
Forum of Mathematics, Sigma (2018), Vol. 6, e3, 20 pages
doi:10.1017/fms.2018.3 1

VANISHING IN STABLE MOTIVIC
HOMOTOPY SHEAVES

KYLE ORMSBY1, OLIVER RÖNDIGS2 and PAUL ARNE ØSTVÆR3

1 Reed College, USA;
email: ormsbyk@reed.edu

2 Universität Osnabrück, Germany;
email: oroendig@uni-osnabrueck.de

3 University of Oslo, Norway;
email: paularne@math.uio.no

Received 24 April 2017; accepted 24 January 2018

Abstract

We determine systematic vanishing regions for the bigraded homotopy sheaves of the motivic sphere
spectrum over a field of characteristic different from two.
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1. Introduction

Stable motivic homotopy theory is a nonabelian generalization of the algebro-
geometric theory of motives. It is a natural arena in which to study the motivic
cohomology, K -theory, and algebraic cobordism of smooth schemes [32],
and its invention was crucial to the resolution of the Milnor and Bloch–Kato
conjectures [34, 35].

The most fundamental objects in the stable motivic homotopy category
SHA1

(F) (over a field F) are the P1-suspension spectraΣ∞P1 U+ for U , a smooth F-
scheme. Distinguished among these is the sphere spectrum 1 := Σ∞P1 Spec(F)+.
We denote this object by 1 because it is the unit for the symmetric monoidal
product on SHA1

(F) given by the smash product.
Equivalence between P1-spectra is detected by the bigraded homotopy sheaves,

πm+nαX for m, n ∈ Z, which are defined as the Nisnevich sheafification of the
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assignment

U ∈ Sm/Spec(F) 7−→ [Σm+nαU+, X ]SHA1
(F).

Here [ , ]SHA1
(F) denotes the hom-set in SHA1

(F) and Σm+nα denotes smashing
with (S1)∧m

∧ (A1 r 0)∧n . Since every motivic spectrum is a 1-module, the
bigraded sheaf

π ?1 =
⊕

m,n∈Z

πm+nα1

plays a fundamental role in stable motivic homotopy theory, analogous to the
stable homotopy groups of spheres in topology. We will refer to πm+nα1 as the
(m + nα)th motivic stable stem, and to the Z-graded sheaf πm+∗α1 as the mth
Milnor–Witt stem.

The motivic stable stems (and their global sections, πm+nα1 := πm+nα1(F))
have been objects of intense study since Morel’s analysis of the 0th motivic stable
stem in [17]. That paper launched his program [18] to identify the 0th Milnor–Witt
stem with K MW

−∗
, the Milnor–Witt K -theory sheaf, explaining the nomenclature. In

further work [19], Morel shows that 1 is connective, meaning that mth Milnor–
Witt stems are 0 for m < 0.

Beyond Morel’s theorems, little is known about Milnor–Witt stems over a
general field. Röndigs–Spitzweck–Østvær [26] determine the first Milnor–Witt
stem as an extension of K M

∗
/24 and a certain sheaf related to Hermitian K -

theory; this vastly generalizes the work of Ormsby–Østvær [23] for fields of
cohomological dimension less than three. All other computations are limited to
specific fields, and are generally only known on global sections (and frequently
after completion at 2). Indeed, Hu–Kriz–Ormsby [14] and Dugger–Isaksen
[4] make computations over C via the Adams–Novikov and Adams spectral
sequences, Ormsby [22] makes computations over p-adic fields, Heller–Ormsby
[9, 10] and Dugger–Isaksen [5, 6] make computations over R, and Wilson–Østvær
[37] over finite fields. All these computations hold only in specific (often finite)
ranges.

In this paper, we exploit the methods of [26] to find conditions under which the
mth Milnor–Witt stem is bounded above; see Theorems 1.4 and 1.6. Our methods
apply to a general field F of characteristic different from 2, and they result in
sheaf level theorems (after inverting char(F) if char(F) is odd).

Our vanishing theorems have important implications for the nonzero homotopy
sheaves of 1 via Morel’s contraction construction [20]. Given a Nisnevich sheaf
of abelian groups F on Sm/F , the contraction ωF of F takes U to the kernel
of F (U × (A1 r 0)) → F (U ). (Here the map is induced by the canonical
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section 1 : Spec F → A1 r0.) For any motivic spectrum E , we have ωπm+nαE ∼=
πm+(n+1)αE . In particular, if πm+nαE = 0, then, for k > 1, the k-fold contraction
of πm+(n−k)αE is 0. Future computations should be able to exploit vanishing of
πm+nα1 to constrain the structure of πm+`α1 for ` < n.

We now state our results precisely, giving some indication of our methods along
the way. Fix a field F and let q denote its exponential characteristic. We begin by
studying the η-complete sphere spectrum via Voevodsky’s slice spectral sequence
[33] using the results in [26], and then ‘uncomplete’ our results via a sequence of
fracture squares.

