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In 2017, Brosseau & Vlahovska (Phys. Rev. Lett, vol. 119, no. 3, 2017, p. 034501)
found that, in a strong electric field, a weakly conductive, low-viscosity droplet
immersed in a highly conductive, high-viscosity medium formed a lens shape, and
liquid rings continuously detached from its equatorial plane and subsequently broke
up into satellite droplets. This fascinating multiphase electrohydrodynamic (EHD)
phenomenon is known as droplet equatorial streaming. In this paper, based on the
unified lattice Boltzmann method framework proposed by Luo et al. (Phil. Trans.
R. Soc. A Math. Phys. Engng Sci, vol. 379, no. 2208, 2021, p. 20200397), a novel
lattice Boltzmann (LB) model is constructed for multiphase EHD by coupling the
Allen–Cahn type of multiphase LB model and two new LB equations to solve the
Poisson equation of the electric field and the conservation equation of the surface
charge. Using the proposed LB model, we successfully reproduced, for the first time,
the complete process of droplet equatorial streaming, including the continuous ejection
and breakup of liquid rings on the equatorial plane. In addition, it is found that,
under conditions of high electric field strength or significant electrical conductivity
contrast, droplets exhibit fingering equatorial streaming that was unknown before.
A power-law relationship is discovered for droplet total charge evolution and a theoretical
model is then proposed to describe the droplet radius and height over time. The breakup
of liquid rings is found to be dominated by capillary instability, while the breakup of
liquid fingers is governed by the end-pinching mechanism. Finally, a phase diagram
is constructed for fingering equatorial streaming and ring equatorial streaming, and a
criterion equation is established for the phase boundary.
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1. Introduction

The foundational studies on multiphase electrohydrodynamics (EHD) can be traced back
to the work of Rayleigh (1882), who discovered that a charged drop exhibits instability
and the ejection of satellite droplets from the cone of the droplet, a phenomenon known as
Coulomb fission (Stuart 1985; Duft et al. 2003; Fernández de la Mora 2007). Subsequently,
Taylor (1964) discovered that, under a strong external electric field, a liquid cone would be
stretched parallel to the field, generating jet streaming from the conical tip. The seminal
review by Melcher & Taylor (1969) has generated considerable research interest in the
field. In particular, Allan et al. (1962) found that a weakly conductive dielectric droplet
subjected to an electric field not only deforms parallel to the field (prolate) but also deforms
perpendicular to the field direction (oblate). Over the subsequent decades, continuous
experimental (Ha & Yang 2000; Reznik et al. 2004; Achtzehn et al. 2005) and theoretical
research (Stuart 1985; Reznik et al. 2004; Betelú et al. 2006) has provided new physical
insights, establishing the foundation for wide application of multiphase EHD (Zhang et al.
2023). One of the most representative applications of multiphase EHD is electrospray
mass spectrometry (Fenn et al. 1989, 1990), which contributed to Finn winning the Nobel
Prize in Chemistry in 2002. In contrast to the theoretical and experimental advancements,
numerical simulation research on multiphase EHD has progressed relatively slowly
(Vlahovska 2019; Wagoner et al. 2021). While Taylor, McEwan & de Jong (1966) first
proposed the leaky dielectric model (LDM) in their paper over 50 years ago, simulations
specifically addressing Coulomb fission did not appear until 2008 (Collins et al. 2008).

Extensive research has been conducted on the prolate breakup of the droplets
(Vlahovska 2019), especially for Coulomb fission (Fernández de la Mora 2007). Rayleigh
(1882) predicted that instability occurs when the droplet carries a charge greater than qc =
8π

√
γ εR3

0 (R0 is the initial radius of the droplet, ε is dielectric permittivity, γ is surface
tension). Subsequent experiments (Bentley & Leal 1986; Karyappa, Deshmukh & Thaokar
2014) revealed that, besides the jetting from the tips, prolate deformation of droplets can
result in various breakup outcomes, such as lobes breaking and open jets. Additionally,
some experimental studies researched Coulomb fission for non-Newtonian droplets (Ha &
Yang 2000; Mandal & Chakraborty 2017) and droplets containing surfactants (Eggleton,
Tsai & Stebe 2001; Luo et al. 2017). Another interesting topic in Coulomb fission is the
charge and mass loss of the droplet (Fernández de la Mora 2007). Duft et al. (2003)
first provided high-resolution experimental images for charged droplet Coulomb fission,
indicating that the droplet’s charge loss is approximately 33 % of the total charge, with a
mass loss less than 1 %. A subsequent numerical study by Gawande, Mayya & Thaokar
(2017) has confirmed this experimental discovery. Interest in Coulomb fission has sparked
numerous numerical studies (Giglio et al. 2008; Burton & Taborek 2011; Mandal &
Chakraborty 2017; Sengupta, Walker & Khair 2017; Li et al. 2023) aiming to simulate
the droplet prolate breakup in an electric field. Collins et al. (2008, 2013) first proposed
a scaling law for the radius of ejected droplets and the charge quantity in EHD tip
streaming. Subsequently, Gawande, Mayya & Thaokar (2019, 2022) investigated the effect
of electrical conductivity on the breakup mechanisms for prolate deformation of droplets.
Sengupta et al. (2017) explored the impact of charge convection on the breakup mechanism
of charged droplets, suggesting that the tip-streaming phenomenon occurs only with finite
electric conductivity.

Unlike the prolate fission of droplets in an electric field, the oblate fission of droplets
has only gained widespread attention in recent years (Vlahovska 2019; Marin 2020).
Brosseau & Vlahovska (2017) in their groundbreaking experiment discovered that, in a
strong electric field, a droplet placed in a medium with higher electric conductivity and
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permittivity, and lower viscosity, experiences central collapse, leading to an uncontrolled
fragmentation. Conversely, when the droplet’s viscosity is orders of magnitude smaller
than the external medium, it forms a lens-like shape and produces continuously detached
liquid rings at the equator. As the liquid rings break, over a hundred satellite droplets
are generated in the equatorial plane of the mother droplet, a phenomenon now known
as equatorial streaming (Vlahovska 2019; Marin 2020). In fact, Mohamed et al. (2016)
have found similar phenomena before, where they observed a fragmented liquid ring to
form around the droplet perpendicular to the imposed field. This fascinating phenomenon
quickly attracted a great deal of interest from researchers due to its ability to produce
a large number of size-controllable satellite droplets. Wagoner et al. (2020) solved the
steady-state solutions of the LDM equations and obtained the steady shapes of collapsed
and lens-shaped droplets, providing a theoretical explanation for the different breakup
mechanisms. After that, Firouznia et al. (2022) used linear analysis to explore the nonlinear
effects generated by the coupling of flowing interfaces and the charge dynamics. More
recently, Wagoner et al. (2021) extended their study to transient simulations, indicating
that the lens-shaped droplet becomes unstable only with charge relaxation and charge
convection. However, research on droplet equatorial streaming is still in its early stage,
and there is a lack of a comprehensive understanding of the underlying physics (Wagoner
et al. 2021). It is also noted that numerical studies replicating the detachment and breakup
of liquid rings in equatorial streaming have not been reported.

Currently, simulation methods for multiphase EHD problems mainly include the
boundary element method (Betelú et al. 2006; Garzon, Gray & Sethian 2014; Gawande
et al. 2017, 2019), the finite element method (Collins et al. 2008, 2013; Tian et al. 2022;
Misra & Gamero-Castaño 2023), EHD–volume of fluid (VOF) method (López-Herrera,
Popinet & Herrada 2011; López-Herrera et al. 2015) and the lattice Boltzmann method
(LBM) (Zhang & Kwok 2005; Gong, Cheng & Quan 2010; Cui, Wang & Liu 2019; Liu,
Chai & Shi 2019; Luo et al. 2020). Collins et al. (2008, 2013) successfully employed the
finite element method to simulate Coulombic fission for the first time. However, simulating
droplet fission in an electric field remains a highly challenging task. For example,
boundary element methods often suffer from numerical instability, partly because the
droplet’s tip becomes singular at the critical moment of fragmentation, where the curvature
and the capillary force become infinite. Therefore, existing studies (Gawande et al.
2017; Sengupta et al. 2017) typically focus on the behaviours of droplets at the critical
moments of fission. The EHD–VOF model has been widely employed in simulating
electrohydrodynamic atomization phenomena (López-Herrera et al. 2011; Herrada et al.
2012). Mohamed et al. (2016) investigated the fragmentation of suspended droplets above
the critical electric field through experiments and numerical simulations, and observed
the novel splashing and split-splashing phenomena. They successfully reproduced the
droplet splashing using an axisymmetric EHD–VOF model. Recently, López-Herrera,
Herrada & Gañán-Calvo (2023) numerically investigated the cone-jet electrosprays of a
fully dissociated electrolyte, providing a detailed discussion of the ion concentration of
effects.

In existing lattice Boltzmann simulations, charge relaxation and charge convection are
usually ignored, with a focus on the situation of infinite electric conductivity (Cui et al.
2019; Liu et al. 2019). Also, due to the high computational cost of solving the Poisson
equation for the electric field, the majority of simulations are limited to two dimensions
(Zhang & Kwok 2005; Cui et al. 2019; Liu et al. 2019; Luo et al. 2020). There is an
urgent need to develop a new numerical methodology to simulate the entire process
of droplet equatorial streaming. Recently, Luo, Fei & Wang (2021) proposed a unified
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lattice Boltzmann model (ULBM) that integrates commonly used collision operators into
a unified framework. The ULBM allows for easy switching between different advanced
collision operators while facilitating the extension of LB models for new multiphysics
phenomena. Due to its generality and flexibility, the ULBM is well suited for the
multiphase flow and coupled multiphysics problems (Wang, Fei & Luo 2022b; Wang et al.
2023).

This research aims to numerically investigate the droplet equatorial streaming in
an electric field, filling the gap in the simulation of the entire process of this novel
phenomenon. In particular, the paper attempts to answer three main questions: (i) whether
different breakup mechanisms exist for droplets in a wider range of parameters than in
experiments, (ii) how the radius and charge of droplets evolve during equatorial streaming
and (iii) what the mechanisms are for the breakup of the liquid ring and the distribution
of satellite droplets. To address these questions, a novel multiphase EHD model that
considers charge relaxation and charge convection is developed based on the ULBM
framework. In order to capture the dynamics of the equatorial streaming process of the
entire droplet, fully three-dimensional simulations are conducted. In the following § 2,
the governing equations of the problem and the proposed LBM model are introduced.
Comprehensive validations and sensitivity analyses of the model are described in § 3. In
§ 4, we systematically investigate the equatorial flow of liquid droplets, focusing on the
breakup outcomes, dynamic evolution and the generation of satellite droplets for a wider
range of operation parameters. The conclusions of this study are presented in § 5.

