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Abstract
A model-free adaptive robust control based on time delay estimation (TDE) is proposed for robot in the presence of
disturbance and input saturation. TDE is utilized to estimate the complicated nonlinear terms of the robot including
unknown dynamics and disturbance, and a TDE error observer is developed to estimate the inevitable TDE error.
When the input torque of the robot exceeds the upper or lower limit of the input saturation, an auxiliary system and
a saturation deviation boundary adaptive law are employed to mitigate the negative impact of input saturation on the
position tracking. Finally, the robust control law is obtained by backstepping. The stability of the closed-loop system
is proved by Lyapunov functions, and the validity of the proposed method is demonstrated by comparative simula-
tions and experiments. Compared with the model-based controllers and other model-free controllers, the proposed
method does not necessitate the accurate dynamic model of the complicated system and with lower computation.
Moreover, it can guarantee the desired position tracking performance of the robot even subject to disturbance and
input saturation simultaneously.

1. Introduction
The robot has extensive usage in a variety of fields, including industry, underwater exploration, and reha-
bilitation medicine [1–3]. However, the robot is usually of substantial nonlinearities, coupled dynamics,
and model uncertainty. Moreover, the systems often suffer from disturbance due to unknown envi-
ronments and external uncertainties. Therefore, a variety of control schemes have been proposed to
accurately control the robots.

The control schemes for robot subjected to disturbance can be generally divided into two cate-
gories: model-based control and model-free control [4]. Thereinto, model-based control necessitates
complicated calculations of the accurate dynamic model, such as sliding mode control [5–7] and model
predictive control (MPC) [8–10]. Whereas, model-free control does not rely on the dynamic model
so that it can be applied to the situations where the model of the system is difficult to compute or
unknown. In ref. [11], an attack detection approach was proposed for DC servo motor systems, which
did not require the prior knowledge of the system model. In refs. [12, 13], fuzzy control techniques
were employed to approximate the system model. In refs. [14–17], neural network control techniques
were adopted to learn the system model. However, fuzzy control and neural network control require
a large number of adjustable parameters and high computational burden. In addition, model-free con-
trol can also be achieved through adaptive control technique which can be broadly categorized into
learning-based adaptive control [18] and non-learning-based adaptive control [19]. Nevertheless, adap-
tive control also requires extensive computation and may converge slowly for highly complicated and
unknown system.

As an effective and relatively simple model-free method, which is easy to implement, and is robust
to estimate the unknown uncertain system’s model, time delay estimation (TDE) has been extensively
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investigated and applied in the control of robot. The fundamental idea of TDE is to estimate the com-
plicated dynamics and external disturbance at the current instant using the time delay information at
the previous sampling instant [20]. A variety of TDE-based control strategies for nonlinear robot sys-
tems with uncertainty and unknown disturbance have been proposed. For uncertain robots with external
disturbance and backlash hysteresis, a robust model-free control method combining TDE and adap-
tive terminal sliding mode was proposed in ref. [21]. Through TDE this method does not necessitate
prior knowledge of unknown backlash hysteresis and system dynamics. In the case of nonlinear under-
actuation, an artificial-delay control approach with adaptive gains was developed in ref. [22]. This
approach does not rely on linearity, the structure of the mass matrix, the boundedness of state deriva-
tives, or unactuated states. A backstepping approach combined with TDE for exoskeleton robot adaptive
control was proposed in ref. [23] to estimate the unknown dynamics and address the external bounded
disturbance. Although refs. [20–23] can achieve model-free control with TDE. However, if the robot
is exposed to significant external disturbance, the effectiveness of TDE declines and the TDE error
increases, which will severely affect the control performance of the system [24].

To effectively compensate for the TDE error, a model-free adaptive sliding mode control was pro-
posed in ref. [25] for robot with uncertainty, and an adaptive law based on sliding mode was developed
to lessen the TDE error. In ref. [26], an adaptive robust control was proposed for robot. This control
enabled chattering-free, high precision, and strong robustness by combining TDE with adaptive integral
sliding mode. In ref. [27], a robust controller using fractional-order nonsingular terminal sliding modes
was developed to enhance the position tracking performance of the robot. A nonlinear adaptive law was
developed for the TDE control gain to suppress TDE error. In ref. [28], the estimation error of TDE was
regarded as a disturbance, and an adaptive sliding mode observer was developed to estimate the TDE
error. Although TDE error can be effectively suppressed with the methods in refs. [25–28], when the
robot is subjected to significant external disturbance or the state error increases, not only TDE error
appears in the systems, but an overlarge control torque may also appear for maintaining the tracking
performance, which can cause the required control input torque to rapidly reach saturation [29–31].

