fD(α), (3.8)

where, as before, fD(·) is the probability generating function of a random variable D having
distribution (pj )

∞
j=0.

Note that in this model, given the graph, individuals are vaccinated independently of each
other (although with different probabilities). It easily follows that the actual (random) number V

of vaccinated individuals satisfies

V

n

p−→ v(c) as n → ∞. (3.9)
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Hence, we will ignore the randomness in V and regard v(c), given by (3.8), as the proportion
of vaccinated people.

We now approximate the initial stages of an epidemic, occurring in a community having
been vaccinated according to the acquaintance strategy, with a suitable branching process. It is
more difficult to find ‘the right’ branching process approximation for the acquaintance strategy
because the vaccination status of an individual depends on the degrees of his or her friends.
Therefore, we introduce some convenient terminology.

We say that transmission may take place through an edge, and through its two half edges, if it
is one of the edges in Gp, i.e. one of the randomly selected edges which will spread the disease
if one of its endpoints is infected. (Recall that we may assume that this random selection takes
place before the start of the infection.) Furthermore, there is a natural correspondence between
half edges and directed edges, with a half edge corresponding to the edge it is part of, directed
so that it begins with this half edge. We say that a directed edge, or the corresponding half
edge, is used for vaccination, if the person at the start of the edge is selected and names the
person at the end of the edge, who thus gets vaccinated.

It turns out that a suitable ‘individual’ in the branching process is a pair (x, ε) consisting
of an unvaccinated person x together with a directed edge ε from this person satisfying the
conditions that transmission may take place through the edge ε and that ε is not used for
vaccination. It is worth noting that a person may be part of several ‘individuals’ in the branching
process (if the person was not vaccinated and has several friends such that the connecting edges
satisfy the conditions above). See Figure 1 for an illustration of an individual (Figure 1(a)) and
situations where the individual ‘gives birth’to two individuals (Figure 1(b)) and zero individuals
(Figure 1(c)). In Figure 1(b) the ‘individual’ to the left gives birth to two individuals: the
person in the middle together with the up-going edge, and the person in the middle together
with the edge to the right. These two edges are parts of individuals since the edges are open for
transmission and the middle person did not name the friends at the other end for vaccination.
The down-going edge is not part of an individual since the person in the middle named the
friend below for vaccination. In Figure 1(c) no individual is born since the middle person is
vaccinated (being named for vaccination by one of his or her friends, excluding the person to
the left).

In order to analyse the corresponding branching process we have to determine the distribution
of how many new ‘individuals’ one ‘individual’ will infect during the early stages of the
epidemic, assuming a large population (i.e. large n). First we determine the distribution of
the degree K of the friend z at the other end of the edge ε of our ‘individual’ (x, ε). We know
that person x of our ‘individual’ is unvaccinated, so the edge ε has not been used for vaccination
backwards, i.e. in the opposite direction. As a consequence, we have to condition on this, and
then the friend z at the other end of ε has degree K = k with probability

P(K = k) = p̃ke−c/k∑∞
j=1 p̃j e−c/j

= p̃ke−c/k

α
, k = 1, 2, . . . , (3.10)

i.e. the size biased degree distribution conditional on not having vaccinated backwards. In
order for this friend z to create new ‘individuals’, he or she must not have been vaccinated
by any of his or her other K − 1 friends (by assumption, he or she was not vaccinated from
our original individual x). Conditioned on K = k, this occurs with probability αk−1. Each
of the friend’s remaining k − 1 edges will then be open (i.e. transmission may take place, but
it is not used for vaccination) independently, each open with probability pe−c/k . The number
of open edges (equal to the number of new ‘individuals’) is hence Bi(k − 1, pe−c/k). If the
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Figure 1: (a) An illustration of an ‘individual’ in the branching process. In (b) the left ‘individual’ has
two offspring: the person in the middle with the edge to its right, and the person in the middle with the

up-going edge. In (c) no individual is born.

friend is vaccinated (probability 1 − αk−1), no new individuals are born. The unconditional
number Y of new ‘individuals’ an individual ‘gives birth’ to, i.e. the offspring distribution of
the approximating branching process, can thus be obtained by conditioning on the K number
of friends our friend z has, using (3.10) and recalling that zero individuals are born whenever
the friend is vaccinated or if the binomial variable equals 0:

P(Y = 0) =
∞∑

k=1

((1 − αk−1) + αk−1(1 − pe−c/k)k−1)
p̃ke−c/k

α
,

P(Y = j) =
∞∑

k=j+1

αk−1
(

k − 1

j

)
(pe−c/k)j (1 − pe−c/k)k−1−j p̃ke−c/k

α
, j ≥ 1. (3.11)

This offspring distribution determines both RA
c;p, the probability of a major outbreak, and the

final size in case of a major outbreak. For instance, the reproduction number is the mean of this
distribution, and this mean is obtained by first conditioning on the degree of the node in question.
Given that the degree equals k, the average number of offspring equals αk−1(k − 1)pe−c/k ,
which gives the following reproduction number:

RA
c;p = E(Y ) =

∑
k≥1

αk−1(k − 1)pe−c/k p̃ke−c/k

α
= p

∑
k≥1

(k − 1)αk−2e−2c/kp̃k (3.12)
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(see [7]). Let fY (a) = E(aY ) be the probability generating function of this offspring distri-
bution. If the epidemic is started by one ‘individual’, i.e. one person with one open directed
edge, then the probability π̃A

c;p that the epidemic never takes off is the smallest solution to the
equation

π̃A
c;p = fY (π̃A

c;p). (3.13)

If we start with one infected person that is unvaccinated and has degree j , then each of its j

half edges is open with probability pe−c/j , and the probability that a given half edge does not
start a large epidemic is 1 − pe−c/j + pe−c/j π̃A

c;p, so the probability that the epidemic never
takes off equals (1 − pe−c/j (1 − π̃A

c;p))j for j ≥ 1 and equals 1 for j = 0.
If the initially infected individual is chosen randomly among the unvaccinated as we assume,

then the probability that it has degree j is pjα
j/

∑
j pjα

j (see (3.8)) and, thus, the probability
that the epidemic never takes off equals

πA
c;p = p0 + ∑

j≥1 pjα
j (1 − pe−c/j (1 − π̃A

c;p))j∑
j pjαj

. (3.14)

Finally, using the same reasoning as before, the limiting proportion infected in case of a major
outbreak equals τA

c;p = 1 − πA
c;p. We summarise our results in the following theorem, proved

in Section 5, where ZA
n (c) denotes the final number infected in the epidemic where vaccination

is carried out prior to the outbreak according to the acquaintance vaccination strategy. Recall
that 0 ≤ c < ∞ and that v(c), the proportion of the population vaccinated, is given by (3.8),
with α = α(c) given by (3.7).