2. Physical and numerical models

2.1. Governing equations for EHD
In this work, the governing equations involving EHD have the following assumptions.
First, both the internal medium and the external medium of the droplet are immiscible
and incompressible. Second, consistent with experiment (Brosseau & Vlahovska 2017),
both media are treated as Newtonian fluids with constant physical properties without the
influence of gravity. Thirdly, the two-phase EHD is described by the LDM, where the
surface charge is treated as the volumetric charge within the interfacial diffusion layer.
We assume charge accumulation at the phase interface while no charges exist in the bulk
fluid. On the interface, a balance is achieved among surface charges through a competition
between the ohmic conduction mechanism, the charge convection mechanism and charge
diffusion. To simulate the two-phase flow, the phase-field model is employed, and an
improved conservative Allen–Cahn (AC) equation, which was originally proposed in the
work of Allen & Cahn (1979), is used for interface tracking (Jain 2022; Liang et al. 2023)

∂φ

∂t
+ ∇ · (φu) = ∇ · Mφ

(
∇φ − n

w

[
1 − tanh2

(
2T
w

)])
, (2.1)

where φ is the phase indicator, for the heavy phase φh = 1.0 and for the light phase φl = 0,
with φ0 = (φh + φl)/2 = 0.5 indicating the position of the interface. Also, n is the unit
vector normal to the interface, which is calculated by n = ∇φ/|∇φ|, Mφ is the mobility
and w stands for the interface thickness; u = [ux, uy, uz] is the fluid velocity. Different
from the traditional AC equation, a signed-distance function T is introduced to avoid any
jumps or discontinuities at the interface, where

T = w
4

ln
(

φ

1 − φ

)
. (2.2)
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For the phase-field multiphase model, the conservative AC equation is coupled
with incompressible Navier–Stokes (NS) equations, and the continuity and momentum
equations for incompressible multiphase flows can be expressed as (Unverdi & Tryggvason
1992)

∇ · u = 0,
∂(ρu)
∂t

+ ∇ · (ρuu) = −∇P + ∇ ·
(
ρν(∇u + ∇uT)+ ρ

(
νb − 2

3
ν

)
(∇ · u)I

)
+ F s + F e,

⎫⎬
⎭

(2.3)
where ρ indicates the fluid density, ν is the fluid kinematic viscosity, νb stands for the
non-hydrodynamic bulk viscosity and P is the pressure; F s, F e are the surface tension and
external electric force, respectively,

F s = μφ∇φ, (2.4a)

F e = ρeE − 1
2 E2∇ε, (2.4b)

where μφ = 4β(φ − φl)(φ − φh)(φ − φ0)− k∇2φ is the chemical potential, and the
parameters β = 12γ /w and k = 3γw/2 are related to the interface thickness w and the
surface tension γ . The first term in external electric force F e stands for the Coulomb force
and the second term represents the dielectric force (Melcher & Taylor 1969; Tomar et al.
2007).

For the electric field, the governing equation of the field strength follows Gauss’s law

∇ · (ε∇ψ) = −ρe, (2.5)

where ψ is the electric potential, and ρe is the charge density. The electric field strength is
given as

E = −∇ψ. (2.6)

In this work, we consider a non-zero bulk charge model. The charge is represented by
charge density ρe, which indicates the concentration of all existing ions (Gañán-Calvo
et al. 2018). The evolution of charge density is resolved on the phase diffusion interface.
Similar charge density assumptions have been successfully applied in modelling using
the EHD–VOF method (López-Herrera et al. 2011). The governing equation for the charge
density evolution can be described as the following charge conservation equation (Melcher
& Taylor 1969; Vlahovska 2019):

∂ρe

∂t
+ ∇ · (ρeu)− ∇ · (σ∇ψ)− α∇2ρe = 0, (2.7)

where α is the charge diffusion number and σ is the fluid electric conductivity. From the
left to the right of the above equation, the first term stands for the charge relaxation, the
second term accounts for charge convection, the third term stands for the ohmic conduction
and the last term represents the charge diffusion. By introducing characteristic variables
lch = R0, uch = εexR0E2

0/μex, tch = tdiff = μexR0/γ , ρech = εexE0, σch = σex and αch =
εexR2

0E2
0/μex, where the subscript ex refers to the external phase of the droplet, and E0 is

the electric field strength, the above charge conservation equation can be normalized as

te
tdiff

∂ρ∗
e

∂t∗
+ te

tconv
∇ · (ρ∗

e u∗)− ∇ · (σ ∗∇ψ∗)− α∗∇2ρ∗
e = 0, (2.8)

where te = ε0/σ0 stands for the time scale of charge relaxation, tconv = R0/uch stands for
the time scale of charge convection and α∗ = αμ0/(ε0R2

0E2
0) is the dimensionless charge
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diffusion number. Previous studies (Collins et al. 2008, 2013) indicated that, when α∗ is
less than 10−3, charge diffusion has no significant impact on the results; in the following
simulations α∗ is set as 10−4.

In most previous simulations of two-phase EHD, the charge density is assumed to
be relaxed immediately as the electric field changes, i.e. te → 0 (Luo et al. 2020).
Subsequently, the charge relaxation and the charge convection are ignored. Considering
that the charge diffusion is usually negligible compared with the ohmic conduction,
the above charge conservation equation can be simplified as ∇ · (σ∇ψ) = 0. However,
Wagoner et al. (2021) theoretically proved that the instability at the equator is only
triggered when considering the convection and relaxation of surface charge. Additionally,
both Sengupta et al. (2017) and Wagoner et al. (2020) reported that the jetting of
sub-droplets only occurs under finite electric Reynolds numbers (Ree = te/tconv). When
Ree approaches 0, the droplet exhibits an end-pinching state with conical ends. In this
study, we focus on the cone jetting at the equator, which is a problem with Ree in the range
of 10 ∼ 105, tdiff ∼ 10−3 s and tconv ∼ 10−4 s are of similar magnitude. Therefore, the
charge relaxation and charge convection dominate over charge diffusion, and the complete
charge conservation equation (2.7) will be solved.

2.2. The ULBM algorithm for the governing equations
In this work, the ULBM framework proposed by Luo et al. (2021) is employed to solve
the above governing equations. Since the introduction of the ULBM framework, it has
been widely applied in simulating various multiphase flows (Yang et al. 2021; Wang et al.
2022b, 2023), and phase-change problems (Wang et al. 2022a; Fei et al. 2023). As a
general framework covering different collision models, multiphase flow models and force
schemes, it has inherent advantages in simulating multiphase flows coupled with multiple
physical fields. The general collision equation for the ULBM model can be expressed as
(Luo et al. 2021; Wang et al. 2022b)

fi(x + ei�t, t +�t) = f ∗
i (x, t) = M−1N−1(I − S)NM fi(x, t)

+ M−1N−1SNM f eq
i (x, t)+�tM−1N−1(I − S/2)NMCi, (2.9)

where fi and f ∗
i are the pre-collision and post-collision distribution functions,

respectively, f eq
i is the equilibrium distribution function and Ci is the external forcing

term; ei and �t = 1 are the discrete velocities and the time step, respectively, and I stands
for the unit matrix.

The generality and universality of the ULBM model are achieved through the
implementation of three different matrices: the transformation matrix M is used to
transform the distribution functions ( fi) to their raw moments (m), and the shift matrix
N is used to convert the raw moment collision into the central moment space (m̃), the
transformation/shift can be expressed as (Fei & Luo 2017; Fei, Luo & Li 2018)

m̃ = Nm = NM fi. (2.10)

Finally, the relaxation matrix S contains the relaxation parameters which correspond
to various models. Through these three matrices, the ULBM model can facilitate the
switch between single-relaxation-time collision models (SRT), multiple-relaxation-time
collision models (MRT) (Fei et al. 2019), cascaded lattice Boltzmann models (Fei et al.
2018) and entropy lattice Boltzmann models (Karlin, Bösch & Chikatamarla 2014; Bösch,
Chikatamarla & Karlin 2015).
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In this work, the recently proposed non-orthogonal MRT phase-field ULBM model
(ULBM (NMRT) PF) by Wang et al. (2023) is adopted to address the aforementioned
phase field multiphase model. To capture the realistic dynamic behaviours of droplets
in three dimensions, the three-dimensional nineteen-velocity (D3Q19) discrete velocity
model is adopted. Two different distribution functions under the raw moment space are
introduced to solve the conservation AC equation and the incompressible NS equations

m∗
φ = M fφ,i = (I − Sφ)mφ + Sφmeq

φ +�t
(

I − Sφ
2

)
Rφ, (2.11a)

m∗
g = Mgi = (I − Sg)mg + Sgmeq

g +�t
(

I − Sg

2

)
Rg, (2.11b)

where m∗
φ = M fφ,i is for conservation AC equation and m∗

g = Mgi is for incompressible
NS equations. For the non-orthogonal MRT collision operator, the shift matrix N = I and
the transformation matrix M is chosen as the simplified non-orthogonal moment set which
was originally proposed by Fei et al. (2018, 2019). In the above equation, meq and R
are the discrete equilibrium moment set and discrete forcing term in the raw moment
space, respectively. The details of the ULBM (NMRT) PF model can be found in the
supplementary material S1, available at https://doi.org/10.1017/jfm.2024.441, including
explicit expressions of meq

φ , Rφ , meq
g and Rg. As proven in our previous work (Wang et al.

2023), the above ULBM (NMRT) PF model can accurately recover the target NS equations
and interface tracking equation. The ULBM (NMRT) PF has been extensively validated
for various complex multiphase flow phenomena such as high density ratio droplet splash
and jet spray, demonstrating excellent agreement with experimental results.