Let η ∈ πα1(Spec F) denote the motivic Hopf map induced by the projection
A2 r 0→ P1. The η-complete sphere is the motivic spectrum 1̂ = holimn 1/ηn .
Theorem 1.1 will be shown in Section 3.

THEOREM 1.1. Over a field F with exponential characteristic q 6= 2,

πm+nα1̂[1/q] = 0

whenever

» m < 0, or

» m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}.

Using the same techniques that prove Theorem 1.1, we can prove a stronger
vanishing result for 1̂(p), the η-completion of the p-local sphere spectrum. (The
notation 1̂(p) might be more appropriate, but we find it unwieldy.) Theorem 1.2
will be shown in Section 3.

THEOREM 1.2. Let F be a field and let p be an odd prime different from the
characteristic of F. Then

πm+nα1̂(p) = 0

whenever

» m < 0, or

» m > 0 and (p − 2)n > (p − 1)m.

While the η-complete sphere is an interesting object in its own right, one
would like to know if there are vanishing regions in π ?1 as well. When the
cohomological dimension cd F < ∞, this is known by the following theorem,
essentially due to Levine [15].
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THEOREM 1.3. Suppose F is perfect and cd F <∞. Then 1 ' 1̂.

Proof. In [15], Levine proves that the slice spectral sequence for 1 converges to
π ?1 when cd F < ∞. Meanwhile, [26, Theorem 3.50] identifies the target with
π ?1̂, so the completion map 1→ 1̂ induces an isomorphism π ?1 ∼= π ?1̂ and thus
1 ' 1̂.

From this, we deduce Theorem 1.4 in Section 4.1. By a ‘nonreal field’ we mean
a field that is not formally real.

THEOREM 1.4. Suppose F is nonreal with exponential characteristic q 6= 2. If
q > 2, further suppose that F is perfect and of finite cohomological dimension.
Then πm+nα1[1/q] vanishes in the range given in Theorem 1.1. If p 6= q is an odd
prime, then πm+nα1(p) vanishes in the range given in Theorem 1.2.

The positive characteristic statement is a direct consequence of Theorem 1.3,
but the characteristic 0 nonreal case does not exclude the possibility of infinite
cohomological dimension. We handle this via standard base change methods,
which we explain in Section 4.1.

REMARK 1.5. Note that Theorem 1.4 covers all nonreal fields of characteristic
0, and all odd characteristic (necessarily nonreal) fields that are perfect with
finite cohomological dimension. We cover the case of formally real (necessarily
characteristic 0) fields in Theorem 1.6.

When F is formally real, vanishing in π ?1 is more interesting. We first observe
that the η-primary fracture square

1 //

��

1̂

��
η−11 // η−11̂

reduces the problem to that of vanishing regions for π ?η
−11. We solve this

problem using Bachmann’s theorem on π ?1[1/2, 1/η] and the Hu–Kriz–Ormsby
comparison of the 2- and (2, η)-complete spheres when F has finite virtual 2-
cohomological dimension. (Recall that vcd2(F) := cd2(F(

√
−1)), where cd2

denotes 2-primary étale cohomological dimension.) In order to state our results,
let π top

m 1 denote the mth homotopy group of the topological sphere spectrum.
Theorem 1.6 is shown in Section 4.3.
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THEOREM 1.6. Suppose F is formally real. If m < 0, π ?1 = π ?1(p) = 0 by
Morel’s connectivity theorem. Suppose m > 0. Then πm+nα1 = 0 whenever
πm+nα1̂ = 0 (see Theorem 1.1) and π top

m 1[1/2] = 0. If p is an odd prime, then
πm+nα1(p) = 0 whenever πm+nα1̂(p) = 0 (see Theorem 1.2) and π top

m 1(p) = 0.

Of course, determining when π top
m 1[1/2] or π top

m 1(p) is 0 is no easy task.
Nonetheless, we view these conditions as ‘reductions to topology’, which
effectively transfers the problem from motivic to classical homotopy theory.
Given the intractability of these topological vanishing problems, this is the best
type of result we can hope for.

EXAMPLE 1.7. Suppose F is formally real. Toda’s calculations say that π top
18 1 =

Z/8⊕ Z/2 [31, p. 188]. Since 18 ≡ 2 (mod 4) and 2 · 37 > 4 · 18, Theorem 1.6
implies that π 18+37α1 = 0. Ravenel’s calculations imply that π top

61 1[1/2] = 0
[24, Theorem 1.1.13, A3.4, A3.5, Theorem 4.4.20]. Since 61 ≡ 1 (mod 4) and
2 · 123 > 4 · 61, one obtains π 61+123α1 = 0.

REMARK 1.8. It is also possible to produce a relative version of Theorem 1.6,
which specifies a range and the manner in which πm+nα1 is ‘topological’ in
the sense of being computed in the homotopy category of sheaves of spectra
on the Harrison space X F of orderings of F . See Remark 5.7 for a precise
statement.

