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§0. Introduction

The purpose of this paper is to present a propositional calculus whose
decision problem is recursively unsolvable. The paper is based on the follow-
ing ideas:

(1) Using Lowenheim-Skolem’s Theorem and Surdnyi’s Reduction Theorem,
we will construct an infinitely many-valued propositional calculus corres-
ponding to the first-order predicate calculus.

(2) Itis well known that the decision problem of the first-order predicate
calculus is recursively unsolvable.

(3) Thus it will be shown that the decision problem of the infinitely many-
valued propositional calculus is recursively unsolvable.

In this paper, we consider semantically the problem. That is, we define
a validity of wif in our logical system and we will discuss on the problem
to decide whether or not an arbitrary wif in our system is valid.»

§1. Logical system L

We consider a logical system L:

(1) Propositional variables: F,Fy <+, G, Gy + =+, Py Py + + +.
(2) Truth-values: Let N be the set of natural numbers and = {0,1}.

We define functions f,g as follows:
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1) This research was done while the author stayed at Dept. of Information Science, Univ.
of North Carolina at Chapel Hill.

2) In the first-order predicate calculus, the semantical decision problem is equivalent to
the syntactical one by the completeness theorem.
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i N—>Q, fear,

g: NXNXN—2V, ge (QN)yy*v<y |
A truth-value is defined as a member of (2VM)¥*NXN_ je, it is such a function
g. Let us say here (2,y,2) in NX NX N as a coordinate, and =z, y, z as x-
coordinate, y-coordinate, z-coordinate, respectively.
(3) Logical operations:
Monadic operations: X, Y, Z, 3,, 3,, 3., O, 1y
Duadic operation: V.

(4) Truth-value functions:
Let us denote as follows:

fA)=%, 2€N, x,9,

9(%s Yy 2) = Vyyo %, Yy 2 E N, vy, €2V,

X: If a truth-value of wff % has v;; at (i, i, i) in NXNXN, the truth-
value of XU has the same v;;; at every (i, y, z2) where y,2=1,2,3, -,
Y,Z: Those are defined by the similar way to X.
V, 1: Those are defined by the usual way.
3,: We consider all elements (x, 7, k) in NXNXN where j, k are constants.
If there exists a such that a #, at (a, j, k) of truth-value of wif ¥ is 1, then
the truth-value of 3,% has 1 at x, of every (x, j, k).
If a truth-value of & has 0 at *, of (, j, k) for every xz, then the truth-
value of 3,% has 0 at x; in every (x, j, k).
3,,3,: Those are defined by the similar way to a,.
&t For every g(x, v, 2),

every #(1=1,2,3, --+)is 1, if % =1 for some 2.

O 9@, ¥y, 2) = . .
every #(2=1,2,3, - +) is 0 otherwise.

The logical system L is considered as a kind of infinitely many-valued
propositional logic. In this paper, a truth-value whose %, (1=1,2,3,+++)
at every (x,¥,2) are all 1 is called the designated value. And further a wif
A is called valid if and only if the % takes always the designated value
independently of truth-values of propositional variables P, P;, « -+, P, in .

D D
1) Using those logical operations, we define PyA P, = T(1P;V1P;), PiDP; = 1PV P,.
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§2. Relations between the first-order predicate calculus K and the
system L

We shall give some relations between the first-order predicate calculus
K and the logical system L.

According to the Suranyi Reduction Theorerﬁ, we have the following
one:

THEOREM. For every wif U in K, we can construct a wit B of the following
Sorm:
(I) (a») @y) @2) My V @Ex) @y) ()M,
where M, and M, are quantifier-free and contain non but monadic and duadic
predicates.  And, in this case, N s equivalent to B in regard to the universal
validity.
From now on, we shall denote Surdnyi Reduction Form (I) of an
arbitrary wif & in K as A*
Now, for wif A* and each subformula & of UA* in K, let A(S) be a
wil in L obtained by using inductively the following (i)-(iii).
(i) If @ is a monadic predicate F(z), then
h(F(x)) > <O XF.L
where — means “correspondencé”.
(il) If & is a duadic predicate G(z,y), then
h(G(z, ¥) = O(XG* A YGHP.
Here, it needs not to consider such a case as i(H(x,y,2)) because the form
(I) contains only monadic and duadic predicates as shown above.
(iii) If & contains logical operations or quantifier, then
r( T8~ (S),
h(SNVSy) > h(S,) V h(Sy),
h((@2)S,) = 3:4(S)),
r(@3y)3,) = 3,h(S)),

((32)8)) = 3,h(S)).
For example:

h(@z) @y) (F(x) & G2, ¥)) = 3,3,(CXFAO(XG' AY GY).