The deviation between the actual input saturation control torque and the controller command input
torque is called input saturation deviation. In robot trajectory tracking control, the input saturation devi-
ation needs to be specially considered, otherwise the system performance may deteriorate, and even
the system stability is destroyed [32, 33]. In ref. [34], a method employing active disturbance rejection
control and predefined tracking performance functions was proposed. It dealt with the position tracking
control of robot manipulators in the presence of input saturation and uncertainty. However, the method
in ref. [34] is only for one-DOF link robot manipulators. In ref. [35], an offline model predictive con-
trol based on a linear parameter variation model was proposed for free-floating space robots. The input
saturation problem was addressed in the constraints of the model predictive control. In ref. [36], a new
fractional sliding control method was proposed for a spherical robot. In order to handle input satura-
tion, an auxiliary system was introduced. In ref. [37], a robust adaptive tracking control approach was
proposed for multi-input multi-output mechanical systems with unknown disturbance under actuator
input saturation. Thereinto, an actuator saturation compensator was introduced to attenuate the adverse
effects of actuator saturation. However, all the methods in refs. [35–37] depend on the system model and
necessitate prior knowledge about complicated system dynamics.

In this paper, a model-free adaptive robust control method based on TDE is proposed for trajectory
tracking of uncertain robot with disturbance and input saturation. The primary contributions of this
paper are as follows:

• Unlike other model-free controllers, TDE is used to approximate the nonlinear dynamics of the
robot with disturbance and input saturation with lower computation. Thus, the proposed method
is model-free, which does not necessitate the accurate dynamic model of the complicated system.

• A TDE error observer is developed to compensate for the TDE error. Thus, the inherent TDE
error is reduced so that the nonlinear terms can be approximated more accurately.
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• Compared with ref. [37], an auxiliary system is constructed by the deviation boundary between
the command control input and the actual control input subject to input saturation, and an adap-
tive law is developed for the saturation deviation boundary. Hence, the adverse effects of input
saturation can further be diminished.

• Different from ref. [23], the final control law is developed by backstepping with the TDE, the
TDE error observer, the auxiliary system, and the saturation deviation boundary adaptive law.
Hence, the proposed method is robust to disturbance and input saturation simultaneously.

2. Dynamic model of robot
The dynamic model of a robot with n-degrees of freedom (n-DOF) is

M(q) q̈ + C(q, q̇) q̇ + G(q) + F(q̇) = u + d (1)

where q, q̇, q̈ ∈ Rn×1 are the angular position, angular velocity, and the angular acceleration of the joints,
respectively, M(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is the vector
of the Coriolis and centrifugal term, G(q) ∈ Rn×1 is the gravity, F(q̇) ∈ Rn×1 is the joint friction force,
d ∈ Rn×1 is the disturbance, and u ∈ Rn×1 is the actual control torque.

The actual control torque u is limited by input saturation, that is, u = sat(τ ), τ ∈ Rn×1 is the com-

mand control input for the controller, saturation function is sat(τi) =
{

sign(τi) ∗ vi, |τi| ≥ vi

τi, |τi| < vi
, vi > 0 is a

constant, sign(•) is the symbolic function, and the subscript i = 1, 2 . . . n indicates the i-th joint of the
robot.

Let x1 = q, x2 = q̇, then the dynamic model (1) can be transformed into the following state-space
equation as: ⎧⎨

⎩
ẋ1 = x2

ẋ2 = M−1
(q) sat(τ ) + M−1

(q) (−C(q, q̇) q̇ − G(q) − F(q̇) + d)

y = x1

(2)

where y is the output of the robot. Notice that the nonlinear term M−1(q) sat(τ ) + M−1(q)(−C(q, q̇)q̇ −
G(q) − F(q̇) + d) in Eq. (2) includes input saturation and all the uncertainty terms of the robot such as
disturbance, and uncertain dynamics.