CONVENTION 1.9. Henceforth, we always invert the exponential characteristic
q of the base field F , but we omit this from our notation. Note that when F
is formally real, q = 1, so our theorems for formally real fields are genuinely
integral.

REMARK 1.10. After completing the first draft of this paper, Bogdan Gheorghe
and Dan Isaksen pointed out that their paper [7] contains a precedent for this style
of vanishing theorem. They use the motivic Adams–Novikov spectral sequence
to deduce an ‘η-local’ region in the global sections of the bigraded motivic
homotopy sheaves of the 2-complete sphere spectrum over C. The computation
of π ?η

−11(SpecC) in [1] then implies that πm+nα1̂2(SpecC) = 0 for m ≡ 1 or 2
(mod 4) and 2n > 3m + 5.

Further note that since π ?η
−11(SpecC) ∼= Z/2 for m > 0, m ≡ 0 or 3

(mod 4), our conditions on the congruence class of m (mod 4) are in fact
necessary.
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Outline. In Section 2, we collect some necessary facts about the slice and
(Adams–)Novikov spectral sequences. In Section 3, we use the slice spectral
sequence to prove Theorems 1.1 and 1.2. Section 4 is split into three subsections.
In Section 4.1, we review some base change theorems and use them to prove
Theorem 1.4. In Section 4.2, we review Bachmann’s theorem on SHA1

(F)[1/2,
1/η]. In Section 4.3, we use fracture square methods to prove Theorem 1.6.
Finally, in Section 5, we pose several open questions and prove Theorem 5.5,
which compares the motivic stable stems and η-inverted motivic stable stems in a
range.

2. Preliminaries

In this section, we gather known facts about the slice and Novikov spectral
sequences that we will need for our arguments.

We use the slice spectral sequence to prove Theorems 1.1 and 1.2. See [33]
for its construction and [26] for a contemporary take on its properties. The slice
spectral sequence for the sphere takes the form

Em,n,t
1 = πm+nαst1 H⇒ πm+nα1̂,

where st1 is the t th slice of the sphere spectrum [26, Theorem 3.50]. By
loc. cit. applied to the admissible pair (Spec F,Z(p)), its p-local analogue takes
the form

Em,n,t
1 (p) = πm+nαst1(p) H⇒ πm+nα1̂(p)

whenever p 6= char F . In the case of Theorem 1.2, we prove that Em,n,t
1 (p)

vanishes in the stated range, implying that π ?1̂(p) vanishes in the same range.
In the case of Theorem 1.1, we must work a little harder and show that Em,n,t

2
vanishes in appropriate regions.

Both proofs depend crucially on the form that the slices of 1 take. Surprisingly,
these slices are governed by the E2-page of the Novikov (that is, MU-Adams)
spectral sequence from classical stable homotopy theory. Let

E s,t
2 (MU) = Exts,t

MU∗MU(MU∗,MU∗)

denote the cohomology of the MU Hopf algebroid, where s denotes homological
degree and t the internal grading on MU∗. (Note that MU∗ is even-graded, so
this group vanishes whenever t is odd.) Furthermore, let M denote the motivic
Eilenberg–MacLane functor, which takes in an abelian group A and produces the
spectrum MA representing motivic cohomology with coefficients in A. Using this
notation, we get the following theorem due to Röndigs–Spitzweck–Østvær.
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THEOREM 2.1 [26, Theorem 2.12]. The tth slice of the motivic sphere spectrum
is

st1 =
∨
s>0

Σ t−s+tαME s,2t
2 (MU).

To further understand the E1-page of the slice spectral sequence, we will need
more information on two things: first, the homotopy sheaves of motivic Eilenberg–
MacLane spectra, and second, structural properties of E s,t

2 (MU).

LEMMA 2.2 [29, Corollary 3.2.1]. Suppose A is a finitely generated abelian
group. Then

πm+nαMA = 0

for m < 0, or m = 0 and n > 0, or m > 0 and n > −1.

Proof. We have

(πm+nαMA)(U ) = [Sm+nα
∧U+,MA]

∼= [U+, S−m−nα
∧MA]

∼= H−m−n(U ; A(−n)).

The stated vanishing range then follows from [29, Corollary 3.2.1].

While discussing motivic Eilenberg–MacLane spectra, we take a moment to
note the following lemma, which we will need later in our arguments. Recall that
τ ∈ π1−αMF2 is the element represented by −1 in the kernel of the squaring map
on the units of a field F of char F 6= 2.

LEMMA 2.3. Suppose char F 6= 2. Then multiplication by τ is injective on
π ?MF2.

Proof. It suffices to prove that multiplication by τ is injective on the stalks of
π ?MF2. These stalks are given by evaluating π ?MF2 at the henselization Oh

X,x
of the local ring at a point x on a smooth F-scheme X . By Suslin–Voevodsky
rigidity [30, Theorem 4.4] and [11], the map from Oh

X,x to its residue field induces
an isomorphism on motivic cohomology with F2-coefficients. Hence it suffices
to prove that multiplication by τ is injective on the motivic cohomology with
F2-coefficients of any field extension E of F . By the solution of the Milnor
conjecture, π ?MF2(Spec E) ∼= K M

∗
(E)/2[τ ], so injectivity of τ is obvious.

