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Hilbert’s 10th Problem via Mordell curves
Somnath Jha, Debanjana Kundu and Dipramit Majumdar

Abstract. We show that for 5/6-th of all primes 𝑝, Hilbert’s 10th problem is unsolvable for the ring of
integers of Q(𝜁3, 3√𝑝) . We also show that there is an infinite set 𝑆 of square-free integers such that
Hilbert’s 10th problem is unsolvable over the ring of integers ofQ(𝜁3,

√
𝐷, 3√𝑝) for every𝐷 ∈ 𝑆 and

for every prime 𝑝 ≡ 2, 5 (mod 9) . We use the CM elliptic curves 𝑦2 = 𝑥3 − 432𝐷2 associated to the
cube-sum problem, with𝐷 varying in suitable congruence class, in our proof.

1 Introduction

In 1900, D. Hilbert posed the following question (which was the tenth in his list of
twenty-three questions): does there exist an algorithm (Turing machine) that takes as
input polynomial equations over Z and decides whether they have integer solutions.
Building on thework ofM.Davis, H. Putnam, and J. Robinson in [1, 2, 3], Y.Matiyasevich
proved that computably enumerable sets overZ are exactly the same as the Diophantine
sets over Z; see [4]. In other words, he proved that Hilbert’s 10th problem is unsolvable.

Soon after in 1978, J. Denef and L. Lipshitz [5] asked whether there exists an algo-
rithm (Turing machine) that takes as input polynomial equations over O𝐹 (the ring of
integers of a number field𝐹) anddecideswhether they have integer solutions. A straight-
forward argument shows that if Z is Diophantine in O𝐹 , then the analogue of Hilbert’s
10th problem for O𝐹 has a negative solution.

At the start of the 21st century, it was first observed by B. Poonen that there is a
connection between rank stabilization of elliptic curve in extensions of number fields
and Hilbert’s 10th problem, [6]. The result was further strengthened by A. Shlapentokh
(which is recorded in Theorem 2.2) and has been one of the key tools in proving new
cases of the conjecture of Denef–Lipshitz. For several classes of number fields, Denef–
Lipshitz conjecture has been established. For example, (i) if a number field is totally real,
(ii) if it a quadratic extension of a totally real number field, (iii) if the number field is
abelian or (iv) if it has precisely one (pair of) complex places. There are also impor-
tant related works of B. Mazur–K. Rubin [7]. For degree 6 number fields of the form
Q(√−𝑞, 3

√
𝑝) as 𝑝 and 𝑞 vary over certain explicit set of primes of positive density,

Denef–Lipshitz conjecture was established in [8, 9]. On the other hand, [10] proves that
for a positive proportion of integers 𝑎, Hilbert’s10th problem is unsolvable forO𝐹 where
𝐹 is of the formQ( 6

√
𝑎).

We consider Hilbert’s 10th problem for the ring of integers of certain 𝑆3 extensions
and degree 12 extensions of Q. The Kummer extension Q(𝜁3, 3

√
𝑚), 𝑚 ∈ Z is the first
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layer of the so called ‘false Tate curve’ extension for 𝑝 = 3 and is widely studied in (non-
commutative) Iwasawa theory. Using Mordell curves E𝑎 : 𝑦2 = 𝑥3 + 𝑎, 𝑎 ∈ Z and
its cubic twists, we apply results on the cube-sum problem to prove new cases of the
Hilbert’s 10th problem. In particular, we prove the following results

TheoremA For 5
6 -th of all primes 𝑝, Hilbert’s 10th problemhas a negative solution over

the ring of integers ofQ(𝜁3, 3
√
𝑝).

Proposition A Hilbert’s 10th problem is unsolvable over the ring of integers of
Q(𝜁3,

√
𝐷, 3

√
𝑝), where 𝐷 varies over an infinite set 𝑆 consisting of square-free integers

and 𝑝 is a prime such that 𝑝 ≡ 2, 5 (mod 9). Further, #(𝑆 ∩ [−𝑋, 𝑋]) ≫ 𝑋1−𝜖 where
𝑋 ≫ 0 and for any 𝜖 > 0.