Theorem 3.3. If RA
c;p ≤ 1 then ZA

n (c)/((1 − v(c))n)
p−→ 0 , where RA

c;p is defined by (3.12).

If RA
c;p > 1 then ZA

n (c)/((1 − v(c))n) converges to a two-point distribution ZA
c;p for which

P(ZA
c;p = 0) = πA

c;p and P(ZA
c;p = τA

c;p) = τA
c;p, where πA

c;p is defined by (3.13) and (3.14),

and τA
c;p = 1 − πA

c;p.

3.4. Edgewise vaccination

Recall that, for both E1 and E2, a person with d friends is unvaccinated with probability
αd (here α has the same meaning as in the previous subsection, but it can be treated as a free
parameter). Thus,

E V = n
∑
d

pd(1 − αd) + o(n),

and a simple variance estimate shows that the vaccinated proportion

V

n

p−→ v(α) :=
∑
d

pd(1 − αd), (3.15)

just as for the acquaintance vaccination strategy; see (3.8) and (3.9).
We define open (directed) edges in the same way as for acquaintance vaccination, and argue

as there with the following modifications. The other endpoint of an open edge has just the size-
biased distribution (p̃k). If this vertex, z say, has degree k, it is unvaccinated with probability
αk−1, and in this case the number of new open edges originating at z is Bi(k − 1, pα) for E1
and Bi(k − 1, p) for E2. The difference between the two versions arises because we already
know that these edges do not vaccinate z, and, for E2, this implies that they do not vaccinate
their other endpoint either while, for E1, this is an independent event having probability α.
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We thus have the offspring distributions for E1 and E2 (see (3.11)):

P(Y1 = j) =
∞∑

k=j+1

p̃kα
k−1

(
k − 1

j

)
(pα)j (1 − pα)k−1−j , j ≥ 1,

P(Y2 = j) =
∞∑

k=j+1

p̃kα
k−1

(
k − 1

j

)
pj (1 − p)k−1−j , j ≥ 1;

we leave the formulae for P(Y1 = 0) and P(Y2 = 0) to the reader. This gives the reproduction
numbers

R
E1

α;p = E(Y1) =
∑
k≥1

p̃kα
k−1(k − 1)pα = p

∑
k

(k − 1)p̃kα
k,

R
E2

α;p = E(Y2) =
∑
k≥1

p̃kα
k−1(k − 1)p = p

∑
k

(k − 1)p̃kα
k−1.

(3.16)

Note that R
E1

α;p = αR
E2

α;p < R
E2

α;p, which shows that, with the same number of vaccinations,
E1 is a better strategy than E2. In particular, the critical vaccination coverage vc is smaller for
E1 than for E2. An intuitive explanation for why E2 is not as efficient as E1 is that in E2 both
individuals of selected friendships are vaccinated, and since an individual is partly protected
by friends becoming vaccinated, the second vaccination is less ‘efficient’.

We let π̃
E1

α;p and π̃
E2

α;p denote the probabilities that the Galton–Watson processes with
offspring distributions Y1 and Y2, respectively, starting with one individual, die out; thus,
they are the smallest positive solutions to t = fY1(t) and t = fY2(t), where fY1 and fY2 are the
corresponding probability generating functions.

If we start with one unvaccinated person x with degree d, the number of open edges from x

is Bi(d, pα) for E1 and Bi(d, p) for E2, for the same reason as for the number of new edges
above. The probability that the epidemic never takes off is thus (1 − pα + pαπ̃

E1

α;p)d for E1
and (1 − p + pπ̃

E2

α;p)d for E2.
If the initially infected individual is chosen randomly among the unvaccinated, we thus find

that the probabilities that the epidemic never takes off are

π
E1

α;p =
∑

j pjα
j (1 − pα(1 − π̃

E1

α;p))j∑
j pjαj

= fD(α(1 − pα(1 − π̃
E1

α;p)))

fD(α)
,

π
E2

α;p =
∑

j pjα
j (1 − p(1 − π̃

E2

α;p))j∑
j pjαj

= fD(α(1 − p(1 − π̃
E2

α;p)))

fD(α)
.

(3.17)

We summarise our results as before, letting ZE1
n (α) and ZE2

n (α) denote the final numbers
infected in the epidemic for the two strategies. Recall that v(α) is given by (3.15).

Theorem 3.4. For j = 1, 2, Z
Ej
n (α)/((1 − v(α))n)

p−→ 0 if R
Ej

α;p ≤ 1, where R
Ej

α;p is defined

by (3.16). If R
Ej

α;p > 1 then Z
Ej
n (α)/((1 − v(α))n) converges to a two-point distribution Z

Ej

α;p
for which P(Z

Ej

α;p = 0) = π
Ej

α;p and P(Z
Ej

α;p = τ
Ej

α;p) = τ
Ej

α;p, where π
Ej

α;p is defined by (3.17),
and τ

Ej

α;p = 1 − π
Ej

α;p.

3.5. Examples

We now compare the performance of the different vaccination strategies using two examples.
In the first example we have chosen the degree distribution to be Poisson distributed with mean
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Figure 2: Final proportion infected, τ , as a function of the vaccination coverage v for four vaccination
strategies: uniform (solid line), acquaintance (dotted line), E1 (dashed line), and E2 (dash–dot line). The

degree distribution is Po(6) and the transmission probability is p = 0.5.

