

Weighted Norm Inequalities for a Maximal Operator in Some Subspace of Amalgams

Justin Feuto, Ibrahim Fofana, and Konin Koua

Abstract. We give weighted norm inequalities for the maximal fractional operator $\mathcal{M}_{q,\beta}$ of Hardy-Littlewood and the fractional integral I_{γ} . These inequalities are established between $(L^q, L^p)^{\alpha}(X, d, \mu)$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^q, L^p)(X, d, \mu)$ and in the setting of space of homogeneous type (X, d, μ) . The conditions on the weights are stated in terms of Orlicz norm.

Introduction

Consider the fractional maximal operator $\mathfrak{m}_{q,\beta}$ ($1 \le q \le \beta \le \infty$) defined on \mathbb{R}^n by

$$\mathfrak{m}_{q,\beta}f(x) = \sup_{Q \in \Omega: x \in Q} |Q|^{\frac{1}{\beta} - \frac{1}{q}} ||f\chi_Q||_q,$$

where Q is the set of all cubes Q of \mathbb{R}^n with edges parallel to the coordinate axes, |E| stands for the Lebesgue measure of the subset E of \mathbb{R}^n and $\|\cdot\|_q$ denotes the usual norm on the Lebesgue space $L^q(\mathbb{R}^n,dx)$. Weighted norm inequalities for $\mathfrak{m}_{1,\beta}$ have been extensively studied in the setting of Lebesgue, weak-Lebesgue and Morrey spaces (see [3, 14, 15] and the references therein). The following result is contained in [14].

Theorem 1.1 Assume that $1 \le q < \beta \le \infty$, $\frac{1}{t} = \frac{1}{q} - \frac{1}{\beta}$ and ν is a weight function satisfying

$$\sup_{Q\in\mathfrak{Q}}|Q|^{\frac{1}{\beta}-1}\|\nu\chi_{\scriptscriptstyle{Q}}\|_{t}\|\nu^{-1}\chi_{\scriptscriptstyle{Q}}\|_{q'}<\infty.\quad \left(\tfrac{1}{q'}+\tfrac{1}{q}=1\right).$$

Then there exists a constant C such that for any Lebesgue measurable function f

$$\left(\int_{\{x\in\mathbb{R}^n:\mathfrak{m}_{1,\beta}f(x)>\lambda\}}\nu(y)^tdy\right)^{1/t}\leq C\lambda^{-1}\|f\nu\|_q\quad\lambda>0.$$

The spaces $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ $(1 \le q \le \alpha \le p \le \infty)$ have been defined in [7] as

- $I_k^r = \prod_{i=1}^n [k_i r, (k_i + 1)r), \quad k = (k_i)_{1 \le i \le n} \in \mathbb{Z}^n, r > 0,$ $J_x^r = \prod_{i=1}^n (x_i \frac{r}{2}, x_i + \frac{r}{2}), \quad x = (x_i)_{1 \le i \le n} \in \mathbb{R}^n, r > 0,$

Received by the editors February 5, 2007; revised January 16, 2009.

Published electronically December 4, 2009.

AMS subject classification: 42B35, 42B20, 42B25.

Keywords: fractional maximal operator, fractional integral, space of homogeneous type.

• a Lebesgue measurable function f belongs to $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ if $||f||_{q,p,\alpha} < \infty$, where

$$\begin{split} \|f\|_{q,p,\alpha} &= \sup_{r>0} r^{n(\frac{1}{\alpha}-\frac{1}{q})} {}_r \|f\|_{q,p}, \\ r\|f\|_{q,p} &= \begin{cases} \left[\sum_{k\in\mathbb{Z}^n} \left(\|f\chi_{r_k^r}\|_q\right)^p\right]^{\frac{1}{p}} & \text{if } p<\infty, \\ \sup_{x\in\mathbb{R}^n} \|f\chi_{f_k^r}\|_q & \text{if } p=\infty. \end{cases} \end{split}$$

The $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ have been introduced in connection with Fourier multiplier problems, but they are also linked to $L^q - L^p$ multiplier problems. We refer the readers to [11], where spaces of Radon measures containing $(L^1, \ell^p)^{\alpha}(\mathbb{R}^n)$ are considered. Notice that these spaces are subspaces of amalgam spaces introduced by Wiener and studied by many authors (see [9] and the references therein).

It has been proved in [6] that given $1 \leq q \leq \alpha < \infty$, $\{(L^q, \ell^p)^\alpha(\mathbb{R}^n)\}_{p>\alpha}$ is a monotone increasing family of Banach spaces, $(L^q, \ell^\alpha)^\alpha(\mathbb{R}^n) = L^\alpha(\mathbb{R}^n)$ and $(L^q, \ell^{\infty})^{\alpha}(\mathbb{R}^n)$ is clearly the classical Morrey space denoted by $L^{q,n(1-\frac{q}{\alpha})}(\mathbb{R}^n)$ in [3]. Moreover, if $q < \alpha < p$, then the weak- $L^{\alpha}(\mathbb{R}^n)$ space is embedded in $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$. Due to this remarkable link between the spaces $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ and the Lebesgue ones, it is tempting to look for an extension of Theorem 1.1 to the setting of $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ space. The following result is contained in [8].

Theorem 1.2 Assume

- $\begin{array}{ll} \bullet & 1 \leq q \leq \alpha \leq p \text{ and } 0 < \frac{1}{s} = \frac{1}{\alpha} \frac{1}{\beta}, \\ \bullet & q \leq q_1 \leq \alpha_1 \leq p_1 \text{ and } 0 < \frac{1}{t} = \frac{1}{q_1} \frac{1}{\beta} \leq \frac{1}{p_1}, \end{array}$
- v is a weight function satisfying

$$\sup_{Q \in \Omega} |Q|^{\frac{1}{\beta} - \frac{1}{q}} \|v\chi_Q\|_t \|v^{-1}\chi_Q\|_{1/(\frac{1}{q} - \frac{1}{q_1})} < \infty.$$

Then there exists a real constant C > 0 such that

$$\left(\int_{\{x\in\mathbb{R}^n:\mathfrak{m}_{1,\beta}f(x)>\lambda\}}\nu(y)^t\,dy\right)^{1/t}\leq C\lambda^{-1}\|f\nu\|_{q_1,p_1,\alpha_1}(\lambda^{-1}\|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_1}-\frac{1}{\alpha_1})}$$

for any real $\lambda > 0$ and Lebesgue measurable function f on \mathbb{R}^n .

It turns out that the $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$ setting is particularly well adapted for the search of controls on Lebesgue norm of fractional maximal functions $\mathfrak{m}_{a,\beta}f$. Actually we have the following result whose first part is a consequence of Theorem 1.2 (see [8]).

Theorem 1.3 Assume that
$$1 \le q \le \alpha \le \beta$$
 and $\frac{1}{s} = \frac{1}{\alpha} - \frac{1}{\beta}$.