We emphasize that this result complements the results proven in [9] and indeed pro-
vides (infinitely many) new examples of number fields where Hilbert’s 10th problem is
unsolvable.

We are interested inHilbert’s 10th problem for the ring of integers ofQ(𝜁3, 3
√
𝑚), 𝑚 ∈

Z and it raised the following natural question which is of interdependent interest: given
a Mordell elliptic curve E𝑎 : 𝑦2 = 𝑥3 + 𝑎, 𝑎 ∈ Z does there exist a cube-free
integer 𝐷 co-prime to 𝑎 such that precisely one of the elliptic curves E𝑎,E𝑎𝐷2 ,E𝑎𝐷4

has positive Mordell–Weil rank over Q? We did an extensive computation on this on
SAGE/MAGMAwhich are mentioned in Section 3. This led us to apply results from the
cube-sum problem.

As we were completing our preprint, C. Pagano–P. Koymans announced an uncon-
ditional proof of the unsolvability of Hilbert’s 10th problem [11] over the ring of integers
of any number field. Their result is accomplished by constructing elliptic curves E and
studying their quadratic twists to guarantee that there is no rank growth of E in certain
quadratic extensions. They use 2-descent argument and tools from additive combi-
natorics. On the other hand, our approach involves studying cubic twists instead of
quadratic twists of elliptic curves. In fact, we specifically use Mordell curves. We use
results from the cube-sum problem to study the cubic twists of theMordell curves. Thus
our method is different. Even more recently, L. Alpöge–M. Bhargava–W. Ho–A. Shnid-
man announced another proof; see [12].

Organization
Including this introduction, there are four sections in this short note. Section 2 is prelim-
inary in nature, where we record crucial results that will be used in the main argument.
In Section 3, we discuss the main motivation behind this note and also raise questions
which we have not been able to answer completely. In Section 4, we state and prove the
main result of our note.
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2 Preliminaries

In this section, we record some results which will be used crucially in our argument(s).

2.1 Cube-Sum Problem

The classical Diophantine cube-sum problem asks the question: which integers 𝐷 can
be expressed as a sum of two rational cubes? An integer 𝐷 is called a cube-sum (resp.
not a cube-sum), if 𝑥3 + 𝑦3 = 𝐷 has (resp. does not have) a rational solution. The elliptic
curve 𝑋3 +𝑌 3 = 𝐷𝑍3 can be expressed in theWeierstrass equation as 𝑦2 = 𝑥3 − 432𝐷2

and for a cube-free integer 𝐷 > 2 it is known that torsion subgroup of E−432𝐷2 (Q)
vanishes. Thus, a cube-free integer 𝐷 > 2 satisfies 𝐷 = 𝑎3 + 𝑏3 for 𝑎, 𝑏 ∈ Q if and only
if the Mordell-Weil group 𝐸−432𝐷2 (Q) has a positive rank. The cube-sum problem has
been studied in great detail with important contributions by J. bib17, F. Lucas, T. Pépin,
E. Selmer, P. Satgé, D. Lieman, F. R. Villegas–D. Zagier etc. Some recent works include
[13, 14, 15, 16]. We refer to [13, 16] for a literature review. We record the special cases
below which will be used in the article.

Theorem 2.1

(a) Suppose that 𝑝 ≡ 2, 5 (mod 9) is an odd prime. By [17, Section 2] the integers 𝑝, 𝑝2, 9𝑝,
and 9𝑝2 are not cube-sum. In other words for all primes 𝑝 ≡ 2, 5 (mod 9), we have

rkZ E−432𝑝2 (Q) = rkZ E−432𝑝4 (Q) = rkZ E−432(9𝑝)2 (Q) = rkZ E−432(9𝑝2 )2 (Q) = 0.

(b) Suppose that 𝑝 ≡ 4, 7 (mod 9) is an odd prime.

