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Abstract

Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations
such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged
importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our
study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype
differences. We reveal that transformation design acts as a form of either unwanted or beneficial supervision,
impacting feature clustering and representation relevance. Importantly, these effects vary based on class labels in a
supervised dataset. In microscopy images, transformation design significantly influences the representation, intro-
ducing imperceptible yet strong biases. We demonstrate that strategic transformation selection, based on desired
feature invariance, drastically improves classification performance and representation quality, even with limited
training samples.

Impact Statement
This article investigates the impact of image transformation design in self-supervised representation learning
(SSRL) for biological imaging. Our study shows how these transformations influence feature representation and
model accuracy, particularly in microscopy imaging where differences are more subtle. We demonstrate that
specific transformations can be strategically used to control model performance for targeted tasks. This research
is of importance to computational bioimaging, offering insights on optimizing SSRL for enhanced precision and
efficiency in biological research. This advancement aids in developing more accurate tools for biological
exploration, fostering cost-effective scientific progress.

1. Introduction

In self-supervised representation learning (SSRL), a common learning objective in most approaches is for
models to be trained to learn a common representation of two different transformations of the same image.
The objective of SSRL is to benefit from training on a large unannotated dataset to obtain a representation that
can be useful for solving downstream tasks for which one has a limited amount of annotated data. SSRL has
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become one of the main pillars of Deep Learning based computer vision approaches(3,8–11,20,56), with
performances coming close to, and sometimes going beyond supervised learning for some downstream tasks.

SSRL relies heavily on combinations of random image transformations. These transformations are
used to create distorted versions of the original image with the aim of keeping the semantic content
invariant. With SSRL approaches producing overall good accuracies on the downstream classification of
natural images, hyper-parameter optimization of transformation parameters has added significant
improvements to the overall performance of models(10). However, further consequences of the choice
of these augmentations have been only sporadically explored by the research community(20,49), especially
for other tasks(57) and in other domains(53). It is therefore unclear to what extent this choice impacts the
pretraining ofmodels at deeper levels, as well as the effects on the extracted features and the performances
in other domains.

Some important questions remain unanswered. Is the accuracy for an individual class contingent upon
the choice of augmentation? Can the variation of this choice increase one class’s accuracy at the expense
of degrading another one? Are the features encoded into the latent representations being affected by this
choice? What is the amplitude of these issues in domains other than natural images? In this paper, we
report and analyze the outcomes of our experimentation to shed light on this subject. By examining the
performance of various SSRLmethods, while altering the selection andmagnitude of transformations, we
analyze and quantify their ramifications on overall performance as well as on the class-level performance
of models. We subsequently seek to observe the effects of substantially varying the structure of
combinations of transformations on the quality of the resulting representations. We then investigate the
effects of varying selection transformations in SSRL methods when applied to microscopy images of
cells, where distinctions between classes are far less discernible than with natural images, and then
proceed to discuss potential avenues for improvement in the SSRL field.

Using convolution-based approaches on small to medium-scale datasets, our contributions can be
succinctly summarized as follows:

• We explore the nuanced impact of transformations on performance at the class level. Our investi-
gation reveals that the selection of transformations commonly used in Self-Supervised Learning
approaches can degrade the accuracy of certain classes while improving those of others. However,
we also observe that this effect is controllable and can be leveraged to beneficially manage the
performance of specific classes in specific application scenarios.

• We demonstrate that, through analysis of the representations obtained from Self-Supervised train-
ings, the careful selection of specific combinations of transformations facilitates the optimization of
models for encoding distinct features into the resulting representations. Simultaneously, this
deliberate choice may result in the loss of other features, thus enabling models to be tailored for
different tasks.

• We examine the implications of the choice of transformations for Self-Supervised Learning in the
biological domain, where the distinction between classes is often fuzzy and subtle. Our findings
illuminate the heightened importance of transformation choice within this domain, showcasing that
a meticulous definition of desired features yields improvements in result quality. Moreover, our
experiments demonstrate the superiority of this approach over transfer learning when dealing with
small-scale datasets exhibiting domain differences.

2. Related work

2.1 Self-supervised representation learning (SSRL)

Contrastive learning approaches(10,11,13,55) have shown great success in avoiding trivial solutions in
which all representations collapse into a point, by pushing the original image representation further away
from representations of negative examples. These approaches follow the assumption that the augmen-
tation distribution for each image has minimal inter-class overlap and significant intra-class overlap(1,44).
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This dependence on contrastive examples has since been bypassed by noncontrastive methods. The latter
either have specially designed architectures(9,12,20) or use regularization methods to constrain the
representation in order to avoid the usage of negative examples(3,4,18,30,32,56). Another line of work(22,45)

focuses on obtaining positive and negative examples in the feature space, bypassing the need to augment
the input images with transformations.

2.2 Impact of image transformations on SSRL

Compared to the supervised learning field, the choice and amplitude of transformations have not received
much attention in the SSRL field(2,15,31,33). Studies such as(52) and(50) analyzed in a more formal setting
the manner in which augmentations decouple spurious features from dense noise in SSRL. Some
works(10,19,20,39) explored the effects of removing transformations on the overall accuracy. Other works
explored the effects of transformations by capturing information across each possible individual aug-
mentation, and then merging the resulting latent spaces(53), while some others suggested predicting
intensities of individual augmentations in a semi-supervised context(42). However, the latter approach is
limited in practice as individual transformations taken alone were shown to be far less efficient than
compositions(10). An attempt was made to explore the underlying effect of the choice of transformation in
the work of (37), one of the first works to discuss how certain transformations are better adapted to some
pretext task in self-supervised learning. This study suggests that the best choice of transformations is a
composition that distorts images enough so that they are different from all other images in the dataset.
However favoring transformations that learn features specific to each image in the dataset should also
degrade information shared by several images in a class, thus damagingmodel performance. Altogether, it
seems that a good transformation distribution should maximize the intra-class variance while minimizing
inter-class overlap(1,44). Other works proposed a formalization to generalize the composition of trans-
formations(38), which, while not flexible, provided initial guidance to improve results in some contexts.
This was followed bymore recent works on the theoretical aspects of transformations,(48) that studied how
SSRL with data augmentations identifies the invariant content partition of the representation,(21) that
seeks to understand how image transformations improve the generalization aspect of SSRL methods,
and(57) that proposes new hierarchical methods aiming to mitigate a few of the biases induced by the
choice of transformations.