λ = 6, and the transmission probability to equal p = 0.5. Using (3.2), we conclude that this
implies that R0 = 3. The assumption of Poisson distributed degree means that this applies to the
simple G(n, p = 6/n) graph with transmission probability p = 0.5; in the epidemic literature,
this model is known as the Reed–Frost model (e.g. [2, 4–6]). In Figure 2 we show τ , the final
proportion infected among the unvaccinated in case of a major outbreak, as a function of the
vaccination coverage v for the four different vaccination strategies treated. It is seen that the
acquaintance and edgewise E1 strategies perform best in the sense that, for a fixed proportion
vaccinated, the proportion τ becoming infected in case of a major outbreak is smallest for these
two strategies. As a consequence, the critical vaccination coverage vc = infv{v; Rv ≤ 1} is
also smallest for these two strategies. There is no unique ordering of the two strategies—the
acquaintance strategy is slightly better for small vaccination coverages and E1 is slightly better
for higher vaccination coverages and hence also has slightly smaller vc. The edgewise strategy
E2 is not as good as these two strategies but still better than the uniform vaccination coverage.
(Indeed, E2 is always less efficient than E1, see above.) Acquaintance, E1, and E2 all perform
better than the uniform strategy, the reason being that they tend to find individuals with high
degrees. For the parameter choices of this example, the critical vaccination coverages equal
vc ≈ 0.56 for the acquaintance and E1 strategies, vc ≈ 0.61 for E2, and vc ≈ 0.67 for the
uniform vaccination strategy.

In the second example (illustrated in Figure 3) we chose a more heavy-tailed degree distri-
bution having pd ∝ d−3.5 (in the computations it was truncated at d = 200). The initial values
were modified such that E(D) ≈ 6, to make it more comparable to the previous example, with
a resulting variance equal to 18.9. The transmission parameter was set at p = 0.5, as before.
Using (3.2), we see that R0 ≈ 4.1. In Figure 3 we see the same type of pattern as in the previous
example. However, the difference between the strategies is more pronounced with vc ≈ 0.50
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Figure 3: Final proportion infected, τ , as a function of the vaccination coverage v for four vaccination
strategies: uniform (solid line), acquaintance (dotted line), E1 (dashed line) and E2 (dash–dot line). The

degree distribution is heavy tailed (pd ∝ d−3.5) with mean E(D) ≈ 6 and p = 0.5.

for the acquaintance and E1 strategies, vc ≈ 0.55 for E2, and vc ≈ 0.75 for the uniform
vaccination strategy. In other words, if the uniform strategy is applied in these two examples,
we have to vaccinate more individuals if the degree distribution is heavy tailed, but if one of the
other strategies is performed, the heavy-tailed degree distribution requires less vaccinations to
surely prevent an outbreak. Another minor difference from the previous example is that, for the
present heavy-tailed distribution, the acquaintance strategy is (slightly) better than E1 for all
vaccination coverages and, hence, also has a smaller critical vaccination coverage. However,
the difference between the two strategies is negligible.

Note that all the τ s in both examples denote the proportion of infected individuals among
the unvaccinated (in case of an outbreak) and hence can be thought of as an indirect protection
from those becoming vaccinated. Of course, by assumption, all vaccinated individuals are also
protected from becoming infected.

4. Preliminaries on branching processes

As stated above, our method is based on a comparison with branching processes, more
precisely Galton–Watson processes; see, e.g. [3, 1–62] for definitions and basic facts. If X is a
Galton–Watson process started with one initial particle, we let Xd denote the same branching
process with d initial particles, i.e. the union of d independent copies of X. Furthermore, for any
Galton–Watson process X, we let |X| denote its total progeny, i.e. the total number of particles
in all generations, and we let ρ(X) be the survival probability of X, i.e.

ρ(X) := P(|X| = ∞).
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Note that if X starts with one particle then

ρ(Xd) = 1 − (1 − ρ(X))d , (4.1)

since Xd dies out if and only if all d copies of X in it do.
We will need the following simple continuity result, which, although we have failed to find

a reference, is presumably well known.

Lemma 4.1. Let Xν and X be nonnegative, integer-valued random variables, and let Xd
ν and

Xd be the corresponding Galton–Watson processes with offspring distributions Xν and X,
respectively, starting with d particles. If Xν

d−→ X as n → ∞, where ‘
d−→’denotes convergence

in distribution, and P(X = 1) < 1, then ρ(Xd
ν ) → ρ(Xd) for every fixed d ≥ 0.

Proof. By (4.1), it suffices to show this for d = 1, in which case we drop the superscript 1.
Consider the probability generating functions fX(t) := E tX and fXν (t) := E tXν for

0 ≤ t ≤ 1. It is well known (see, e.g. [3, Theorem I.5.1]) that the extinction probability
q := 1 − ρ(X) is the smallest root in [0, 1] of fX(q) = q. It follows easily, since we have
excluded the possibility that fX(t) ≡ t , that if 0 ≤ t < q then fX(t) > t , and if q < t < 1
then fX(t) < t .

Since Xν
d−→ X, we have fXν (t) → fX(t) for every t ∈ [0, 1]. Hence, if 0 ≤ t < q then

fXν (t) > t for large n, and thus qν := 1 − ρ(Xν) > t . Similarly, if q < t < 1 then, for large
n, fXν (t) < t and thus qν < t . It follows that qν → q as n → ∞.

Remark 4.1. The case in which P(X = 1) = 1, i.e. X = 1 a.s., really is an exception. If we
let Xν ∼ Be(1 − ν−1), we have Xν

d−→ X = 1, but ρ(Xν) = 0 for every ν while ρ(X) = 1.

