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Abstract

Let R be an associative ring which is not necessarily commutative. For any torsion theory T on the
category of left /{-modules and for any nonnegative integer n we define and study the notion of the
n th local cohomology functor with respect to T. For suitably nice rings a bound for the nonvanishing
of these functors is given in terms of the r-dimension of the modules.

1980 Mathematics subject classification (Amer. Math. Soc): primary 16A08, 16A63, 18E25, 18G10;
secondary 13DO3, 16A55, 18E40.

The right derived functors of the torsion functor determined by an arbitrary
torsion theory on a module category were first studied by Dickson [7]. The
relation between torsion theories and local cohomology was first considered by
Suominen [21] for the special case of categories of sheaves. For module categories
over a commutative ring the basic results were obtained by Cahen [6] and these
have recently been extended by Albu and Nastasescu [1,2] and by Bijan-Zadeh
[5]. Our purpose here is to show how similar results can be obtained for categories
of modules over noncommutative rings.

Throughout the following, R will denote an arbitrary associative (but not
necessarily commutative) ring with unit element 1. The category of unitary left
^-modules will be denoted by /?-mod. Morphisms in /?-mod will be written as
acting on the right. All other functions will be written as acting on the left. If M is
a left /{-module then the injective hull of M will be denoted by E(M).

The complete brouwerian lattice of all hereditary torsion theories defined on
7?-mod will be denoted by /?-tors. Notation and terminology concerning such
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[21 Derived functors of the torsion functor 163

theories will follow [8]. In particular, if T E /{-tors we denote the r-torsion

endofunctor of R-mod by TT(-) and the x-localization endofunctor of /{-mod by

QT(-). If M is a left /{-module then the canonical /{-homomorphism from M to

QT(M) will be denoted by \T
M and not, as in [8], by iM. The localization of the

ring R at r will be denoted by RT. The r-injective hull of a left R-module M will

be denoted by ET(M). A submodule N of a. left R-module M is said to be r-dense

in M if and only if M/N is a r-torsion left /{-module.

If M is a left /{-module then the meet of all torsion theories relative to which M

is torsion will be denoted by £ ( M ) and the join of all torsion theories relative to

which M is torsionfree will be denoted by x ( ^ O - Then £ = £(0) i s t n e unique

minimal element of /{-tors and x — x(0) is t n e unique maximal element of /{-tors.

A nonzero r-torsionfree left /{-module M is said to be r-cocritical if and only if

every nonzero submodule of M is r-dense in it. Such modules are necessarily

uniform. A left /{-module is said to be cocritical if and only if it is T-cocritical for

some torsion theory T. A torsion theory of the form x ( M ) for some cocritical left

/{-module M is said to be prime. The set of all prime torsion theories in R-tors is

denoted by R-sp. Any theory theory T £ /{-tors partitions R-sp into two disjoint

parts:

P ( T ) = {IT e /{-sp|w S * T } and V ( T ) = (TT e .R-sp | m ^ T } .

If M is a left /{-module then the set of associated primes of M, denoted by

ass(M), is the set of all primes in R-sp of the form x ( ^ ) > where N is a. cocritical

submodule of M. The ring R is said to be left definite if and only if a s s (M) ^ 0

for any nonzero left /{-module M. Left noetherian rings are easily seen to be left

definite. If R is left definite then T = A P ( T ) for any torsion theory T in R-Xoxs

other than x- (In fact, this relation holds for an even larger class of rings, which

need not concern us here.)

For any nonempty subset U of R-sp we can define a torsion theory S(U) in

R-tots by saying that a left /{-module M is S(i/)-torsion if and only if the

following conditions hold:

(i) every nonzero homomorphic image of M has a cocritical submodule; and

(ii) if N is a cocritical submodule of a nonzero homomorphic image of M then

x(N) e u.
If U C U' are nonempty subsets of R-sp then it is clear that S(U) < S(U'). Then
the ring R is left definite if and only if for every torsion theory T in /{-tors there
exists a subset U of R-sp for which T = 8(U) [10, Proposition 2]. Indeed, if R is
left definite then for any subset U of R-sp we also have 8(U) = f\[R-sp\U]
[17].

The support of a left /{-module M, denoted by supp(M), consists of all those
elements of R-sp relative to which M is not torsion. If R is a left definite ring and
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if U is a nonempty subset of R-sp then a left ^-module M is 8(LQ-torsion if and
only if supp( M ) C U.

Finally, a torsion theory T in #-tors is said to be perfect if and only if every left
/?T-module is r-torsionfree when considered as a left /^-module.