2.3 Learning transformations for SSRL

A few studies showed that optimizing the transformation parameters can lead to a slight improvement in
the overall performance in a low data annotation regime(40,42). However, the demonstration is made for a
specific downstream task that was known at SSRL training time, and optimal transformation parameters
selected this way were shown not to be robust to slight changes in architecture or task(43). Other works
proposed optimizing the random sampling of augmentations by representing them as discrete groups,
disregarding their amplitude(49), or through the retrieval of strongly augmented queries from a pool of
instances(51). Further research aimed to train a generative network to learn the distribution of transform-
ation in the dataset through image-to-image translation, in order to then avoid these transformations at
self-supervised training time(54). However, this type of optimization may easily collapse into trivial
transformations.

2.4 Performance of SSRL on various domains and tasks

Evaluation of SSRL works relies almost exclusively on the accuracy of classification of natural images
found in widely used datasets such as Cifar(26), Imagenet(16), or STL(14). This choice is largely motivated
by the relative ease of interpretation and understanding of the results, as natural images can often be easily
classified by eye. This, however, made these approaches hold potential biases concerning the type of data
and tasks for which they could be efficiently used. It probably also has an impact on the choice and
complexity of the selected transformations aiming at invariance: some transformations couldmanually be
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selected in natural images but this selection can be very challenging in domains where differences
between classes are invisible. The latter was intuitively mentioned in some of the previously cited studies.
Furthermore, the effect of the choice of transformation may be stronger on domains and tasks where the
representation is more thoroughly challenged. This is probably the case in botany and ornithology(53) but
also in the medical domain(42) or research in biology(5,28,36). As biology and Drug Discovery stands to
benefit massively from Deep Learning and SSRL(25), there is an ongoing focus on proving the transfer-
ability of SSRL approaches pretrained on natural images to the biological domain(17), or leveraging the
existing unlabeled biological images for biology specific SSRL pretraining with the fixed number of
channels(24) or through channel agnostic approaches(6,23).

3. The choice of transformations is a subtle layer of weak supervision

In Section 3.1, we empirically investigate the ramifications of varying transformation intensities on the
class-level accuracies of models trained using self-supervised learning techniques. Subsequently, in
Section 3.2, we conduct an examination in which we demonstrate how alternative selections of trans-
formations can lead to the optimization of the resulting representations of the model for distinct use cases.
In Section 3.3, we delve into the manner in which this choice can impact representations of microscopy
images, a domain where the distinction between images is highly nuanced. This is followed by an
empirical analysis in Section 3.4 that illustrates how the combination of transformations chosen according
to a meticulous definition of desired biological features can significantly enhance the performance of
models in SSRL.

3.1. Transformation choices induce inter-class bias

In order to understand the ramifications of transformations on the performance of amodel, we delve into the
examination of the behavior of models that are trained with widely adopted SSRL techniques on the
benchmark datasets Cifar10, Cifar100(26), and Imagenet100(16), while altering themagnitude and likelihood
of the transformations. With a Resnet18, a Resnet50, and a ConvNeXt-Tiny architectures as backbones, we
employ a fixed set of transformations, comprised of randomized cropping, chromatic perturbations, and
randomized horizontal inversions. Subsequently, we uniformly sample a set of amplitude and probability
values for each transformation, in order to create a diverse range of test conditions. Each training is repeated
a number of times (three for Imagenet and five for Cifar), with distinct seed values, and the mean and
standard deviation of accuracy, measured through linear evaluation over frozen weights, are computed over
these five trainings for eachmethod and each transformation value.Allmodel training parameters, aswell as
the training process, are available in Supplementary Materials.

As depicted in Figure 1, we observe minimal fluctuation in the overall accuracy of each model as we
slightly alter any one of the transformations. This stands in stark contrast to the class-level accuracies
observed, in which we discern significant variation in the accuracy value for many classes, as we vary the
parameters of transformations, hinting at a greater impact of variations in transformation parameters on
the class level. Through the same figure, it becomes apparent that a number of classes exhibit distinct, and
at times, entirely antithetical behaviors to each other within certain ranges of a transformation parameter.
In the context of the datasets under scrutiny, this engenders a bias in the conventional training process of
models, which either randomly samples transformation parameters or relies on hyperparameter optimiza-
tion on overall accuracy to determine optimal parameters. This biasmanifests itself in themanner inwhich
choosing specific transformation parameters would impose a penalty on certain classes while favoring
others. This is demonstrated in Figure 1 by the variation in accuracy of the Caterpillar and Crocodile
classes for a model trained using VICReg(3), as the crop size is varied (bottom left plot). The reported
accuracies uncover that smaller crop sizes prove advantageous for the Caterpillar class, stimulating the
model to recognize repetitive patterns and features consistent across the length of the caterpillar’s body.
However, the Crocodile class doesn’t fare as well under similar conditions. This can be explained by
considering the differing morphologies of the two subjects. The Caterpillar class benefits from smaller
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crops as the caterpillars exhibit uniformity across their body parts. Conversely, for the Crocodile class, a
small crop size could potentially capture a segment like the tail, which could be misattributed to other
classes, such as snakes, due to its isolated resemblance. Therefore, the choice of transformation
probability or intensity directly affects class-level accuracies, an impact that may not be immediately
apparent when only considering the overall accuracy.

In order to gain a deeper understanding of the inter-class bias observed in our previous analysis, we aim
to further investigate the extent to which this phenomenon impacts the performance of models trained
with self-supervised learning techniques. By quantitatively assessing the correlation scores between
class-level accuracies obtained under different transformation parameters, we aim to measure the
prevalence of this bias in self-supervised learning methods. More specifically, a negative correlation
score between the accuracy of two classes in response to varying a given transformation would indicate
opposing reactions for those classes to the transformation parameter variations. Despite its limitations,
such as the inability to quantify the extent of bias and the potential for bias to manifest in specific ranges
while remaining positively correlated in others (See Lion/Wolf pair in Figure 1), making it difficult to
detect, this measure can still provide a preliminary understanding of the degree of inter-class bias. To this
end, we conduct a series of experiments utilizing a ResNet18 encoder on the benchmark datasets of
Cifar10 and Cifar100(26). We employ a diverse set of state-of-the-art self-supervised approaches: Barlow
Twins(56), MoCov2(11), BYOL(20), SimCLR(10), and VICReg(3), and use the same fixed set of transform-
ations as in our previous analysis depicted in Figure 1. We vary the intensity of the hue, the probability of
color jitter, the size of the random crop, and the probability of horizontal inversion through 20 uniformly
sampled values for each, and repeat each training five times with distinct seed values. We compute the
Pearson, Kendall, and Spearman correlation coefficients for each pair of classes with respect to a given
transformation parameter, as well as their respective p-values, and define class pairs with opposite
behaviors as those with at least one negative correlation score of the three measured correlations lower
than �0.3 and a p-value lower than 0.05. We then measure the ratio of classes with at least one opposite