We now turn to the structure of E s,t
2 (MU). This has been an object of intense

study since the 1970s, and the results we need are easily culled from the literature.
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We first consider various finiteness properties, and how to build up E s,t
2 (MU) from

p-local information.

LEMMA 2.4.

(a) Unless (s, t) = (0, 0), the group E s,t
2 (MU) is finite; furthermore,

E0,0
2 (MU ) = Z.

(b) Let P denote the set of rational primes and for p ∈P let BP(p) denote the
p-local Brown–Peterson spectrum. Let E∗,∗2 (BP(p)) denote the cohomology
of the BP(p) Hopf algebroid. Then

E>0,∗
2 (MU) ∼=

⊕
p∈P

E>0,∗
2 (BP(p)).

(c) There is a vanishing line so that E s,t
2 (BP(p)) = 0 when t < 2s(p − 1).

Proof. These are all standard results going back to Novikov and Zahler. For (a),
see [21, Proposition 2.1]. For (b), see [38, p. 482]. For (c), see [21, Corollary
3.1].

REMARK 2.5. Readers expert in the Adams–Novikov spectral sequence will
notice that we did not include the sparsity theorem E s,t

2 (BP(p)) = 0 whenever
2p − 2 - t . Combined with Theorem 2.1, sparsity certainly gives interesting
information about the suspension bigrading of p-local slice summands. But
because of the fourth quadrant cone worth of nonzero homotopy sheaves
associated with an Eilenberg–MacLane spectrum (Lemma 2.2), we do not get
analogous sparsity results on π ?1̂(p), at least when cd F = ∞. If cd F is finite
and sufficiently small relative to p, then one can deduce a sort of sparsity result
for π ?1, but we do not pursue the specifics here.

Finally, we will need to leverage the Andrews–Miller analysis of the α1-inverted
2-local Adams–Novikov spectral sequence [1]. Recall that α1 is the generator of
E1,2

2 (BP(2)) ∼= E1,2
2 (MU).

LEMMA 2.6. There is an isomorphism

α−1
1 E∗,∗2 (MU) ∼= F2[α

±1
1 , α3, α4]/(α

2
4)

where |α3| = (1, 6) and |α4| = (1, 8). Moreover, the localization map

E s,t
2 (MU)→ α−1

1 E s,t
2 (MU)

is an isomorphism whenever t < 6s − 10 and t < 4s.
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Proof. In [1, Corollary 6.2.3], Andrews and Miller prove that

α−1
1 E∗,∗2 (BP(2)) ∼= F2[α

±1
1 , α3, α4]/(α

2
4).

Since 2α1 = 0, the E∗,∗2 (MU) version of this isomorphism follows from
Lemma 2.4(b).

For the second part of the lemma, note that by [1, Proposition 5.1],

E s,t
2 (BP(2))→ α−1

1 E s,t
2 (BP(2))

is an isomorphism when t < 6s − 10. For p > 2, Lemma 2.4(c) implies that
E s,t

2 (BP(p))= 0 for t < 2s(p−1)6 4s. Hence when t <min{6s−10, 4s}, we are
guaranteed to only have 2-primary groups in the Andrews–Miller isomorphism
range.

3. Vanishing for the η-complete sphere

This section consists of the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Vanishing for m < 0 follows from the vanishing range
in the E1-page of the slice spectral sequence, which in turn relies on Morel’s
connectivity theorem [19]. We turn to the second condition, namely vanishing of
πm+nα1̂ when m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}. Recall
that the slice spectral sequence

Em,n,t
1 = πm+nαst1 H⇒ πm+nα1̂

converges to the homotopy sheaves of 1̂. By Theorem 2.1, we may rewrite the
E1-page as

Em,n,t
1 =

⊕
s>0

πm+nαΣ
t−s+tαME s,2t

2 (MU).

Let T denote the linear transformation of the (s, t)-plane to the (m+nα)-plane

given by the matrix
(
−1 1/2
0 1/2

)
(where both planes are given their standard bases).

We call T the Novikov-to-slice grading shift since Novikov E2-terms in degree
(s, t) correspond to slice summands, which are Eilenberg–MacLane spectra
shifted by T (s, t). We say that a bigrading m + nα contains a slice summand
if there exist integers s, t such that t − s + tα = m + nα and E s,2t

2 (MU) 6= 0. By
Theorem 2.1, m + nα contains a slice summand if and only if En−m,2n

2 (MU) 6= 0.
We see then that under the Novikov-to-slice grading shift T , vanishing regions in
E s,t

2 (MU) are mapped to bigradings that do not contain a slice summand.

https://doi.org/10.1017/fms.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.3


K. Ormsby, O. Röndigs and P. A. Østvær 10

Figure 1. This diagram represents structural features of E s,t
2 (MU) and

E s,t
2 (BP(p)) for various primes p. Note that we have drawn the E2-page in the

tradition Adams grading with t − s on the horizontal axis and s on the vertical
axis. The lines labeled by a prime p correspond to p-local vanishing lines, so that
E s,t

2 (BP(p)) = 0 above these lines. The piecewise linear curve corresponds to the
Andrews–Miller range of Lemma 2.6.