3. TDE
In practice, it is hard to acquire the dynamic model (2) due to the unknown disturbance and dynamics in
the nonlinear terms. TDE technique can estimate all the nonlinear terms of robot at the current instant
using the torques and accelerations of the system output at the previous sampling instant.

By introducing a positive definite diagonal constant matrix M̄, Eq. (2) can be rewritten as:⎧⎨
⎩

ẋ1 = x2

ẋ2 = M̄−1sat(τ ) − M̄−1Sn

y = x1

(3)

where Sn = ((M(q) − M̄)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) − d) concentrates all the uncertain terms and
unknown disturbance in the nonlinear terms of the robot dynamics. Hence, we employed TDE to estimate
Sn, which contains all the uncertain terms and unknown disturbance of the robot under input saturation.

The second equation in Eq. (3) can be rewritten as:

Sn = u − M̄ẋ2 (4)

Define Ŝn as the estimation of Sn, then we have

Sn ≈ Ŝn = Sn(t−L) = ut−L − M̄ẋ2(t−L) (5)
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Figure 1. System control block diagram.

where L is the delayed time, which is usually set as a sampling time in practice, and ẋ2(t−L) represents
the value of ẋ2 after time delay.

Then the TDE error can be obtained as:

ε = Sn − Ŝn (6)

Substituting Eqs. (5) and (6) into Eq. (3), we can obtain⎧⎨
⎩

ẋ1 = x2

ẋ2 = M̄−1u − M̄−1(ut−L − M̄ẋ2(t−L) + ε
)

y = x1

(7)

Notice that the position x1 is available. The velocity x2 and acceleration ẋ2 can be calculated by x1 as
follows:

x2(t) = x1(t) − x1(t − L)

L
(8)

ẋ2(t) = x1(t) − 2x1(t − L) − x1(t − 2L)

L
(9)

Lemma 1 ([38, 39]). If the gain matrix M̄ satisfies the following condition:∥∥I − M−1(q)M̄
∥∥ < 1 (10)

then the TDE error ε is bounded, that is, ‖ε‖ ≤ ϑ1, where ϑ1 is a positive constant and I denotes the
unit matrix with proper dimension.

4. Model-free adaptive robust control based on TDE
The block diagram of the model-free adaptive robust control based on TDE for robot with disturbance
and input saturation is shown in Fig. 1. It consists of three main parts. The first part is the TDE and
the TDE error observer which is to estimate the dynamic model and the unknown disturbance of the
robot to obtain the model-free characteristics. The second part includes the auxiliary system and the
saturation deviation boundary adaptive law which is to reduce the undesirable effects when the control
torque exceeds the input saturation. The last part contains a backstepping controller which lumps the
output results of the above two parts to obtain the final model-free adaptive robust control. The control
goal is to achieve desired position tracking despite the unknown disturbance and input saturation.
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4.1. TDE error observer
Since TDE uses the output value of the previous sampling instant to approximately estimate the nonlinear
terms at the current instant. When the robot is subject to significant external disturbance, the output value
of the previous sampling instant may have error which will affect the system performance or even cause
system instability. Thus, a TDE error observer is introduced to observe the TDE error and compensate
for the TDE error so that the nonlinear terms can be approximated more accurately.

The second equation in Eq. (7) can be rewritten as:

ẋ2 = M̄−1u − M̄−1(ut−L − M̄ẋ2(t−L)

) + D(t) (11)

where D(t) = −M̄−1
ε. Since M̄ is a constant matrix, then according to Lemma 1, we know that ‖ε‖ ≤ ϑ1

in D(t). Thus, there exist two positive constants ϑ2 and ϑ3, such that ‖D(t)‖ ≤ ϑ2 and ‖Ḋ(t)‖ ≤ ϑ3.
Then the TDE error can be represented in the form as:

D(t) = −
(
M̄−1u − M̄−1ut−L + ẋ2(t−L)

)
(12)

Now, the TDE error observer is developed as:{
D̂(t) = z + Jx2

ż = −Jz − J
(
M̄−1u − M̄−1ut−L + ẋ2(t−L) + Jx2

) (13)

where D̂(t) is the observed value of D(t), z is the state of the TDE error observer, and J as a diagonal

matrix is the gain of the observer and satisfies J − 1

2
I > 0.

Lemma 2 ([40]). (Rayleigh–Ritz Theorem) The Hermitian matrix H and the vector � satisfy the
following inequality:

λmin(H)‖�‖2 ≤ � TH� ≤ λmax (H) ‖�‖2 (14)

where λmin(•) and λmax(•) denote the minimum eigenvalue and the maximum eigenvalue of the matrix,
respectively.