Figure 1. Different transformation parameter choices induce an inter-class bias. Inter-class Linear
Probing accuracy results versus variation of a transformation parameter, for Resnet18 architectures
trained with various SSRL methods on the benchmark datasets Cifar10, Cifar100, and Imagenet100.
Each dot and associated error bar reflects themean and standard deviation of three runs for Imagenet100
and five runs for Cifar with different random seeds. While overall accuracy remains relatively consistent
across a range of transformation parameters, these transformations can have a subtle but significant
impact on individual class performance, either favoring or penalizing specific classes. Additional

comparisons are available in Supplementary Materials.
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behavior to another class, compared to the total number of classes, in order to understand the extent of
inter-class bias for a given transformation, method, and dataset.

Our findings, as represented in Figure 2a, indicate that the extent of inter-class bias for the self-
supervised learning methods of interest varies among different transformations. This variability is
primarily due to the fact that while these transformations aim to preserve the features that define a class
across the original image and its transformed versions, they can also inadvertently compromise infor-
mation specific to a particular class, while favoring the information of another class. Notably, within
Cifar100, a dataset encompassing a diverse range of natural image classes, we observe a significant
presence of inter-class bias when manipulating hue intensity. This outcome can be attributed to the
optimization of specific features through each transformation choice, which may not be optimal for
certain classes. To substantiate the generality of these findings across convolution-based networks, we
conduct a comparative analysis on Cifar100 usingResNet18, ResNet50, andConvNext-Tiny as encoders,
along with BYOL, SimCLR, and VICReg as the self-supervised learning approaches. By varying hue
intensity, the results, as presented in Table 2b, reaffirm the consistent trend. An analysis of the number of
shared classes with negative correlations between the different SSRL approaches is done in
Supplementary Materials.

To investigate the potential relationship between abstract class properties and their preferred
transformations, we conduct a thorough analysis of each class’s response to varying transformation
parameters. We explore class accuracy behavior under distinct transformations, namely, Hue Intensity,
Color Jitter Probability, and Crop Size. By computing the slope of the linear regression line that best fits
the accuracy-transformation data for each class and each model, we categorize the behavior of each
class accuracy as ascending, descending, or random. Simultaneously, we compute a texture analysis
measure, and a Fourier transformsmeasure for each class in the Cifar100 dataset, as well as the spectrum
of feature covariance and the intrinsic dimension using the features resulting from a ResNet model
pretrained on ImageNet in a supervised manner. Using Anova andManova correlation metrics, we then
compute the correlation between these class properties and the class behaviors when varying a specific
transformation.

Figure 2. Analyzing negative correlations in class accuracies in Cifar10 and Cifar100 datasets. Using
diverse backbones and SSRL methods, plus varying transformations, we assess the proportion of classes
with negative correlations in these datasets. (a) In Cifar100 with ResNet18, more negatively correlated
classes are seen, likely due to overlapping classes with increased color jitter. (b) We apply ResNet18/50
and ConvNeXt-Tiny backbones with SimCLR, BYOL, and VICReg, on Cifar100, adjusting hue intensity.
The ratio of negatively correlated classes remains consistent across configurations, suggesting these

patterns in (a) are independent of the SSL method and encoder architecture.
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Our results, summarized in Table 1, provide insights into the relationship between abstract image class
properties and the effect of variations of transformation parameters. For instance, the Intrinsic Dimension
and Texture Analysis of image classes exhibit substantial correlation with variation in Hue Intensity,
implying that the intrinsic complexity and texture attributes of classes could significantly influence their
response to changes in this transformation. A similar pattern is noticed with the Color Jitter Probability,
albeit with a somewhat weaker correlation. Interestingly, the Spectrum of Feature Correlation shows
minimal correlation with all transformations, suggesting that the covariance of class features might not
significantly affect the class response to transformations. The Fourier Transform property showed mixed
results, with a weak correlation with Hue Intensity but a stronger one with Crop Size, as the crop
transformation can induce a varying degree of loss of signal in the image.

These results imply that the choice of transformations not only introduces an inter-class bias that can
subtly impact performance in real-world scenarios, but also presents an opportunity to harness this bias to
achieve a desired balance in class performance or optimize specific class accuracies for specific use cases.
We focus in the following analysis on the coarse-grained labels of Cifar100, commonly called super-
classes in the literature. As demonstrated in Figure 3, we observe that certain superclasses in the Cifar100
dataset exhibit improved recognition when specific transformation parameters are applied, when others
don’t. This highlights the potential of consciously selecting and studying transformations in our training
process to enhance the performance of specific class clusters or achieve a balanced performance across
classes. Therefore, the careful tailoring of specific transformations and their parameters becomes crucial
in preserving desired information within classes, presenting a potential avenue for improvement in
training.

Table 2. Metrics for clustering, linear evaluation, and LPIPS(58) in VGG11 models on MNIST(29)

using MoCov2(11) and various transformations are shown. Specific transformations’ effects are
examined across training configurations. The First Set, in bold, yields digit representations, while the
Second Set focuses on handwriting style and thickness. Top1 Accuracy is from a Linear Evaluation,
and LPIPS, using an AlexNet(27) backbone, reflects perceptual similarity. Silhouette scores(41) suggest
good cluster quality in the second set, despite AMI scores indicating inaccurate digit cluster capture.