(i) If $\alpha \leq p$ and $\frac{1}{q} - \frac{1}{\beta} \leq \frac{1}{p}$, then there is a real constant C such that for all Lebesgue measurable functions f on \mathbb{R}^n ,

$$\|\mathfrak{m}_{q,\beta}f\|_{s,\infty}^* \equiv \sup_{\lambda>0} \lambda |\{x \in \mathbb{R}^n : \mathfrak{m}_{q,\beta}f(x) > \lambda\}|^{1/s} \le C\|f\|_{q,p,\alpha}.$$

(ii) If $1 \le u \le s \le v$, then there is a real constant C such that for any Lebesgue measurable function f on \mathbb{R}^n ,

(1.1)
$$||f||_{q,p,\alpha} \le C ||\mathfrak{m}_{q,\beta}f||_{u,v,s}.$$

It follows from inequality (1.1) and the embedding of the weak- $L^s(\mathbb{R}^n)$ space into $(L^u, \ell^v)^s(\mathbb{R}^n)$ for u < s < v that f has its fractional maximal function $\mathfrak{m}_{q,\beta}f$ in a weak Lebesgue space only if it belongs to some $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$.

Let $X = (X, d, \mu)$ be a space of homogeneous type which is separable and satisfies a reverse doubling condition (see (2.2) in Section 2 for a definition).

For $1 \le q \le \beta \le \infty$ we set, for any μ -measurable function f on X,

$$\mathcal{M}_{q,\beta}f(x) = \sup_{B} \mu(B)^{\frac{1}{\beta} - \frac{1}{q}} \|f\chi_B\|_q \quad x \in X,$$

where the supremum is taken over all balls B in X containing x and $\|\cdot\|_q$ denotes the norm on the Lebesgue space $L^q = L^q(X,d,\mu)$. As we can see, $\mathcal{M}_{q,\beta}$ is clearly a generalization of $\mathfrak{m}_{q,\beta}$. In the last decades, much work has been dedicated to obtaining Morrey and Lebesgue norm inequalities for $\mathcal{M}_{q,\beta}$ and other operators of fractional maximal type on spaces of homogeneous type. We refer the reader to [1,2,4,16,17,19,21] and the references therein.

As in the Euclidean case, Lebesgue and Morrey spaces on homogeneous type spaces may be viewed as the end points of a chain of Banach function spaces $(L^q, L^p)^{\alpha}(X)$ defined as follows: a μ -measurable function f represents an element of $(L^q, L^p)^{\alpha}(X)$ if

$$||f||_{q,p,\alpha} = \sup_{r>0}, \quad {}_r||f||_{q,p,\alpha} < \infty,$$

where

$${}_{r}\|f\|_{q,p,\alpha} = \begin{cases} \left[\int_{X} \left(\mu(B_{(y,r)})^{\frac{1}{\alpha} - \frac{1}{p} - \frac{1}{q}} \|f\chi_{B_{(y,r)}}\|_{q} \right)^{p} d\mu(y) \right]^{\frac{1}{p}} & \text{if } p < \infty, \\ \sup_{y \in X} \exp(B_{(y,r)})^{\frac{1}{\alpha} - \frac{1}{q}} \|f\chi_{B_{(y,r)}}\|_{q} & \text{if } p = \infty. \end{cases}$$

The $(L^q, L^p)^{\alpha}(X)$ are generalizations of the $(L^q, \ell^p)^{\alpha}(\mathbb{R}^n)$, and the main properties extend to them (see [5]).

In this paper we are interested in continuity properties of $\mathcal{M}_{q,\beta}$ and the fractional integral operator I_{γ} (as defined by relation (1.3)) involving the spaces $(L^{q}, L^{p})^{\alpha}(X)$ and weights fulfilling condition of \mathcal{A}_{∞} type stated in terms of Orlicz norm as in [16].

The main result is Theorem 2.3, which is an extension of Theorem 1.2 and contains, as a special case, the following result.

Theorem 1.4 Assume

• there is a positive non decreasing function φ defined on $[0, \infty)$ and positive constants α and β such that

$$\mathfrak{a}\varphi(r) \le \mu(B_{(x,r)}) \le \mathfrak{b}\varphi(r) \quad x \in X \, 0 < r,$$

• q, α, p , and β are elements of $[1, \infty]$ such that $q \le \alpha \le p$ and $0 < \frac{1}{s} = \frac{1}{\alpha} - \frac{1}{\beta} \le \frac{1}{q} - \frac{1}{\beta} \le \frac{1}{p}$.

Then there is a real constant C such that, for any μ -measurable function f on X we have

$$\|\mathfrak{M}_{q,\beta}f\|_{s,\infty}^* \equiv \sup_{\theta>0} \theta \mu(\{x \in X : \mathfrak{M}_{q,\beta}f(x) > \theta\})^{1/s} \le C\|f\|_{q,p,\alpha}.$$

Note that condition (1.2) is satisfied in the following cases:

- *X* is an Ahlfors *n* regular metric space, *i.e.*, there is a positive integer *n* and a positive constant *C* which is independent of the main parameters such that $C^{-1}r^n \le \mu(B_{(x,r)}) \le Cr^n$,
- X is a Lie group with polynomial growth equipped with a left Haar measure μ and the Carnot–Carathéodory metric d associated with a Hörmander system of left invariant vector fields (see [10, 13, 20]).

Let us assume the hypotheses of Theorem 1.4 and that $q < \alpha < p$. Theorems 2.11 and 2.12 of [5] assert that weak- $L^{\alpha}(X)$ is strictly included in $(L^q, L^p)^{\alpha}(X)$. So we may find an element f_0 in $(L^q, L^p)^{\alpha}(X)$ which is not in weak- $L^{\alpha}(X)$ space. Theorem 1.4 asserts that $\mathfrak{M}_{q,\beta}f_0$ belongs to the weak- L^s space, while Theorem 2-7 of [16] gives no control on it. This remark shows that, even if $\mathfrak{M}_{q,\beta}$ is a particular case of the maximal operator \mathfrak{M}_{ψ} under consideration in Theorem 2-7 of [16], the range of application of this last theorem is different from that of our Theorem 2.3.

It is worth noting that $\mathcal{M}_{q,\beta}$ satisfies a norm inequality similar to (1.1) (see Theorem 2.4). This implies that if the maximal function $\mathcal{M}_{q,\beta}f$ belongs to some weak-Lebesgue space, then f is in some $(L^q, L^p)^{\alpha}(X)$.

Let us consider the following fractional operator I_{γ} (0 < γ < 1) defined by

(1.3)
$$I_{\gamma}f(x) = \int_{X} \frac{f(y)d\mu(y)}{\mu(B(x,d(x,y)))^{1-\gamma}}.$$

This operator is clearly an extension of the classical Riesz potential operator in \mathbb{R}^n . As in the Euclidean case, I_{γ} is controlled in norm by $\mathcal{M}_{1,\beta}$ where $\beta=\frac{1}{\gamma}$ (see Theorem 3.1). Thus from the weight norm inequality on $\mathcal{M}_{1,\beta}$ stated in Theorem 2.3, we may deduce a similar one on I_{γ} .