(i) By [13], if 3 ∉ F3𝑝 , then 𝑝 is a cube-sum. In other words rkZ E−432𝑝2 (Q) > 0.
(ii) Suppose that ℓ ≡ 8 (mod 9) is a prime such that ℓ ∉ F3𝑝 . By [18] the integers

ℓ𝑝, ℓ𝑝2, and 𝑝ℓ2 are not cube-sum. Equivalently,

rkZ E−432(ℓ 𝑝)2 (Q) = rkZ E−432(ℓ 𝑝2 )2 (Q) = rkZ E−432(𝑝ℓ2 )2 (Q) = 0.

(c) Let 𝑑 be a positive integer and 𝑎 ≡ 8 (mod 9) be an integer co-prime to 𝑑. By [19,
Theorem B], there are infinitely many primes 𝑝 ≡ 𝑎 (mod 9𝑑) such that 𝑝 is a cube-sum.

2.2 Hilbert’s 10th Problem and Elliptic Curves

Theorem 2.2 (A. Shlapentokh [20]) Let 𝐿/𝐹 be an extension of number fields. Suppose that
there is an elliptic curve E defined over 𝐹 such that

rkZ E(𝐿) = rkZ E(𝐹) > 0

Then O𝐹 is Diophantine in O𝐿 .
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If further, it is known that Z is Diophantine in O𝐹 (i.e., the analogue of Hilbert’s 10th
problem for O𝐹 has a negative solution) then (by transitivity) Z is Diophantine in O𝐿 and the
analogue of Hilbert’s 10th problem for O𝐿 has a negative solution.

Auseful corollary of Shlapentokh’s theoremwas proved in [8, Proposition 3.3], which
we record below.

Theorem 2.3 Let 𝐹/Q and 𝐾/Q be extensions of number fields with 𝐾/Q quadratic. Let 𝐿
be the compositum of 𝐹 and 𝐾 over Q. Suppose that there is an elliptic curve E/Q satisfying
the conditions:

(i) rkZ E(𝐹) = 0 and
(ii) rkZ E(𝐾) > 0.

Then O𝐿/O𝐹 is integrally Diophantine.
If further, it is known that the analogue of Hilbert’s 10th problem for O𝐹 has a negative

solution, then the analogue of Hilbert’s 10th problem for O𝐿 has a negative solution.

3 Some Computations

3.1 Sufficient conditions

Let 𝑎 be a non-zero integer and consider the elliptic curve

E = E𝑎 : 𝑦2 = 𝑥3 + 𝑎

It is well known that E𝑎 is an elliptic curve with complex multiplication by Z[𝜁3] and
there is a degree 3 rational isogeny 𝜙𝑎 : E𝑎 → E−27𝑎 . It follows that rkZ E(𝐾) =

2 rkZ E(Q), here 𝐾 denotes the number field 𝐾 = Q(𝜁3). Fix a cube-free (rational)
integer 𝐷 and define the elliptic curves

E1 = E𝑎𝐷2 : 𝑦2 = 𝑥3 + 𝐷2𝑎

E2 = E𝑎𝐷4 : 𝑦2 = 𝑥3 + 𝐷4𝑎.

The curvesE1 andE2 are the cubic twists ofE, i.e., the three elliptic curvesE,E1, andE2
are isomorphic over 𝐹 = Q( 3√

𝐷). In particular, the three elliptic curves are isomorphic
over the Galois closure of 𝐹 , in other words over the extension 𝐿 = 𝐹 ·𝐾 = Q(𝜁3, 3√

𝐷).
Recall that

rkZ E(𝐿) = rkZ E1 (𝐿) = rkZ E2 (𝐿) = rkZ E(𝐾) + rkZ E1 (𝐾) + rkZ E2 (𝐾) (3.1)

Now, suppose that for a fixed cube-free integer 𝐷 , there exists an elliptic curve

E : 𝑦2 = 𝑥3 + 𝑎𝐷
such that exactly one ofE, E1, E2 has positiveMordell–Weil rank 𝑟 overQ and the other
two haveMordell–Weil rank 0.Without loss of generality, suppose that rkZ E(Q) = 𝑟 >
0. Then rkZ E(𝐾) = 2𝑟 and by the assumption in the previous paragraph, it follows that
rkZ E1 (𝐾) = rkZ E2 (𝐾) = 0. This implies

rkZ E(𝐿) = rkZ E(𝐾) = 2𝑟 + 0 + 0 = 2𝑟 > 0.
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Since Hilbert’s 10th Problem is unsolvable in 𝐾 = Q(𝜁3), using Shlapentokh’s result
(Theorem 2.2) we deduce the following lemma:

Lemma 3.1 If there exists an elliptic curve E : 𝑦2 = 𝑥3 + 𝑎 such that upon twisting by a
cube-free integer 𝐷 exactly one of E/Q, E1/Q, E2/Q has positive Mordell–Weil rank, then
Hilbert’s 10th problem is unsolvable for O𝐿 where 𝐿 = Q(𝜁3, 3√

𝐷).

3.2 Data

We now present the data for the following SAGE computations. We fixed an elliptic
curve E : 𝑦2 = 𝑥3 + 𝑎𝐷 and varied 1 < 𝐷 ≤ 100 over cube-free integers to check
in which cases exactly one of the cubic twists had positive rank over Q. By the earlier
discussion we know that Hilbert’s 10th problem is unsolvable in O𝐿 .

Example 3.2 Let 𝐷 be an integer in the set

{3, 5, 7, 9, 10, 11, 13, 21, 23, 25, 26, 28, 29, 31, 33, 39, 41, 44, 45, 46, 47, 49, 51, 55, 59, 61, 65, 66, 67,
69, 75, 76, 77, 82, 87, 91, 93, 95, 97, 98, 99, 100}.

Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 1.

Then rkZ E(Q) = 0 but using the SAGE code given below one can check that exactly
one ofE1/Q orE2/Q has rank 0 and the other has positive rank 𝑟 . We can conclude that
the Hilbert’s 10th problem is unsolvable for the ring of integers ofQ(𝜁3, 3√

𝐷).

a = 1
for d in range(1,100):
#sometimes the code stopped running; changed range manually

E=EllipticCurve([0,a])
E1=EllipticCurve([0,d^2*a])
E2=EllipticCurve([0,d^4*a])
print(d , E.rank() , E1.rank(), E2.rank())

Note: In the following examples, we only explicitly write the set of new 𝐷 ’s.

Example 3.3 Fix 𝐷 ∈ {17, 35, 71}. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 2.

Then a SAGE/MAGMA check shows that rkZ E(Q) = 1 whereas rkZ E1 (Q) =

rkZ E2 (Q) = 0.

Example 3.4 Fix 𝐷 to be an integer in the set

{12, 18, 20, 34, 42, 50, 53, 63, 83, 84, 94}.

Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 3.
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Then a SAGE/MAGMA check shows that rkZ E(Q) = 1 whereas rkZ E1 (Q) =

rkZ E2 (Q) = 0.

Example 3.5 Let 𝐷 ∈ {15, 38, 43, 57, 60, 62, 74, 75, 79, 85} be an integer. Consider
the elliptic curve

E : 𝑦2 = 𝑥3 + 4.
Then rkZ E(Q) = 0 and exactly one of E1/Q or E2/Q has rank 0 and the other has
positive rank 𝑟 .

Example 3.6 Fix 𝐷 ∈ {5, 6, 30, 36}. Let

E : 𝑦2 = 𝑥3 + 5.

Then a SAGE check shows that rkZ E(Q) = 1 whereas rkZ E1 (Q) = rkZ E2 (Q) = 0.

Example 3.7 Let 𝐷 ∈ {2, 4, 19, 52, 73, 86} be an integer. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 6.

Then rkZ E(Q) = 0 while exactly one of E1/Q or E2/Q has rank 0 and the other has
positive rank 𝑟 .

Example 3.8 Let 𝐷 ∈ {34, 78, 90} be an integer. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 7.

Then rkZ E(Q) = 0, exactly one of E1/Q or E2/Q has rank 0 and the other has 𝑟 > 0.

Example 3.9 Let 𝐷 ∈ {68, 70} be an integer. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 13.

Then rkZ E(Q) = 0 and exactly one of E1/Q or E2/Q has rank 0 and the other has
positive rank 𝑟 .

Example 3.10 Let 𝐷 = 22. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 14.