TRANSFORMATION SETS SILHOUETTE AMI TOP1 ACC LPIPS

ROTATION+CROP 0.74 0.79 98.4 0.22
ROTATION+CROP+PADDING 0.78 0.81 99.3 0.25
ROTATION+CROP+PADDING +COLORINVERSION (FIRST SET) 0.87 0.83 99.6 0.33
ROTATION+CROP+FLIPS 0.71 0.66 96.2 0.32
ROTATION+CROP+FLIPS+RANDOMERASING (SECOND SET) 0.66 0.37 62.1 0.51

Table 1. Correlation values between class properties and the effect of transformations on classes. We
focus on class properties such as Intrinsic Dimension, Texture Analysis, Fourier Transform, and

Spectrum of Feature Covariance, and transformations such as Hue Intensity, Color Jitter Probability,
and Crop Size, applied on Cifar100. Values significantly larger than 1 indicate a notable difference
between behavior groups with respect to the varying transformation. Asterisks (*) denote p-values >

0.05, indicating less significant correlations

Class properties Hue intensity Color Jitter probability Crop size

Intrinsic dimension 16.64 19.15 0.21*
Texture analysis 16.39 4.89 0.18*
Fourrier transform 0.71* 7 5.19
Spectrum of feature covariance 1.27 0.56* 0.97*
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3.2. Transformation choice impacts clustering and representation information

Examining the impact of transformations on diverse tasks, with variations in transformation parameters
and compositions, is crucial for comprehensively understanding their influence on the quality of the
resulting representations. In our study, we specifically concentrate on the unsupervised clustering task to
elucidate how the choice of transformations affects the type of encoded information. To this end, we direct
our investigation towards the representations that can be attained by training encoders with different
architectures (VGG11, ResNet18, ConvNeXt-Tiny) with two prominent SSRL approaches (MoCov2(11),
BYOL(20)) on the MNIST benchmark dataset(29). Our study delves into the effects of different sets of
compositions of transformations on the nature of the information embedded within the representation and
its correlation to the expected intent of our tasks. For our trainings, we employ two sets of transformations.
The first set, comprised of padding, color inversion, slight rotation, and random cropping, aims to
maximize the intra-class overlap of digits. This is due to these transformations not affecting the digit
information, and keeping it invariant in the transformed version of the images. The second set, which
includes vertical flips, strong rotation, random cropping, and random erasing, enables us to investigate the
representation resulting from the destruction of digit information in the transformed views, as these
transformations destroy an integral part of the digit itself in the transformed version of the image. We
similarly employ in additional trainings other transformation configurations sampled from each trans-
formation set, to analyze their effects on the resulting representations. Each training iteration is repeated
five times with distinct seeds, and the average of their scores is computed.

To facilitate a comprehensive comparison and evaluation of our findings, as well as to gauge the extent
towhich transformations can disrupt perceptual similarities between image views, we employ the Learned
Perceptual Image Patch Similarity (LPIPS) metric(58). This metric allows us to measure the perceptual
similarity between views after undergoing transformations. Following the training process, we conduct a
K-Means clustering(35) with ten clusters, and a linear evaluation using the digit labels. In order to measure
the efficacy of the clustering, we employ the Silhouette score(41). This metric calculates a measure of how
close each sample in one cluster is to the samples in the neighboring clusters, and thus provides a way to
assess data cluster quality. Higher Silhouette scores indicate that samples are well clustered and lower
scores signify that samples are incorrectly clustered. Additionally, we use the Adjusted Mutual

Figure 3. Transformation choices influence superclass performance. We analyze mean superclass
accuracy in Cifar100 using BYOL, SimCLR, and VICReg SSRL methods, varying crop size (a) or hue
intensity (b). Our observations show consistent patterns across models, highlighting distinct effects of
transformation parameters on different superclasses. Each superclass has unique optimal parameters,

underlining the ability of transformation selection to modulate superclass performance.

e12-8 Ihab Bendidi et al.

https://doi.org/10.1017/S2633903X2400014X Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X2400014X


Information score (AMI)(47), a variation ofMutual Information that accounts for chance, providing amore
robust evaluation of the clustering. The AMI score quantifies the agreement between the assigned cluster
labels and the true labels, and is normalized against the expected Mutual Information to reduce its
dependency on the number of clusters. A higher AMI score corresponds to amore accurate clusteringwith
respect to the true labels. A more in-depth examination of the AMI score can be found in Supplementary
Materials.

As evident from the findings presented in Table 2, a progressive decline is observed in both the AMI
score and the top 1 accuracy score as we transition from the initial set of basic transformations (rotation
and crop) to the second set of transformations. This decline is accompanied by a notable increase in the
perceptual dissimilarity between transformed image views for the second set, which is to be expected
considering the highly destructive nature of the random erasing transformation in comparison to
random flips. Consequently, the resulting representation manifests a substantial reduction in the
information associated with digits, as evidenced by the conspicuous decline in the accuracy of digit
classification, which remains unmitigated despite the implementation of supervised training during
linear evaluation. Nevertheless, it is worth noting that while the AMI score experiences a more
pronounced decrease, the silhouette score exhibits a slight decline. This suggests that the clusters
formed by the representations resulting from the second set of transformations remain well-separated
and encode meaningful information beyond mere noise. As illustrated in Figure 4, the resulting clusters
from both representations demonstrate distinguishable characteristics. In particular, the clusters derived

Figure 4. The selection of transformations dictates the features learned during the training process,
thus enabling the adaptation of amodel for different tasks. A t-SNE projection of the ten-class clustering
of the MNIST dataset(29) was performed on two representations obtained from two self-supervised
trainings of the same model using MoCo V2(11), with the sole distinction being the selection of

transformations employed. One representation (a) retains information pertaining to the digit classes,
achieved through padding, color inversion, rotation, and random cropping, while the other represen-
tation (b) preserves information regarding the handwriting font weight and style, achieved through

vertical flips, rotation, random cropping.
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from the second set of transformations capture handwriting attributes such as line thickness and writing
flow, effectively forming distinct handwriting classes where the transformations maximize intra-class
variance while minimizing inter-class overlap. Additional results for alternative backbone architectures
and SSRL approaches are provided in the Supplementary Materials and consistently demonstrate
similar trends throughout the conducted experiments. These observations indicate that, beyond
enhancing the performance of specific classes, we can selectively supervise and encode desired image
features into our representations by conscientiously selecting the appropriate transformations during
training. This deliberate or unconscious choice of transformations serves to improve the overall
performance of the trained model for the given task.