1. Local cohomology functors

Let T G /{-tors. For any nonnegative integer n we define the nth local cohomol-
ogy functor with respect to T to be the nth right derived functor R"Tr{~) of the
r-torsion endofunctor of /?-mod. In particular, we note that R"TT(M) is a
T-torsion left /^-module for any left fl-module M and that R°TT(-) equals TT(-)
since the latter functor is always left exact. Moreover, the proof of Proposition 2.1
of [1] carries over to the noncommutative case and so we see that for any left
R -module M and for each nonegative integer n there exists a natural isomorphism
in the category of abelian groups between R"TT(M) and lim Ext"R(R/I, M),
where the limit is taken over the idempotent filter of all r-dense left ideals of R.
Moreover, if the ring R is left noetherian and if {Af, | j G S} is a directed system
of left /^-modules then for each nonnegative integer n we have lim .e f l .RT(M,) =s

RnTT(Km M,).

Let M be a nonzero left i?-module having a minimal injective resolution

0 -* M -> Eo -> £ , ->

and for each k > 0 let xk(
M) = x(£0 ® * ' ' ®Ek) = Af=oX(^,)- Then a left

i?-module N is x*(^)-torsion if and only if Ext'R(N', M) = 0 for any [cyclic]
submodule N' of N and any / < k. See page 149 of [19] for details. ForTiotational
simplicity, we set x_i(AO — X f° r a n y left i?-module M.

If M is a left /^-module, if n is a nonnegative integer, and if T £ i?-tors then we
say that M has r-dominant dimension equal to n if and only if xn-i(^f)^r and
X n ( ^ ) ^ T- I n terms of the above minimal injective resolution of M, this is
equivalent to saying that £, is T-torsionfree for all i < n, while En is not
x-torsionfree. We denote the T-dominant dimension of M by T-dom.dim(M). If
T-dom.dim(Af) ¥= n for any nonnegative integer n, we write T-dom.dim(A/) = oo.
Dominant dimension has been extensively studied. See, for example, [14,16,20].

(1.1) EXAMPLE. A ring R is said to be left local if and only if all simple left
.R-modules are isomorphic. Let R be a left local ring and let N be a simple left
i?-module. For any left /^-module M, we see that £(JV)-dom.dim(M) = 0 if and
only if E(M) is not £(N)-torsionfree, that is, if and only if UomR(N, E(M)) # 0.
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But this condition is equivalent to the condition that E{M) (and hence M) have a
submodule isomorphic to N. Thus we see that £(./V)-dom.dim(A/) = 0 if and only
if soc(M) ^ 0.

(1.2) PROPOSITION. / / T E /{-tors and if n is a natural number then the following
conditions on a left R-module M are equivalent:

(1) T-dom.dim(M) > n.
(2) R%(M) = 0 for all i < n.

PROOF. We will proceed by induction on n. In particular, we note that
T-dom.dim(Af) s* 1 <=> M is r-torsionfree *» R°TT(M) = 0. Now assume induc-
tively that n > 1 and that whenever k < n we have T-dom.dim(M') > k <=>
R'TT(M') — 0 for all / < k, this holding for any left /{-module M'. In particular,
letAf = £(A/)/A/. Then

R-TT( M) = 0 for all / < n <=» M is T-torsion free and /?TT( M ) = 0

for all; < n — 1
<=> Af is T-torsionfree and

T-dom.dim(Af ) > « — 1

<=> T-dom.dim(Af) > «,

and so we are done.

The commutative version of this theorem was proven in [6].

(1.3) COROLLARY. / / T E /?-tors and if M is a left R-module satisfying T-

dom.dim(M) > n then for any R-monomorphism a:M -» M we have r-
dom.dim(M/Ma) > n — \.

PROOF. By hypothesis we have an exact sequence 0 -> M -»M -* M/Ma -* 0 of

left .R-modules which induces a long exact sequence

> R ' T 7 ( M ) -> R % ( M / M a ) -* R ' + l T T ( M ) - » • • • .

Since RTT(M) = 0 for all / < n by Proposition 1.2, we have R'TT(M/Ma) = 0
for all i < n — 1 and so, by Proposition 1.2, T-dom.dim(M/Afa) > n — 1.

We would now like to calculate R'TT(M) for certain types of torsion theories T
and left /{-modules M. Recall that a torsion theory T E /{-tors is .staWe if and only
if the class of all T-torsion left /{-modules is closed under taking injective hulls.
The basic properties of stable torsion theories are summarized in [8]. In particu-
lar, if R is a commutative noetherian ring then every element of /{-tors is stable.
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For any torsion theory T G R-IOTS and for any T-torsion left /^-module M we
have RlTT(M) = 0 [7, Lemma 2]. For stable torsion theories this result can be
further extended.