5. The giant component

Our ultimate goal is to describe the large component or components of G∗(n, (di)
n
1)v;p

and G(n, (di)
n
1)v;p, where v is one of the vaccination strategies defined above. The basic

strategy will be to relate the neighbourhoods of a vertex to a branching process. We do this
for G∗(n, (di)

n
1), which is technically easier to handle; as explained in Section 5.2, the results

then transfer to G(n, (di)
n
1) too, provided Condition 2.2 holds. First we argue in detail for

the simplest case, namely, G∗(n, (di)
n
1) without edge deletion (i.e. p = 1) or vaccination, and

prove our main results concerning the existence, size, and uniqueness of the giant component.
We use and adapt the method in [5] (for a different random graph model). This will provide a
new proof of the results by Molloy and Reed [15], [16] (under our slightly weaker condition).
We will then describe the modifications required to make the results also valid when there is
edge deletion or vaccination.

We say that an event holds with high probability (w.h.p.), if it holds with probability tending
to 1 as n tends to ∞. We shall use op in the standard way (see, e.g. [11]); for example, if (Xn)

is a sequence of random variables then Xn = op(1) means that Xn
p−→ 0. We shall often use the

basic fact that if a ∈ R then Xn
p−→ a if and only if, for every ε > 0, the relations Xn > a − ε

and Xn < a + ε hold w.h.p. All unspecified limits are taken as n tends to ∞, while p and the
vaccination parameters, v or c, are kept fixed.

We denote the orders of the components of a graph G by C1(G) ≥ C2(G) ≥ · · · , with
Cj (G) = 0 if G has fewer than j components. We let Nk(G) denote the total number of
vertices in components of order k, and write N≥k(G) for

∑
j≥k Nj (G), the number of vertices

in components of order at least k. Similarly, we let Nk,d(G) and N≥k,d(G) denote the number
of such vertices that have degree d .
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Remark 5.1. Our results are typically of the form C1(Gn) = τn+op(n) and C2(Gn) = op(n)

for some number τ ≥ 0 (or, equivalently, C1(Gn)/n
p−→ τ and C2(Gn)/n

p−→ 0). Hence, if
τ > 0 then there exists exactly one ‘giant’ component, and all other components are much
smaller. In our epidemic setting, this means that if τ = 0 then every epidemic will be ‘small’,
i.e. o(n), while if τ > 0 then the epidemic will be large with probability τ (allowing for the
case in which the initially infected person is vaccinated and thus never becomes ill), and in this
case a fraction τ of the population will be infected. (τ thus has a double role.)

5.1. G∗(n, (di)
n
1 ), with p = 1 and no vaccination

As stated above, we will use a branching process approximation. The particles in the
branching process correspond to free (not yet paired) half edges. Note that there are jnj half
edges belonging to vertices of degree j . Hence, a random half edge shares a vertex with j − 1
other half edges with probability jnj /

∑
k knk . By Condition 2.1, jnj /

∑
k knk → jpj/µ,

and recall the definition of p̃j = jpj/µ defined in (3.1). Let X be the Galton–Watson branching
process starting with one particle and with the offsping distribution (p̃j+1)

∞
j=0. (This is the

distribution (pj )j , size biased and shifted one step.) In other words, the offspring distribution
is D̃ − 1, with D̃ as given in Section 3.

We let ρ = ρ(X) denote the survival probability of X, and define

τ :=
∞∑

d=1

pd(1 − (1 − ρ)d);

this is the survival probability for the branching process X started with a random number of
particles having distribution (pd)∞d=0.

Consider a vertex x of degree d in G∗(n, (di)
n
1). We explore the component containing x

by a breadth-first search. We concentrate on the half edges, so we begin by taking the d half
edges at x, and label them as active. We then process the active half edges one by one as
follows. We take an active half edge, relabel it as used, and find the half edge that it connects
to and the corresponding vertex; this partner is chosen uniformly among all half edges that are
not yet used. We then label the partner as used and all other half edges at the same vertex as
active, provided that they are not already used (which would mean that we have found a cycle
or a multiple edge). The active half edges will behave essentially as a Galton–Watson process
(where we reveal the children of the particles one by one), but the probability distribution of
the children will vary slightly; it will depend on the numbers of vertices of different degrees
that we have already found. Nevertheless, it is obvious that at each step in the beginning, the
probability of j − 1 new half edges is close to jnj /

∑
k knk ≈ p̃j .

To be more precise, first, let k be a fixed number, and consider the event that x belongs to a
component with at least k vertices. This is almost the same as the probability that we will find at
least k − 1 active half edges in the process just described. (This is not exact, because if we stop
when we have found k−1 half edges, some of these may connect back to vertices already found;
however, the probability of this tends to 0 as n tends to ∞.) The complementary event, that the
process finds less than k − 1 active half edges, consists of a finite number of cases, where each
case describes the sequence of new active half edges found at each step. It is obvious that the
probability of each of these cases converges, as n tends to ∞, to the corresponding probability
in Xd , and thus we find, for a vertex x of degree d, with C(x) denoting the corresponding
component of G∗(n, (di)

n
1),

P(|C(x)| ≥ k) = P(|Xd | ≥ k − 1) + o(1). (5.1)
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Recall that N≥k is the number of vertices of degree d belonging to a component of size at
least k. The expectation E N≥k,d equals nd times the probability that a given vertex x of degree
d satisfies |C(x)| ≥ k, and thus, by (5.1) and Condition 2.1(i), for every fixed d ≥ 0 and k ≥ 1,

E

(
N≥k,d

n

)
→ pd P(|Xd | ≥ k − 1). (5.2)

Next we want to let k tend to ∞ here. Thus, for the remainder of this section, we assume that
ω(n) is a function such that ω(n) → ∞ but ω(n)/n → 0 as n → ∞. We regard components
as big if they contain at least ω(n) vertices, and small otherwise. (The flexibility in the choice
of ω(n) is useful, but we will see that it does not matter much; the asymptotics we find do not
depend on ω.)