Next, the ULBM (NMRT) model is employed to solve the Poisson equation (2.5) for the
electric field and the charge conservation equation (2.7) for surface charge. For the charge
conservation equation, similar to the AC equation, the D3Q19 non-orthogonal model is
utilized. Regarding its collision in the raw moment space, it has

m∗
ρe

= M f ∗
ρe,i = (I − Sρe)mρe + Sρemeq

ρe
+�t

(
I − Sρe

2

)
Rρe

+�tCρe + 0.5�t2∂t(Cρe). (2.12)

For typical convection–diffusion equations such as (2.7), the equilibrium distribution
function can be written as (Li et al. 2016; Lei, Wang & Luo 2021)

f eq
ρe,i = ρeω(|ei|2)

[
1 + ei · u

c2
s

]
, (2.13)

where u = [ux, uy, uz] are the velocity components in the x, y and z directions, respectively.
The weights are ω(0) = 1/3, ω(1) = 1/18 and ω(2) = 1/36 for the D3Q19 model, and
Cs = 1/

√
3 stands for the lattice sound speed. The corresponding equilibrium moment set

is

meq
ρe

= M f eq
ρe,i =

[
ρe, ρeux, ρeuy, ρeuz, 0, 0, 0, ρe, 0, 0, ρeuxc2

s , ρeuxc2
s , ρeuyc2

s , ρeuzc2
s ,

ρeuyc2
sρeuzc2

s , ρec4
s , ρec4

s , ρec4
s

]T

. (2.14)
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External force terms are introduced to balance high-order time-related error terms

Rρe =
[

0, ∂t(ρeux), ∂t(ρeuy), ∂t(ρeuz), 0, 0, 0, 0, 0, 0, ∂t(ρeux)c2
s , ∂t(ρeux)c2

s ,

∂t(ρeuy)c2
s , ∂t(ρeuz)c2

s , ∂t(φρeuy)c2
s , ∂t(φρeuz)c2

s , 0, 0, 0

]T

. (2.15)

The time derivative is calculated by the Eulerian scheme, i.e.

∂t(φu) = ρe(t)u(t)− ρe(t −�t)u(t −�t)
�t

. (2.16)

Here, Cρe is the additional term for ohmic conduction, which is given as

Cρe = Mω(|ei|2)Cρe,i =
[ ∇ · (σ∇ψ), 0, 0, 0, 0, 0, 0,∇ · (σ∇ψ), 0, 0, 0, 0,

0, 0, 0, 0,∇ · (σ∇ψ)c2
s ,∇ · (σ∇ψ)c2

s ,∇ · (σ∇ψ)c2
s

]T

.

(2.17)

For the ohmic conduction term, it can be expanded as ∇ · (σ∇ψ) = ∇σ∇ψ + σ∇2ψ .
In this paper, for the differential terms associated with solving the electric field, a
second-order lattice-based finite difference (FD) scheme is utilized for the solution, where

∇I =
∑

i

ω(|ei|2)I(x + ei)ei

c2
s

. (2.18)

Here, I represents the required differential terms (e.g. ψ , σ ). For the Laplacian term of the
electric potential ∇2ψ , through Gauss’s law, it is replaced as ∇2ψ = −(ρe + ∇ε∇ψ)/ε.
This transformation is to ensure a coupling between the Poisson equation and the charge
conservation equation. Simultaneously, it guarantees the suppression of charge convection
only at the phase interface, which can be a great challenge for the LB method since the
interface width is typically only 4 to 5 grid points.

Consistent with previous studies (Zhang & Kwok 2005; Liu et al. 2019; Luo et al. 2020),
a linear interpolation is employed for the dielectric permittivity at the interface, i.e.

ε = εl + φ − φl

φh − φl
(εh − εl), (2.19)

where εh and εl stand for the dielectric permittivity for the heavy phase and light phase,
respectively. Due to the linear relationship between ε and φ, the deviation of ε can be
directly achieved as ∇ε = ∇φ(εh − εl)/(φh − φl) for solving the Poisson equation and the
charge conservation equation. On the other hand, the subsequent simulations in this paper
will involve very large differences in electric conductivity. Therefore, in order to avoid
charge leakage, we innovatively use exponential interpolation to calculate the electric
conductivity at the interface, where

ln(σ ) = ln(σl)+ φ − φl

φh − φl
(ln(σh)− ln(σl)). (2.20)

Compared with the reciprocal interpolation (see, for example, Tomar et al. 2007; Misra
& Gamero-Castaño 2023), this exponential interpolation leads to a smoother transition
of the dielectric coefficient at the phase interface. Simultaneously, in the following
simulations, the viscosity difference between the inner and outer phases can reach
magnitudes of 102, with the maximum electric Reynolds number Ree being approximately
104. At such a high electric Reynolds number, charge leakage is prone to occur in
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the lower-viscosity phase. Considering that charge convection only occurs at the phase
interface, a smooth limiting function u′ = [1 − tanh(2w(φ − φ0))]u is introduced for the
velocity terms in (2.13) and (2.14) to eliminate charge convection in the bulk phase. In the
supplementary material S3, we compared the improvement in charge leakage achieved by
the above interfacial scheme with the linear interpolation approach.

The relaxation parameters are determined as sρe,1 = sρe,2 = sρe,3 = 1/(α/c2
s + 0.5).

Applying the Chapman–Enskog (CE) analysis in the supplementary material S2, the above
ULBM (NMRT) model can recover the target charge conservation equation (2.7) without
high-order error terms. Additionally, the remaining relaxation parameters within the
relaxation matrix Sρe can be chosen freely, e.g. 1 in our simulations. After the collision in
the raw moment space, the distribution function f ∗

ρe,i is reconstructed by f ∗
ρe,i = M−1m∗

ρe
,

the charge density can be calculated by

ρe =
∑

i

fρe,i. (2.21)

For the Poisson equation of the electric field, the three-dimensional seven-velocity
(D3Q7) SRT collision operator is employed for its computation. Due to the necessity of
internal iterations at each time step in solving the Poisson equation, the D3Q7 model is
sufficient to meet the accuracy requirement. The collision step can be expressed as

f ∗
ψ,i = fψ,i − 1

τψ
( fψ,i − f eq

ψ,i)+�t′Cψ,i + 0.5�t′2∂t(Cψ,i), (2.22)

where �t′ = 1 is the inner iteration time step, and the equilibrium distribution function is
(Chai & Shi 2008)

f eq
ψ,0 = (ω̃(|e0|2)− 1)ψ,i = 0;

f eq
ψ,i = ω̃(|ei|2)ψ, i = 1 ∼ 6,

}
(2.23)

for the D3Q7 model, ω̃(0) = 1/4 and ω̃(1) = 1/8. Thanks to the generality of the ULBM,
the discrete velocities of the D3Q7 model can be obtained directly from the discrete
velocity elements of the D3Q19 model (i = 0∼6). For the additional term Cψ,i in (2.22), it
is given by

Cψ,i = Λ
ω̃(|ei|2)(ρe + ∇ε∇ψ)

ε
, (2.24)

where Λ is a free relaxation parameter and is set as 0.5 in this work. According to CE
analysis, the relaxation time is calculated as τψ = 1/(Λc2

s + 0.5), and the electric potential
is

ψ =

6∑
i=1

fψ,i

1 − ω̃(|e0|2) . (2.25)

In this paper, the residual of the electric potential across the whole simulation domain
(i.e. ε = ∑ |ψ(t′)− ψ(t′ − 1)|/∑ |ψ(t′)|) is used to determine the convergence of
internal iterations at each time step. Specifically, we consider the iterations to be converged
when ε is less than 10−7 when initializing the electric field, and for each subsequent
transient time step, the iteration to have converged when ε is less than 10−6.

Figure 1 illustrates the flowchart of the computational process. It is worth noting that the
internal iterations for the electric field are computationally expensive. In some previous
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Initialization
Solve electric field

(2.5)

No
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Solve charge evolution

equation (2.7)

Solve incompressible NS

equations (2.3)

Solve interface capture

equations (2.1)

Calculate gradient for

σ and ψ (2.18)

Calculate electric

force (2.4b)
Convergence?

Figure 1. The flowchart of the computational procedure.

LB two-phase EHD simulations, the internal iteration step is ignored due to the small
deformations of small droplets or adjustable parameters added to expedite the convergence
of the Poisson equation (Luo et al. 2016, 2020). However, given the purpose of this study,
focusing on the equatorial streaming of droplets involving significant deformation and
fragmentation in an electric field, internal iterations for the electric field are retained. For
a typical droplet equatorial streaming simulation, internal iterations for the electric field
consume more than 50 % of the computational time.

3. Model validations

Before simulating the equatorial streaming of a droplet, we first perform validations
and parameter sensitivity tests for the above models. The model is validated by four
benchmarks: (i) a single-phase EHD problem; (ii) a multiphase EHD problem with a flat
interface; (iii) the deformation of a droplet in an electric field; and (iv) the electrospray of
a liquid droplet.

3.1. Single-phase EHD problem
The ULBM model for the charge conservation equation and the Poisson equation for the
electric field are first validated by comparing the analytical solution with the numerical
solution for charge density relaxation. For a single-phase flow, by neglecting charge
convection and charge diffusion, Gauss’s law (2.5) and charge conservation equation (2.7)
can be simplified to

∇2ψ = −ρe

ε
,

∂ρe

∂t
= σ∇2ψ.

⎫⎬
⎭ (3.1)

Therefore, the charge density has the analytical solution

ρe = ρe,0 exp
(

− t
te

)
. (3.2)

The charge relaxation for three different te is simulated and the LB simulation results
are compared with the analytical solution mentioned above. The results are shown in
figure 2(a); qualitatively, our LB simulation results are in perfect agreement with the
analytical solution spanning several orders of magnitude of te. The relative errors between
the LB simulation results and analytical solutions are plotted in figure 2(b), where the
relative error is defined as �ρe = |ρe,lb − ρe, analytical |/|ρe, analytical |. Qualitatively, the
maximum relative error between LB simulation results and analytical solutions does not
exceed 0.1 %. For all cases, the relative error slightly increases in the later stages, attributed
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Figure 2. (a) Comparison between LB simulation results (symbols) and analytical solutions (lines) for charge
density evolution in the bulk phase. (b) Time evolution of relative errors.

to the fact that the corresponding charge density has relaxed to the order of 10−4 of the
initial charge at this stage.

3.2. Two-phase EHD problem
Next, a two-phase EHD problem with a simulation domain of size Nx × Ny × Nz = 5 ×
2 × 100 is considered. For this case, we focus on the electric field and charge distribution in
the Z direction, so it can be considered as a two-dimensional problem. Therefore, periodic
boundary conditions are applied in the x and y directions, respectively, and a zero-gradient
boundary condition is applied in the z direction. The lower half (Nz < 50) of the simulation
domain represents the heavy phase, while the upper half (Nz ≥ 50) represents the light
phase, with an interface thickness of w = 5. On the top surface of the simulation domain,
ψt = 10, and on the bottom surface, ψb = 0. For the light phase, σl and εl are kept as
0.1 and 0.001, respectively. For the heavy phase, σh and εh are changed according to
the conductivity ratio R = σh/σl and permittivity ratio S = εh/εl, respectively. Ignoring
charge convection and charge diffusion, the governing equations of this two-phase EHD
problem can be written as

∇ · (ε∇ψ) = −ρe,
∇ · (σ∇ψ) = 0.