Similarly, other structural properties are preserved by T as long as statements
are translated into the language of slice summands (rather than groups or sheaves);
see Figures 1 and 2. For instance, let A denote the region in the (s, t)-plane
specified in Lemma 2.6 in which the map E s,t

2 (MU) → α−1
1 E s,t

2 (MU) is an
isomorphism; that is,

A = {(s, t) | t < min{6s − 10, 4s}}.

Then within the region

T (A) = {m + nα | 2n > max{3m + 5, 4m}},

we know that every nontrivial slice summand is a suspension of MF2 indexed
by a monomial of the form αi

1α
j
3α

ε
4 , where i and j are sufficiently large integers

and ε = 0 or 1. The suspension bigrading for an MF2 indexed by αi
1α

j
3α

ε
4 is

(2 j + 3ε)+ (i + 3 j + 4ε)α.
We now show that in the slice spectral sequence we have

Em,n,t
2 = 0

when m + nα ∈ T (A) and m ≡ 1 or 2 (mod 4). By [26, Lemma 4.2], there are
d1 differentials in the slice spectral sequence, which restrict to

τpr : Σ4q+1+(4q+2)αMZ/a2qZ→ Σ4q+(4q+3)αMF2

https://doi.org/10.1017/fms.2018.3 Published online by Cambridge University Press
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Figure 2. This diagram represents structural features of the E1- and E2-pages
of the slice spectral sequence for the motivic sphere spectrum. The m- and nα-
axes are presented, with the slice grading t suppressed. After the Novikov-to-slice
grading shift, the p-local vanishing lines of Figure 1 become the vanishing lines of
Theorem 1.2, and the Andrews–Miller vanishing curve gives the vanishing curve
of Theorem 1.1 (for m ≡ 1 or 2 (mod 4)). Note that the vanishing range given
by Theorem 1.1 is much better than the naive range given by the p = 2 case of
Theorem 1.2.

on α4q+2,
τ : Σ4q+1+(4q+2+ j)αMF2 → Σ4q+(4q+3+ j)αMF2

on α j
1α4q+2 for j > 1, and

τ : Σ4q−2+(4q−1+ j)αMF2 → Σ4q−3+(4q+ j)αMF2

on α j
1α4q−1 for j > 0. Within T (A), these differentials are multiplication by

τ linking suspended MF2 summands indexed by αi
1α

2 j+1
3 αε4 to suspended MF2

summands indexed by α4+i
1 α

2 j
3 α

ε
4 . By Lemma 2.3, multiplication by τ is injective

on π ?MF2. It follows that E T (A),∗
2 is concentrated in columns indexed by m ≡

0 or 3 (mod 4).
This gives our desired vanishing result on the slice E2-page, which in turn

implies that πm+nα1̂ = 0 when m + nα ∈ T (A) and m ≡ 1 or 2 (mod 4),
concluding our proof.

https://doi.org/10.1017/fms.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.3


K. Ormsby, O. Röndigs and P. A. Østvær 12

Proof of Theorem 1.2. Consider the p-local slice spectral sequence

Em,n,t
1 (p) = πm+nαst1(p) H⇒ πm+nα1̂(p).

A p-local version of Theorem 2.1 implies that

st1(p) =
∨
s>0

Σ t−s+tαME s,2t
2 (BP(p)).

By Lemma 2.4(c), E s,t
2 (BP(p)) = 0 for t < 2s(p−1). Under the Novikov-to-slice

grading shift T (see the proof of Theorem 1.1), this region becomes

{m + nα | (p − 2)n > (p − 1)m}.

As such,
sn1(p) ' ∗

for (p − 2)n > (p − 1)m. By Lemma 2.2, a nontrivial slice summand
Σ t−s+tαME s,2t

2 (BP(p)) can only contribute to Em,n,t
1 (p) when m − t + s > 0 and

n − t 6 0. (Lemma 2.2 actually provides a more stringent vanishing condition,
but this ‘nonfourth quadrant’ vanishing is all we need here.) It follows that
Em,n,t

1 (p) = 0 for (p − 2)n > (p − 1)m. We conclude that πm+nα1̂(p) = 0 in this
range as well.

4. Vanishing for the integral and p-local spheres

In this section, we study the problem of lifting vanishing results about π ?1̂
to π ?1. We first recall some base change theorems and use them to prove
Theorem 1.4. We then recall Bachmann’s theorem on SHA1

(F)[1/2, 1/η], and
finally prove Theorem 1.6.