Lemma 5.1. If ω(n) → ∞ and ω(n)/n → 0 then,

E

(
N≥ω(n)

n

)
→ τ (5.3)

and, for every fixed d ≥ 0,

E

(
N≥ω(n),d

n

)
→ pd P(|Xd | = ∞) = pd(1 − (1 − ρ)d). (5.4)

Proof. We begin with an upper bound in (5.4). For any fixed k, we have ω(n) > k for large
n, and thus N≥ω(n),d ≤ N≥k,d . Consequently, (5.2) yields

lim sup
n→∞

E

(
N≥ω(n),d

n

)
≤ lim sup

n→∞
E

(
N≥k,d

n

)
= pd P(|Xd | ≥ k − 1). (5.5)

As k tends to ∞, the right-hand side converges to pd P(|Xd | = ∞), and we find

lim sup
n→∞

E

(
N≥ω(n),d

n

)
≤ pd P(|Xd | = ∞). (5.6)

For a lower bound, let ν ≥ 1 be fixed, and let Xν be a random variable taking values
in {0, 1, . . . , ν} with P(Xν = j) = (1 − ν−1)p̃j+1 for 1 ≤ j ≤ ν (and a suitable value for
P(Xν = 0) so that the sum becomes 1). Consider the breadth-first exploration process described
above. As long as we have found less than ω(n) vertices, the number of new active half edges at
each step stochastically dominates Xν , provided n is large enough, since the remaining number
of vertices of degree j + 1 is nj+1 − o(n) = pj+1n − o(n) ≥ (1 − ν−1)pj+1n for large n. (If
pj+1 = 0, the result is trivial.) Consequently, letting Xd

ν be the Galton–Watson process with d

initial particles and the number of children distributed as Xν , if n is large enough, we can couple
the exploration process and Xd

ν such that as long as we have found less than ω(n) vertices, the
number of active half edges is at least equal to the number of active particles in Xd

ν (i.e. the
particles whose children have not yet been revealed). In particular, if the exploration process
stops before ω(n) vertices are found then Xd

ν stops and, thus, the probability that a vertex x of
degree d satisfies |C(x)| < ω(n) is at most P(|Xd

ν | < ∞). Consequently, for large n,

E N≥ω(n),d ≥ nd P(|Xd
ν | = ∞),

and thus

lim inf
n→∞ E

(
N≥ω(n),d

n

)
≥ pd P(|Xd

ν | = ∞).

https://doi.org/10.1239/aap/1198177233 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177233


Graphs, epidemics, and vaccination strategies 941

Now let ν tend to ∞. Then Xν
d−→ X, where X has the distribution P(X = j) = p̃j+1, and

thus, by Lemma 4.1, P(|Xd
ν | = ∞) → P(|Xd | = ∞). Consequently,

lim inf
n→∞ E

(
N≥ω(n),d

n

)
≥ pd P(|Xd | = ∞),

which together with (5.6) and (4.1) yields (5.4).
Finally, noting that N≥ω(n),d ≤ nd , it easily follows, from the uniform summability in (2.1),

that we can sum (5.4) over d and take the limit outside the sum, i.e.

E

(
N≥ω(n)

n

)
=

∑
d

E

(
N≥ω(n),d

n

)
→

∑
d

pd(1 − (1 − ρ)d) = τ.

Note that the limits do not depend on the choice of ω(n). Hence, it follows that the expected
number of vertices belonging to components of size between, say, log n and n0.99 is o(n).

We next show that we have convergence not only of the expectations but also of the random
variables in (5.3) and (5.4), i.e. that these random variables are concentrated close to their
expectations.

Lemma 5.2. If ω(n) → ∞ and ω(n)/n → 0 then,

N≥ω(n)

n

p−→ τ (5.7)

and, for every fixed d ≥ 0,

N≥ω(n),d

n

p−→ pd(1 − (1 − ρ)d). (5.8)

Proof. Start with two distinct vertices x and z of the same degree d and explore their
components as above. We can repeat the arguments above, and find that

P(|C(x)| < k, |C(y)| < k) = P(|Xd | < k − 1)2 + o(1),

and thus, using (5.1),

P(|C(x)| ≥ k, |C(y)| ≥ k) = P(|Xd | ≥ k − 1)2 + o(1).

Multiplying by the number nd(nd − 1) of pairs (x, y) of the same degree d, and noting that the
number of such pairs, where both x and z belong to components of size greater than or equal
to k (the same or not), is N≥k,d(N≥k,d − 1), we find that

E

(
N2≥k,d

n2

)
= E

(
N≥k,d(N≥k,d − 1)

n2

)
+ O

(
1

n

)
→ p2

d P(|Xd | ≥ k − 1)2.

Hence, lim supn→∞ E(N2
≥ω(n),d/n2) ≤ p2

d P(|Xd | ≥ k − 1)2 for every k, and thus

lim sup
n→∞

E

(
N2

≥ω(n),d

n2

)
≤ p2

d P(|Xd | = ∞)2.

Since, by the Cauchy–Schwarz inequality and (5.4),

E

(
N2

≥ω(n),d

n2

)
≥

(
E

(
N≥ω(n),d

n

))2

→ p2
d P(|Xd | = ∞)2,
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it follows that

E

(
N2

≥ω(n),d

n2

)
→ p2

d P(|Xd
ν | = ∞)2.

This and (5.4) show that

var

(
N≥ω(n),d

n

)
→ 0,

and thus
N≥ω(n),d − E(N≥ω(n),d )

n

p−→ 0,

which by (5.4) implies (5.8).
Finally, again we can sum over d because of (2.1); this yields (5.7).

Theorem 5.1. Assume that Condition 2.1 holds. Then

C1(G
∗(n, (di)

n
1)) = τn + op(n),

C2(G
∗(n, (di)

n
1)) = op(n).

Proof. We have already shown that roughly τn vertices lie in big components. It remains
to show that most of them belong to the same component. We write Gn = G∗(n, (di)

n
1).