}
(3.3)

The above equations can be solved by using a second-order FD method. In figure 3,
a comparison between our LB simulation results and FD results is presented. The
corresponding relative errors are recorded in table 1. Similarly to Fei et al. (2018), the
local relative error between simulation results and FD results for the electric potential
is defined as �ψ = ∑ |ψLB − ψFD |/∑ |ψFD |. As the charge density in the bulk phase
is approximately 0, instead of using relative error, the total charge density difference
�ρe,t = |∑ |ρe,LB| − ∑ |ρe,FD||/∑ |ρe,FD| is used to quantify the error between the LB
simulation results and FD results.

Figure 3(a) shows the distribution of electric potential for different values of R ranging
from 0.01 to 100. It can be observed that the LB simulation results align closely with the
FD solution, with differences observed only near the phase interface. Quantitatively, from
table 1, it can be found that the maximum relative errors for the electric potential are less
than 3 % for all cases, with the relative errors being slightly increased with R. Figures 3(b)
and 3(c) describe the charge density distribution at the phase interface for different R
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Figure 3. Comparison between LB simulation results (hollow symbols) and numerical solutions (lines) for
(a) ψ for cases with different R; (b) ρe at the phase interface for cases with different R; and (c) for cases with
different S.

S = 0.1, S = 10, S = 25, S = 2.0, S = 2.0, S = 2.0,
R = 2.0 R = 2.0 R = 2.0 R = 0.01 R = 0.1 R = 100

�ψ 0.14 % 0.14 % 0.14 % 1.31 % 1.40 % 2.76 %
�ρe,t 0.57 % 0.20 % 0.24 % 4.23 % 4.05 % 2.72 %

Table 1. The errors between the LB simulation results and FD results for electric potential and charge density.

and S cases, respectively. For varying S, the simulation results match closely with the FD
results, exhibiting a maximum relative error of 4.23 % at extreme conductivity disparities
(i.e. R = 0.01). In the case of different S values, the LB simulation results are almost the
same as the FD results, with the maximum relative errors being less than 1 %.

3.3. Deformation of a droplet in an electric field
After validating the accuracy of the electric field and the charge calculations, the
simulation is extended to a two-phase EHD problem with fluid flow. Similar to previous
studies (Cui et al. 2019; Liu et al. 2019; Luo et al. 2020), the deformation of a
two-dimensional droplet in an electric field is initially simulated. The droplet’s initial
radius R0 is 30, and the interface thickness w/R0 = 0.1. The viscosity and density ratios
between the inner and external phases are both set to 1. In this case, the permittivity ratio S
is fixed at 3.5, and simulations are conducted for two different values of R = 1.75 and 4.75,
with the electric capillary number, Cae = εexR0E2

0/γ , standing for the ratio of the electric
force and surface tension. The initial field strength E0 = (ψt − ψb)/Nz is increased from
0.2 to 1.0. In order to consider the effects of charge relaxation and charge convection,
a finite Ree = 1 is adopted. The droplet’s deformation strength Q = (L − D)/(L + D) is
recorded, where L and D are the length and diameter of the droplet when it reaches a steady
state. The LB simulation results are compared with both the simulations by Liu et al.
(2019) and the theoretical formula proposed by Feng (2002). In figure 4(a), the results
show that, for R = 4.75, the droplet exhibits oblate deformation. Both the simulations
by Liu et al. (2019) and our current results align well with the theoretical prediction.
For R = 1.75, the droplet shows prolate deformation, and our LB results are closer to
Feng’s (2002) theoretical prediction. It is noticeable that the simulations conducted by
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Figure 4. (a) Comparison of Q at steady state under different R and Cae with theoretical solutions and previous
simulations. (b) Comparison between current simulation results (bottom) and previous experiment (Grimm &
Beauchamp 2005) (top) for the Rayleigh fission of a methanol droplet in a strong electric field.

Liu et al. (2019) overestimate the droplet’s deformation strength, possibly due to their
neglecting charge relaxation and charge convection effects in their simulations.

We then further extended our simulations to the more challenging three-dimensional
two-phase EHD problem, where the LB model for the first time is used to simulate
the Coulomb fission of a methanol droplet in a strong electric field. In this simulation,
the density ratio of the methanol liquid and ambient gas is ρin/ρex = 1520, μin =
0.032 Pa s and viscosity ratio μin/μex = 320, surface tension γ = 0.0349 N m−1.
The dielectric properties have εin = 12.2εex = 12.2εv , where εv = 8.854 × 10−14 is the
vacuum dielectric constant and σin = 107σex = 0.1 S m−1. The initial radius of the droplet
is R0 = 10 μm. Similar to experiment (Grimm & Beauchamp 2005), the strength of the
external electric field is set to a value greater than Ec, e.g. E0 = (ψt − ψb)/ Nz = 1.17Ec
for the target experiment, where the Taylor limit field strength is calculated as Ec =√

4γ /(σexR0). For our current simulation, the mesh resolution is dx = R0/60 and time
step is dt = 7.5 × 10−6 s. The simulation domain is a Nx × Ny × Nz = 5R0 × 5R0 × 16R0
box. The comparison between simulation and experimental results (Grimm & Beauchamp
2005) is shown in figure 4(b), where an excellent agreement is found between our
simulation and the experimental snapshots. Notably, the liquid filament at the tip of the
droplet is successfully captured, with a radius approximately one order of magnitude
smaller than R0 as observed in experiments (Duft et al. 2003; Grimm & Beauchamp 2005;
Cai et al. 2021).

At the end of this section, the mesh sensitivity analysis and charge conservation
validation are conducted. In this test, the deformation of a methanol droplet at two
different electric field intensities (E0 = 0.25Ec and E0 = 0.8Ec) is simulated. The physical
properties of the methanol droplet are consistent with the simulation parameters in
figure 4(b), with the electrical conductivity ratios σin/σex equals 107. The grid resolution
R0/dx is increased from 30 to 60, with corresponding dx ranges from 0.15 to 0.3 μm
in physical units. The evolution of the aspect ratio (L/D) during the process is depicted
in figure 5(a). The results indicate that, for the case with lower electric field intensities
(E0 = 0.25Ec), when R0/dx is greater than 30, the grid resolution has little impact on
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Figure 5. Time evolution of (a) aspect ratio of the droplet and (b) charge error under different grid
resolutions.

ρin(kg m−3) μin(Pa s) γ (N m−1) εin/εex Γu

3-Ethyl. glyc. 1120 0.0454 0.0402 23.7 0.053
1-Octanol (1) 824 0.0089 0.024 10.34 0.21
1-Octanol (2) 824 0.0089 0.024 10.34 0.75
1-Butanol 800 0.00254 0.023 17.84 5.96
1-Propanol 803 0.00194 0.024 3.92 7.73
Methanol 795 0.00059 0.021 12.92 56.2

Table 2. Liquid properties of the electrospray simulation.

the simulation results. For the case with higher electric field intensities (E0 = 0.8Ec),
only minor differences were observed for the lowest resolution (R0/dx = 30) in the
final stage (as illustrated in the inset), during which the tip of the droplet begins to
develop a liquid filament. The time evolution of the error in the total charge of the
droplet during its deformation process is also recorded, where the error is calculated as
ερe = ∑

ρe/
∑ |ρe| × 100 %. Ideally,

∑
ρe should be kept as 0 when the conservation

of charge is fully satisfied. As shown in figure 5(b), the charge error for the proposed LB
model in this study is below 0.8 %. For denser grids (i.e. R0/dx = 60), this error is reduced
to less than 0.1 %.

3.4. Simulation of droplet electrospray
In this section, we simulate the electrospray of a suspended liquid droplet in an electric
field and compare the ejected diameter with the scaling laws proposed by Gañán-Calvo
et al. (2016). Table 2 summarizes the properties of the liquid droplets used in our
simulations, where the governing dimensionless number Γu is Γu = δ

5/3
u (εin/εex)

5/12,
and the parameter δu is given as δu = [(γ 2ρinεex)/(μ

3
inσin)]1/3 (Gañán-Calvo 1999). Six

different cases with a wide range of Γu are simulated. Figure 6(a) illustrates the qualitative
evolution of liquid droplets under three different values of Γu. It can be observed
that, similar to the results obtained from experiments and simulations (Gañán-Calvo
et al. 2016), the suspended droplets are elongated under the influence of electric field
forces, forming a liquid jet and undergoing electrospraying. Moreover, consistent with
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Figure 6. (a) Evolution of droplet profiles under different Γu. (b) Quantitative comparison of ejected droplet
diameters with experimental results and linear fitting equation.

the qualitative findings from experiments (Gañán-Calvo et al. 2016), the diameter of the
ejected droplet dl from the jetting tip is increased with Γu. Furthermore, the ejection time
and the length of the jet are also increased with Γu due to a slower charge relaxation.

Figure 6(b) presents a quantitative comparison between our LB simulation results of dl
and experimental results (Gañán-Calvo et al. 2016). The dashed line in the figure represents
the linear fitted function dl = 0.6Γu(μ

2
in/γ ) (Gañán-Calvo et al. 2016). It can be observed

that our simulation results are in line with the experimental data and the linear fitted
function across a wide range of Γu. Besides, it is found that our LB simulation results
exhibit good agreement with the simulation results and experimental data achieved by
Gañán-Calvo et al. (2016). This is because both our EHD–LB model and their EHD–VOF
model consider the effects of electric charge transport at the interface. On the other hand,
the charge convection is considered in our simulations while it is ignored in the EHD–VOF
model. Compared with the experimental results, our simulations slightly overestimated
the size of dl. In conclusion, the good agreement between our simulation results and
experimental/theoretical results in the present validation test provides evidence that our
proposed model can accurately simulate complex EHD phenomena.

4. Study of droplet equatorial streaming in an electric field

In this chapter, the validated LB model is employed to simulate the equatorial streaming
of a droplet in an electric field. Firstly, it introduces the numerical set-up and simulation
parameters. Then, it presents the morphologies of droplet equatorial streaming under
different simulation conditions. Subsequently, a detailed analysis of the dynamic evolution
of the droplet before its first breakup is conducted. Finally, the mechanisms of droplet
breakup during equatorial streaming are discussed.

4.1. Problem description and numerical set-up
Figure 7 shows the simulation domain in Cartesian coordinates, with a droplet placed
at the centre of a rectangular box. The initial radius of the liquid droplet is R0. The
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Figure 7. Schematic of the simulation domain.

dimensions of the simulation domain are set to a length (L) and width (W) of 9R0, with
a height (Lz) of 5R0. The top and bottom walls are designated as no-slip boundaries
and are assigned constant voltages. The voltage on the top surface is ψmax, and on the
bottom surface is ψmin. The four lateral walls are set as periodic boundaries. γ , ρi, μi, εi
and σi represent surface tension, density, viscosity, dielectric permittivity and electrical
conductivity, respectively, where the subscript i is used to specify the external phase (ex)
or the internal phase (in).