The remainer of the paper is organized as follows: Section 2 is devoted to continuity properties of $\mathcal{M}_{q,\beta}$ and also contains background elements on homogeneous spaces, Young functions, and $(L^q, L^p)^{\alpha}(X)$ spaces. In Section 3 we extend the results on $\mathcal{M}_{q,\beta}$ to I_{γ} . Throughout the paper, we will denote by C a positive constant which is independent of the main parameters, but may vary from line to line. Constants with subscripts such as C_u , do not change in different occurrences.

2 Continuity of the Fractional Maximal Operators $\mathcal{M}_{q,\beta}$

Let $X=(X,d,\mu)$ be a space of homogeneous type: (X,d) is a quasi-metric space endowed with a non negative Borel measure μ satisfying the following doubling condition

(2.1)
$$\mu(B_{(x,2r)}) \le C\mu(B_{(x,r)}) < \infty, \quad x \in X, r > 0,$$

where $B_{(x,r)} = \{ y \in X : d(x,y) < r \}$ is the ball of center x and radius r in X. If B is an arbitrary ball, then we denote by x_B its center and r(B) its radius, and for any real number $\delta > 0$, δB denotes the ball centered at x_B with radius $\delta r(B)$.

Since *d* is a quasimetric, there exists a constant $\kappa \geq 1$ such that

$$d(x, z) \le \kappa(d(x, y) + d(y, z)), \quad x, y, z \in X.$$

If C'_{μ} is the smallest constant for which (2.1) holds, then $D_{\mu} = \log_2 C'_{\mu}$ is called the doubling order of μ . It is known [2,21] that for all balls $B_2 \subset B_1$ of (X,d)

$$\frac{\mu(B_1)}{\mu(B_2)} \le C_{\mu} \left(\frac{r(B_1)}{r(B_2)}\right)^{D_{\mu}},$$

where $C_{\mu} = C'_{\mu}(2\kappa)^{D_{\mu}}$. A quasimetric δ on X is said to be equivalent to d if there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$C_1d(x, y) \le \delta(x, y) \le C_2d(x, y), \quad x, y \in X.$$

We observe that topologies defined by equivalent quasimetrics on X are equivalent. It is shown [12] that there is a quasimetric δ equivalent to d for which balls are open sets

In the sequel we assume that $X=(X,d,\mu)$ is a fixed space of homogeneous type and

- all balls $B_{(x,r)} = \{ y \in X : d(x,y) < r \}$ are open subsets of X endowed with the d-topology and (X,d) is separable,
- $\mu(X) = \infty$,
- $B_{(x,R)} \setminus B_{(x,r)} \neq \emptyset$, $0 < r < R < \infty$, and $x \in X$, so that as proved in [22], there exist two constants $\tilde{C}_{\mu} > 0$ and $\delta_{\mu} > 0$ such that

(2.2)
$$\frac{\mu(B_1)}{\mu(B_2)} \ge \tilde{C}_{\mu} \left(\frac{r(B_1)}{r(B_2)}\right)^{\delta_{\mu}} \text{ for all balls } B_2 \subset B_1 \text{ of } X.$$

Now we recall some concepts necessary to express the conditions we impose on our weights.

Definition 2.1 Let Φ be a non negative function on $[0, \infty)$.

- (i) Φ is a Young function if it is continuous, non decreasing, convex and satisfies the conditions $\Phi(0) = 0$ and $\lim_{x \to \infty} \Phi(x) = \infty$.
- (ii) Assume that Φ is a Young function:
 - (a) It is doubling if there is C > 0 such that $\Phi(2t) \le C\Phi(t)$ for all $t \ge 0$.
 - (b) It satisfies the B_p condition $(1 \le p < \infty)$ if there is a number $\tilde{a} > 0$ such that

$$\int_{\tilde{a}}^{\infty} \frac{\Phi(t)}{t^p} \frac{dt}{t} < \infty.$$

(c) Its conjugate Φ^* , is defined by $\Phi^*(u) = \sup\{tu - \Phi(t) : t \in \mathbb{R}_+\}$.

(d) For any μ -measurable function f on X,

$$||f||_{\Phi,B} = \inf\left\{\lambda > 0: \frac{1}{\mu(B)} \int_B \Phi(\lambda^{-1}|f|) d\mu \le 1\right\}$$

for any ball B in X, and $M_{\Phi}f(x) = \sup_{\text{ball } B \ni x} ||f||_{\Phi,B}$.

It is proved in [17, Theorem 5.1] that a doubling Young function Φ belongs to the class B_p with 1 if and only if there exists a constant <math>C > 0 such that

(2.3)
$$\int_X (M_{\Phi} f(x))^p d\mu(x) \le C \int_X f(x)^p d\mu(x)$$

for all non negative f. We also have the local version of the generalized Hölder inequality

$$\frac{1}{\mu(B)} \int_{B} |fg| d\mu \le ||f||_{\Phi,B} ||g||_{\Phi^*,B},$$

which is valid for all measurable functions f and g, and for all balls B. For more information about Young function, see [18].

We will need the following covering lemma stated and proved in [2].

Lemma 2.2 Let \mathfrak{F} be a family of balls with bounded radii. Then there exists a countable subfamily of disjoint balls $\{B_{(x_i,r_i)}, i \in J\}$ such that each ball in \mathfrak{F} is contained in one of the balls $B_{(x_i,3\kappa^2r_i)}$, $i \in J$.

We are now ready to state and prove our main result.

Theorem 2.3 Let $q, \alpha, p, q_1, \alpha_1, p_1, \beta$ be elements of $[1, \infty]$ such that

$$1 \le q \le \alpha \le p \text{ with } 0 < \frac{1}{\alpha} - \frac{1}{\beta} = \frac{1}{s},$$

and

$$q < q_1 \le \alpha_1 \le p_1 < \infty \text{ with } 0 < \frac{1}{q_1} - \frac{1}{\beta} = \frac{1}{t} \le \frac{1}{p_1}.$$

Let (w, v) be a pair of weights for which there exists a constant A such that

$$\mu(B)^{-1/t} \|w\chi_B\|_t \|v^{-q}\|_{\Phi,B}^{1/q} \le A$$

for all balls B in (X,d), where Φ is a doubling Young function whose conjugate function Φ^* satisfies the $B_{q_1/q}$ condition. Then there is a constant C such that for any μ -measurable function f, and $\theta > 0$, we have

(2.4)
$$\left(\int_{\Pi_a} w^t(x) d\mu(x) \right)^{1/t} \le C \theta^{-1} \|fv\|_{q_1},$$

and if we assume that μ satisfies condition (1.2), then

$$(2.5) \qquad \left(\int_{\Pi_{\theta}} w^{t}(x) d\mu(x)\right)^{1/t} \leq C\left(\theta^{-1} \|fv\|_{q_{1}, p_{1}, \alpha_{1}}\right) (\theta^{-1} \|f\|_{q, p, \alpha})^{s\left(\frac{1}{q_{1}} - \frac{1}{\alpha_{1}}\right)},$$

where
$$\Pi_{\theta} = \{x \in X : \mathcal{M}_{q,\beta} f(x) > \theta\}.$$

Proof Inequality (2.4) is immediate from [16, Theorem 2.7]. We just need to prove inequality (2.5).