First, if C1(Gn) ≥ ω(n) then N≥ω(n)(Gn) ≥ C1(Gn). Thus, for every ε > 0 and n so large
that ω(n) < εn, we have, by Lemma 5.2,

P(C1(Gn) > τn + εn) ≤ P(N≥ω(n)(Gn) > τn + εn) → 0. (5.9)

This completes the proof if τ = 0.
In the sequel we assume that τ > 0 and show a corresponding estimate from below. First,

if pd = 0 for every d ≥ 2 then p̃j+1 = 0 for all j ≥ 1, so X dies immediately and ρ = 0 and
τ = 0. Hence, pd > 0 for some d ≥ 2. We fix such a d for the remainder of the proof, and fix
δ with 0 < δ < 1

2 . Furthermore, take (rather arbitrarily) ω(n) = n0.9.
In the sequel we assume that n is so large that nd > n1−δ . We then split the first n1−δ vertices

of degree d in Gn into d vertices of degree 1 each; we colour these dn1−δ new vertices red. (To
be precise, we should round n1−δ to an integer.) We denote the resulting graph by G′

n; note that
G′

n is a random multigraph G∗(n′, (d ′
i )), where n′

j , the number of vertices of degree j , is given
by n′

d = nd − n1−δ , n′
1 = n1 + dn1−δ , and n′

j = nj for j �= 1, d. Note that the total number
of vertices in G′

n is n′ := n + (d − 1)n1−δ = n + o(n), and that (d ′
i ) satisfies Condition 2.1

with the same (pj ) (except that n is replaced by n′, which only makes a notational difference).
Consequently, our results above apply to G′

n too.
By symmetry we may assume that the dn1−δ red vertices in G′

n are chosen at random among
all vertices of degree 1, and that Gn is obtained by partitioning the red vertices at random into
groups with d vertices and then coalescing each group into one vertex.

During the exploration of the component C′(x) in G′
n containing a vertex x, in each

step, the active half edge is paired with the single half edge leading to a red vertex with
probability at least c1n

−δ for some c1 > 0, unless at least n1−δ red vertices have already
been found. Consequently, if the component C′(x) has at least ω(n) vertices, the number of red
vertices stochastically dominates min(n1−δ, Bi(ω(n)−1, c1n

−δ)). A Chernoff bound (see, e.g.
[11, Corollary 2.3]) shows that the probability that C′(x) has at least ω(n) vertices but less than
c2n

−δω(n) = c2n
0.9−δ red vertices is at most exp(−c3n

0.9−δ) = o(n−1) for c2 = c1/2 and
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some c3 > 0. Summing over all x, we see that, w.h.p., every big component of G′
n contains at

least c2n
0.9−δ red vertices.

Assume that this holds, and consider two big components K1 and K2 in G′
n. We can

construct the random partition of the red vertices by first taking the red vertices in K1 one
by one, unless already used, and randomly selecting d − 1 partners. We thus do this at least
m := c2n

0.9−δ/d times, and each time the probability of not including a red vertex in K2 is at
most 1 − c2n

0.9−δ/dn1−δ = 1 − c4n
−0.1, with c4 = c2/d. Consequently, the probability of

not joining K1 and K2 in the coalescing phase is at most

exp(−mc2n
−0.1) = exp(−c2

4n
0.8−δ) = o(n−2).

Since there are at most (n′)2 = O(n2) such pairs K1 and K2, we see that, w.h.p., all big
components in G′

n are connected in Gn. Hence, if B ′ is the union of all the big components in
G′

n, and B is the corresponding set of vertices in Gn, we see that, w.h.p., B is connected in Gn,
and, using Lemma 5.2 for G′

n,

C1(Gn) ≥ |B| ≥ |B ′| − (d − 1)n1−δ = τn′ + op(n) = τn + op(n). (5.10)

Combining (5.10) and (5.9), we obtain C1(Gn) = τn + op(n).
Finally, we observe that if C2(Gn) ≥ ω(n) then N≥ω(n)(Gn) ≥ C1(Gn) + C2(Gn), and

thus, by (5.7) and (5.10),

C2(Gn) ≤ max(ω(n), N≥ω(n)(Gn) − C1(Gn)) = op(n).

5.2. The simple random graph G(n, (di)
n
1 )

We transfer the results to the simple random graph G(n, (di)
n
1) by the following result proved

in [9]; see also, e.g. [4, Section II.4] and [14] for earlier versions.

Lemma 5.3. If Conditions 2.1 and 2.2 hold then

lim inf
n→∞ P(G∗(n, (di)

n
1) is a simple graph) > 0.

All results for G∗(n, (di)
n
1) that can be stated in terms of convergence in probability, as

our results in this section, thus hold also if we condition on the graph being simple. In other
words, the results proved for G∗(n, (di)

n
1) hold for G(n, (di)

n
1) too. Thus, Theorem 5.1 has the

following version for G(n, (di)
n
1).

Theorem 5.2. Assume that Conditions 2.1 and 2.2 hold. Then

C1(G(n, (di)
n
1)) = τn + op(n),

C2(G(n, (di)
n
1)) = op(n).

5.3. Uniform vaccination

We now extend Theorem 5.1 to the graph G∗(n, (di)
n
1)U

v;p, where 0 ≤ v < 1 and 0 <

p ≤ 1; see Section 2. Recall that we obtain this graph from G∗(n, (di)
n
1) by randomly

and independently deleting edges with probability 1 − p (nontransmission) and vertices with
probability v (vaccination). The branching process approximation arguments above still work,
with the difference that each new individual found is kept with probability p(1 − v), and
otherwise discarded. Hence, the offspring distribution is changed from D̃ − 1 to X̃v ∼
MixBi(D̃ − 1, p(1 − v)), and the branching process corresponding to an unvaccinated person
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with d friends starts with Bi(d, p(1−v)) individuals. Now let Xd denote the branching process
with this offspring distribution, starting with d individuals. The probability generating function
of X̃v is, as shown in Sections 3.1 and 3.2, given by

E t X̃v = f ′
D(1 − p(1 − v)(1 − t))

f ′
D(1)

.