3.3. The effect of transformations correlates with the subtlety of a domain

With the objective of exploring the amplitude of the effect of transformations on domains characterized by
inherently subtle dissimilarities among class images, we conduct experiments on microscopy images of
cells under two conditions (untreated vs treated with a compound). These conditions are available from
BBBC021v1(7), a dataset from the Broad Bioimage Benchmark Collection(34). The dataset consists of
cells that demonstrate heterogeneous variability in their appearance, even when in the same condition.
Notably, both the within-condition variability and the visual disparities between conditions exhibit subtle
characteristics. This context poses a more demanding challenge for SSRL, as illustrated in Figure 5. In
order to observe the effect of transformations in such a context, we preprocess these microscopy images
by detecting all cell nuclei and extracting an 196 × 196 pixels image around each of them. We focus our
study on three main compounds: Nocodazole, Cytochalasin B, and Taxol. Technical details of the dataset
used and the data preprocessing performed can be found in SupplementaryMaterial. We use a VGG13(46)

and a ResNet18 encoder architecture, with MoCov2(11), BYOL(20), and VICReg(3) as the self-supervised
approaches, and run two separate trainings of the model from scratch for each compound, each of the two
trainings with a different composition of transformations for invariance, repeated five times with distinct
seeds. We then perform a K-Means(35) clustering (k = 2) on the inferred test set embeddings and compute
the AdjustedMutual Information score (AMI)(47) with respect to the ground truth compound labels of the
compounds data subsets (untreated vs treated with Nocodazole, untreated vs treated with Cytochalasin B,
untreated vs treated with Taxol).

Figure 5. Single cells’ genetic expression and environment (a - untreated) cause inherent dissimilarities
within conditions, challenging perturbation detection and measurement. The figure (b - high concen-
tration Nocodazole-treated cells) shows four morphological responses to the same treatment, one
resembling untreated cells (b - far right). Most lower-concentration treatments produce phenotypes
visually similar to untreated cells (data not shown). Images in this dataset are centered on a cell.
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For each composition of transformations explored, we repeat the training five times with different
seeds, and compute the average and standard deviation of the AMI score (technical details of the model
training can be found in SupplementaryMaterial). Table 3 displays the AMI scores achieved by using two
different compositions of transformations in training, compared to the AMI score of clustering on
representations achieved with a pretrained model trained on ImageNet with supervision. By replacing
slight random cropping and resizing, a transformation used in most existing self-supervised approaches,
with very strong random rotations (360°) of the image, we report a significantly higher mean AMI score,
which shows that themodel using random rotations, as is commonly used in the biological domain, is able
to learn representations that better separate untreated from compound treated cells, including cells
displaying subtle differences unnoticeable by the naked eye. Inversely, random cropping was destructive
to the sought-out information in this case, as the cropped images can miss out on relevant features in the
sides of the cell. In contrast to the effects of transformations reported on the overall accuracy of datasets
with less subtle class differences, as discussed in Section 3.1, themarkedly greater impact observed on this
specific type of data implies that transformations can exert a more substantial influence on the learning of
more effective representations, which capture the full range of image variability within datasets charac-
terized by subtle distinctions between classes. By optimizing the selection of transformations for
specialized goals on such datasets, our preliminary analysis shows that competitive performance
comparable to models pretrained with supervision can be achieved, even in the context of a relatively
small-scale dataset.

Beyond clustering into two conditions, wewonderwhat combination of transformations could lead to a
proper clustering of cell phenotypes (or morphology). We explore different compositions of transform-
ations in additional experiments with the same VGG13(46) architecture andMoCov2(11) loss function.We
then apply K-Means(35) clustering (k=4) on the representations obtained from the test set. As observed in

Table 3. The results of the adjusted mutual information score(47) obtained for two sets of
transformations, with different SSRL approaches and backbones, through the mean of five training
runs for each, compared to each other and to the AMI score achieved on the representations of pre-
trained models (Resnet 101 and VGG16) trained with supervision on ImageNet, and applied on the
dataset subsets containing Nocodazole, Cytochalasin B and Taxol. The selection of the pretrained
models width is studied in Supplementary Materials. Both sets of transformations comprise random
rotations, affine transformations, color jitter, and flips, with the first set including an additional
random cropping, and resulting in a mediocre AMI score, and the second set applying random

rotations and resulting in a significantly higher score.

Transformations SSRL approach Backbone Nocodazole Cytochalasin B Taxol

First set : MoCo v2 VGG13 0.19 0.27 0.16
ResNet18 0.17 0.25 0.15

Byol VGG13 0.21 0.28 0.19
ResNet18 0.2 0.25 0.17

VICReg VGG13 0.19 0.26 0.2
ResNet18 0.16 0.25 0.21

Second set : MoCo v2 VGG13 0.37 0.45 0.38
ResNet18 0.33 0.42 0.31

Byol VGG13 0.38 0.48 0.41
ResNet18 0.35 0.44 0.34

VICReg VGG13 0.38 0.44 0.36
ResNet18 0.34 0.43 0.3

Pretrained models on ImageNet VGG16 0.34 0.55 0.36
ResNet101 0.39 0.57 0.43
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Section 3.2, different compositions of transformations can lead to very different clustering results. This is
further confirmed in the microscopy domain and well illustrated by observing the Nocodazole treatment
(Figure 6) where the composition of color jitter, flips, rotation, and affine, in addition to random crops,
results in clustering images by the number and size of cells, rather than by morphological features
(Figure 6 left). We perform a training where affine transform and random crop are replaced by a center
crop that preserves 50% of the image around the central cell. The latter resulted in four clusters where two
out of the three cell phenotypes were detected. However, it also had the effect of splitting untreated cells
into two different clusters (Figure 6 right). This aligns with the findings presented in Section 3.2, as the
diverse clustering outcomes mirror the distinct transformation approaches taken to encode the intrinsic
information embedded within the images of this dataset. The presence of subtle variations within this
dataset underscores the heightened sensitivity to the selection of transformations, which amplifies the
multitude of potential representations accordingly. Altogether, engineering a combination of transform-
ations in this context represents a somewhat weak supervision that can become a silent but strong bias or,
alternatively, can be leveraged as a powerful tool to achieve a desirable result on a specialized task.

3.4. A delineation of desired features enhances task-specific representations.

Upon examining the cell distributions in Figure 5, which contrasts untreated and Nocodazole-treated
cells, we observe distinct cellular responses. These observations suggest that accurately distinguishing
cellular responses requires analysis of both intra- and intercellular changes. Accordingly, our analysis
targets the morphological characteristics of cellular components and, to a lesser extent, the spatial
relationships between neighboring cells, this being our definition of the sought-out phenotypes. To test
our hypothesis, we reconduct training experiments using three different compounds: Nocodazole, Taxol,
and Cytochalasin B.