1 Of course, h(F(y)) > OYF, h(F(z)) > OZF, h(G(y,2)) > O(YGIAZG?), «--.
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We shall write A(U*) as %*,
Then, we shall prove, in §3, the following theorems:

Tueorem 1. If A* is valid in L, then A* is universally valid in K.

THEOREM 2. If U* is universally valid in K, then %* is valid in L.

Now, assume that the decision problem of validity in L is recursively
solvable. Then, we have an effective procedure to decide whether or not
an arbitrary wiff 9* in L is valid. Thus, from Theorem 1 and 2 we have
also an effective procedure to decide whether or not * in K is universally
valid. But, %* is Surdnyi’s reduction form of %. Therefore it follows that
the decision problem of predicate calculus is recursively solvable. This is
contradict with (2) in §0. Thus, we know that the decision problem in L

is recursively unsolvable.

§3. Proofs of Theorem 1 and 2

Now, we shall give proofs of Theorem 1 and 2.
Theorem 1:

We prove the following Theorem 1’ which is equivalent to Theorem 1.

TuEOREM 1/,  If U* is not universally valid in K, than U* is not valid in
L.

Proof. 'To prove this theorem we use Loéwenheim-Skolem’s Theorem
which is expressed as follows: a wff & in K is universally valid if & is
valid in an enumerable infinite domain .

Using this theorem and our assumption of Theorem 1’, we are able to
let a truth-value of A* be F(falsity) in w by some suitable truth-value as-
signment. Here let us denote elements in o as e, e, e, - -+, and assume
that the following predicates occur in A*.

(II) Fy(=), FZ(Q‘}), MR Fa(x); R 9F1(z)’ Fz(z), o ooy Fulz),
Gy, )y =+ -, Gﬁ(x’ %); Gi(®,Y), +*+ 5 Gi(2,2)y -+ ¢, GB(z’ 2).

Here, it is possible to assume that those predicates actually occur in A*.
For if F,(x) occurs neither in (3x) (3y) (32)M, nor in (3x) (3y) (2)M,, then it is
sufficient to consider a formula (3z)(3y)(32) (M, & Fi(z)V 1F,(x)) which is
equivalent to (3z) Ay) @z)M,.

Now, according to our assumption a truth-value of %* is F in o by a
truth-value assignment for predicates (II). Say that the truth-value assign-
ment is as follows:
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Fye): T, Fye): F, » Fo
(III) Fl(ez): T’ Fz(ez): T’ ’ Fu

Giee):T, Gy(eye): F,
Gl(.el! e):T, Gy(eye,): T,

Glen e): T, Gyleye)): F,
Gﬁ(elg eg) ; F, Gﬁ(ez, eg) ; T,

.....

From this truth-value assignment, we construct a truth-value assignment in
L as follows:
First of all, we make a correspondence of 77 and F in K to (1,1,1,1,1,

-) and (0, 0, 0, 0, O, - - +) in L respectively. Here, the above-mentioned (1,
1,1,1,1,---) ((0,0,0,0,0, ---)) stands for f(2) =1 (f(2) =0) for all 2.
Next, we make a correspondence of e, e,e¢; -+ to (1,1,1), (2,2, 2),(3,3,3)
«++ in NXNXN in our definitions.

Now, we consider the following truth-value assignment of Fy, Fy, « - -,
F, in 9*. If Fye,) is T (or F) in (III), then we give (1,1,1,1,1, « - -) (or
(0,0,0,0,0, - - -)) to F, at (4, j, j) in NXNXN.
For example:
If Fy(e,) is T in (III), then we give (1,1,1,1,1, - -+) to F, at (2, 2, 2) in
NxXNXxN. If Fyle,) is F in (III), then we give (0,0,0,0,0, - - -) to F, at
(1,1,1) in NXNXN. In this case, v,,, of F,, F,, -+, F, are arbitrary
except Vyyy, Vs Vsss, + * +. Lhis is always possible.

Next, we consider the following assignment of Gi, G}, - - -, Gp; G, G3,
-+ +, G§ in ¥* corresponding to G,, G,, -+ -, Gy in A*.
If Gi(ery &) is T in (III), we give (ry 7 73 - +) to Gi at (1,1, 1) and
(t}s T4y Ty + + ) to G} at (1,1,1) by whose value &(GIAG?) takes (1,1,1,1,
1, -+ +), where r;, ¢/ is in £.
If G.(ey €) is T in (III), we give the above (ry 75 73 -+ +) to G} at
(1,1,1) and (<7, %, <4, + - +) to Gi at (2,2,2) by whose value < (G} A G?)
takes (1,1,1,‘1,1, o)

In the above explanation, (1,1,1), (2,2,2), + - + correspond to e, e, + ++ and
!, G} to the first argument, the second argument of G;.
Those (<9, <9, -+ +) at (kyk, k) and (<9, «®, - - +) at (I,1,1) must be given
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such that ¢(GiAG?) obtained from G,(e, e,) whose value is F in (III) does
not take the value (1,1,1,1,1, « - ).