4.1. Base change. Recall that for any map of schemes f : S → T one
has a pullback, that is, base change, functor f ∗ : SHA1

(T ) → SHA1
(S). In this

subsection, we use standard arguments with base change functors to expand the
class of fields for which various vanishing results will hold. We write 1F for the
sphere spectrum in SHA1

(F) or SHA1
(F)[1/q]. Note that if f : Spec E → Spec F

is an extension of fields, then f ∗1F = 1E .
The functor f ∗ always admits a right adjoint f∗. If f is smooth, it also admits a

left adjoint f] (given by composition of the structure map to S with f ). (See [12,
Appendix A] for a brief review.)

Below we will use the fact that when F is perfect, πm+nαX is a strictly A1-
invariant sheaf in the sense of [20]. (See [12, Section 1.2] for a brief review.)

https://doi.org/10.1017/fms.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.3


Vanishing in stable motivic homotopy sheaves 13

We call an extension of fields E/F essentially smooth if Spec E is a cofiltered
limit of smooth F-schemes. Note that if the transcendence degree of E/F is finite,
then E/F is essentially smooth.

LEMMA 4.1. Let F be a perfect field and suppose E/F is an essentially smooth
field extension. Then there is an isomorphism π ?1F(Spec E) ∼= π ?1E(Spec E).

Proof. Write Spec E as a cofiltered limit limβ Xβ of smooth F-schemes Xβ . Fix
m, n ∈ Z. We have

πm+nα1F(Spec E) = colim
β

πm+nα1F(Xβ) (by definition)

= colim
β
[Σm+nαXβ+,1F ]

= colim
β
[ fβ] f ∗βΣ

m+nα1F ,1F ]

∼= colim
β
[ f ∗βΣ

m+nα1F , f ∗β 1F ]

∼= [Σ
m+nα1E , f ∗1F ] (by [12, Lemma A.7(1)])

= πm+nα1E(Spec E),

as desired.

In the following proposition, we write πm+nαX := πm+nαX (Spec F) for the
(m + nα)th homotopy group (as opposed to sheaf) of X ∈ SHA1

(F).

PROPOSITION 4.2. Suppose F is a filtered colimit of fields F = colimβ Fβ such
that πm+nα1Fβ = 0 for all β. Then πm+nα1F = 0.

Proof. This follows from [12, Lemma A.7(1)].

LEMMA 4.3. Fix m, n ∈ Z and suppose πm+nα1k = 0 for all nonreal
characteristic 0 fields k with cd k < ∞. Then πm+nα1F = 0 for any nonreal
characteristic 0 field F, regardless of cohomological dimension.

Proof. Since πm+nα1F is strictly A1-invariant [20, Remark 5.1.13], it suffices to
check that πm+nα1F(Spec L) = 0 for all finitely generated field extensions L/F .
By Lemma 4.1 and [12, Lemma A.2], this is the same as showing πm+nα1L = 0.
Thus, by Proposition 4.2 and our hypothesis, it suffices to show that L is a filtered
colimit of nonreal fields with finite cohomological dimension.

Since L is nonreal, there exist a1, . . . , an ∈ L such that−1 = a2
1+· · ·+a2

n . Let
L0 = Q(a1, . . . , an). Then L0 is nonreal and cd L0 6 2 by [28, Section II.4.4,
Proposition 13]. Letting A range over finite subsets of L r L0 we see that
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L = colimA L0(A). By [28, Section II.4.1 Proposition 10′ & Section II.4.2
Proposition 11], we see that cd L0(A) < ∞, and it is clear that each L0(A) is
nonreal, completing our proof.

We can now use Theorem 1.3 to prove Theorem 1.4.
Proof of Theorem 1.4. The positive characteristic statement is a direct
consequence of Theorem 1.3. Suppose F is nonreal with characteristic 0. If
cd F <∞, then Theorem 1.3 implies 1 ' 1̂, and Theorems 1.1 and 1.2 guarantee
that π ?1 has the stated vanishing range. By Lemma 4.3, this is enough to conclude
that the same vanishing range holds when cd F = ∞.

We conclude this section with a virtual cohomological dimension version of
Lemma 4.3. We will use it in Section 4.3 to prove Theorem 1.6.

LEMMA 4.4. Fix m, n ∈ Z and suppose πm+nα1k = 0 for all formally real fields
k with vcd2 k <∞ and all nonreal characteristic 0 fields. Then πm+nα1F = 0 for
any formally real field F, regardless of virtual 2-cohomological dimension.

Proof. Suppose F is a formally real field and L is a finitely generated extension of
F . As in the proof of Lemma 4.3, it suffices to show πm+nα1L = 0. If L is nonreal,
we are done by hypothesis, so we may assume L is formally real. We aim to
express L as a filtered colimit of formally real fields with finite vcd2. Letting A
range over finite subsets of L r Q, we see that L = colimA Q(A). Each Q(A) is
formally real (since it is a subfield of L) and since vcd2 Q = 2 <∞, the same two
propositions from [28] imply that vcd2 Q(A) <∞ for each A. By Proposition 4.2,
we are done.