Hence, the extinction probability of X1 is π̃U
v;p, given by (3.5). If we start the branching process

with D′ ∼ Bi(d, p(1 − v)) individuals, the extinction probability is thus, writing p̄ = p(1−v),

π(d) :=
∑

k

(
d

k

)
p̄k(1 − p̄)d−k(π̃U

v;p)k = (1 − p̄ + p̄π̃U
v;p)d .

The arguments in the proofs of Lemmas 5.1 and 5.2 show, recalling that each vertex has
probability 1 − v of being unvaccinated, that (5.8) holds in the form

N≥ω(n),d

n

p−→ pd(1 − v)(1 − π(d))

for every fixed d ≥ 0, assuming that ω(n) → ∞ and ω(n)/n → 0. Hence,

N≥ω(n)

n(1 − v)

p−→
∑
d

pd(1 − π(d)) = 1 −
∑
d

pdπ(d) = 1 − fD(1 − p̄ + p̄π̃U
v;p).

This limit equals τU
v;p := 1 − πU

v;p, with πU
v;p given by (3.6).

To extend Theorem 5.1, it remains to show that there is only one very large component. More
precisely, we again show that, with ω(n) = n0.9, there is, w.h.p., only one big component. We
argue as in Theorem 5.1, splitting some vertices of degree d in Gn = G∗(n, (di)

n
1) into d red

vertices of degree 1, calling the resulting graph G′
n.

We vaccinate the vertices in G′
n with probability v each, independently; we then recombine

the red vertices to vertices of degree d in Gn, and consider each such vertex as vaccinated
if at least one of its red parts in G′

n is vaccinated. This means that some vertices in Gn are
vaccinated with probability larger than v, but this does not matter since the aim of the argument
is to provide a lower bound for C1, the size of the largest component, and any extra vaccinations
can only decrease C1.

By a Chernoff bound there are, w.h.p., at least (1 − v)n1−δ unvaccinated red vertices, and
as before it follows that, w.h.p., every big component of (G′

n)
U
v;p contains at least c2n

0.9−δ

red vertices (although the value of c2 may change). Given two big components K1 and K2
it follows, similarly as before, that, with probability 1 − o(n−2), there exists a vertex in Gn

that is split into d red vertices, of which at least one is in K1, at least one is in K2, and all are
unvaccinated. The proof is completed as before.

Consequently, also using Lemma 5.3, we have the following theorem. Theorems 3.2 and 3.1
(the special case in which v = 0) are immediate consequences.

Theorem 5.3. Assume that Condition 2.1 holds, and let 0 < p ≤ 1 and 0 ≤ v < 1. Then,

C1(G
∗(n, (di)

n
1)U

v;p) = τU
v;pn(1 − v) + op(n),

C2(G
∗(n, (di)

n
1)U

v;p) = op(n),

where τU
v;p = 1 − πU

v;p, with πU
v;p given by (3.6). Also if Condition 2.2 holds then the same

results hold for G(n, (di)
n
1)U

v;p too.
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5.4. Acquaintance vaccination

As explained in Section 3.3, in order to obtain (asymptotically) a Galton–Watson branching
process, with the right independence properties, we consider directed edges, or equivalently half
edges, that are open, i.e. transmission may take place but the edge is not used for vaccination.
Moreover, we consider only open edges originating at an unvaccinated person.

Let x be a given vertex with degree d in G∗(n, (di)
n
1), and let us explore the component

of x in G∗(n, (di)
n
1)A

c;p, conditioned on x being unvaccinated (otherwise x does not belong to
G∗(n, (di)

n
1)A

c;p). In order to be kept in G∗(n, (di)
n
1)A

c;p, an edge has to be open, but not all edges
are kept since some may lead to vertices that are vaccinated; see Figure 1(c). Nevertheless, we
consider all open edges found during the exploration. We declare the open edges starting at x

to be active. We then investigate the active edges. If an active edge leads to a person that is
unvaccinated, we declare the open edges going from that person, except the one going back to
where we just came from, to be new active edges. We continue until no more active edges are
found; we then have found the component containing x (plus some extra open edges leading to
vaccinated persons).

We investigate this process probabilistically, revealing the structure of G∗(n, (di)
n
1) by

combining half edges at random during the exploration. We consider asymptotics as n tends
to ∞, and some of the statements below are only approximately correct for finite n.

First note that each of the d edges leading from x is open with probability pe−c/d , indepen-
dently of each other, so we start with Bi(d, pe−c/d) open edges.

The vertex x has d friends; in G∗(n, (di)
n
1) they are chosen by randomly choosing d half

edges and their degrees have the size-biased distribution (p̃j ), independently of each other.
Conditioning on x being unvaccinated means that we condition on none of the d edges being
used for vaccination in the opposite direction. Since the probability that a friend with degree
j does not name x is e−c/j , this preserves the independence of the degrees of the friends, but
shifts their distribution to, as asserted in (3.10), (p̃j e−c/j /α)j , where

α = α(c) =
∑
j

p̃j e−c/j ,

as in (3.7), is the probability of not being named by a random friend.

Now suppose that an open edge goes from x to a friend z of degree k. In order for this to
define an edge in G∗(n, (di)

n
1)A

c;p, z must not be vaccinated through another of his or her friends;
this has the probability αk−1. In this case z has k − 1 further edges, and each of them is open
with probability pe−c/k . It follows that the number of new open edges at z has a distribution
that is the mixture (1 − αk−1)δ0 + αk−1 Bi(k − 1, pe−c/k). Using the distribution in (3.10) for
the degree of z, we finally see that the distribution of the number Y of new active edges found
when exploring a single active edge is given by (3.11).

Hence, observing obvious independence properties, the process of active edges is (asymp-
totically) a Galton–Watson branching process with offspring distribution Y , starting with
Bi(d, pe−c/d) active edges. Denote this branching process by X(d). Let, as in Section 3.3,
π̃A

c;p be the probability that a branching process with this offspring distribution Y and starting
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with a single individual dies out. Then, the extinction probability of X(d) is

π(d) := P(|X(d)| < ∞)

=
d∑

j=0

(
d

j

)
(pe−c/d)j (1 − pe−c/d)d−j (π̃A

c;p)j

= (1 − pe−c/d + pe−c/d π̃A
c;p)d .