(1.4) PROPOSITION. If T E R-tors is stable and if M is a T-torsion left R-module
then R'TT(M) = 0 for all i > 0.

PROOF. Let 0 -> M -* Eo -» Ex -> • • • be a minimal injective resolution of M.
Since M is T-torsion and since T is stable, we see that each Et is T-torsion and so
the complex 0 -» TT(E0) -> Tr(Ex) -+ ••• is exact at TT(£,) for all / > 0, which is
what we need to show.

(1.5) COROLLARY. / / T e #-tors is stable and if M is a left R-module then
R'TT(M) s R%(M/TXM))for all i > 0.

PROOF. The exact sequence 0 -» TT(M) -» M -* M/TT(M) -» 0 induces a long
exact sequence

0 - TT(TT(M)) - Tr(M) - TT(M/Tr(M)) - R%{TT{M))

in which, by Proposition 1.4, we know that R'TJJ^M)) = 0 for all / > 0. From
this the result follows immediately.

The following result was first established for commutative rings by Cahen [6].

(1.6) PROPOSITION. / / T E R-tors is stable and if M is a left R-module then
/?1rT(M)Scoker( \T

M) .

PROOF. Set KT = coker(XT
M). Then the short exact sequence

0 - M/TT(M) - QT(M) ^KT^0

gives rise to a long exact sequence

0 - TT(Kr) - R%(M/Tr(M)) - R%(QT(M)) - • • •.

Since QT(M) is r-torsionfree and r-injective, we see that T-dom.dim((?T(M)) > 2
[20] and so RlTT(Qr(M)) = 0. Moreover, KT is T-torsion by construction of
QT(M) and so TT(KT) = KT. Therefore, by Corollary 1.5, KT = RlTT(M/TT(M))
= R]Tr{M).

(1.7) PROPOSITION. / / T G/?-tors is stable and if M is a nonzero T-dense
submodule of its injective hull then R'TT{M) = 0 for all i > 1.
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PROOF. The short exact sequence

0 -> M -> E{M) -» E(M)/M -> 0

gives rise to a long exact sequence

• R{TT(E(M)/M) -» R2TT(M)

- R2Tr(E(M)) -* R2Tr(E(M)/M)

By Proposition 1.4, we know that R%(E(M)/M) = 0 for all / > 0. Moreover,
since, as abelian groups, we have /?'TT(£(A/)) =s lim Ext'^/?// , £(M)) (where
the limit is taken over the filter of all r-dense left ideals / of R) and since E(M) is
injective, we see that R'TT(E(M)) = 0 for all / > 0. Therefore R%(M) = 0 for
all / > 1.

(1.8) PROPOSITION. If T E R-tors is stable and if M is a r-torsionfree left
R-module then

(1) R°TT(M) = 0;
(2) R%(M) = EJLM)/M;
(3) R%(M) s R%(ET(M)) for all i > 1.

PROOF. (1) follows directly from the fact that R°TT(M) = TT(M). Moreover,
the short exact sequence

0 -> M -» ET(M) -> ET(M)/M -H. 0

yields a long exact sequence

0 -» R°TT(M) -» /J°rT(£T(M)) - /?°rT(£T(M)/M) -» R]TT(M)

- R%{Er{M)) - R%{Er{M)/M) - *27;(M)

in which R°TT(M) = R°TT(ET(M)) = 0 by (1) and R'TT(ET(M)/M) = 0 for all
/ > 0 by Proposition 1.4. In particular, this implies (3). Finally, (2) follows
directly from Proposition 1.6.

(1.9) PROPOSITION. Le? T E R-tors and let M be a left R-module having minimal
injective resolution

a0 a,
0 -» M -> Eo - £ , - £ 2 - • • • .

/ / Af, = ker(a,) /or a// / » 0 r/ie« RkTT{Mt) s /?*-'rT(A/(.+ 1) /or an^ A: ^ 2.
Moreover, if R°TT(M,) = 0 rten /?'7;(My) s /?°rT(M,+ 1).
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PROOF. From the exact sequence 0 -> A/, -> £, -> Mi+, -» 0 we obtain the long
exact sequence

0 - R°Tr(M,) - R°TT(E,) - R°TT(Ml+[)

l) - • • - - Rk

from which we obtain the desired result since for all k > 0 we have RkTT(Ei) — 0
by the injectivity of Et.

As an immediate consequence of Proposition 1.9 we see that if T E /?-tors and
if M is a left /^-module then for all positive integers k and h we have Rk+hTT(M)
s RhTT(Mk), where A/̂  is defined as in the proof of Proposition 1.9.