To reproduce the droplet equatorial streaming in an external electric field, following the
experiment of Brosseau & Vlahovska (2017), the internal phase is set as low-viscosity
silicone oil (SO) with low electrical conductivity (ρin = 910 kg m−3, μin = 0.0048 Pa s,
εin = 3.2εv , σin = 2 × 10−12 S m−1), while the external phase is set as high-viscosity
castor oil with high electrical conductivity (ρex = 900 kg m−3, μex = 0.48 Pa s, εex =
4.59εv and σex is varied correspondingly with the conductivity ratio R = σin/σex). The
surface tension and radius of the droplet are chosen as the same as the experiment,
i.e. γ = 0.0041 N m−1 and R0 = 1 mm. The field strength of the external electric
field is determined by the voltage contrast of the bottom wall and top wall, where
E0 = (ψmax − ψmin)/Lz. It is worth noting that the conversion between lattice units and
physical units requires selection of appropriate reference length and time scales. In the
following simulations, the reference length dx = R0/50 = 20 μm and reference time
dt = 7.5 × 10−6 s were employed. It should also be noted that, for the current set-up, the
total grid number of the simulation domain exceeds 50 million. Our code is parallelized
by using MPI, and for a typical case (modelling the dynamic behaviours of the droplet
for 1.1 s), the computational cost is approximately 4000 CPU running over 10 hours. All
simulations are conducted on the United Kingdom national supercomputer Archer2.

This study aims to obtain a further understanding of droplet equatorial streaming.
To this end, two governing parameters of the process are focused on: the electric field
strength (E0) and the conductivity contrast (1/R). In the existing studies for droplet
equatorial streaming (Brosseau & Vlahovska 2017; Wagoner et al. 2020, 2021), details
of droplet evolution at higher conductivity contrasts (i.e. 1/R > 2000) remain unknown.
Regarding the influence of electric field strength, it has not been systematically explored in
previous experimental and simulation studies. For a droplet undergoing Coulomb fission,
a necessary condition is that E0 > Ec = 6.35 KV cm−1 (Gawande et al. 2017; Misra
& Gamero-Castaño 2023). Besides, for the droplet equatorial streaming, the electrical
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Figure 8. (a) Transient evolution of droplet equatorial streaming. (b) Experimental (Brosseau & Vlahovska
2017) (left snapshot) and simulation results (right snapshot) of the equatorial streaming for a droplet; simulation
snapshot with the droplet surface coloured by charge density.

conductivity contrasts have 1/R 
 1 (Wagoner et al. 2020, 2021). Subsequently, for the
following simulation, we change 1/R from 800 to 10 000, and E0 is varied from 0.75Ec to
2.0Ec, with the corresponding electric capillary number Cae ranging from 2.2 to 16.

4.2. Morphologies of droplet equatorial streaming
Figure 8(a) illustrates a typical process of a droplet equatorial streaming in an electric
field, where E0 = 1.05Ec and 1/R = 2000. The droplet is observed to gradually flatten
under the effects of the electric field. A liquid lamella becomes noticeable at the equator
of the mother droplet, because of the squeezing effect. As the droplet continues to deform,
the liquid lamella forms a liquid ring and detaches from the equator. The detached ring
continues to expand while an instability wave develops over it, eventually breaking into
dispersed satellite droplets. During the process, new liquid rings continue to form from
the equator of the mother droplet, undergoing expansion and breakage, thus constituting
the equatorial streaming of the droplet. Figure 8(b) shows a qualitative comparison of the
simulation snapshot with the experimental snapshot (Brosseau & Vlahovska 2017) for drop
equatorial streaming. As can be seen, our simulation successfully reproduces the equatorial
streaming phenomenon that when a droplet is subjected to an electric field, concentric fluid
rings around the droplet are generated from the equator of the droplet, which finally break
up to form hundreds of satellite droplets.
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Figure 9. Snapshots of droplet equatorial streaming under different simulation parameters. Images in blue
background represent ring equatorial streaming, and those in red background indicate fingering equatorial
streaming.

Subsequently, we conducted simulations over a wider range of operation parameters,
revealing two distinct break mechanisms behind the droplet equatorial streaming. Under
conditions similar to the experimental conditions (Brosseau & Vlahovska 2017), i.e. lower
E0 and smaller 1/R, the droplets displayed a liquid ring equatorial streaming process which
is the same as the experimental results. However, for high E0 and large 1/R, the droplets
exhibit a novel fingering equatorial streaming process. Figure 9 qualitatively illustrates the
different break mechanisms of equatorial streaming under various conditions. Results with
a blue background represent ring equatorial streaming of the droplets, while those with a
red background depict fingering equatorial streaming. Unlike the ring equatorial streaming
described in figure 8(a), for fingering equatorial streaming, multiple liquid fingers are
generated at the equator of the mother droplet. Subsequent satellite droplets can be
observed continuously detaching from these liquid fingering tips at the equator, as opposed
to those being generated due to the continuous breakup of liquid rings. Supplementary
movie 1 and movie 2 show the evolution of ring equatorial streaming (1/R = 1500, E0 =
1.05Ec) and the fingering equatorial streaming (1/R = 2000, E0 = 1.50Ec), respectively.
Additionally, it is evident that the number and size of satellite droplets vary in mechanisms,
which will be analysed quantitively in the following text.

In figure 10, temporal evolutions of the generation and the breaking processes of the
liquid rings/fingers at the equatorial plane of the droplet are presented, where the droplet
surface is coloured by the magnitude of the external electric force. In the figure, the first
three columns of contours on the left represent the first, second and third detachments of
liquid rings, respectively. It can be found that the external electric field force is maximum
near the equator of the mother droplet, where the squeezing of the electric field force leads
to the elongation and fragmentation of the liquid lamella at the equator. For the cases
of E0 = 1.05Ec, it is observed that a larger 1/R (i.e. 1/R = 2000) resulted in a quicker
detachment and breakup of the liquid rings. Compared with the case with a smaller 1/R
(1/R = 800), the satellite droplets generated were smaller in size but more plentiful in
number. The breakup of the liquid rings via a classical capillary instability (which is also
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Figure 10. Dynamic evolution of localized magnification of droplet ring equatorial streaming (blue
background) and fingering equatorial streaming (red background). The droplet surface is coloured by the
electric field force magnitude. The inset figure (grey) represents the experiment (Brosseau & Vlahovska 2017)
snapshot of droplet equatorial streaming.

known as Rayleigh Plateau instability) (Burton & Taborek 2011; Gawande et al. 2019),
involves the continuous formation of necking and expansion along the circular direction.
The experimental snapshot (grey inset) also confirmed this phenomenon. For the case of
fingering equatorial streaming (E0 = 1.50Ec and R = 1/2000), its initial state is similar to
ring equatorial streaming, where 2–3 liquid rings detach from the mother droplet and break
into satellite droplets. In this case, it is observed that the first liquid ring is accompanied
by a smaller daughter liquid ring, which is consistent with the experimental findings
(Brosseau & Vlahovska 2017). Then, as the last ring detaches (t = 0.236 s), unstable liquid
fingers develop at the edge of the mother droplet. These unstable liquid fingers are excited
by instability waves in continuously detaching liquid rings. It can be evidenced that, with
the detachment of the last ring, liquid fingers immediately form, and there is continuous
contraction and expansion on the last detached ring (at t = 0.281 s). After the appearance
of the liquid fingers, all subsequent satellite droplets are directly generated from the tip
of the fingers, demonstrating an unstable mechanism distinct from the ring equatorial
streaming. Regarding the diameter of the detached liquid rings, we observe that, in cases
with relatively low electric field strength (i.e. E0 = 1.05Ec), the diameters of the first
three detached liquid rings are similar, with a diameter of approximately dr/d0 ∼ 0.04.
However, for cases with higher electric field strength (i.e. E0 = 1.5Ec), the detachment of
the first larger liquid ring dr/d0 ∼ 0.06 is immediately followed by the detachment of a
smaller ring dr/d0 ∼ 0.02. Such occurrences of smaller sub-liquid ring detachment have
also been observed in experiments (Brosseau & Vlahovska 2017). In the following § 4.3,
we provide a detailed discussion and analysis of the sizes of detached liquid rings and
satellite droplets.

As indicated in figures 8 and 10, compared with experimental results, the diameter of
the liquid ring (dr) is wider in our simulation results, and the gaps between the liquid
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Figure 11. For cases with different (a) 1/R and (b) E0, at the critical moment before the first liquid ring
detachment from the droplet, the profiles of the liquid lamella near the droplet equator (first row), the
corresponding distribution of charge density (second row) and the corresponding electric field force in the
direction of droplet expansion (third row).

rings are large (e.g. when μin/μex = 100, dr/d0 ∼ 0.01 for experiment, dr/d0 ∼ 0.04 for
our simulations). Several reasons may account for these discrepancies: (i) our simulation
conditions may not perfectly match the experimental conditions, as the accurate value
for 1/R was not provided in the original experimental results. (ii) In our simulations, the
conductivity and dielectric permittivity at the interface are characterized by using log
interpolation and linear interpolation. In reality, the distribution of electrical properties
between the different phases is more complex. (iii) Limited by the computational
resources, the interface thickness is set as w/d0 = 0.05. This implies that the interface
width is still of the order of micrometres. For real-world scenarios, the interface thickness
is often in the nanometre range. Despite there being some quantitative differences between
the simulation and experimental results, it is important to note that the model proposed
in this paper qualitatively replicates the equatorial streaming process of a liquid droplet.
Specifically, the model accurately captures, for the first time, the continuous detachment
of the liquid rings from the equator and the subsequent splitting of the liquid rings
into several hundred satellite droplets. Also, thanks to the quantitative results provided
by numerical simulations, in the following study we reveal the power-law relation for
the charge evolution during droplet equatorial streaming, propose a theoretical model
for the evolution of the droplet radius and height and quantitatively investigate the
breakup mechanism of the droplet. Moreover, by changing the operation conditions, our
simulations revealed a new fingering equatorial streaming mechanism. These results are
essential for studying the underlying physical mechanisms of droplet equatorial streaming.

To gain a better understanding of why different values of E0 and 1/R lead to distinct
instability mechanisms, we quantitatively analyse the profiles (first row), charge density
(ρ̄e, second row) and lateral external electric force (F e_x, third row, the ‘+’ and ‘−’
symbols represent the directions of liquid droplet expansion and contraction, respectively)
near the liquid lamella at the equator before its first breakup under various 1/R (figure 11a)
and E0 (figure 11b). The droplet profile is divided into three different regions along
the expansion direction (X-axis) based on the morphologies. Region I, situated near
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the mother droplet, exhibited similar morphologies for various 1/R, and with nearly
uniform F e_x, which is due to the fact that the mother droplet is mainly squeezed by
the longitudinal external electric field force. For cases with different E0, this region also
displayed consistent profiles, similar ρ̄e and F e_x. It is noteworthy that in cases with higher
E0, ρ̄e in this region is larger, which confirms Gauss’s law (Melcher & Taylor 1969).