By repeated applications of this process, we give values to Gi, Gi, * - -,
Gp; G3, G3, - -+, G at (1,1,1), (2,2,2), (3,3,3), -+ in NXNxN and in this

case values at (v, v, v;) Where at least two of v, v, and »; are different
are arbitrary.

This process is always possible too. Because since our (¥, *,, *;, + - +) is an

infinite sequence of 0,1, it is possible by the definition of truth-value func-
tion of <.

That is, for example: let us assume that

®© Gilepe): T, @ Gyleye): F, /@ Giley,e): F, « -+
1) ® Gileye): T, ® Gileye): T, ® Gilene): T, -
® Gileyes): F, © Gyleyes): T, Gi(es ). F, - - -

Then, first we enumerate those predicates as the above-mentioned @, @,®,
- and we give an assignment as follows:

G;(el): (19 0, 1, *49 *59 ce) G%(el): (19 0,0, - - ')
2) G;(ez): (Os 0,0,0, 1, - - ') G?(ez): (0, 0,1,01,0,0,1, -+ ')
G%(ea): (0, 0,0,0,0,0,0,1, - - ’) G%(es): (O’ 0,0,00,0,0,0,1, - ')

where Gi(e,) ( = 1,2) means a value of G} at (1,1,1) in NXNxXN and Gi(e,)

means a value of GJ at (2,2,2) in NXNXN, etc..

2) is constructed such that the first 1, the third 1 from the left in (1, 0, 1,

*» *s,+++) of Gi(e;) correspond to T of the enumeration @, ® in 1).
Now, notice that in an enumerable infinite domain N the operation

(3x) (@y), (32)) can be interpreted as an infinite disjunction on z-coordinate

(y-coordinate, z-coordinate). For example: (3z) U(x, y,2) is interpreted as

AL, ¥, 2) VA2 Yy 2)V » » +
And also we notice that

(1) if F(eye,) is a truth-value of F(z,y), it is considered by the definition
of X,Y, Z as a value at (1,2,2) in NXNxN where 2=1,2,3,+ .,

(2) if F(ey,e,) is a truth-value of F(y,x), it is considered as a value at
(2,1,2) in NXNXN where z=1,2,3, - - -
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(3) if F(eye,) is a truth-value of F(x,x), it is considered as a value
at (2,9,2) in NXNXN where y,2=1,2,3, « + -,

(4) and so on.

Thus, from the above-mentioned truth-value assignment, the construction of
9* and the interpretation of existential quantifier in the domain N, we are
able to let 9* be not valid in L. Therefore, we get Theorem 1'.

Throem 2:

We shall prove the following Theorem 2" which is equivalent to Theo-
rem 2.

TuEOREM 2. If U* is not valid in L, then U* is not universally valid in
K.

Proof. Let us notice that A* is of a form a,3,3, /Mf*V3, 3, 13, 1M}
where M* and M3 correspond to M; and M, respectively. From this matter
and the assumption of this theorem, we can give truth-values for propositions
FyFy +++, Fy; G4 G}, +++, Gy: G}, G, + -+, G§ in ¥* by which %* takes
(0,0,0,0,0, - - -) at every (x,¥,2) in NXNXN.

Here we make a correspondence of (0,0,0,0,0, ++-), (1,1,1,1,1,++)
to F, T as mentioned above. Then, we consider only values at (i,i,i) in
Nx NXN in the assignment where ¢ =1,2,3,« - .

Now, let us say that the truth-value assignment is as follows:

Fi(e)): (F1115 E1z * 0 *) Fyley): (tarny toigy * = ¢ )+
File): (121 tioey * + *) Fyles): (2015 taaer * * *)
Gi(e): (tiys thg * = *) Gi(ey): (cis The = ° * )
Gi(es): (T Tioer * * *) Gi(ez): (t5a1y Thagy =+ *)

where F(e,), Fi(ey), - - - mean values of F, at (1,1,1), (2,2,2), + + + in NXNXN
as before.

Then, we take (1,1,1), (2,2,2), - -+ as an infinite domain w. Further
we take a value of & XF; obtained from F(e;) as a truth-value of predicate
F,(x) for x = (i,7,4) and also a value of & (XG!AYG?) obtained from Gi(ey),
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Gi(e;) as a truth-value of predicate G;(z,y) for = = (kkk), ¥y = (Il,1,1) and
so on. From the definitions of X,Y,Z and the #&: h(Fyz))— < XFy,
h(Gi(,9)) > O (XGIAYG?), - - -, we know that U* takes F in the enumer-
able infinite domain o.

Thus, we get Theorem 2.
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