Theorem 1. Consider the robot (7) is subject to external disturbance, if the TDE error observer (13)
is employed to estimate the TDE error D(t) in Eq. (11), then the TDE error observer estimation error
D̃(t) = D(t) − D̂(t) will be asymptotically stable in � = {D̃(t): ‖ D̃(t) ‖≤ ϑ3/λmin(J)}.
Proof. Differentiating D̂(t) and substituting Eqs. (11) and (13) into it one can obtain

˙̂D (t) = ż + Jẋ2 = −Jz − J
(
M̄−1u − M̄−1ut−L + ẋ2(t−L) + Jx2

)
+ Jẋ2

= −Jz − JJx2 + JD(t) = −JD̂(t) + JD(t)

= JD̃(t) (15)

Define the Lyapunov function as:

VD = 1

2
D̃(t)T D̃(t) (16)

Substituting Eq. (15) into the derivative of Eq. (16) and applying Lemma 2 yield

V̇D = D̃(t)T
(
Ḋ(t) − JD̃(t)

)
≤

∥∥∥D̃(t)
∥∥∥ ϑ3 −

∥∥∥D̃(t)
∥∥∥2

λmin (J)

≤ −
∥∥∥D̃(t)

∥∥∥ (
λmin (J)

∥∥∥D̃(t)
∥∥∥ − ϑ3

)
(17)

Form Eq. (17), if J is properly selected which satisfies ‖D̃(t)‖ > ϑ3/λmin(J), then we have V̇D < 0.
Therefore, the TDE error observer is asymptotically stable to an any small �. Theorem 1 is proved. �
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4.2. Input saturation auxiliary system
In practice, the command control torques of the controller are sometimes limited by the input saturation.
When the command control torques exceed, the saturation will result in position tracking error, which
will degrade the system performance and even destroy the system stability. To reduce the negative effects
of input saturation, the following auxiliary system is further constructed based on ref. [37] by introducing
the saturation deviation boundary:{

λ̇1 = −p1λ1 + λ2

λ̇2 = M̄−1(−p2λ2 + �τ
) − λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2 (18)

where λ1 ∈ Rn×1, λ2 ∈ Rn×1 are the states of the auxiliary system, and p1, p2 are positive definite constant
gain matrixes. Also, �τ = sat(τ ) − τ is the input saturation deviation which represents the deviation
between the actual control input and the command control input under the input saturation limit. Thus,
Eq. (11) can be rewritten as:

ẋ2 = M̄−1
τ + M̄−1

�τ − M̄−1(ut−L − M̄ẋ2(t−L)

) + D̂(t) (19)

Remark 1. The input saturation should still ensure the controllability of the robot in practice. Thus, it
is generally assumed that �τ is bounded and there exists a constant θ > 0 satisfying ‖�τ‖2 ≤ θ .

4.3. Backstepping controller
The estimated output of the TDE, the TDE error observer, and the auxiliary system are lumped into
the backstepping controller. A saturation deviation boundary adaptive law and a model-free adaptive
robust controller are developed. Thereby, the robot can track the desired position even with unknown
disturbance and input saturation.

Lemma 3 ([41]). (Young’s inequality) For ∀a, b ≥ 0, A > 1, B > 1 and
1

A
+ 1

B
= 1, then

ab ≤ aA

A
+ bB

B
(20)

Lemma 4 ([42]). If there exists a positive definite and first-order derivative continuous Lyapunov
function V(x) satisfying 	1(‖x‖) ≤ V(x) ≤ 	2(‖x‖), such that V̇(x) ≤ −ρV(x) + �, then x(t) is uniformly
bounded, where 	1, 	2 are K-class functions and ρ, � are positive constants.