Let f be an element of $(L^q, L^p)^{\alpha}(X)$. Fix $\theta > 0$. For x in Π_{θ} , there exists r_x such that

(2.6)
$$\mu(B_{(x,r_x)})^{\frac{1}{\beta}-\frac{1}{q}} \|f\chi_{B_{(x,r_x)}}\|_q > \theta,$$

and therefore

(2.7)
$$\mu(B_{(x,r_x)}) \le (\theta^{-1} ||f||_{q,\infty,\alpha})^s.$$

Fix a ball $B_{(x_0,R)}$ in X and set $\Pi_{\theta}^R = \Pi_{\theta} \cap B_{(x_0,R)}$. For any x in Π_{θ}^R we have $B_{(x_0,R)} \subset B_{(x,r_x)}$ provided $r_x > 2\kappa R$. It follows from the reverse doubling property (2.2) and (2.7) that

$$r_x^{\delta_{\mu}} \le C_{\mu}^{-1} \frac{R^{\delta_{\mu}}}{\mu(B_{(x_0,R)})} (\theta^{-1} ||f||_{q,\infty,\alpha})^{s}.$$

So we obtain that for any x in Π_{θ}^{R} .

$$r_x^{\delta_\mu} \leq \max \Big\{ 2\kappa R, C_\mu^{-1} \frac{R^{\delta_\mu}}{\mu(B_{(x_0,R)})} (\theta^{-1} \|f\|_{q,\infty,\alpha})^{\mathfrak s} \Big\} < \infty.$$

Thus by Lemma 2.2, the family $\mathfrak{F} = \{B_{(x,r_x)} : x \in \Pi_{\theta}^R\}$ has a countable subfamily $\{B_i : i \in J\}$ of disjoint balls such that each element B of \mathfrak{F} is contained in some $3\kappa^2 B_i$.

Let i be an element of J. By (2.6) and the generalized Hölder inequality we have

$$\theta^{q} \leq \mu(B_{i})^{q/\beta} \left(\frac{1}{\mu(B_{i})} \int_{B_{i}} |f \nu \nu^{-1}| d\mu \right)$$

$$\leq C \mu(B_{i})^{q/\beta} \| (f \nu \chi_{B_{i}})^{q} \|_{\Phi^{*}, 3\kappa^{2}B_{i}} \| \nu^{-1} \chi_{B_{i}} \|_{\Phi, 3\kappa^{2}B_{i}}$$

$$\leq C \mu(B_{i})^{q/\beta} M_{\Phi^{*}} (f \nu \chi_{B_{i}})^{q} (y) \| \nu^{-q} \chi_{B_{i}} \|_{\Phi, 3\kappa^{2}B_{i}}$$

for any y in B_i . So we obtain

$$\theta^{q}\mu(B_{i}) \leq C\mu(B_{i})^{q/\beta} \int_{B_{i}} M_{\Phi^{*}}(f \nu \chi_{B_{i}})^{q}(y) d\mu(y) \|\nu^{-q} \chi_{B_{i}}\|_{\Phi, 3\kappa^{2}B_{i}}.$$

Applying the Hölder inequality and (2.3) we get

$$\theta^{q} \leq C\mu(B_{i})^{-q/t} \left[\int_{B_{i}} \{ M_{\Phi^{*}} (f v \chi_{B_{i}})^{q}(y) \}^{q_{1}/q} d\mu(y) \right]^{q/q_{1}} \| v^{-q} \chi_{B_{i}} \|_{\Phi, 3\kappa^{2}B_{i}}$$

$$\leq C\mu(B_{i})^{-q/t} \| f v \chi_{B_{i}} \|_{q_{1}}^{q} \| v^{-q} \chi_{B_{i}} \|_{\Phi, 3\kappa^{2}B_{i}},$$

that is,

$$1 \le C\theta^{-1}\mu(B_i)^{-1/t} \|f\nu\chi_{B_i}\|_{q_1} \|\nu^{-q}\chi_{B_i}\|_{\Phi,3\kappa^2B_i}^{1/q}.$$

As $\Pi_{\theta}^R \subset \bigcup_{i \in I} 3\kappa^2 B_i$ and $\frac{p_1}{t} \leq 1$, we have

$$\begin{aligned} \|w\chi_{\Pi_{\theta}^{R}}\|_{t} &\leq \left(\sum_{i\in J} \|w\chi_{3\kappa^{2}B_{i}}\|_{t}^{p_{1}}\right)^{1/p_{1}} \\ &\leq C\theta^{-1} \left[\sum_{i\in J} (\mu(B_{i})^{-1/t} \|fv\chi_{B_{i}}\|_{q_{1}} \|v^{-q}\chi_{B_{i}}\|_{\Phi,3\kappa^{2}B_{i}}^{1/q} \|w\chi_{3\kappa^{2}B_{i}}\|_{t})^{p_{1}}\right]^{1/p_{1}}. \end{aligned}$$

Thus, according to assumption (2.7),

(2.8)
$$\|w\chi_{\Pi_{\theta}^{R}}\|_{t} \leq C\theta^{-1} \Big(\sum_{i \in J} \|fv\chi_{B_{i}}\|_{q_{1}}^{p_{1}}\Big)^{1/p_{1}}.$$

Let *n* be a positive integer and set

- $J_n = \{i \in J : \frac{1}{n} \leq r(B_i)\},$
- m_n and \bar{k} the integers satisfying respectively

$$\rho^{m_n+1} \le \frac{1}{2\kappa n} < \rho^{m_n+2} \quad \text{and} \quad \rho^{\bar{k}+1} \le \frac{r}{2\kappa} < \rho^{\bar{k}+2},$$

where $r = \sup\{r(B_i), i \in J\}$ and $\rho = 8\kappa^5$.

It was proved in [19] that there are points x_j^k and Borel sets E_j^k , $1 \leq j < N_k$, $k \geq m_n$ (where $N_k \in \mathbb{N} \cup \{\infty\}$), such that

- (i) $B_{(x_i^k, \rho^k)} \subset E_j^k \subset B_{(x_i^k, \rho^{k+1})}, \ 1 \le j < N_k, \ k \ge m_n$
- (ii) $X = \bigcup_i E_i^k, k \ge m_n$, and $E_i^k \cap E_i^k = \emptyset$ if $i \ne j$,
- (iii) given i, j, k, ℓ with $m_n \le k < \ell$, then either $E_i^k \subset E_i^\ell$ or $E_i^k \cap E_i^\ell = \emptyset$.