(1.10) PROPOSITION. Let T < a be stable torsion theories in R-toxs. For any
nonnegative integer k and any left R-module M the condition

(1) R'Ta{M) = 0 for all i < k
implies

(2) R'Tr(M) = Ofor all i < k.

PROOF. If k - 0 then for any left /^-module M we have R°Ta(M) - Ta{M) D
TT(M) = R°TT(M) and so the result is immediate. Next assume that k — 1. If M
is a left /^-module satisfying (1) then, in particular, M is o-torsionfree and hence
T-torsionfree. Therefore, by Proposition 1.8, we have R*Tr(M) s ET(M)/M C
EO(M)/M == RlTa(M) and so fl'7;(A/) = 0 implies that « ' r T (M) = 0.

Now assume inductively that k > 1 and that any left .R-module M satisfying
RjTa(M) = 0 for all / < k - 1 also satisfies R%(M) = 0 for all / < k - 1. By
Proposition 1.9 we have R%(M) s Rk~lTa(E(M)/M) and RkTr(M) ==
/?*~'rT(£(M)/A/) . By assumption, 0 = fi'X(M)^i?'"'r,(£(M)/M) for all
0 < / «£ A: and so, by the induction hypothesis, we see that R'~]T7(E(M)/M) = 0
for all 0 < /' < A:. Therefore R'T^M) = 0 for all 0 < / < k. Moreover, we have
already seen that R°Ta(M) = 0 implies that R°TT(M) = 0 as well.

A torsion theory T E .K-tors is exact if and only if the localization functor
QT(-): R-mod -» ^?-mod is exact. See Section 16 of [8] for details about such
torsion theories.

(1.11) PROPOSITION. The following conditions on a torsion theory T E i?-tors are
equivalent:

(1) T is exact;
(2) / / M is a T-torsionfree T-injective left R-module then R'TT(M) = 0 for all

1 s* 0.

https://doi.org/10.1017/S1446788700025647 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025647


[8] Derived functors of the torsion functor 169

PROOF. (1)=^ (2): Let

°0

be a minimal injective resolution of M. By repeated application of Proposition
16.1 of [8] we see that £,/ker(a,) is T-torsionfree and T-injective for all / > 0 and
hence £,- is T-torsionfree for all such i. This proves that R'Tr(M) = 0 for all / > 0.

(2) =>(1): If M is a left .R-module which is T-torsionfree and T-injective then
TT(E(M)/M) = ET(M)/M = 0. Let (*), as above, be a minimal injective resolu-
tion of M. Then Eo/M is T-torsionfree and hence so is Ex. Therefore R2TT(M) =
ker(rT(a2)) = rT(ker(a2)). By hypothesis, ker(a2) s= £(ker(a,))/ker(a,) is T-
torsionfree. Therefore ker(a,) is T-injective. But it is also r-torsionfree and so by
Proposition 16.1 of [8] we see that QT(-) is exact and so the torsion theory T is
exact.

(1.12) COROLLARY. / / r G R-iois is exact and stable and if M is a T-torsionfree
left R-module then R%(M) = 0 for all i ¥= 1.

PROOF. This is a direct consequence of Proposition 1.8 and Proposition 1.11.

(1.13) PROPOSITION. The following conditions on a stable torsion theory T £ R-tors
are equivalent:

( 1 ) T B exact;
(2) R%(M) = Qfor any left R-module M and for all i > 1;
(3) R2TT(M) = Qfor any left R-module M.

PROOF. (1) => (2): Let M be a left /{-module. Set M' = TT(M) and M" = M/M'.
Then we have a long exact sequence

0 - R°TT(M') - R°TT(M) - R°TT(M")

. R%(M") -» R2TT(M') -

By Proposition 1.4 we see that R'TT(M') = 0 for all / > 0 and by Corollary 1.12
we see that R'TT{M") - 0 for all / ^ 1. Therefore, by exactness, /?TT(M) = 0 for
all / > 1.

(2) => (3): This implication is trivial.
(3) =» (1): Let M be r-torsionfree and T-injective left .K-module. Then E(M) is

T-torsionfree and the short exact sequence

0 -> M -> E(M) -• E(M)/M -* 0
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induces a long exact sequence

» R°TT(E(M)/M) - R%{M) - R%(E(M))

- RXTT{E{M)/M) -» /?2rT(M)

where R°TT(E(M)/M) = 0 since E(M)/M is r-torsionfree by Proposition 5.1 of
[8] and where R2TT(M) = 0 by (3). Moreover, by Proposition 1.6 we see that
R]TT(E(M)) = Qr(E(M))/E(M) - 0. Therefore R]TT(E(A/)/Af) = 0. By Prop-
osition 1.6 this implies that E(M)/M is T-torsionfree and r-injective, which
establishes (1) by Proposition 16.1 of [8].