Then rkZ E(Q) = 0 and exactly one of E1/Q or E2/Q has rank 0 and the other has rank
𝑟 > 0.

Example 3.11 Let 𝐷 = 37. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 15.

Then rkZ E(Q) = 2 and we check using SAGE that rkZ E1 (Q) = rkZ E2 (Q) = 0.

Example 3.12 Let 𝐷 = 58. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 23.
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Table 1: Values of cube-free 1 ≤ 𝐷 ≤ 100 for which unsolvability of Hilbert’s 10th
Problem is obtained using the method outlined above:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Then rkZ E(Q) = 0 and exactly one of E1/Q or E2/Q has rank 0 and the other has rank
𝑟 > 0.

Example 3.13 Let 𝐷 ∈ {14, 92} be an integer. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 25.

Then rkZ E(Q) = 0 and exactly one of E1/Q or E2/Q has rank 0 and the other has
positive rank 𝑟 .

Example 3.14 Let 𝐷 = 89. Consider the elliptic curve

E : 𝑦2 = 𝑥3 + 89.

Then rkZ E(Q) = 2 and we check that rkZ E1 (Q) = rkZ E2 (Q) = 0.

Remark 3.15 We thank the referee for pointing out to us that using MAGMA one can
check that the pairs (𝑎, 𝐷) = (2, 71) and (𝑎, 𝐷) = (3, 83) have the desired property.

3.3 Follow-up Questions

These observations raise the following two obvious questions:

Question 1: For every cube-free integer 𝐷 does there always exist an elliptic curve
of the type E : 𝑦2 = 𝑥3 + 𝑎 such that on twisting by 𝐷 exactly one of E, E1, E2 has
positive rank (overQ) and the other two have rank 0 (overQ)?

Even though this question has implications for Hilbert’s 10th Problem, in particular
it proves that Hilbert’s 10th Problem is unsolvable in the ring of integers of Q(𝜁3, 3√

𝐷)
for every (cube-free integer) 𝐷 , the question is interesting in its own right.

Question 2: Fix an elliptic curve E : 𝑦2 = 𝑥3 + 𝑎. For what proportion of cube-free
integers 𝐷 , does exactly one of E, E1, E2 have positive rank 𝑟 (over Q) and the other
two have rank 0 (overQ)?
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4 Main Result and Proof

4.1 Hilbert’s 10th Problem for Q(𝜁3, 3
√
𝑝)

We begin this section by proving some lemmas which will be required for the main
theorem.

Lemma 4.1 Let 𝑝 be a prime such that 𝑝 ≡ 2, 4, 5, 7 (mod 9). Then Hilbert’s 10th problem
is unsolvable for the ring of integers of Q(𝜁3, 3

√
𝑝).

Proof In each of these cases, we prove the unsolvability of Hilbert’s 10th Problem in
Q(𝜁3, 3

√
𝑝) by applying Lemma 3.1 on an appropriately chosen elliptic curve 𝐸𝑎 .

(a) When 𝑝 ≡ 2, 5 (mod 9). The elliptic curve E−432∗92 has rank 1 over Q. As noted
in Theorem 2.1(a), both 9𝑝 and 9𝑝2 are not cube-sums i.e. both the elliptic curves
E−432∗92∗𝑝2 andE−432∗92∗𝑝4 have rank 0 overQ. Now the result follows fromLemma
3.1.

(b) When 𝑝 ≡ 4, 7 (mod 9). Fix an integer 𝐵 such that 𝐵 ∉ F3𝑝 . By Chinese Remainder
Theorem, there exists an integer 𝐴 such that 𝐴 ≡ 8 (mod 9) and 𝐴 ≡ 𝐵 (mod 𝑝).
Now by Theorem 2.1(c), there exists a prime ℓ such that ℓ ≡ 𝐴 (mod 9𝑝) which
is a cube-sum and hence rkZ E−432ℓ2 (Q) > 0. On the other hand, as mentioned in
Theorem 2.1(b)(ii), both ℓ𝑝 and ℓ𝑝2 are not cube-sums and the result follows from
Lemma 3.1.