Let i be an element of J_n . Denote by k_i the integer satisfying

$$\rho^{k_i+1} \le \frac{r(B_i)}{2\kappa} < \rho^{k_i+2}$$

and set $L_i = \{j : 1 \le j < N_{k_i}, \ E_j^{k_i} \cap B_i \ne \emptyset\}$. We know that the number of elements of L_i is less than a constant $\mathfrak N$ depending only on the structure constants $(\kappa, C_{\mu}, D_{\mu}, \tilde{C}_{\mu}, \delta_{\mu})$ (see [5, (3.3) and (4.3)]). Denoting by j_i an element of L_i satisfying

$$\|fv\chi_{B_i\cap E_{j_i}^{k_i}}\|_{q_1} = \max_{j\in L_i} \|fv\chi_{B_i\cap E_j^{k_i}}\|_{q_1},$$

we have

$$||f \nu \chi_{B_i}||_{q_1} \leq \mathfrak{N} ||f \nu \chi_{B_i \cap E_{j_i}^{k_i}}||_{q_1}$$

Hence

$$\begin{split} \left(\sum_{i \in J_{n}} \|fv\chi_{B_{i}}\|_{q_{1}}^{p_{1}}\right)^{1/p_{1}} &\leq \mathfrak{R}\left(\sum_{i \in J_{n}} \|fv\chi_{E_{j_{i}}^{k_{i}} \cap B_{i}}\|_{q_{1}}^{p_{1}}\right)^{1/p_{1}} \\ &= \mathfrak{R}\left(\sum_{\ell=1}^{N_{\tilde{k}}} \sum_{i \in J_{n}: E_{j_{i}}^{k_{i}} \subset E_{\ell}^{\tilde{k}}} \|fv\chi_{E_{j_{i}}^{k_{i}} \cap B_{i}}\|_{q_{1}}^{p_{1}}\right)^{1/p_{1}} \\ &\leq \mathfrak{R}\left(\sum_{\ell=1}^{N_{\tilde{k}}} \|fv\chi_{E_{\ell}^{\tilde{k}} \cap (\cup_{i \in J_{n}} B_{i})}\|_{q_{1}}^{p_{1}}\right)^{1/p_{1}} \\ &= \mathfrak{R}\left[\sum_{\ell=1}^{N_{\tilde{k}}} (\mu(E_{\ell}^{\tilde{k}})^{\frac{1}{\alpha_{1}} - \frac{1}{q_{1}}} \|fv\chi_{E_{\ell}^{\tilde{k}} \cap (\cup_{i \in J_{n}} B_{i})}\|_{q_{1}})^{p_{1}} \mu(E_{\ell}^{\tilde{k}})^{\frac{\rho}{q_{1}} - \frac{\rho}{\alpha_{1}}}\right]^{1/p_{1}}. \end{split}$$

Notice that for any $1 \le \ell < N_{\bar{k}}$, we have

$$\begin{split} \mu(E_{\ell}^{\bar{k}}) &\leq \mu(B_{(\mathbf{x}_{\ell}^{\bar{k}}, \rho^{\bar{k}+1})}) \leq \mathfrak{b}\varphi(\rho^{\bar{k}+1}) \leq \mathfrak{b}\varphi\left(\frac{r}{2\kappa}\right) \leq \mathfrak{b}\sup_{i \in J} \varphi\left(\frac{r(B_i)}{2\kappa}\right) \\ &\leq \mathfrak{b}\sup_{i \in J} \mathfrak{a}^{-1}\mu\left(\frac{1}{2\kappa}B_i\right) \leq \mathfrak{b}\mathfrak{a}^{-1}(\theta^{-1}\|f\|_{q,\infty,\alpha})^s. \end{split}$$

Therefore,

$$(2.9) \quad \left(\sum_{i \in J_n} \|f v \chi_{B_i}\|_{q_1}^{p_1}\right)^{1/p_1} \\ \leq C \left[\sum_{\ell=1}^{N_{\bar{k}}} \left(\mu(E_{\ell}^{\bar{k}})^{\frac{1}{\alpha_1} - \frac{1}{q_1}} \|f v \chi_{E_{\ell}^{\bar{k}}}\|_{q_1}\right)^{p_1}\right]^{1/p_1} (\theta^{-1} \|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_1} - \frac{1}{\alpha_1})}.$$

Since the last formula does not depend on n, we get from (2.8) and (2.9)

$$\|w\chi_{\Pi_{\theta}^{R}}\|_{t} \leq C\theta^{-1} \Big[\sum_{\ell=1}^{N_{\bar{k}}} \left(\mu(E_{\ell}^{\bar{k}})^{\frac{1}{\alpha_{1}} - \frac{1}{q_{1}}} \|f\nu\chi_{E_{\ell}^{\bar{k}}}\|_{q_{1}} \right)^{p_{1}} \Big]^{1/p_{1}} (\theta^{-1}\|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_{1}} - \frac{1}{\alpha_{1}})}.$$

We recall that Proposition 4.1 of [5] asserts that there are positive constants C_1 and C_2 not depending on r and fv such that

$$C_{1\;r}\|fv\|_{q_1,p_1,\alpha_1} \leq \Big[\sum_{\ell=1}^{N_{\bar{k}}} \big(\mu(E_\ell^{\bar{k}})^{\frac{1}{\alpha_1}-\frac{1}{q_1}}\|fv\chi_{E_\ell^{\bar{k}}}\|_{q_1}\big)^{\;p_1}\Big]^{1/p_1} \leq C_2\;_r\|fv\|_{q_1,p_1,\alpha_1}.$$

So we have

$$\begin{aligned} \|w\chi_{\Pi_{\theta}^{R}}\|_{t} &\leq C\theta^{-1} _{r} \|fv\|_{q_{1},p_{1},\alpha_{1}} (\theta^{-1}\|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_{1}}-\frac{1}{\alpha_{1}})} \\ &\leq C\theta^{-1} \|fv\|_{q_{1},p_{1},\alpha_{1}} (\theta^{-1}\|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_{1}}-\frac{1}{\alpha_{1}})}. \end{aligned}$$

As (x_0, R) is arbitrary in $X \times (0, \infty)$, we obtain

$$\|w\chi_{\Pi_{\theta}}\|_{t} \leq C\theta^{-1}\|fv\|_{q_{1},p_{1},\alpha_{1}}(\theta^{-1}\|f\|_{q,\infty,\alpha})^{s(\frac{1}{q_{1}}-\frac{1}{\alpha_{1}})}.$$

In the proof of the above theorem, the condition $q < q_1$ is needed only when we have to use the $B_{q_1/q}$ characterization. When w = v = 1, this characterization is not necessary. So Theorem 1.4 follows immediately from Theorem 2.3.