As for region II, corresponding to the neck position of the liquid lamella, the maximum
value of ρ̄e on the droplet’s surface is observed at this location. This finding is distinct
from the previous extensive modelling of perfectly dielectric droplets, where the maximum
value of ρ̄e appears at the droplet conical tips (Gawande et al. 2017, 2019; Sengupta et al.
2017). For equatorial streaming, it occurs at the neck of the equatorial liquid lamella, which
is compatible with the theoretical findings for the finite conductivity model (Gawande et al.
2019; Misra & Gamero-Castaño 2023). Furthermore, it can be found that the maximum
charge increased with 1/R and E0, which also aligns with Gauss’s law. Regarding the
magnitude of F e_x, it initially increased in the direction of retraction (−x) and then
increased in the direction of expansion (+x), which manifested as a stretching force (as
marked in figure 11). It is this stretching force and its competition with surface tension
that leads to the contraction of the liquid lamella in the longitudinal direction, forming
the lamella neck. Quantitatively, it can be observed the stretching force increased with
1/R and E0. The qualitative results in figure 11 indicate that the appearance of the liquid
fingers is caused by the destabilization of the liquid rings at the equator, before they are
detached from the mother droplet. From the quantitative results in figure 11, it is proved
that higher E0 and 1/R result in greater stretching forces, implying a faster liquid ring
departure velocity. Previous studies have found that the instability wave on the liquid ring
is positively correlated with the expansion velocity of the liquid ring (Stone 1994; Zhao
& Tao 2016). And in such cases, the breakup points are closer to the mother droplet. This
explains why the phenomenon of equatorial streaming is observed with higher E0 and 1/R.

Region III represents the tip region of the liquid lamella, where ρ̄e rapidly decreases
from the maximum value to zero at the equatorial tip (point B in figure 8). The value
of F e_x in the droplet’s expansion direction initially decreases to zero and then increases
in the direction of retraction. Considering that ρ̄e is zero at this point, the electric field
force here is solely contributed by the dielectric force. Therefore, from figure 11, it can be
observed that F e_x at the equatorial tip increases with 1/R and is almost independent of E0.
This finding is consistent with (2.7). For the maximum spreading diameter of the droplet
before breakup, it is found that it decreased with increasing 1/R, whereas it increased with
increasing E0.

In this subsection, the equatorial streaming of a liquid droplet under different 1/R and
E0 is qualitatively demonstrated, revealing two distinct morphologies: ring equatorial
streaming and fingering equatorial streaming. A qualitative overview of the detachment
of the liquid lamella at the equator, the formation of the liquid rings/liquid fingers and
the generation of satellite droplets is provided. Subsequently, quantitative analysis of the
charge distribution and external electric force on the liquid lamella are employed to explain
the generation of fingering equatorial streaming. The following subsection will focus on
the dynamic behaviours of the droplet before it breaks, with emphasis on quantitatively
studying critical parameters such as the droplet’s total charge, spreading diameter and
droplet breakup time.

4.3. Dynamic behaviours of the droplet
In the study of the EDH phenomenon, a critical point is understanding the behaviours
of the charge density (Fernández de la Mora 2007; Vlahovska 2019), especially its
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Figure 12. Evolution of the total charge carried by the droplet before the first liquid ring detachment, under
different simulation conditions. The region dominated by charge relaxation is indicated by the blue background.

dynamic evolution over time and the charge carried by satellite droplets. This is of
paramount importance for applications such as mass spectrometry analysis, separations,
powder synthesis and others (Fenn et al. 1989; Ptasinski & Kerkhof 1992; Harris, Scott
& Byers 1993). After applying an electric field, the charge equilibrium is disrupted.
Positive and negative charges at the phase interface are driven towards the positive and
negative ends closer to the electrodes under the influence of Coulomb forces (Fernández
de la Mora 2007; Luo et al. 2020). In all cases, due to charge conservation, the total
charge always equals 0. Therefore, Qe = ∑ |ρe| is used to represent the total charge
carried by the droplet. To explore the mechanism of charge evolution under different
simulation parameters, the time is normalized by introducing a charge relaxation time that
takes into account differences in electrical conductivity and dielectric coefficients (i.e.
t∼e = te(2 + S)/(2 + R)) (Brosseau & Vlahovska 2017). Regarding Qe, it is normalized by

using Ca0.5
e qc, where qc is the Rayleigh charge limitation qc = 8π

√
γ εexR3

0.
The evolutions of the total charge of the droplet before the first ring detaching for

different 1/R and E0 cases are plotted in figure 12 with a logarithmic scale. It can be
observed that, for all cases when t/t∼e < 1 (blue background), the evolution of the total
charge follows a power-law increase, with its evolution being fitted as

Qe

Ca0.5
e qc

= 0.25
(

t
t∼e

)0.95

. (4.1)

This result confirms the findings of Sengupta et al. (2017), who also found a power-law
increase for the surface charge. The consistency exhibited by the total charge in this region
is due to the fact that the evolution of the charge is dominated by the charge relaxation.
Dividing time and total charge by t∼e and Ca0.5

e qc, the influence of the charge relaxation
can be normalized appropriately. Outside this region, the charge evolution varies from
case to case. Specifically, the total charge increases faster under conditions of higher E0
and lower 1/R. As pointed out by Sengupta et al. (2017), within this region, the influence
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Figure 13. Under different simulation conditions, the time evolution of deformation magnitude in (a) height
and (b) radius of the droplet before the first liquid ring detachment.

of charge convection cannot be neglected, particularly for cases with larger Reynolds
numbers (Ree). Considering Ree increases with E0 but decreases with 1/R, our simulation
results corroborate with the prediction from Sengupta et al. (2017).

Next, the evolution of the droplet’s height (H) and radius (R) before the first detachment
of the liquid ring is investigated. Figures 13(a) and 13(b) indicate the time evolution of
the droplet deformation magnitude in radius (�r∗ = (R(t)− R0)/R0) and height (�h∗ =
(R0 − H(t))/R0) under various 1/R and E0, respectively. In the figure, �r∗ and �h∗ are
generalized by using Cae and time t is normalized by capillary time tc = (R3

0ρex/γ )
0.5.

The inset figure in figure 13(a) represents the initial state of droplet motion, it can be
found that the droplet remains stationary for a very short period (t0, t0 � tc) after applying
the electric field. This very short stationary time is directly proportional to the charge
relaxation time. Considering the charge relaxation time decreases when 1/R is increased,
t∼e (10 000) is used as a reference value (standing for the t∼e when 1/R = 10 000), the
dynamic stationary time is given as t0 = 0.5(t∼e (1/R)− t∼e (10 000)).

In figure 13, all the normalized results can be collapsed into one line. In this work, a
new theoretical model is proposed to describe the transient evolution of the droplet height
and radius. First, let us consider the transient evolution of the droplet in the direction of
the electric field. To facilitate the analysis, we only consider forces on the symmetry plane
of the droplet, i.e. on the x–z plane. When subjected to an electric field, the poles of the
droplet (point A in figure 8) are subjected to a capillary force (Fc ∼ 2γ /H), viscous force
(Fv ∼ μ0/R0�H′) and electric field force (Fe ∼ ε0E2

0). According to Newton’s second
law, we can determine

m∗ d2(�h∗R0)

dt2
∼ ε0E2

0 − 2γ
R0(1 −�h∗)

− μex

R0
× d(�h∗R0)

dt
, (4.2)

where m∗ is the effective mass, with a dimension of kg m−2 ∼ ρexR0 in this
two-dimensional analysis. By non-dimensionalizing the above equations with t∗ =
(t − t0)/tc

d2�h∗

dt∗2 ∼ Cae − 2
(1 −�h∗)

− Oh
d�h∗

dt∗
. (4.3)
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The Ohnesorge number Oh = μex/
√

2γ ρexR0 = 7.9 is kept consistent for all cases. This
non-dimensional number measures the ratio of viscous forces to surface tension and
inertial forces. For the case of Oh > 1, the viscous force is dominant. Considering the
surface tension of the simulated SO droplet is relatively small, for the initial stage of
droplet motion, deformation is primarily governed by the competition between electric
field forces and viscous forces. Therefore, we neglect the term related to surface tension.
By incorporating the initial conditions d�h∗/dt∗ = 0 and �h∗ = 0 when t∗ = 0, the
above differential equation has the general solution

�h∗ = α

{
Cae

Oh
(t − t0)/tc + Cae

(Oh)2
(e−Oh(t−t0)/tc − 1)

}
, (4.4)

where α is the fitting constant representing the weight ratio of electric field force
and viscous force contributions. In this study, the best fitted α is 0.034. Additionally,
considering that Oh is a constant, the above theoretical model is conserved with�h∗/Cae,
explaining why all simulated results can be collapsed into a line. It can be observed that the
exponential term on the right-hand side of the model is similar to the dynamic evolution
equation proposed before (Esmaeeli & Sharifi 2011; Mandal, Chaudhury & Chakraborty
2014), which describes the deformation of droplets under relatively small electric field
strengths, primarily considering the effect of electric field force while neglecting viscous
forces. Therefore, the equation proposed in this paper can be considered as an extended
form of the previous models. In the context of the dynamic evolution of droplets in the
lateral (radius) dimension, we assume that the droplet consistently takes on an elliptical
shape throughout its morphological changes, with the conservation of its area. Hence,
�r∗ = 1/(1 −�h∗)− 1.

Our proposed models are depicted as dashed lines in figure 13. As shown in figure 13(a),
the presented model aligns well with our simulation results. However, differences appear
during the initial stage of droplet evolution (t∗ < 0.1) and the terminal stage (t∗ > 10).
This discrepancy arises from the significant influence of the droplet’s initial stationary
period (t0) on the results during the early stages. During this stage, the linear relationship
for t0 may not represent the actual situation. As for the terminal stage, the contribution of
surface tension becomes non-negligible. As r∗ is directly derived from h∗, in figure 13(b),
it is found that there are also discrepancies between the proposed model and the simulation
results at these stages. Nevertheless, during the dynamic evolution stage of the droplet
(t∗ ∼ 0.1–10), the theoretical model and numerical simulation results are in excellent
agreement. Notably, for our proposed model, the time and deformation magnitude that
match the simulation results can span several orders of magnitude, especially considering
the broad range of simulation parameters used in this study.