(1.14) EXAMPLE. Let / be an ideal of a ring R which is finitely-generated as a
left ideal of R. Then a left /^-module M is £(R/I)-torsion if and only if every
element of M is annihilated by a power of /. Therefore, in this situation, we see
that R"T^R/I)(M) is naturally isomorphic, as an abelian group, to
lim^Q Ext^(/?//*, M) for any nonnegative integer n. This shows that, in the

case of commutative noetherian rings, the functors R"Ti(R//)(-) coincide with the
local cohomology functors studied by Sharp [18]. In the noncommutative
noetherian case we obtain the local cohomology functors studied by Barou [3].

If / is an ideal of a left noetherian ring R then the torsion theory £(R/I) is
stable if and only if / has the Artin-Rees property with respect to every
finitely-generated left /^-module. That is to say, £(R/I) is stable if and only if for
every submodule N of a finitely-generated left /^-module M and for each natural
number n there exists a natural number h = h(n) for which IhM n N C I"N. [4]
This holds, for example, if R is a noetherian ring and if / is generated by a
centralizing family of elements (that is, if there exist elements /•,,... ,rm of / such
that the image of each r, is in the center of R modulo the ideal generated by
'•„••-,'•,-,) [3].

2. Various dimensions

Let T G fl-tors and let M be a left .R-module. We define the j-dimension of M,
denoted by dimT(M), as follows:

(l)If supp(M) n P(T) = 0 setdimT(M) = - 1 ;
(2) If n is a nonnegative integer satisfying the following conditions:

(i) There exists a chain of the form mn < • • • < TT0 in P(T) with w0 G
supp(M); and

(ii) if h > n there exists no chain of the form -nh < • • • < TT0 in P(T) with
TT0 G supp(M),

then set dimT(M) = n;
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(3) otherwise, set dimT(M) = oo.
If [/is a nonempty subset of /?-tors we define dimu(M) to be sup{dimT(M) | T

eu}.
A ring R is left stable if and only if every element of R-tors is stable. Left stable

left noetherian rings behave very nicely in many ways and they are a convenient
generalization of commutative noetherian rings. It is therefore natural to look at
them in order to try and calculate that T-dimension of modules.

Let us recall a construction used in Chapter 12 of [11]. If T E i?-tors we can
define an ascending chain T0 < T, < • • • in R-tors, called the Gabriel filtration of
T, by setting T0 = T and T,, = T,_, V (V{£(M) | M is T,_,-cocritical}) for all
positive integers /'.

(2.1) PROPOSITION. Let R be a left stable left noetherian ring and let T G /?-tors.
For a r-torsionfree cocritical left R-module N and for a positive integer i the
following conditions are equivalent:

{2)Ifirh< ••• <iro = x(N) is a chain in P ( T ) then h < ;.

PROOF. We will proceed by induction on /. First let us consider the case of
/ = 1.

Assume (1). Since N is r-torsionfree and T,-torsion, there must exist a T-cocriti-
cal left /J-module M such that N is not £( M )-torsionfree. By stability, this implies
that N is £(M)-torsion and so there exists a nonzero i?-homomorphism a from a
submodule M' of M to N. Since TV is r-torsionfree, the map a must be monic.
Since N is uniform, this implies that NT is isomorphic to a large submodule of N
and so x(A^) = x(M'a) = x(M') = x(M). Thus, by Proposition 2.5.16 of [17] we
see that x ( ^ ) is a minimal element of P ( T ) , proving (2). Conversely, assume (2).
If x(-W) is a minimal element of P ( T ) then by Proposition 2.5.16 of [17] there
exists a r-cocritical left /^-module M satisfying x(^) — x(M). Hence N is
isomorphic to a submodule of E(M) which, by the definition of T, and by
stability, is T,-torsion. This proves (1).

Now assume that / > 1 and that for any j < / we have already established the
equivalence of (1) and (2).