The next theorem is some kind of reverse for Theorem 1.4

Theorem 2.4 Let q, α, u , and v be elements of $[1, \infty]$ such that

$$q \le \alpha$$
, $0 \le \frac{1}{\alpha} - \frac{1}{\beta} = \frac{1}{s}$, and $u \le s \le v$.

Then there is a constant D such that for any μ -measurable function f

$$||f||_{q,\nu,\alpha} \leq D||\mathfrak{M}_{q,\beta}f||_{u,\nu,s}.$$

Proof Let f be such that $\|\mathcal{M}_{q,\beta}f\|_{u,v,s} < \infty$. We notice that under the hypothesis, we have $q \le \alpha \le s \le v$ and $\alpha \le \beta$.

Case 1: $q = \infty$. Then $\alpha = \beta = s = v = \infty$ and therefore, it follows from the definitions that

$$||f||_{\infty,\infty,\infty} = ||f||_{\infty} = ||\mathcal{M}_{\infty,\infty}f||_{\infty} \le C||\mathcal{M}_{\infty,\infty}f||_{u,\infty,\infty}.$$

Case 2: $q < \infty$.

(i) If $u = \infty$, then $s = v = \infty$, $\alpha = \beta$ and therefore,

$$\begin{split} \|f\|_{q,\infty,\alpha} &= \sup_{r>0} \sup_{x \in X} \exp(B_{(x,r)})^{\frac{1}{\alpha} - \frac{1}{q}} \|f\chi_{B_{(x,r)}}\|_q \\ &= \sup_{r>0} \sup_{x \in X} \exp(B_{(x,r)})^{\frac{1}{\beta} - \frac{1}{q}} \|f\chi_{B_{(x,r)}}\|_q = \|\mathcal{M}_{q,\beta}f\|_{\infty} = \|\mathcal{M}_{q,\beta}f\|_{\infty,\infty,\infty}. \end{split}$$

(ii) Suppose that $u < \infty$, and consider two positive real numbers r and r_1 satisfying $r_1 = \frac{r}{2\kappa}$. For any $y \in X$ and $x \in B_{(y,r_1)}$, we have $B_{(y,r_1)} \subset B_{(x,r)}$ and therefore, by the doubling condition

$$\mathcal{M}_{q,\beta}f(x) \ge C_{\mu}^{\frac{1}{\beta} - \frac{1}{q}} \mu(B_{(y,r_1)})^{\frac{1}{\beta} - \frac{1}{q}} \|f\chi_{B_{(y,r_1)}}\|_{q}.$$

From this, it follows that for any $y \in X$, we have

$$\|\mathcal{M}_{q,\beta} f \chi_{B_{(y,r_1)}}\|_u \geq C_{\mu}^{\frac{1}{\beta} - \frac{1}{q}} \mu(B_{(y,r_1)})^{\frac{1}{u} + \frac{1}{\beta} - \frac{1}{q}} \|f \chi_{B_{(y,r_1)}}\|_q$$

and therefore,

$$\mu(B_{(y,r_1)})^{\frac{1}{s}-\frac{1}{\nu}-\frac{1}{u}} \left\| \mathcal{M}_{q,\beta} f \chi_{B_{(y,r_1)}} \right\|_{u} \geq C_{\mu}^{\frac{1}{\beta}-\frac{1}{q}} \mu(B_{(y,r_1)})^{\frac{1}{\alpha}-\frac{1}{\nu}-\frac{1}{q}} \left\| f \chi_{B_{(y,r_1)}} \right\|_{q}.$$

This yields immediately the desired inequality.

3 Continuity of the Fractional Integral $I_{\alpha}f$

It is known in the Euclidean case that the fractional integral $I_{\gamma}f$ is controlled in norm by the fractional maximal function $\mathfrak{m}_{1,\frac{1}{\gamma}}f$ (see [14, Theorem 1]). We give the analogue of this control in the setting of spaces of homogeneous type.

Theorem 3.1 Let $0 < q < \infty$, $0 < \gamma < 1$ and a weight w in A_{∞} . There is a constant C such that for any μ -measurable function f

$$\sup_{\lambda>0} \lambda^q \int_{E_a} w(x) \, d\mu(x) \le C \sup_{\lambda>0} \lambda^q \int_{F_\lambda} w(x) \, d\mu(x),$$

where
$$E_{\lambda} = \{x \in X : |I_{\gamma}f(x)| > \lambda\}$$
 and $F_{\lambda} = \{x \in X : \mathcal{M}_{1,\frac{1}{\alpha}}f(x) > \lambda\}.$

Proof In our argumentation, we shall adapt the proof of [14, Theorem 1], keeping in mind that we do not have a Whitney decomposition available.

(1) Let f be a μ -measurable, non negative, bounded function, with a support included in a ball $B_0 = B_{(x_0,k_0)}$. According to [21, Lemma 6], there exists a constant $C_0 > 0$ not depending on f, such that $I_\gamma f \leq \mathfrak{M}(I_\gamma f) \leq C_0 I_\gamma f$, where $\mathfrak{M} = \mathfrak{M}_{1,\infty}$. Let θ be a positive number and set

$$\widetilde{E}_{\theta} = \{x \in X : \mathcal{M}(I_{\gamma}f)(x) > \theta\} \text{ and } E_{\theta} = \{x \in X : I_{\gamma}f(x) > \theta\}.$$

The set E_{θ} is included in \widetilde{E}_{θ} which is opened and satisfies $\mu(\widetilde{E}_{\theta}) < \infty$. According to [21, Lemma 8], there exists a countable family $\{B_{(x_i,r_i)} : i \in J\}$ of pairwise disjoint balls and two positive constants M and c depending only on the structure constants of X, such that

$$(3.1) \qquad \widetilde{E}_{\theta} = \bigcup_{i \in J} B_{(x_i, cr_i)}, \quad \sum_{i \in J} \chi_{B_{(x_i, 2\kappa cr_i)}} \leq M \chi_{\widetilde{E}_{\theta}},$$

$$B_{(x_i, 4\kappa^2 cr_i)} \cap (X \setminus \widetilde{E}_{\theta}) \neq \emptyset \quad \text{for all } i \in J.$$

Let us consider an element (a, ε) of $(1, \infty) \times (0, 1]$, and set

$$F_{\theta\varepsilon} = \{x \in X : \mathcal{M}_{1,1/\gamma} f(x) > \theta\varepsilon\}, \quad J_1 = \{i \in J : B_{(x_i,cr_i)} \subset F_{\theta\varepsilon}\},$$
$$J_2 = I \setminus J_1 = \{i \in J : B_{(x_i,cr_i)} \setminus F_{\theta\varepsilon} \neq \varnothing\}.$$

Arguing as in the proof of [14, Lemma 1], we obtain two constants K > 0 and B > 1 depending only on the structure constants of X, such that if $a \ge B$ and $i \in J_2$, then