Next, it focuses on the critical moment before the first liquid ring is divided from the
droplet. Firstly, our attention is on the total charge carried by the droplet at the critical
moment. In 1882, Lord Rayleigh first predicted that a charged droplet would be unstable
when its charge exceeded qc (Rayleigh 1882; Duft et al. 2003). Over the subsequent
centuries, a substantial amount of research has been dedicated to validating this prediction.
A general consensus is that, when Qe exceeds qc or E0 is greater than Ec, the droplet
undergoes prolate fission. The droplet’s poles will eject charged satellite droplets from
both ends and the droplet will lose charge, typically around 15 % to 50 % of the total charge
(Fernández de la Mora 2007). On the other hand, limited studies have been conducted to
investigate the droplet’s charge during its oblate fission. Figure 14(a) shows the total charge
carried by the droplet before its first breakup (Qc) and the total charge carried by the first
liquid ring (Qring) for all the simulated cases in this work. Here, CaeR/S for the X axis is
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Figure 14. For all simulation cases in this study, (a) the total charge of the droplet Qe at the critical moment
of the first liquid ring detachment (red symbols, left Y-axis) and the proportion of the total charge carried by
the detached liquid ring Qring (blue symbols, right Y-axis) and (b) the power-law decay relationship between
the time of the first liquid ring detachment and CaeR/S.

used to distinguish between different simulation parameters. It can be observed that, for all
cases, Qc/qc is approximately 2.5 (dashed line). It should be noticed that the charge loss
by liquid ring streaming is approximately 24 % of the total charge (solid line) for the first
liquid ring detachment. In all cases, the charge loss is between 15 % and 30 % of the total
charge.

In addition to the droplet charge, the critical time at which the first liquid ring breaks
away from the droplet (τbreak) is also recorded, which is normalized by t∼e and plotted
in relation to CaeR/S in figure 14(b). Here, Cae stands for the electric field strength,
and ρe is increased with the electrical conductivity difference, as indicated by Gauss’s
law. Therefore, CaeR/S can be regarded as the contribution of the Coulomb field forces
under different E0 and 1/R. Interestingly, it can be found that, for the cases E0 > Ec, the
normalized τbreak exhibits a power-law decay relationship with t∼e , where

τbreak

t∼e
= 0.1

(
CaeR

S

)−0.77

. (4.5)

The experimental result by Brosseau & Vlahovska (2017) is also plotted on the same graph.
The results indicate that the experimental breakup time aligns well with the exponential
decay function found in this study. Nevertheless, it can be found that the results for cases
of E0 < Ec deviate from the other cases.

To explore the underlying mechanisms of τbreak derivation for the E0 < Ec cases,
the evolution of Qe for the cases with E0 = 1.05Ec and E0 = 0.75Ec and different 1/R
is plotted in figure 15. The total charge and time are non-dimensionalized by qc and
theoretical critical time (τbreak_theory) in (4.5), respectively. Additionally, the evolution
curves are coloured based on the deviation of the droplet’s radius per unit time (δr∗/δt);
the critical moments when the droplet first experiences the liquid ring detachment are
marked with a pentagram symbol on the graph. From the graph, it is evident that, for E0 >
Ec, the radius (δr∗/δt > 0) and Qe steadily increase during the evolution, and the breakup
point and critical Qe are close to the theoretical values introduced above (τ/τbreak_theory ∼
1 and Qe/qc ∼ 2.5). In the case of E0 < Ec, it can be observed that there is a rapid initial
increase in Qe, followed by a slower rate of increase. During this period, the increase
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Figure 15. Charge accumulation hysteresis before the first liquid ring detachment. The evolution curve of
charges over time is coloured by the increment of droplet radius per unit time (δr∗/δt).

in radius is approximately zero, indicating that the droplet is in a quasi-stationary state
(δr∗/δt ∼ 0). With the accumulation of charge, when Qe/(Ca0.5

e qc) > 1.5, the droplet’s
radius begins to expand, and after this point, the charge also starts to accelerate its increase.
We refer to the period of charge accumulation with the droplet in a quasi-stationary
state as ‘charge accumulation hysteresis’. Previous experimental (Luo et al. 2017; Abbasi
et al. 2019) and numerical (Wagoner et al. 2020) studies also observed similar ‘hysteresis’
dynamics for droplet prolate fission. It is the presence of this hysteresis process that leads to
longer breakup times for E0 < Ec and larger breakup charges compared with cases where
E0 > Ec.

In this section, a systematic study of the dynamic behaviours of droplets before the
first liquid ring detachment is conducted. Firstly, it is found that there is a power-law
relationship for the total charge over time. Secondly, a new theoretical model is developed
to describe the time evolution of the droplet’s radius and height. Finally, the critical
moment of the first liquid ring detachment is emphasized. The droplet total charge, the
charge carried by the liquid ring and droplet breakup time are quantitatively explored.
In the following section, we will focus on the behaviours of the droplet after the breakup,
including the distribution of satellite droplets, and instabilities occurring on the liquid ring
and liquid fingers.

4.4. Breakup mechanisms of droplet equatorial streaming
From the quantitative results in § 4.2, it is clear that, in all simulation cases, a liquid
ring is first formed at the equator of the droplet during the onset of droplet equatorial
streaming. This is followed by the breakup of the liquid ring into satellite droplets. To
further investigate the breakup mechanism in droplet equatorial streaming, we focus on
the breakup of individual liquid rings. Figure 16 first qualitatively presents the shapes
of the liquid rings at the critical moments before the break with varying 1/R and E0
(highlighted in different colours). Here, clear axisymmetric perturbation is observed,
which is referred to as varicose instability (Rayleigh 1878). To further investigate this
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Figure 16. Snapshots of the streaming droplet at the critical moment just before the first liquid ring
(highlighted) breakup, along with a quantitative diagram of the unstable waves at the edge of the liquid ring.

instability phenomenon, the instability waves at the edges of the rings are quantitatively
plotted in figure 16. Different colours correspond to different cases, where the amplitude
(A) is normalized by the mean distance to the droplet centre, and θ represents the angle
with respect to the central axis. Due to symmetry, only the results for the right half of the
droplet are shown.

By pairing the quantitative and qualitative results in figure 16, it can be observed
that the peaks of the instability waves represent the bulges at the edges of the liquid
ring. Meanwhile, the troughs correspond to the constriction or neck of the liquid
ring, which is often the location where the breakup occurs. For the cases with the
same E0, the smaller 1/R brings the larger wave amplitude. Comparing the ratio
of maximum/minimum wavelength (λl,max/λl,min) and maximum/minimum amplitude
(Al,max/Al,min) (as indicated in figure 16) for different 1/R cases, it can be found that the
difference between the wavelength and amplitude becomes more pronounced for smaller
1/R, which corresponds to a more extensive distribution of satellite droplet sizes and
relatively larger satellite droplets. This prediction can be confirmed by figure 10. For the
same 1/R but different E0 cases, a larger E0 leads to a shorter wavelength, resulting in a
denser population of satellite droplets. Also, for the larger E0 case, the wavelengths and
amplitudes are relatively consistent between different peaks, implying uniform satellite
droplet diameters. This can be supported by the qualitative results of the liquid ring after
fragmentation in figure 10.

Subsequently, the critical wavelength (λl), the average radius of the liquid ring (rl) and
the mass of the liquid ring (ml) at the critical moment before the rings break are recorded.
The recorded results for different 1/R and E0 are provided in table 3. A consistent rl/R0 ∼
4 % in all cases is observed, in agreement with linear instability theory and experiment
findings where rl ∼ (μin/μex)

0.5 (Stone 1994). We observed that the mass of the first
detaching liquid ring increases with the increase of 1/R and E0, with the ratio of mass loss
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1/R E0/EC λl/R0 ml/M0 rl/R0 λl/rl tl/tc

10 000 1.05 0.31 0.013 0.043 7.21 6.04
4000 1.05 0.33 0.016 0.044 7.62 9.01
2000 1.05 0.43 0.022 0.044 9.73 11.33
1500 1.05 0.57 0.026 0.048 11.91 13.60
800 1.05 0.71 0.040 0.042 16.78 15.8
2000 1.20 0.41 0.029 0.042 9.51 8.32
2000 1.50 0.39 0.047 0.046 8.65 2.21

Table 3. Under different simulation conditions, before the first liquid ring breakup, the wavelength of the edge
unstable wave (λl), the average radius (rl) and mass (ml) of the first liquid ring and the average interval of
liquid ring detachment (tl).

from the mother droplet (ml/M0) increasing from approximately 1.5 % to 5 %. Regarding
λl, we note a decrease with an increase in 1/R and E0, consistent with the aforementioned
findings. It is noteworthy that the critical wavelength exhibits an exponential decay as
λl ∼ 2π + exp(1/R) and tends to a convergent value λl/rl ∼ 2π when electrical insulation
state (i.e. σex = 0), closely adhering to the classical Taylor theory (Tomotika 1935). This
outcome serves as further evidence that the fragmentation of the liquid ring is primarily
governed by capillary instability.

Meanwhile, the average intervals of liquid ring detachment (tl) are recorded. As
indicated in the table, the frequency of liquid ring detachment increases with the increase
of 1/R and E0. Especially at a large E0, it can be observed that a smaller daughter ring
(with a radius of ∼0.1rl) closely follows the detachment of the first liquid ring (as shown in
figure 10). Similar phenomena have also been observed in previous experiments (Brosseau
& Vlahovska 2017). Ultimately, with the fragmentation of this secondary liquid ring,
smaller daughter droplets form around the primary satellite droplet. As analysed in § 4.2,
the occurrence of liquid fingers for higher 1/R and E0 cases are attributed to the excitation
by unstable waves on the liquid ring. Therefore, the results in table 3 corroborate this
observation, as λl and tl decrease with the increase of 1/R and E0.

Variations in the unstable wavelength for different 1/R directly result in noticeable
differences in the size distributions of the fragmented droplets produced. In figure 17,
a statistical analysis of the size distribution (d <> /d0) of satellite droplets after
the breakup of the first two concentric liquid rings under different 1/R is presented.
Simultaneously, we illustrate the corresponding qualitative results with the highlighted
blue regions representing the measured satellite droplets. Following the prediction of the
fragmentation–fusion scenario, the satellite droplet size distribution can be fitted by using
gamma functions (Villermaux, Marmottant & Duplat 2004; Kooij et al. 2019). Notably,
for larger values of 1/R, the average size of the corresponding satellite droplets is smaller.
In contrast, for smaller 1/R, the size distribution is wider and the average size is larger.
It is observed that, as 1/R increases from 800 to 10 000, both the average size and the
size distribution range of the satellite droplets approximately doubled, with the number of
satellite droplets increasing by approximately 50 %. This observed droplet size distribution
aligns with the aforementioned analysis of liquid ring instability.