4.2. Bachmann’s theorem. Let ρ denote the map 1 → Σα1 induced by
taking the nonbasepoint of S0 to−1 ∈ A1r0. In [3], Bachmann finds an alternate
presentation of the ρ-inverted stable motivic homotopy category SHA1

(F)[1/ρ]
in terms of the real étale topology. We will not go into the details of the real
étale topology, instead sending the reader to [27], especially its first chapter.
Let (Spec F)rét denote the site of étale schemes over Spec F with the real
étale topology, and let SH(Shv((Spec F)rét)) denote the local stable homotopy
category of sheaves of spectra on (Spec F)rét (see [3, Section 2]). Let X F denote
the Harrison space of orderings on F . By [27, Theorem 1.3], Shv(X F) '

Shv((Spec F)rét). Bachmann’s theorem (specialized to the case in which the base
scheme is Spec of a field) then tells us the following.

THEOREM 4.5 [3, Theorem 31]. There are triangulated equivalences of
categories

SHA1
(F)[1/ρ] ' SH(Shv((Spec F)rét)) ' SH(Shv(X F)).
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Because of the relation (2 + ρη)η = 0, we see that ρ is invertible whenever 2
and η are invertible. From this, Bachmann derives the following corollary.

COROLLARY 4.6. There are triangulated equivalences of categories

SHA1
(F)[1/2, 1/η] ' SH(Shv((Spec F)rét))[1/2] ' SH(Shv(X F))[1/2].

REMARK 4.7. Note that when X F = ∗, we have SH(Shv(X F)) = SH, the
classical Spanier–Whitehead category. When X F = ∗ and F admits a real
embedding, the equivalences in Theorem 4.5 and Corollary 4.6 come from the
real Betti realization functor [3, Corollary 38].

4.3. Uncompletion. We now use Bachmann’s theorem and several fracture
squares to prove Theorem 1.6.

Proof of Theorem 1.6. We prove the vanishing statement for π ?1; the reader may
check that an analogous argument easily covers the p-local version.

By Lemma 4.4, it suffices to show that π ?1k obtains the stated vanishing range
for all k formally real with vcd2 k < ∞ or nonreal of characteristic 0. The
vanishing range in Theorem 1.6 is a subset of the range from Theorem 1.4, so the
latter case is covered. Now suppose k is formally real with vcd2 k <∞. We claim
that it suffices to check that the homotopy groups π?1k obtain the vanishing range.
Indeed, if E/k is a finitely generated field extension, Lemma 4.1 implies that
πm+nα1k(Spec E) = πm+nα1E . We either have that E is nonreal of characteristic
0 (and can invoke Theorem 1.4), or that E is formally real. In the latter case, the
results of [28, Section II.4.1 & II.4.2] imply that vcd2 E < ∞, and we are still
working with a homotopy group over a field satisfying our hypotheses. Thus we
have successfully reduced the problem to checking the vanishing range of π?1k

for k formally real with vcd2 k <∞.
Fix F formally real with finite vcd2 and consider the following three homotopy

pullback squares:

1 //

��

1̂

��
η−11 // η−11̂,

η−11 //

��

η−11̂2

��
η−11[1/2] // η−11̂2[1/2],

1̂2
//

��

1̂2,η

��
η−11̂2

// η−11̂2,η.

The first is the η-primary fracture square for 1, the second is the η-periodization of
the 2-primary fracture square for 1, and the third is the η-primary fracture square

https://doi.org/10.1017/fms.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.3


K. Ormsby, O. Röndigs and P. A. Østvær 16

for 1̂2. The vanishing ranges for π?1̂ and π?η−11̂ follow from Theorem 1.1, so the
first square implies that it suffices to check the vanishing range for π?η−11.

This brings us to the second square. We analyze the bottom row using
Corollary 4.6, which tells us that πm+nαη

−11[1/2] = 0 if and only if 1[1/2] ∈
SH(Shv(X F)) has 0 as its mth homotopy group. We claim that this latter condition
is obtained if and only if π top

m 1[1/2] = 0. By the argument of [3, Proposition 40],
it suffices to check this condition when F is real closed. But then X F = ∗ and
SH(Shv(X F)) = SH, which is precisely the category in which π top

m is computed.
By the same argument, πm+nαη

−11̂2[1/2] = 0 if and only if π top
m 1̂2[1/2] = 0.

(Note that by Serre finiteness, the set of such m is a subset of those for which
π top

m 1[1/2] = 0.)
It remains to check the vanishing range for π?η−11̂2. Since vcd2(F) <∞, [13,

Theorem 1] implies that the top row of the third square is a π?-isomorphism,
whence the bottom row is a π?-isomorphism as well. In particular, πm+nαη

−11̂2 =

0 if and only if πm+nαη
−11̂2,η = 0. By Theorem 1.1, this condition holds whenever

m < 0 or m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}. It follows
that πm+nαη

−11 = 0 whenever m < 0 or m > 0, m ≡ 1 or 2 (mod 4), 2n >

max{3m + 5, 4m}, and π top
m 1[1/2] = 0. This concludes our proof.