Assume that N satisfies (1). If £(N) < T,_, then (2) follows by the induction
hypothesis. Therefore we can assume that TV is not T;_,-torsion. By stability, this
implies that is is T,_,-torsionfree. As in the proof of the case / = 1, this implies
that x(N) is a minimal element of P(T, ,). Therefore, without loss of generality,
we can assume that N is in fact rt_ ,-cocritical. If x(N) = TT0 > • • • > mh is a chain
of torsion theories in P ( T ) then, by stability, w, is of the form x(N'), where N' is a
proper homomorphic image of a submodule of N. In particular, N' is rj_l-torsion
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and so, by the induction hypothesis, h *£ / — 1. This proves (2). Conversely,
assume (2). If there is no chain in P ( T ) of the form

then (1) follows by the induction hypothesis. Assume therefore that such a chain
exists. Let N' be a proper homomorphic image of N. If M is a cocritical
submodule of N' then x(AO > x(M). Therefore, if irh < • • • < w0 = x(M) is a
chain of torsion theories in P ( T ) we must have h < i' — 1. By the induction
hypothesis, this means that M is T,_ ,-torsion and so N' is T,_ ,-torsion. Hence N is
either T(_ ,-torsion or Ti_i-cocritical. In either case, (1) follows.

(2.2) P R O P O S I T I O N . / / R is a left stable left noetherian ring and ifrE: /?-tors then
for a left R-module M and for a nonnegative integer n the following conditions are
equivalent:

(2) dimT(Af) = n.

P R O O F . (1) =>(2): By (1), M is not rn-torsion and so there exists a cocritical
submodule N of M which is not Tn-torsion and hence is Tn-torsionfree. On the
other hand, M is TM+,-torsion and hence so is N. Thus, by Proposition 2.1,
X(A^) E s u p p ( M ) and there exists a chain of the form wn < • • • < IT0 = x ( ^ ) m

P ( T ) . This proves that d i m T ( M ) 5= n. Now assume that there exists an element IT
of s u p p ( M ) and a chain -n'h < • • • < TTQ = ir in P ( T ) with h> n. Then M is not
7r-torsion and so there exists a cocritical submodule N' of M which is not
7T-torsion and hence is 7r-torsionfree. This implies that x ( ^ ) ^ ""• By Proposition
2.1, this implies that N' is not Tn +,-torsion, and so neither is M. This contradicts
(1), proving (2).

(2) => (1): F rom (2) we deduce that if iV is a cocritical submodule of M then N
is either r-torsion or for any chain mh < • • • < w0 = x ( ^ ) m P ( T ) w e n a v e

h < n + 1. Therefore, by Proposition 2.1 we see that every such module N is
r n + , - tors ion . By stability, this implies that M is Tn +,-torsion and so £ ( M ) *= Tn+1.
On the other hand, there exists an element n of s u p p ( M ) and a chain irn < •• • <
7r0 = IT. Since M is not w-torsion, there exists a cocritical submodule iV' of M
which is not 7r-torsion and hence is 7r-torsionfree. Therefore x ( N ' ) > ir. Indeed,
by the condition on the lengths of chains we must in fact have equality here. By
Proposition 2.1, this means that £(iV') 4 T

n and so | ( A f ) ^ rn.

We will say that a ring R is left effective if and only if it is left stable, left
noetherian, and every element of R-sp is exact. By Proposition 17.1 of [8] we see
that, in the presence of the noetherian condition, this last condition is equivalent
to the condition that every element of R-sp is perfect. Commutat ive noetherian
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rings are clearly left effective. By Example 6.16 of [12] and by Proposition 9 of
[22] we see that left noetherian Azumaya algebras are left effective.

(2.3) EXAMPLE. Let R be a prime hereditary noetherian quasi-local ring which is
a bounded order in its classical ring of fractions. We claim that R is left effective.
Indeed, since R is left hereditary, we know that every element of ^?-tors is exact
by Proposition 16.4 of [8]. Moreover, by Proposition IV.1.7 of [15] we see that R
is fully left bounded and left noetherian so the map P \~* \(R/P) is a bijective
correspondence between the set spec(/?) of all prime ideals of R and R-sp. See
Propositions 6.7 and 6.11 of [11] for details. By Proposition IV. 1.1 of [15] we see
that the Goldie torsion theory in R-IOTS is faithful and so it equals the Lambek
torsion theory x (^ ) - Therefore x ( ^ ) is stable. If R is not simple then by the
quasi-locality of R we see that the Jacobson radical J(R) is the only nonzero
prime ideal of R and that x(R/J(R)) = l> since any nonzero ideal of R is a
power of J(R). (See pages 50-51 of [15].) Therefore x(R/J(R)) is also stable,
proving that R is left stable and so left effective. Examples of rings of this type
can be found in sections 1.8 and III.4 of [15].

(2.4) PROPOSITION. Let R be a left effective ring and let T e /?-tors. If M is a left
R-module and if i is a natural number satisfying R'TT(M) =£ 0 then i < dimT(M) +
1.