Since $E_{\theta a} \subset E_{\theta} \subset \widetilde{E}_{\theta} = \bigcup_{i \in I} B_{(x_i, cr_i)}$, we have

$$E_{\theta a} = \left[\bigcup_{i \in J_1} (E_{\theta a} \cap B_{(x_i, cr_i)}) \right] \cup \left[\bigcup_{i \in J_2} (E_{\theta a} \cap B_{(x_i, cr_i)}) \right] \subset F_{\theta \varepsilon} \cup \left[\bigcup_{i \in J_2} (E_{\theta a} \setminus F_{\theta \varepsilon}) \cap B_{(x_i, cr_i)} \right],$$

and therefore

$$(3.3) \qquad \int_{E_{\theta a}} w(x) d\mu(x) \leq \int_{F_{\theta \varepsilon}} w(x) d\mu(x) + \sum_{i \in I_{\tau}} \int_{(E_{\theta a} \setminus F_{\theta \varepsilon}) \cap B_{(x_{i}, c_{i})}} w(x) d\mu(x).$$

Now fix $a \ge B$ and $\rho > 0$. Since w is in \mathcal{A}_{∞} , there exists $\delta > 0$ such that for any ball B in X and any subset E of B satisfying $\mu(E) \le \delta \mu(B)$, we have

$$\int_E w(x) d\mu(x) \le \rho \int_B w(x) d\mu(x).$$

Choose $\overline{\varepsilon} \in (0,1]$ such that $K(\frac{\overline{\varepsilon}}{a})^{\frac{1}{1-\gamma}} < \delta$ and take $0 < \varepsilon < \min(\overline{\varepsilon}, \frac{1}{C_0L})$, where $L = C_{\mu}(2\kappa + 4\kappa^2)^{(1-\gamma)D_{\mu}}$. According to (3.2) we have for any $i \in J_2$,

$$\mu(B_{(x_i,cr_i)}\cap E_{\theta a})<\delta\mu(B_{(x_i,cr_i)}),$$

and therefore

$$\int_{B_{(x_i,cr_i)}\cap E_{\theta a}} w(x) d\mu(x) \le \rho \int_{B_{(x_i,cr_i)}} w(x)\mu(x).$$

From this inequality, (3.3), and (3.1) we obtain

(3.4)
$$\int_{E_{\theta a}} w(x) d\mu(x) \leq \int_{F_{\theta \varepsilon}} w(x) d\mu(x) + \rho M \int_{\widetilde{E}_{\theta}} w(x) d\mu(x).$$

Let $x \in X \setminus 3\kappa B_0$. Assume that $0 < t < \frac{1}{2} \inf_{y \in B_0} d(x, y)$ and $u_t \in B_0$ satisfies

$$d(x, u_t) - t \le d(x, y), \ y \in B_0.$$

We have $2r(B_0) \le d(x, y) \le \kappa [d(x, u_t) + 2\kappa r(B_0)], y \in B_0$ and therefore

$$\begin{split} I_{\gamma}f(x) & \leq \int_{B_{0}} \frac{f(y)}{\mu(B_{(x,d(x,y))})^{1-\gamma}} d\mu(y) \\ & \leq \frac{1}{\mu(B_{(x,d(x,u_{t})-t)})^{1-\gamma}} \int_{B_{(x,\kappa(d(x,u_{t})+2\kappa r(B_{0})))}} f(y) d\mu(y) \\ & \leq C_{\mu} \left[\frac{\kappa(d(x,u_{t})+2\kappa r(B_{0}))}{d(x,u_{t})-t} \right]^{(1-\gamma)D_{\mu}} \mathfrak{M}_{1,\frac{1}{\gamma}} f(x) \leq L \mathfrak{M}_{1,\frac{1}{\gamma}} f(x). \end{split}$$

Hence, $\widetilde{E}_{\theta} \subset E_{\theta/C_0} \subset (E_{\theta/C_0} \cap 3\kappa B_0) \cup F_{\theta/C_0L}$. We obtain from (3.4)

$$\begin{split} \int_{E_{\theta a}} w(x) \, d\mu(x) &\leq \int_{F_{\theta \varepsilon}} w(x) \, d\mu(x) + \rho M \int_{E_{\frac{\theta}{C_0}} \cap 3\kappa B_0} w(x) d\mu(x) \\ &+ \rho M \int_{F_{\frac{\theta}{C_0 L}}} w(x) \, d\mu(x) \\ &\leq (1 + \rho M) \int_{F_{\theta \varepsilon}} w(x) \, d\mu(x) + \rho M \int_{E_{\frac{\theta}{C_0}} \cap 3\kappa B_0} w(x) \, d\mu(x). \end{split}$$

That is,

$$\begin{split} (\theta a)^q \int_{E_{\theta a}} w(x) \, d\mu(x) &\leq (1 + \rho M) \left(\frac{a}{\varepsilon}\right)^q (\theta \varepsilon)^q \int_{E_{\theta \varepsilon}} w(x) \, d\mu(x) \\ &+ \rho M \left(\frac{\theta}{C_0}\right)^q (C_0 a)^q \int_{E_{\frac{\theta}{C_0}} \cap 3\kappa B_0} w(x) \, d\mu(x). \end{split}$$

Let N be a positive integer. From the preceding inequality we obtain

$$\begin{split} \sup_{0 < s < N} s^q \int_{E_s} w(x) \, d\mu(x) & \leq (1 + \rho M) \Big(\frac{a}{\varepsilon}\Big)^q \sup_{0 < s < N \frac{\varepsilon}{a}} s^q \int_{F_s} w(x) \, d\mu(x) \\ & + \rho M (C_0 a)^q \sup_{0 < s < \frac{N}{aC_0}} s^q \int_{E_s \cap 3\kappa B_0} w(x) \, d\mu(x). \end{split}$$

As

$$\sup_{0 < s < \frac{N}{aC_0}} s^q \int_{E_s \cap 3\kappa B_0} w(x) \, d\mu(x) \le \sup_{0 < s < N} s^q \int_{E_s \cap 3\kappa B_0} w(x) \, d\mu(x) < \infty,$$

by taking $\rho = \frac{1}{2M(C_0a)^q}$ in the last inequality, we get

$$\frac{1}{2} \sup_{0 < s < N} s^q \int_{E_s} w(x) \, d\mu(x) \le \left(1 + \frac{1}{2(C_0 a)^q}\right) \left(\frac{a}{\varepsilon}\right)^q \sup_{0 < s < N^{\frac{\varepsilon}{a}}} s^q \int_{F_s} w(x) \, d\mu(x).$$

The desired inequality follows by letting N go to infinity.

(2) Let f be an arbitrary μ -measurable function f. For any positive integer k, set $f_k = f\chi_{E_k}$ with $E_k = \{x \in B_{(x_0,k)} : |f(x)| \le k\}$. By part (1) of the proof, for any k > 0, we have

$$\begin{split} \frac{1}{2} \sup_{0 < s < N} s^q \int_{\{x \in X: I_{\gamma} f_k(x) > s\}} w(x) \, d\mu(x) \\ & \leq \left(1 + \frac{1}{2(C_0 a)^q}\right) \left(\frac{a}{\varepsilon}\right)^q \sup_{0 < s < N^{\frac{\varepsilon}{a}}} s^q \int_{\{x \in X: \mathcal{M}_{1, \frac{1}{\alpha} f_k(x) > s}\}} w(x) \, d\mu(x). \end{split}$$

So letting *k* go to infinity, we obtain the result.