5. Questions

Here we present several natural questions raised by our work, along with some
commentary.

QUESTION 5.1. Given m ∈ Z such that the mth η-complete Milnor–Witt stem
πm+∗α1̂ is bounded above, what is the smallest n ∈ Z such that πm+nα1̂ = 0? If
the mth Milnor–Witt stem πm+∗α1 is bounded above, what is the smallest n such
that πm+nα1 = 0?

REMARK 5.2. The bounds presented here are not necessarily optimal. For
instance, by [26], π 1+3α1 = 0, but the vanishing region of Theorem 1.6 is only
obtained for π 1+nα1 when n > 4. From the perspective of the slice spectral
sequence, we lack both total information about the Novikov E2-page and all
the differentials in the spectral sequence. While improvements on the vanishing
range are no doubt possible via more nuanced slice arguments, it seems likely that
different arguments would have to be invoked in order to find optimal bounds.

Suppose that the mth Milnor–Witt sheaf is bounded above and take n to be the
maximal integer such that πm+nα1 6= 0. In this case, we will call πm+nα1 the top
sheaf in the mth Milnor–Witt stem.
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Recall that ωF denotes the contraction of a sheaf F [20]. Tom Bachmann
pointed out to the authors that ωF = 0 if and only if F is birational, that is, if and
only if every dense open embedding of smooth F-schemes U → X induces an
isomorphism F (X) ∼= F (U ). One implication is straightforward; the other can
be deduced from the Rost–Schmid complex. Together with the fact thatωπm+nα

∼=

πm+(n+1)α, this implies that every top Milnor–Witt sheaf is birational.

QUESTION 5.3. Are there examples of top Milnor–Witt sheaves that are
birational but not constant?

REMARK 5.4. Matthias Wendt informed the authors about [2, Lemma 3.7],
which implies that ωK ind

3 = 0, where K ind
3 is the third indecomposable K -sheaf.

Note that K ind
3 coincides with the sheaf of integral motivic cohomology groups

H 1,2, which is nonzero and nonconstant. For example, H 1,2(Q) ∼= Z/24 and
H 1,2(Q(

√
−1)) contains Z as a direct summand; see, for example, [16, pp. 542,

564].
There is no indication that K ind

3 appears as a top Milnor–Witt sheaf. All known
top Milnor–Witt sheaves are constant.

We conclude by noting that the methods of Section 3 imply another result,
whose proof we only sketch.

THEOREM 5.5. The natural map 1→ η−11 induces an isomorphism πm+nα1 ∼=
πm+nαη

−11 whenever

» m < 0, or

» m > 0 and 2n > max{3m + 5, 4m}.

Proof Sketch. By the η-primary fracture square, it suffices to prove the analogous
result for 1̂→ η−11̂.

We compare the weight n slice spectral sequence for 1 to the weight n
η-inverted slice spectral sequence. We get an isomorphism on E1-pages above
the slice-to-Novikov shift of the Andrews–Miller region from Lemma 2.6. This is
precisely the region stated in the theorem.

REMARK 5.6. By Morel’s computation of π nα1, the isomorphism in fact holds
for n > 0 when m = 0.

REMARK 5.7. By Theorem 5.5 and the fracture squares from the proof of
Theorem 1.6, we can also deduce a relative version Theorem 1.6. Assume that m,
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n are in the range given in Theorem 5.5 so that πm+nα1 ∼= πm+nαη
−11. Then the

η-periodization of the 2-primary fracture square produces a long exact sequence

· · · → πm+1+nαη
−11̂2[1/2] → πm+nαη

−11

→ πm+nαη
−11[1/2] ⊕ πm+nαη

−11̂2 → · · · .

The terms πm+1+nαη
−11 and πm+nαη

−11[1/2] are topological in the sense that
they can be computed in SH(Shv(X F)) using Corollary 4.6. Since we are in the
range of Theorem 5.5, the argument from the final paragraph of the proof of
Theorem 1.6 implies that πm+nαη

−11̂2 = 0. This finally gives us a range in which
πm+nα1 is ‘topological’, at least in the sense of coming from SH(Shv(X F)) via
the above long exact sequence.

QUESTION 5.8. For m > 0, 2n > max{3m + 5, 4m}, and n ≡ 0 or 3 (mod 4),
what is πm+nα1? What about πm+nα1̂?

REMARK 5.9. By Theorem 5.5, this is equivalent to computing the homotopy
sheaves of the η-inverted sphere spectrum. The global sections of these sheaves
are computed for F = C in [1], and, for F = R, the 2-complete global section
computation appears in [8]. Calculations for p-adic fields Qp and the rational
numbers Q will appear in [36]. Any sheaf computations and computations over
a general field are completely open, except for π 1+mαη

−11 = π 2+mαη
−11 = 0

by [25, Theorem 8.3], which predates the vanishing known to occur under the
conditions of Theorem 1.6.
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