Figure 6. K-Means (k = 4) clustering on Nocodazole data subset (see Supplementary Material), using
VGG13 and MoCov2 with different augmentations, aims to categorize cells’ morphological responses.
Images nearest to each cluster’s centroid are based on Euclidean distance in representations. Clusters in
(a), formed with color jitter, flips, rotation, affine transformation, and random cropping, focus on cell
quantity per image.Clusters in (b), from rotations, center cropping, color jitter, and flips, consider specific

phenotypes. Transformation details are in Supplementary Material.
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To preserve and emphasize these identified features during training, we carefully select a set of image
transformations. These include Affine transformations, color jitter, random rotations, and center cropping
aimed at focusing on the central cell, facilitated by our preprocessing steps. This selection of transform-
ations allows the model to focus on and learn critical morphology-related features of the cells. To further
highlight intercellular relationships, we utilize random cropping, which adjusts the focus beyond the
central cell.

However, it is crucial to note that certain combinations of transformations, such as random cropping
and center cropping, can conflict, potentially leading to the loss of important features. This conflict
underscores the complexity of selecting appropriate transformations that both capture and preserve
essential cellular information.

Consequently, we define two distinct transformation compositions, each corresponding to the com-
positions depicted in Figure 6, and keep both separated in two independent SSRL losses of the same SSRL
approach. Subsequently, we train amodel tominimize the weighted sum of these two losses on each of the
compound data subsets. Following training, we perform K-Means clustering (k = 4) on the resulting
representations for the Nocodazole and Taxol subsets, and K-Means clustering (k = 2) on the resulting
representation for the Cytochalasin B subset. Further details on the parameters of the weighted sum are
available in Supplementary Materials.

In the subsequent results in Figure 7 we can observe that we successfully separate all cell phenotypes/
morphological alterations obtained after each of the three compound treatments, from each other and from
untreated cells, which validates qualitatively our hypothesis of the features of interest. By performing
another K-Means (k = 2) on the same representations, we also report AMI scores to analyze the separation
level of the compound-treated cells from untreated cells in the representation space. The resulting scores
in Table 4 can be considered quite high in this context where treated cells can look like untreated cells,
vastly surpassing previous trainings with separate compositions of transformations in Table 3, as well as
surpassing the performance of pretrained models even with a small scale dataset.

For amore comprehensive analysis of the results in Table 4,we conduct amore systematic examination
of the interplay and impact of each of the two compositions of transformations on the combined
performance of the weighted sum of losses, by modifying each combination before incorporating it with
the other transformation during the Nocodazole training. The results presented in Figure 8 reveal
substantial variations in the scores and, consequently, the resulting feature representations among
different parts of the transformation combinations. Particularly noteworthy is the enhancement in

Figure 7. The clustering results were achieved through the utilization of two MoCo v2 losses(11) with a
VGG13 backbone, each with a distinct set of transformations, on the Nocodazole (a), Cytochalasin B
(b), and Taxol (c) image treatment subsets. One loss employs color jitter, flips, rotation, affine trans-

formation, and random cropping, while the other uses rotations, center cropping, color jitter, and flips.
The clustering results demonstrate that the phenotypes of each subset are clearly separated and

represented in each cluster, as evidenced by the images closest to its centroïd.
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performance when gradually incorporating transformations into the second set, which focuses on
rotation-invariant features and the cellular center, while keeping the first set fixed. In contrast, the reverse
process of gradually adding transformations to the first set, while keeping the second set constant, does not
yield iterative improvements. This observation suggests that our defined features for this task accurately

Table 4. AMI score comparison in K-Means (k = 2) clusterings of models trained with two SSRL
losses versus an ImageNet pre-trained encoder on Nocodazole, Cytochalasin B, and Taxol treated cell
subsets. One SSRL loss uses color jitter, flips, rotation, affine transformation, and random cropping;
the other, rotations, center cropping, color jitter, and flips. Careful selection of transformation sets,

tailored to desired features, enhances clustering performance in self-supervised training over
supervised pre-trained models, even in small datasets.

Transformations
SSRL
approach Backbone Nocodazole

Cytochalasin
B Taxol

Weighted combination of sets MoCo v2 VGG13 0.51 0.66 0.52
ResNet18 0.46 0.63 0.47

Byol VGG13 0.51 0.64 0.54
ResNet18 0.47 0.61 0.48

VICReg VGG13 0.55 0.67 0.51
ResNet18 0.5 0.63 0.45

Pretrained models on ImageNet VGG16 0.34 0.55 0.36
ResNet101 0.39 0.57 0.43

Figure 8. Ablation study on Adjusted Mutual Information (AMI) scores with progressive transform-
ation integration, using MoCo v2 SSRL and VGG13. The first set of transformations, especially random
rotations, notably improves the score and representation. Including center cropping, focusing on cellular

center, further enhances results.
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capture the significance of the cellular center, which remains invariant under rotation transformations or
center cropping, in effectively separating treated cells from untreated ones. Furthermore, it demonstrates
that the surrounding cells also play a role, albeit to a lesser extent, in achieving optimal representation for
the task. This signifies that moving beyond rotations and center cropping, to different transformations that
leverage the subtle information residing in inter-cellular interactions further improves representations for
biologically relevant tasks. These findings underscore the potential of more intricate transformation
manipulations, beyond single parameter modifications, to yield superior representations that significantly
enhance task performance. However, identifying the optimal combination necessitates a rigorous
definition of the sought-after features, which, although label-free, provides a form of weak supervision.

4. Conclusion

In this work, we delve into the impact of transformation choices on convolution-based approaches,
specifically focusing on small to medium-scale datasets. Our experiments demonstrate that the selection,
magnitude, and combination of transformations significantly influence the efficacy of self-supervised
representations. Notably, the choice of transformations not only introduces inter-class bias but also offers
a powerful tool for controlling and balancing class performances. Our main conclusion advocates for
defining transformation sets based on the specific features sought in each task, such as the relationship of
the cell to surrounding cells, rather than relying solely on predefined choices like rotations and center
crops. Moreover, by carefully selecting and defining transformations to optimize the encoding of specific
features, we achieve improvements in task-specific performance. Importantly, our findings emphasize the
amplified consequences of transformation choices in Microscopy Imaging, a domain characterized by
fuzzy or less visually distinguishable class differences, surpassing the performance of pretrained models
on small-scale datasets. Altogether, some of the results can be understood somewhat intuitively. If one
erases color from a car dataset, a deep network might not find enough correlated information to be able to
classify cars on the basis of their original color. Thus the question: what is a good representation? In
scenarios where massive datasets are not readily available, the correct answer is that it depends on the
desired task. Although the initial goal of SSRLwas to circumvent such circumstances, our findings in this
particular context reveal the efficacy that can be achieved by judiciously selecting an appropriate
combination of transformations, informed by a profound comprehension of the most salient features.