■

Lemma 4.2 For 100% of the primes 𝑝 (with respect to the natural density) of the form 𝑝 ≡ 8
(mod 9), Hilbert’s 10th problem is unsolvable for the ring of integers of Q(𝜁3, 3

√
𝑝).

Proof Consider the infinite set consisting of primes 𝑆 = {ℓ | ℓ ≡ 4, 7
(mod 9) and 3 ∉ F3

ℓ
}. Enumerate the primes of 𝑆 as ℓ1 = 7, ℓ2 = 13, ℓ3 = 31, . . .

Further note that for every ℓ ∈ 𝑆, the prime ℓ is a cube-sum by Theorem 2.1(b)(i).
We have ℓ1 = 7, now take a prime 𝑝 ≡ 8 (mod 9) such that 𝑝 . ±1 (mod ℓ1), i.e.,

choose a prime 𝑝 ≡ 8 (mod 9) such that 𝑝 ∉ F3
ℓ1
. By Theorem 2.1(b)(ii), both ℓ1𝑝 and

ℓ1𝑝
2 are not cube-sum. By Lemma 3.1, Hilbert’s 10th problem is unsolvable for the ring

of integers of 𝐿 = Q(𝜁3, 3
√
𝑝). Thus among all the primes 𝑝 of the form 𝑝 ≡ 8 (mod 9),

for two-thirds of them (corresponds to those which are not of the form ±1 (mod 7))
Hilbert’s 10th problem is unsolvable for O𝐿 .

Next we work with the prime ℓ2 = 13. We choose a prime 𝑝 such that 𝑝 ≡ 8
(mod 9), 𝑝 ≡ ±1 (mod 7), and 𝑝 . ±1,±8 (mod 13), that is 𝑝 ≡ 8 (mod 9),
𝑝 ∈ F3

ℓ1
and 𝑝 ∉ F3

ℓ2
. Again by Theorem 2.1(b)(ii) both ℓ2𝑝 and ℓ2𝑝2 are not cube-sum

and hence, we can conclude by Lemma 3.1 Hilbert’s 10th problem is unsolvable for O𝐿 .
Consequently, we can now conclude that among all the of primes 𝑝 of the form 𝑝 ≡ 8
(mod 9) and 𝑝 ≡ ±1 (mod 7), for 2/3-rd of themHilbert’s 10th problem is unsolvable
for O𝐿 .
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Combining the two cases, for 2
3 +

( 1
3 ×

2
3
)
= 8

9 -th of the primes 𝑝 of the form 𝑝 ≡ 8
(mod 9), Hilbert’s 10th problem is unsolvable for O𝐿 .

Proceeding in this way, we see that at the 𝑘-step, for a prime 𝑝 with 𝑝 ≡ 8 (mod 9),
𝑝 ∈ F3

ℓ𝑖
for 1 ≤ 𝑖 ≤ 𝑘 and 𝑝 ∉ F3

ℓ𝑘+1
, Hilbert’s 10th problem is unsolvable for O𝐿 .

Consequently, we conclude that for (1 − 1
3𝑘+1 ) of primes 𝑝 of the form 𝑝 ≡ 8 (mod 9),

Hilbert’s 10th problem is unsolvable for O𝐿 . The set 𝑆 is infinite; by induction it fol-
lows that for 100% of primes 𝑝 of the form 𝑝 ≡ 8 (mod 9), Hilbert’s 10th problem is
unsolvable for O𝐿 . ■

Theorem 4.3 For 5
6 -th (with respect to the natural density) of all primes 𝑝, Hilbert’s 10th

problem is unsolvable for the ring of integers of Q(𝜁3, 3
√
𝑝).