As the liquid ring continuously detaches and breaks over time, the outcome due to
droplet equatorial streaming is the generation of hundreds of dispersed satellite droplets
on the equatorial plane of the droplet. The terminal size distribution of satellite droplets
under different simulation parameters is plotted in figure 18. Since we have previously
established that the size distribution of satellite droplets follows a gamma distribution, the
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Figure 17. For cases with different 1/R, the satellite droplet size distribution after the breakup of the first two
liquid rings, along with the qualitative comparison. The solid line represents the gamma function fit of the
satellite droplet size distribution.
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Figure 18. Size distribution of satellite droplets produced by droplet equatorial streaming under different
simulation conditions, directly displayed by their best-fitted gamma functions. The corresponding qualitative
results in the figure are satellite droplets produced by fingering equatorial streaming.

results are directly displayed through best-fitted gamma functions. From the graph, it is
evident that, consistent with the size of satellite droplets from the liquid rings, the average
radius of the final satellite droplets and their size range decrease with an increase in 1/R.
The average size and size distribution range of satellite droplets are similar to the results
in figure 17 for cases with E0 = 1.05, the total number of satellite droplets for the case
of 1/R = 10 000 is approximately 125 % higher than the case with 1/R = 800. For a given
1/R, similar to the outcomes of a single liquid ring breakup, we observe a reduction in the
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Figure 19. For fingering streaming, quantitative schematics of liquid fingers around the mother droplet under
different (a) E0 and (b) 1/R, along with corresponding snapshot results from simulations.

average radius of satellite droplets with an increase in E0. The observed minimum satellite
droplets have diameters d〈min〉 /d0 = 30, corresponding 30 μm in physical unit.

Nevertheless, different from the case of single liquid ring fragmentation, the size
distribution of satellite droplets broadens with an increase in E0. This anomalous result
in the distribution of satellite droplets is attributed to the occurrence of smaller daughter
droplets around the satellite droplets for larger E0. It is crucial to note that, in addition to
the liquid ring breakup, finger breakup also occurs for cases with larger E0. As indicated in
the qualitative snapshots in figure 18, satellite droplets produced by liquid fingers (closer
to the centre) are notably smaller than those generated by liquid ring breakup (outermost
satellite droplets). Due to the multiple influences of the uneven wavelength on the liquid
ring, daughter rings and fingering breakup, we observe the broadest size distribution for
the case of 1/R = 800 with E0 = 1.5Ec.

As indicated by the above results, fingering equatorial streaming directly leads to
the generation of satellite droplets with sizes distinct from those resulting from liquid
ring rupture. To get a deeper understanding of the phenomenon of fingering equatorial
streaming, in figure 19, snapshots of the liquid fingers (also called liquid filaments) at
the edge of the mother droplet under different E0 (vertical columns) and 1/R (horizontal
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rows) are extracted, at the instant before the first ejection of satellite droplets; the droplet
is coloured by the total electric force. The liquid fingers form at the edge of the mother
droplet immediately after the detachment of 2 to 3 liquid rings. Similar to figure 16, we
quantified the corresponding edge profiles in (a) with different E0 and (b) with different
1/R, facilitating a more intuitive presentation of the wavelength and radius of liquid fingers.
From a qualitative perspective, it can be found that the ejection of satellite droplets from
the liquid finger is mainly controlled by the mechanism of end pinching (Wang et al. 2018;
Wang & Bourouiba 2021), This stems from the expansion of the ligament at the equator.
Therefore, the observed breakup mechanisms are quite similar to the findings in the works
of Wang et al. (2018) and Wang & Bourouiba (2022). For instance, it is observed that
larger values of 1/R (thinner lamella thickness, as evidenced in figure 11) and E0 (faster
expansion speed, as evidenced in § 4.3) correspond to finer liquid fingers. Regarding the
number of liquid fingers (implies distance between fingers), it is evident that they increase
with an increase in E0. In contrast, for different 1/R cases, the number of liquid fingers
remains relatively consistent.

From the quantitative results, it can be observed that, for all cases, the breakup of the
liquid fingers follows the instability mechanism known as Stokes flow instability (Bentley
& Leal 1986; Stone 1994). Specifically, it shows short-wave pinching with a wavelength
of approximately λfl/rfl ∼ 3.2, where λfl and rfl are the wavelength and radius of the
liquid fingers (Shinjo & Umemura 2010). This type of short-wave pinching is a common
mechanism for viscous droplets in shear flows (Wang & Bourouiba 2018). Additionally, it
should be noted that, compared with the instability waves on the liquid ring, the spacing
between liquid fingers is more uniform, and the sizes between the liquid fingers are also
similar. This implies that the satellite droplets produced by fingering breakup have a more
uniform size distribution than those generated by liquid ring rupture. It should be noted
that the fragmentation of liquid fingers is a highly complex process, especially in terms
of its theoretical modelling. Wang & Bourouiba (2017, 2018, 2023) and Wang et al.
(2018) provided insightful studies on the fragmentation of liquid fingers generated by
droplet impact and derived precise governing equations along with analytical solutions
to describe this process. Integrating the observed fingering equatorial streaming with
previous instability models (López-Herrera & Ganan-Calvo 2004; Wang & Bourouiba
2018) to build theoretical equations that can describe the finger’s width, breakup length and
number would be a fascinating topic for future research. This topic deserves a dedicated
paper, which is beyond the present work.

As a summary, all simulation cases are compiled into a phase diagram, as depicted
in figure 20. As explained earlier, the occurrence of fingering equatorial streaming can be
attributed to two conditions: (i) the larger electric field force, accelerating the expansion of
the droplet in the equatorial plane, which is related to ∼Cae. (ii) The liquid ring detaches
rapidly at the equator. Utilizing the dimensionless numbers and power-law relation in § 4.3,
we have ∼(CaeR/S)−0.77. Therefore, the functions used to describe the finger-like breakup
and ring rupture can be written as

32Cae + 0.2
(

CaeR
S

)−0.77

= K. (4.6)

In this paper, the fitted constant K is set to 160. As evident from the graph, the phase
boundary proposed in this study aligns remarkably well with the simulation results and
previous experimental findings. The phase diagram obtained can provide guidance for
accurately controlling the various breakup mechanisms of droplet equatorial streaming.
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Figure 20. The phase diagram illustrates the results of droplet equatorial streaming, the dashed line
represents (4.6).

Additionally, we hope that future experimental research over a larger parameter range will
complement our findings about fingering equatorial streaming.

5. Conclusion

Since the discovery of droplet equatorial streaming by Brosseau & Vlahovska (2017), there
remain many mysteries behind this phenomenon. The present research has successfully
constructed a ULBM multiphase model for EHD to simulate the entire process of droplet
equatorial streaming, providing fresh insights. The focus of this paper revolves around
three questions: (i) the flow patterns of droplet equatorial streaming in a broader range of
parameters than in the experiment, (ii) the dynamic evolution of key parameters during the
droplet equatorial streaming and (iii) the underlying mechanisms of fragmentation in the
process of droplet equatorial streaming.

Firstly, based on the ULBM framework proposed by Luo et al. (2021), we construct
a novel multiphase EHD LB model considering charge relaxation and charge convection.
For the modelling of multiphase flow, the highly efficient non-orthogonal MRT phase-field
LB model recently proposed by Wang et al. (2023) is adopted. A ULBM (NMRT) model
is developed for charge relaxation and convection. A new source term is introduced
to consider the coupling of the charge conservation equation for charge transportation
and the Poisson equation for the electric field. Subsequently, the proposed model is
comprehensively validated by comparing the simulation results with analytical solutions,
previous simulation results and experiments. Notably, the Coulomb fission of droplets in
an electric field is successfully reproduced using the LB model, demonstrating excellent
agreement with experimental results.

Subsequently, the proposed LB model is applied to simulate the droplet equatorial
streaming. Our model has successfully reproduced the entire process observed in
experiments, including the continuous ejection of liquid rings at the equator, the
fragmentation of the liquid rings and the formation of satellite droplets. Then the physical
parameters in our simulations are extended to a broader range than in existing experiments
(Brosseau & Vlahovska 2017) and simulations (Wagoner et al. 2020, 2021). Under the
conditions of high electric field strength and conductivity differences, a novel fingering
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equatorial streaming phenomenon is observed. In fingering equatorial streaming, satellite
droplets are directly ejected from the liquid fingers at the equator of the mother droplet
rather than the breakup of the liquid rings.

The dynamic behaviours of the droplet before the first liquid ring detaches have been
investigated. A power-law relationship is first found to exist between the total charge Qe
of the droplet and the evolution time (4.1). Subsequently, a theoretical model (4.4) is
developed to describe the time evolution of the droplet radius and height. Our theoretical
model shows excellent consistency with the simulation results. Moreover, the critical
moments of the first ring detachment are investigated. For all simulated cases, it is
found that Qe at this moment is approximately 2.5 times the Rayleigh limit qc, with the
carried charge of the liquid ring constituting approximately 15 %∼30 % of the total charge.
Additionally, for cases with electric field strength E0 > Ec, a power-law decay relationship
is observed between the droplet’s critical breakup time (4.5). Conversely, for the cases with
E0 < Ec, a novel charge accumulation hysteresis phenomenon is discovered.

Finally, we investigate the breakup mechanisms in the droplet equatorial streaming.
It is found that the fragmentation of the liquid rings is caused by capillary instability,
with the wavelength of unstable waves on the liquid rings and the interval of ring
detachment decreasing with the increase in conductivity contrast (1/R) and E0. The
fragmentation of liquid fingers is governed by the end-pinching mechanism. Concerning
the size distribution of satellite droplets in the equatorial flow, a reduction in the average
radius of satellite droplets with increasing 1/R and E0 is observed, and the size distribution
narrowed with increasing 1/R but widened with increasing E0. This is attributed to
the occurrence of fingering equatorial streaming for cases of large E0. Based on the
mechanism behind the occurrence of fingering equatorial streaming, i.e. (i) high frequency
of the liquid ring detachment and (ii) large external electric field forces, we establish a
criterion equation (4.6) to distinguish between droplet fingering equatorial streaming and
ring equatorial streaming. It is noted that the research on droplet equatorial flow is still
in its early stages, and its comprehensive understanding requires extensive experimental
and simulation studies (Vlahovska 2019; Wagoner et al. 2021). While qualitative analysis
for liquid rings and liquid fingers under different E0 and 1/R are provided in § 4.4,
further theoretical modelling is necessary. Constructing a theoretical model that accurately
describes the instabilities in equatorial streaming including the fingering instability merits
further exploration.

Supplemental material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2024.441.
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