This study acknowledges several limitations, such as the utilization of small to medium-scale datasets
and convolution-based approaches. Future research should consider examining larger datasets and
exploring the potential benefits of combining them with transformers. Furthermore, expanding the
analysis to include downstream task performance could provide a more comprehensive understanding
of the impact of transformations. A promising perspective lies in the potential use of informed trans-
formation choices to fine-tune foundational models for specific tasks, even in the absence of labeled data.
Overall, this study contributes valuable insights and suggests promising avenues for future investigations
in the field of transformation learning within deep learning frameworks.

Our research underscores the importance of thoughtful transformation selection in self-supervised
learning, encouraging amore discerning approach to hyperparameter choice. Thismay inspire a shift from
automatic or blind selection towards a more principled understanding of augmentations, potentially
leading to more robust and nuanced model performances across diverse domains. We see no significant
negative ethical implications at this time.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S2633903X2400014X.

Data availability statement. All datasets used are freely available to use: ImageNet (https://www.image-net.org), Cifar (https://
www.cs.toronto.edu/kriz/cifar.html), MNIST (http://yann.lecun.com/exdb/mnist/), BBBC021 (https://bbbc.broadinstitute.org/
BBBC021).

Acknowledgments. This work was granted access to the HPC resources of IDRIS under the allocation 2020- AD011011495made
by GENCI.

Biological Imaging e12-15

https://doi.org/10.1017/S2633903X2400014X Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X2400014X
https://doi.org/10.1017/S2633903X2400014X
https://www.image-net.org
https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://bbbc.broadinstitute.org/BBBC021
https://bbbc.broadinstitute.org/BBBC021
https://doi.org/10.1017/S2633903X2400014X


Author contribution. I.B;A.L;A.G. Proposed the study. I.B;A.B. Ran the experiments. E.C;G.B. Provided scientific insights. I.B;
A.B;E.C;A.G. Wrote the original draft. All authors approved the final submitted draft.

Funding statement. This research was supported by ANR–10–LABX–54 MEMOLIFE, ANR–10 IDEX 0001 –02 PSL*
Université Paris and the Region Ile de France through the PrPHD program.

Competing interest. The authors declare no competing interests exist.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References
1. Abnar, S., Dehghani, M., Neyshabur, B., and Sedghi, H. (2022). Exploring the limits of large scale pre-training. In ICLR.
2. Balestriero, R., Bottou, L., and LeCun, Y. (2022). The effects of regularization and data augmentation are class dependent. In

NeurIPS.
3. Bardes, A., Ponce, J., and LeCun, Y. (2022a). Vicreg: Variance-invariance-covariance regularization for self-supervised

learning. In ICLR.
4. Bardes, A., Ponce, J., and LeCun, Y. (2022b). Vicregl: Self-supervised-learning of local visual features. In NeurIPS.
5. Bourou, A., Daupin, K., Dubreuil, V., Thonel, A. D., Lallemand-Mezger, V., and Genovesio, A. (2023). Unpaired image-to-

image translation with limited data to reveal subtle phenotypes. In ISBI.
6. Bourriez, N., Bendidi, I., Cohen, E., Watkinson, G., Sanchez, M., Bollot, G., and Genovesio, A. (2023). Chada-vit: Channel

adaptive attention for joint representation learning of heterogeneous microscopy images.
7. Caie, P. D., Walls, R. E., Ingleston-Orme, A., Daya, S., Houslay, T., Eagle, R., Roberts, M. E., and Carragher, N. O. (2010).

High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells. Molecular Cancer Thera-
peutics, 9:1913–1926.

8. Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In
ECCV.

9. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A. (2021). Emerging properties in self-
supervised vision transformers. In ICCV.

10. Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for contrastive learning of visual
representations. In ICML.

11. Chen, X., Fan, H., Girshick, R., and He, K. (2020b). Improved baselines with momentum contrastive learning.
12. Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In CVPR.
13. Chen, X., Xie, S., and He, K. (2021). An empirical study of training self-supervised vision transformers. In ICCV.
14. Coates, A., Ng, A., and Lee, H. (2011). An analysis of single-layer networks in unsupervised feature learning. In The

International Conference on Artificial Intelligence and Statistics.
15. Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment: Learning augmentation policies from

data. In CVPR.
16. Deng, J., Dong,W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In

2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee.
17. Doron, M., Moutakanni, T., Chen, Z. S., Moshkov, N., Caron, M., Touvron, H., Bojanowski, P., Pernice, W.M., and Caicedo,

J. C. (2023). Unbiased single-cell morphology with self-supervised vision transformers. bioRxiv.
18. Ermolov, A., Siarohin, A., Sangineto, E., and Sebe, N. (2021).Whitening for self-supervised representation learning. In ICML.
19. Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A. (2020). Shortcut

learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673.
20. Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi

Azar, M., Piot, B., kavukcuoglu, k., Munos, R., and Valko, M. (2020). Bootstrap your own latent - a new approach to self-
supervised learning. In NeurIPS.

21. Huang, W., Yi, M., and Zhao, X. (2021). Towards the generalization of contrastive self-supervised learning.
22. Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., and Larlus, D. (2020). Hard negative mixing for contrastive

learning. In NeurIPS.
23. Kraus, O., Kenyon-Dean, K., Saberian, S., Fallah,M.,McLean, P., Leung, J., Sharma, V., Khan, A., Balakrishnan, J., Celik, S.,

Beaini, D., Sypetkowski, M., Cheng, C. V.,Morse, K.,Makes,M.,Mabey, B., and Earnshaw, B. (2024).Masked autoencoders
for microscopy are scalable learners of cellular biology.

24. Kraus, O., Kenyon-Dean, K., Saberian, S., Fallah,M.,McLean, P., Leung, J., Sharma, V., Khan, A., Balakrishnan, J., Celik, S.,
Sypetkowski, M., Cheng, C. V., Morse, K., Makes, M., Mabey, B., and Earnshaw, B. (2023). Masked autoencoders are
scalable learners of cellular morphology.