PROOF. Set k = dimT(M). If k = oo the result is trivial so we may assume that
k is finite. If k = -1 the result follows from Proposition 1.4 and so we may
assume that k is nonnegative. Since M is the direct union of the directed system of
its finitely-generated submodules, it suffices to show that R'TT(M') = 0 for all
i > k + 1 and for any finitely-generated submodule M' of M. Thus, without loss
of generality, we can assume that M itself is finitely-generated and hence
noetherian. Since R is left noetherian, it is surely left definite and so every
nonzero homomorphic image of M has a nonzero cocritical submodule. Since M
is assumed to be noetherian, this means that we can find a chain

0 = #„ C tf, C • • • C JVH = Af

of submodules of M satisfying the condition that Nh = Nh/Nh_x is cocritical for
all 1 *£ h *£ M. To prove the proposition, it suffices to show that R'TT(Nh) = 0 for
all 1 < h «£ u and all i > k + 1. To do this, we proceed by induction on k.

First assume that k — 0. If A^ is T-torsion the desired result follows from
Proposition 1.4. Therefore assume that it is not T-torsion. By stability, this implies
that Nh is r-torsionfree and so irh = x(Nh) E P ( T ) . By Proposition 1.11, we know
that R'T^(E^(Nh)) = 0 for all / > 0. By Proposition 1.10, this implies that
R%(E^(Nh)) = 0 for all / > 0. Set N'h = E^(Nh)/Nh. We claim that N'h is

https://doi.org/10.1017/S1446788700025647 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025647


174 Jonathan S. Golan and Jacques Raynaud [ 13)

r-torsion. Indeed, if w G supp(A^) D P ( T ) then IT G supp(£w(A^)) = supp(A^)
so, by stability and by the uniformity of Nh, we see that Nh must be w-torsionfree.
Therefore wh = x(Nh) > ""• Since A^ is in fact 7rA-torsion by construction, this
inequality must be strict. But this is a contradiction for, by construction, irh is a
minimal element of P ( T ) D supp(Af). Therefore IT & P ( T ) . Thus we see that A^ is
IT-torsion for all IT £ P ( T ) and so N'h is T-torsion, as claimed.

The short exact sequence 0 -> Nh -> E^(Nh) -» N'h -> 0 induces a long exact
sequence

0 - R°TT(Nh) - R°Tr(EWt(Nh)) - R°TT{Nfi - R%{Nh)

- R%{En(Nh)) - R%(Nfi - R2Tr{Nh) - • • •
with respect to which we note the following:

(1) R°TT(Nh) = R°Tr(E^(Nh)) = 0 by T-torsionfreeness;
(2) R%(Enk(Nh)) = 0 for all i > 0, as remarked above;
(3) N'h is r-torsion by the above claim and so /?TT(A^) = 0 for all / > 0 by

Proposition 1.4.
Therefore, by exactness, R'Tr(Nh) = 0 for all i > 1, which is what we wanted to
show.

Now assume that k > 0 and that for any left /^-module M" satisfying
dimT(M") < k we have R%(M") = 0 for all / > dimT(M")_+ 1. In particular,
we know that R%(Nh) = 0 whenever i> k + I and dim(AfA) < k so we need
consider only those indices h for which dimT(A7

A) = k. Moreover, as before, we
can assume that A^ is r-torsionfree.

We claim that in this situation A^ = Eir(<Nh)/Nh satisfies dimT(A^) < k. In-
deed, since dimT( A^) = k we see that Nh is 8{U)-torsion, where U is the subset of
P ( T ) consisting of those elements IT' for which any chain of the form <nt < • • • <
wo = IT' in P ( T ) satisfies / =£ k. By stability, EVh(Nh) is also 8(U)-torsion and
hence so is A^. This is equivalent to the condition that 0 ¥= ass( N'h/N) C U for
every proper submodule N oi N'h. But for each such Af we have ass(A^/Ar) C

C supp(A^) C suppC^/A^,)) = {»' G /?-sp | m' < vh}. Thus if m G
we have w < irh and in fact we cannot have equality here since A^ is

7rA-torsion but not w-torsion.

Let U' be the set of those elements IT' in U for which there is no chain of the
form wk< • • • < 7T0 = IT' in P ( T ) . Since irh G U, we see by the above that IT G U'.
Thus for any proper submodule N of A^ we have 0 ¥= assiN^/N) C U'. This
shows that A^ is 8(f/')-torsion and so dimT(A^) < k, as claimed. By the induction
hypothesis, this means that /?TT(A^) = 0 for all / > k. Again, as before,
R'TT(E^(Nh)) = 0 for all / s= 0 and so from the long exact sequence

• • • - R'TT{N'h) - Ri+X{Nh) - Ri+lTT(EWt{Nh))

we deduce that R%(Nh) = 0 for all i > k + 1.
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(2.5) PROPOSITION. Let R be a left effective ring and let r e R-tors. If M is a left
R-module and ifi is a natural number satisfying R'TT(M) ¥= 0 then i < dimV(T)(M).