Proof The result follows immediately from Lemmas 4.1 and 4.2. ■

4.2 Hilbert’s 10th Problem for Q(𝜁3,
√
𝐷, 3

√
𝑝)

Oncewe have established thatHilbert’s 10th Problem is unsolvable in the degree 6 exten-
sionQ(𝜁3, 3

√
𝑝), we can extend it to certain degree 12 extensions by using the corollary

of Shlapentokh’s theorem.
These are new examples of rings of integers of number fields where Hilbert’s 10th

problem is being shown to be unsolvable. For the argument in [9], the authors foundE/Q
with rank 0 over Q(𝜁3, 3

√
𝑝) and positive rank over Q(

√
𝐷); this did not provide exam-

ples of degree 12 number fields 𝐿𝐷,𝑝 = Q(𝜁3,
√
𝐷, 3

√
𝑝) where Hilbert’s 10th problem

is unsolvable for O𝐿𝐷,𝑝
because the unsolvability of Hilbert’s 10th problem for the ring

of integers ofQ(𝜁3, 3
√
𝑝) was not verified.

Proposition 4.4 Let 𝑆 be the set of square-free integers such that for every 𝐷 ∈ 𝑆, the
rank of the elliptic curve E−432𝐷3 is positive and 𝑇 be the set of primes 𝑝 of the form
𝑝 ≡ 2, 5 (mod 9). Hilbert’s 10th problem is unsolvable for the ring of integers of 𝐿𝐷,𝑝

for every 𝐷 ∈ 𝑆 and every 𝑝 ∈ 𝑇 .
Further, the set 𝑆 is infinite and moreover for 𝑋 ≫ 0, we have

#(𝑆 ∩ [−𝑋, 𝑋]) ≫ 𝑋1−𝜖 for any 𝜖 > 0.

Proof Consider the elliptic curve E−432. By our assumption on 𝑆, we know that

rkZ E−432 (Q(
√
𝐷)) = rkZ E−432 (Q) + rkZ E−432𝐷3 (Q) > 0.

Recall that for 𝑝 ∈ 𝑇 , by Theorem 2.1(a), both 𝑝 and 𝑝2 are not cube-sums, i.e.
rkZ E−432𝑝2 (Q) = rkZ E−432𝑝4 (Q). Further recall that rkZ E𝑘 (Q(𝜁3)) = 2 rkZ E𝑘 (Q).
Then it follows from (3.1) that

rkZ E−432 (Q(𝜁3, 3
√
𝑝)) = rkZ E−432 (Q(𝜁3))+rkZ E−432𝑝2 (Q(𝜁3))+rkZ E−432𝑝4 (Q(𝜁3)) = 0.

In Lemma 4.1, we have shown that Hilbert’s 10th problem is unsolvable overQ(𝜁3, 3
√
𝑝).

Hence using Theorem 2.3, we can guarantee that Hilbert’s 10th problem is unsolvable
over O𝐿𝐷,𝑝

.
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To prove the second assertion, we argue as follows: let E be an elliptic curve over Q
and 𝐷 be a square-free integer co-prime to the conductor of E. Let E(𝐷) denote the
quadratic twist of E by 𝐷 and let 𝐿 (E, 𝑠) represent the complex 𝐿-function ofE/Q. Put

𝑁1 (E, 𝑋) := {|𝐷 | < 𝑋 | ord𝑠=1 𝐿 (E(𝐷) , 𝑠) = 1}.

Then by [21], for 𝑋 ≫ 0, we have 𝑁1 (E, 𝑋) ≫𝜖 𝑋1−𝜖 , for any 𝜖 > 0. By the work
of B. Gross–D. Zagier and V. Kolyvagin, it is known that for an elliptic curve A/Q,
rkZ A(Q) = 1 whenever ord𝑠=1 𝐿 (A, 𝑠) = 1. By applying this argument to E = E−432
andA = E(𝐷) , the assertion follows. ■

Remark 4.5 Note that for the square-free integers of the form (i) ±(3𝑘 + 2) with 𝑘 >
0 and (ii) ±3(3𝑘 + 1) with 𝑘 > 0, the root number computations due to B. Birch–
N. Stephens implies that the global root number of E−432𝐷3/Q, denoted by𝜔(E−432𝐷3 )
is −1. Thus if we make an additional hypothesis that dimF3 X(E−432𝐷3/Q) [3] is even
(see [22, §5]) for all square-free integers𝐷 , then the natural density of 𝑆 is at least 1

2 . Note
that for an elliptic curve E over a number field 𝐾 , the hypothesis dimF2 X(E/𝐾) [2]
being even is discussed in [7].
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