Remark 3.2 Assume that

- μ satisfies condition (1.2),
- $q, \alpha, p, p_1, q_1, \alpha_1, \gamma$ are elements of $[0, \infty]$ such that

$$1 \le q \le \alpha \le p \text{ with } 0 < \frac{1}{\alpha} - \gamma = \frac{1}{s}$$

and

$$q < q_1 \le \alpha_1 \le p_1 < \infty \text{ with } 0 < \frac{1}{q_1} - \gamma = \frac{1}{t} \le \frac{1}{p_1},$$

- Φ is a doubling Young function whose conjugate function Φ^* satisfies the $B_{q_1/q}$ condition.
- v and w are two weights for which there exists a constant A such that

$$\mu(B)^{-1/t} \|w\chi_B\|_t \|v^{-q}\|_{\Phi,B}^{1/q} \le A, \quad B \text{ ball}$$

and w^t satisfies \mathcal{A}_{∞} condition.

Then there is a constant C such that for any μ -measurable function f and $\theta > 0$, we have

$$\left(\int_{E_{\theta}} w^{t}(x) d\mu(t)\right)^{1/t} \leq C(\theta^{-1} ||fv||_{q_{1}, p_{1}, \alpha_{1}}) (\theta^{-1} ||f||_{q, p, \alpha})^{s(\frac{1}{q_{1}} - \frac{1}{\alpha_{1}})},$$

where $E_{\theta} = \{x \in X / |I_{\gamma} f(x)| > \theta\}.$

Proof Let f be a μ -measurable function. From Theorem 2.3, it follows that there exists a constant C such that

$$\sup_{\theta>0} \theta^{1+s(\frac{1}{q_1}-\frac{1}{\alpha_1})} \bigg(\int_{E_{\theta}} w^t(x) \, d\mu(x) \bigg)^{1/t} \leq C \sup_{\theta>0} \theta^{1+s(\frac{1}{q_1}-\frac{1}{\alpha_1})} \bigg(\int_{F_{\theta}} w^t(x) \, d\mu(x) \bigg)^{1/t},$$

with $F_{\theta} = \{x \in X : \mathcal{M}_{1,\frac{1}{\gamma}}f(x) > \theta\}$. Since $\mathcal{M}_{1,\beta} \leq \mathcal{M}_{q,\beta}$ for q > 1, the result follows from Theorem 2.3.

Acknowledgment We would like to thank S. Grellier for supplying us with documents. We are indebted to the referee for valuable comments, and particularly for suggesting that we not impose a normality condition on the underlying homogeneous space.

References

- A. Bernardis and O. Salinas, Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type. Studia Math. 108(1994), no. 3, 201–207.
- [2] A. P. Calderón, Inequalities for the maximal function relative to a metric. Studia Math. 57(1976), no. 3, 297–306.
- [3] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function Rend. Math. Appl. 7(1987), no. 3-4, 273–279.
- [4] A. Eridani, V. Kokilashvili, and A. Meskhi, Morrey spaces and fractional integral operators. Expo. Math. 27(2009), no. 3, 227–239.
- [5] J. Feuto, I. Fofana and K. Koua, Integrable fractional mean functions on spaces of homogeneous type. Afr. Diaspora J. Math. 9(2010), no. 1, 8–30.
- [6] I. Fofana, Étude d'une classe d'espaces de fonctions contenant les espaces de Lorentz. Afrika Mat 1(1988), 29–50.
- [7] $\xrightarrow{}$, Continuité de l'intégrale fractionnaire et espace $(L^q, \ell^p)^{\alpha}$. C. R. Acad. Sci. Paris Sér. I Math. **18**(1989), 525–527.
- [8] _____, Espaces $(L^q, \ell^p)^{\alpha}$ et continuité de l'opérateur maximal fractionnaire de Hardy-Littelwood. Afrika Mat. 12(2001), 23–37.
- [9] J. J. F. Founier and J. Stewart, Amalgams of L^p and l^q. Bull. Amer. Math. Soc. 13(1985), no. 1, 1–21.
- [10] Y. Han, D. Müller, and D. Yang, A theory of Besov and Triebel-Lizorkin spaces on metric measure space modeled on Carnot-Carathéodory spaces. Abstr. Appl. Anal. (2008) Art. ID 893409, 252 pp.
- [11] A. Kpata, I. Fofana, and K. Koua, Necessary condition for measures which are (L^q, L^p) multipliers. Ann. Math. Blaise Pascal 16(2009), no. 2, 423–437.
- [12] R. Macías and C. Segovia, *Lipschitz functions on spaces of homogeneous type*. Adv. in Math. **33**(1979), no. 3, 257–270. doi:10.1016/0001-8708(79)90012-4

- [13] D. Mascré, Inégalités à poids pour l'opérateur de Hardy-Littlewood-Sobolev dans les espaces métriques mesurés à deux demi-dimensions. Colloq. Math. **105**(2006), no. 1, 77–104. doi:10.4064/cm105-1-9
- [14] B. Muckenhoupt and R. Wheeden, *Weighted norm inequalities for fractional integrals.* Trans. Amer. Math. Soc. **192**(1974), 261–274. doi:10.2307/1996833
- [15] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riez potentials on generalized Morrey spaces. Math. Nachr. 166(1994), 95–103. doi:10.1002/mana.19941660108
- [16] C. Pérez and R. L. Wheeden, Uncertainty principle estimates for vector fields. J. Funct. Anal. 181(2001), no. 1, 146-188. doi:10.1006/jfan.2000.3711
- [17] _____, Potential operators, maximal functions, and generalization of A_{∞} . Potential Anal. 19(2003), no. 1, 1–33. doi:10.1023/A:1022449810008
- [18] M. Rao and Z. Ren, Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics 146. Marcel Dekker, New York, 1991.
- [19] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114(1992), no. 4, 813–874. doi:10.2307/2374799
- [20] N. T. Varopoulos, Analysis on Lie groups. J. Funct. Anal. 76(1988), no. 2, 346–410. doi:10.1016/0022-1236(88)90041-9
- [21] P. Wen Jie, Fractional integrals on spaces of homogeneous type Approx. Theory Appl. 8(1992), no. 1, 1–15.
- [22] N. Wiener, On the representation of functions by trigonometrical integrals. Math. Z. **24**(1926), no. 1, 575–616. doi:10.1007/BF01216799

UFR de Mathematiques et Informatique, Université de Cocody, Abidjan, République de Côte d'Ivoire e-mail: justfeuto@yahoo.fr

fofana_ib_math_ab@yahoo.fr kroubla@yahoo.fr