PROOF. Set k = dimV(T)(M). If k is infinite then we are done trivially and so we
can assume that k is finite. Assume k — - 1 . Then supp(A/) C P(T) . If

a0 a,
0 -> M -> Eo -> Ex -* E2 ->

is a minimal injective resolution of M then for all / ^ 0 we have supp(£,) C
supp(M) C P(T). The ring R is left noetherian and so, in particular, left definite.
Therefore each Ei is T-torsionfree and so R'Tr(M) = 0 for all / > 0.

We are left to consider the case of k nonnegative. As in the proof of
Proposition 2.4, we can assume without loss of generality that M is a noetherian
left .R-module. There therefore exists a chain

0 = No C N{ C • • • C Nu = M

of submodules of M satisfying the condition that Nh = Nh/Nh_x is cocritical for
all 1 *s h < u. To prove the proposition, it therefore suffices to show that
R'Tr(Nh) = 0 for all 1 < h < u and all i > k. To do this, we proceed by induction
on A:.

Assume that k = 0 and let 1 < h < u. If Nh is not r-torsionfree then it is
r-torsion and we are done by Proposition 1.4. Therefore assume that Â  is
T-torsionfree and consider a minimal injective resolution

0 -» Nh -> £0 -»£, -• £2 -»

of iVA. To show that /JTT(J^) = 0 for all i > 0 it suffices to show that £, is
T-torsionfree for each / > 0. Set mh — x(N>,)-

We first note that supp(A^) C P(T). Indeed, if this were not the case then there
would exist a torsion theory IT belonging to supp(NA) n V(T). Since Nh is not
w-torsion, it is w-torsionfree and so IT < <nh, contradicting the assumption that
dimw(M) < dimV(T)(M) = 0. We next note that by Proposition 2.7.16, 2.7.4, and
2.6.1 of [17] we have supp(Ar

A) = {IT G R-sp \ IT' < irh). Thus, in particular, we see
that supp(£0) = supp(A^) and if / > 0 then supp(£,) = supp(£,_,/ker(«,_,)) C
supp(£,_,) and so supp(£,) C supp(iVA) c P(T) for all / > 0. Since R is left
noetherian and so, in particular, left definite, this implies that each Et is
T-torsionfree and so RTT(Nh) = 0 for all i > 0.

Now assume that k > 0 and that for any left .R-module M" satisfying
dimV(T)(M") < k we have /?TT(A/") = 0 for all / > dimV(T)(Af"). In particular,
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we know that R'TT(Nh) = 0 whenever / > k and dimV(T)(JVA) < k. Assume there-
fore that 1 < h < u satisfies dimV(T)(A^) — k. If Nh is T-torsion the desired result
follows from Proposition 1.4. Hence we can assume without loss of generality that
Nh is T-torsionfree.

Consider the exact sequence of left /^-modules

in which N'n = E^Nh)/Nh. Note that s u p p ( ^ ) C supp( £„/#„)) = supp(A^) =
{IT' G R-sp | IT' =£ 7Th}. Moreover, N'h is T^-torsion so if IT G V ( T ) n supp(A^) then
dim^(A^) < dimn(Nh) ^ A: whence dimV(T)(iV^) < A:. Hence, by the induction
hypothesis, we see that R'TT(Nl,) = 0 for all / > k. But the short exact sequence
(*) induces a long exact sequence

- R1+X(Nh)

Since R'TT(E^(Nh)) = 0 for all / s= 0 by Proposition 1.11 and since R'Tr(N'h) - 0
for all / > A:, this implies that R'TT(Nh) = 0 for all;' > k, which is what we needed
to prove.

Note that, for any left /?-module M, d i m ^ M ) is precisely the torsion-theoretic
Krull dimension (or TTK-dimension) of M as introduced in [9] and [13] and
developed in detail in [11]. By Proposition 13.3 of [11] we see that if R is left
effective then this coincides with the Gabriel dimension of M. Moreover, it is
clear from the definitions that dim( / (M) < dim^Af) for any nonempty subset U
of R-tors. We therefore obtain the following immediate corollary of the previous
result.

(2.6) COROLLARY. Let R be a left effective ring and let T G /Mors. / / M is a left
R-module and if i is a natural number satisfying R'Tr(M) ¥= 0 then i is no greater
than the Gabriel dimension of M.
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