A minor complication is that the branching process approximation counts open edges and,
as remarked above, not all open edges lead to vertices in G∗(n, (di)

n
1)A

c;p. Thus, (5.1) does not
extend directly. However, we still have the inequality

P(|C(x)| ≥ k) ≤ P(|X(d)| ≥ k − 1) + o(1).

Furthermore, a vertex of degree d in G∗(n, (di)
n
1) is unvaccinated with probability αd , and thus

E(N≥k,d) ≤ ndαp(P(|X(d)| ≥ k − 1) + o(1)),

which arguing as in (5.5) and (5.6) leads to

lim sup
n→∞

E

(
N≥ω(n),d

n

)
≤ pdαp P(|X(d)| = ∞) = pdαp(1 − π(d)). (5.11)

For a lower bound, we note that an open edge creates new open edges in the exploration
process only if it leads to an unvaccinated person. Hence, if f (X(d)) denotes the number of
individuals in the branching process X(d) with at least one child, we have, for every k ≥ 1,

P(|C(x)| ≥ k) ≥ P(f (X(d)) ≥ k − 1) + o(1).

In order to replace the fixed k by ω(n), we proceed as in the proof of Lemma 5.1 and define a
Galton–Watson process X

(d)
ν , now starting with Bi(d, pe−c/d(1−ν−1)) individuals and with an

offspring distribution Yν on {0, . . . , ν} with P(Yν = j) = (1−ν−1) P(Y = j) for j = 1, . . . , ν.
For each ν and each fixed A < ∞, we can, for large n, couple the exploration process and

X
(d)
ν as in the proof of Lemma 5.1 as long as we have found at most Aω(n) open edges. Hence,

if |C(x)| < ω(n) then either f (X
(d)
ν ) < ω(n) or the process X

(d)
ν reaches more than Aω(n)

individuals while less than ω(n) of them, plus the root, have had children. The probability of
the latter event is at most, since the root has at most d children,

P

(
1 + d +

ω(n)∑
i=1

Y ∗
ν,i > Aω(n)

)
,

where Y ∗
ν,i are independent random variables with the distribution L(Y | Y > 0), and thus

this probability tends to 0 by the law of large numbers provided that we have chosen A >

E(Y | Y > 0). Consequently,

P(|C(x)| < ω(n)) ≤ P(f (X(d)
ν ) < ω(n)) + o(1) ≤ P(f (X(d)

ν ) < ∞) + o(1).

Again using the fact that a person with degree d is unvaccinated with probability αd , it follows
that

E N≥ω(n),d ≥ ndαp(1 − P(|X(d)
ν | < ∞) + o(1)),
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and thus

lim inf
n→∞ E

(
N≥ω(n),d

n

)
≥ pdαp P(|X(d)

ν | = ∞).

We let ν tend to ∞ and obtain, by Lemma 4.1,

lim inf
n→∞ E

(
N≥ω(n),d

n

)
≥ pdαp P(|X(d)| = ∞) = pdαp(1 − π(d)),

which together with (5.11) yields

E

(
N≥ω(n),d

n

)
→ pdαp(1 − π(d)).

Arguing as in the proof of Lemma 5.2, we also find that

N≥ω(n),d

n

p−→ pdαp(1 − π(d))

and, recalling (3.14) and (3.8),

N≥ω(n)

n

p−→
∑
d

pdαp(1 − π(d)) =
∑
d

pdαp(1 − πA
c;p) = (1 − v(c))τA

c;p,

with τA
c;p = 1 − πA

c;p. In particular,

C1(G
∗(n, (di)

n
1)A

c;p) ≤ ω(n) + N≥ω(n) ≤ (1 − v(c))τA
c;pn + op(n).

Finally, we argue again as in the proof of Theorem 5.1 to show that most vertices in large
components belong to a single component. We split some of the vertices in Gn = G∗(n, (di)

n
1)

as above and perform acquaintance vaccination on the resulting graph G′
n. This corresponds to

acquaintance vaccination on Gn, except that the vertices that are now split are asked to name
a friend Po(dc) times instead of Po(c). We thus perform some extra vaccinations, but this can
only decrease C1, and we obtain, as in (5.10), the lower bound

C1(G
∗(n, (di)

n
1)A

c;p) ≥ (1 − v(c))τA
c;pn + op(n).

Summing up, and using Lemma 5.3, we have proved the following theorem. Theorem 3.3
is an immediate consequence.

Theorem 5.4. Assume that Condition 2.1 holds, and let 0 < p ≤ 1 and 0 ≤ c < ∞. Then,

C1(G
∗(n, (di)

n
1)A

c;p) = τA
c;pn(1 − v(c)) + op(n),

C2(G
∗(n, (di)

n
1)A

c;p) = op(n),

where τA
c;p = 1 − πA

c;p, with πA
c;p given by (3.14). Also if Condition 2.2 holds then the same

results hold for G(n, (di)
n
1)A

c;p too.
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5.5. Edgewise vaccination

We argue as for acquaintance vaccination with the modifications (simplifications) explained
in Section 3.4. There are no new complications, and we obtain the following theorem. Theo-
rem 3.4 is an immediate consequence.

Theorem 5.5. Assume that Condition 2.1 holds, and let 0 < p ≤ 1 and 0 < α ≤ 1. Then, for
j = 1, 2,

C1(G
∗(n, (di)

n
1)

Ej

α;p) = τ
Ej

α;pn(1 − v(α)) + op(n),

C2(G
∗(n, (di)

n
1)

Ej

α;p) = op(n),

where τ
Ej

α;p = 1 − π
Ej

α;p, with π
Ej

α;p given by (3.17). Also if Condition 2.2 holds then the same
results hold for G(n, (di)

n
1)

Ej

α;p too.
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