25. Krentzel, D., Shorte, S. L., and Zimmer, C. (2023). Deep learning in image-based phenotypic drug discovery. Trends in Cell
Biology, 33(7):538–554.

26. Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

e12-16 Ihab Bendidi et al.

https://doi.org/10.1017/S2633903X2400014X Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X2400014X


27. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In
NeurIPS.

28. Lamiable, A., Champetier, T., Leonardi, F., Cohen, E., Sommer, P., Hardy, D., Argy, N., Massougbodji, A., Del Nery, E.,
Cottrell, G., Kwon, Y.-J., and Genovesio, A. (2022). Revealing invisible cell phenotypes with conditional generative
modeling.

29. LeCun, Y., Cortes, C., and Burges, C. J. (1998). The mnist database of handwritten digits.
30. Lee, D. and Aune, E. (2021). Computer vision self-supervised learning methods on time series.
31. Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N. M., and Yang, Y. (2020). Dada: Differentiable automatic data

augmentation. In ECCV.
32. Li, Z., Chen, Y., LeCun, Y., and Sommer, F. T. (2022). Neural manifold clustering and embedding.
33. Liu, A., Huang, Z., Huang, Z., and Wang, N. (2021). Direct differentiable augmentation search. In ICCV.
34. Ljosa, V., Sokolnicki, K. L., and Carpenter, A. E. (2012). Annotated high-throughput microscopy image sets for validation.

Nature Methods, 9:637–637.
35. Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information Theory, 28:129–137.
36. Masud, U., Cohen, E., Bendidi, I., Bollot, G., andGenovesio, A. (2022). Comparison of semi-supervised learningmethods for

high content screening quality control. In ECCV 2022 BIM Workshop.
37. Pal, D. K., Nallamothu, S., and Savvides,M. (2020). Towards a hypothesis on visual transformation based self-supervision. In

British Machine Vision Conference.
38. Patrick, M., Asano, Y. M., Kuznetsova, P., Fong, R., Henriques, J. F., Zweig, G., and Vedaldi, A. (2021). On compositions of

transformations in contrastive self-supervised learning. In ICCV.
39. Perakis, A., Gorji, A., Jain, S., Chaitanya, K., Rizza, S., and Konukoglu, E. (2021). Contrastive learning of single-cell

phenotypic representations for treatment classification. In Machine Learning in Medical Imaging, pages 565–575.
40. Reed, C. J., Metzger, S., Srinivas, A., Darrell, T., and Keutzer, K. (2021). Selfaugment: Automatic augmentation policies for

self-supervised learning. In CVPR.
41. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of

Computational and Applied Mathematics, 20:53–65.
42. Ruppli, C., Gori, P., Ardon, R., and Bloch, I. (2022). Optimizing transformations for contrastive learning in a differentiable

framework. In MICCAI MILLanD workshop.
43. Saunshi, N., Ash, J. T., Goel, S.,Misra, D., Zhang, C., Arora, S., Kakade, S.M., andKrishnamurthy, A. (2022). Understanding

contrastive learning requires incorporating inductive biases. CoRR.
44. Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., and Khandeparkar, H. (2019). A theoretical analysis of contrastive

unsupervised representation learning. In ICML.
45. Shah, A., Roy, A., Shah, K., Mishra, S. K., Jacobs, D., Cherian, A., and Chellappa, R. (2023). Halp: Hallucinating latent

positives for skeleton-based self-supervised learning of actions. In CVPR.
46. Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR.
47. Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties,

normalization and correction for chance. Journal of Machine Learning Research, 11:2837–2854.
48. von Kügelgen, J., Sharma, Y., Gresele, L., Brendel,W., Schölkopf, B., Besserve, M., and Locatello, F. (2021). Self-supervised

learning with data augmentations provably isolates content from style. In NeurIPS.
49. Wagner, D., Ferreira, F., Stoll, D., Schirrmeister, R. T.,Müller, S., andHutter, F. (2022). On the importance of hyperparameters

and data augmentation for self-supervised learning. CoRR.
50. Wang, T. and Isola, P. (2020). Understanding contrastive representation learning through alignment and uniformity on the

hypersphere. In ICML.
51. Wang, X. and Qi, G.-J. (2021). Contrastive learning with stronger augmentations.
52. Wen, Z. and Li, Y. (2021). Toward understanding the feature learning process of self-supervised contrastive learning. In ICML.
53. Xiao, T., Wang, X., Efros, A. A., and Darrell, T. (2021). What should not be contrastive in contrastive learning. In ICLR.
54. Yang, S., Das, D., Chang, S., Yun, S., and Porikli, F. (2021). Distribution estimation to automate transformation policies for

self-supervision. In NeurIPS Workshop: Self-Supervised Learning - Theory and Practice.
55. Yeh, C.-H., Hong, C.-Y., Hsu, Y.-C., Liu, T.-L., Chen, Y., and LeCun, Y. (2022). Decoupled contrastive learning. In ECCV.
56. Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-supervised learning via redundancy

reduction. In ICML.
57. Zhang, J. andMa,K. (2022). Rethinking the augmentationmodule in contrastive learning: Learning hierarchical augmentation

invariance with expanded views. CVPR.
58. Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreasonable effectiveness of deep features as a

perceptual metric. In CVPR.

Cite this article: Bendidi I, Bardes A, Cohen E, Lamiable A, Bollot G & Genovesio A (2024). Exploring self-supervised learning
biases for microscopy image representation. Biological Imaging, 4: e12. doi:https://doi.org/10.1017/S2633903X2400014X

Biological Imaging e12-17

https://doi.org/10.1017/S2633903X2400014X Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X2400014X
https://doi.org/10.1017/S2633903X2400014X

	Exploring self-supervised learning biases for microscopy image representation
	Impact Statement
	Introduction
	Related work
	Self-supervised representation learning (SSRL)
	Impact of image transformations on SSRL
	Learning transformations for SSRL
	Performance of SSRL on various domains and tasks

	The choice of transformations is a subtle layer of weak supervision
	Transformation choices induce inter-class bias
	Transformation choice impacts clustering and representation information
	The effect of transformations correlates with the subtlety of a domain
	A delineation of desired features enhances task-specific representations

	Conclusion
	Supplementary material
	Data availability statement
	Acknowledgments
	Author contribution
	Funding statement
	Competing interest
	Ethical standard
	References