Step 1. Define two error variables as: {
e1 = x1 − yd − λ1

e2 = x2 − α − λ2
(21)

where yd is the desired position and α is the virtual control input to the robot system.
Differentiating e1 in Eq. (21) and substituting it into Eq. (18), we can obtain

ė1 = e2 + α − p1λ1 (22)

Consider the Lyapunov function as:

V1 = 1

2
eT

1 e1 (23)

Differentiating V1 and combining with Eq. (22) yields

V̇1 = eT
1

(
e2 + α + p1λ1 − ẏd

)
(24)

Based on Eq. (24), the following virtual control input is selected as:

α = −K1e1 + ẏd − p1λ1 (25)
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where K1 is a positive definite constant matrix. Then, substituting Eq. (24) into Eq. (23) yields

V̇1 = eT
1 e2 − eT

1 K1e1 (26)

Step 2. Consider the Lyapunov function as:

V2 = V1 + 1

2
eT

2 e2 (27)

From Eqs. (19) and (21), differentiating e2 in Eq. (21), we have

ė2 = M̄−1
τ − M̄−1(ut−L − M̄ẋ2(t−L)

) + D̂(t) − α̇

+ M̄−1p2λ2 + λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2 (28)

Differentiating V2 and combining with Eq. (28), it can be obtained that

V̇2 = V̇1 + eT
2

(
M̄−1

τ − M̄−1(ut−L − M̄ẋ2(t−L)

) + D̂(t) − α̇

+ M̄−1p2λ2 + λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

)
≤ eT

1 e2 − eT
1 K1e1 + eT

2

(
M̄−1

τ − M̄−1(ut−L − M̄ẋ2(t−L)

)
+ D̂(t) − α̇ + M̄−1p2λ2 + λ2

∥∥∥M̄−1
∥∥∥2

μθ

)
(29)

where 0 < μ < 1.
Then the model-free adaptive robust controller τ can be developed as:

τ = ut−L − p2λ2 + M̄
(
−K2e2 − e1 − D̂(t) + α̇ − ẋ2(t−L)

+ �λ2

∥∥∥M̄−1
∥∥∥2

μθ̂

)
(30)

where � = diag[sign(e2i)], K2 is a positive definite constant matrix and θ̂ is the estimation of θ .
Since ‖�τ‖2 ≤ θ , we can get

eT
2 λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2 ≤

n∑
j=1

|e2i| ‖λ2i‖
∥∥∥M̄−1

∥∥∥2

μθ (31)

eT
2 �λ2

∥∥∥M̄−1
∥∥∥2

μθ̂ =
n∑

j=1

|e2i| ‖λ2i‖
∥∥∥M̄−1

∥∥∥2

μθ̂ (32)

Substituting Eq. (30) into Eq. (29) yields

V̇2 ≤ eT
1 e2 − eT

1 K1e1 + eT
2

(
M̄−1

τ − M̄−1ut−L − M̄ẋ2(t−L)

+ D̂(t) − α̇ + M̄−1p2λ2 + λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

)
= eT

1 e2 − eT
1 K1e1 + eT

2

(
M̄−1ut−L − M̄−1p2λ2

− �λ2

∥∥∥M̄−1
∥∥∥2

μθ̂ − K2e2 − e1 − D̂(t)

+ α̇ − ẋ2(t−L) − M̄−1ut−L + ẋ2(t−L) + D̂(t) − α̇

+ M̄−1p2λ2 + λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

)
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= −eT
1 K1e1 − eT

2 K2e2 + eT
2

(
−�λ2

∥∥∥M̄−1
∥∥∥2

μθ̂

+ λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

)
(33)

Substituting Eqs. (31) and (32) into Eq. (33) yields

V̇2 ≤ −eT
1 K1e1 − eT

2 K2e2 −
n∑

j=1

∣∣e2j
∣∣ ∥∥λ2j

∥∥ ∥∥∥M̄−1
∥∥∥2

μθ̂

+
n∑

j=1

∣∣e2j

∣∣ ∥∥λ2j

∥∥ ∥∥∥M̄−1
∥∥∥2

μθ

= −eT
1 K1e1 − eT

2 K2e2 −
n∑

j=1

∣∣e2j
∣∣ ∥∥λ2j

∥∥ ∥∥∥M̄−1
∥∥∥2

μθ̃ (34)

where θ̃ = θ̂ − θ .
Step 3. Consider the Lyapunov function as:

V = V2 + 1

2μ
θ̃

T
θ̃ + 1

2
D̃(t)T D̃(t) + 1

2
λ1

Tλ1 + 1

2
λ2

Tλ2 (35)

Differentiating Eq. (35) and using Lemma 3 and Eq. (34) lead to

V̇ = V̇2 + 1

μ
θ̃

T ˙̃
θ + D̃(t)T

(
Ḋ(t) − JD̃(t)

)
+ λ1

T λ̇1 + λ2
T λ̇2

≤ −eT
1 K1e1 − eT

2 K2e2 −
n∑

j=1

∣∣e2j
∣∣ ∥∥λ2j

∥∥ ∥∥∥M̄−1
∥∥∥2

μθ̃ + 1

μ
θ̃

T ˙̂
θ

−D̃(t)T JD̃(t) + D̃(t)T Ḋ(t) + λ1
T
(−p1λ1 + λ2

)
+λ2

T

(
M̄−1(−p2λ2 + �τ

) − λ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

)
(36)

According to Eq. (36), the adaptive update law of θ̂ is developed as:

˙̂
θ = μ

(
μ |e2|

∥∥∥M̄−1
∥∥∥2

λ2 − β θ̂

)
(37)

where β > 0 is the adaptive gain.
Substituting Eq. (37) into Eq. (36) yields

V̇ ≤ −eT
1 K1e1 − eT

2 K2e2 − β

((
θ̂ − θ

)2 − θ
2

)
− D̃(t)T JD̃(t) + 1

2
D̃(t)T D̃(t)

+ 1

2
Ḋ(t)T Ḋ(t) − λ1

Tp1λ1 + λ1
Tλ2 − λ2

TM̄−1p2λ2

+ λ2
TM̄−1

�τ − λ2
Tλ2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

≤ −eT
1 K1e1 − eT

2 K2e2 − λ1
T

(
p1 − I

2

)
λ1 − λ2

T

(
M̄−1p2 +

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2 − I

)
λ2

− β θ̃
2 − λmin

(
J − I

2

)
D̃(t)T D̃(t) + βθ

2 + 1

2
ϑ3

2

+ 1

2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

≤ −NV + � (38)
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where

N = min
{
2λmin(K1) , 2λmin (K2) , λmin

(
2p1 − I

)
,

2λmin

(
M̄−1p2 +

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2 − I

)
,

2λmin (β) , 2λmin

(
J − I

2

)}
(39)

� = βθ
2 + 1

2
ϑ3

2 + 1

2

∥∥∥M̄−1
∥∥∥2 ‖�τ‖2

> 0 (40)

The parameters p1, p2, and J need to be chosen in such way that the following conditions are satisfied

λmin(2p1 − I) > 0, λmin(M̄
−1p2 +

∥∥∥M̄−1
∥∥∥2 ‖�τ ‖2 − I) > 0, λmin

(
J − I

2

)
> 0 (41)

From Eqs. (38)–(41), we have

0 ≤ V ≤ �

N
+

(
V(0) − �

N

)
e−Nt (42)

From Lemma 4 and Eq. (42), it follows that V is bounded when t → ∞, V = �

N
. Thus,

e1, e2, θ̃ , D̃(t), λ1 and λ2 in the system are uniformly ultimately bounded. Since e1 and λ1 are bounded,
and e1 = x1 − yd − λ1 in Eq. (21), the position tracking error x1 − yd is uniformly ultimately bounded.

However, sign(•) function may lead to chattering phenomenon. In order to obtain good linear charac-
teristics, sign(•) is replaced by a smoother function tansig(•). Furthermore, a parameter σ is introduced
to adjust the width of the approximate linear band. The smaller the σ is, the wider the width of the
approximate linear band is. The function is as follows:

tansig(σ ·) = 2

1 + e(−2σ ·) − 1 (43)

Finally, the model-free adaptive robust controller can be written as:

τ = ut−L − M̄
(
ẋ2(t−L) + D̂(t)

)
︸ ︷︷ ︸

TDE + TDE error observer

+ M̄ (−K2e2 − e1 + α̇︸ ︷︷ ︸
robust terms

+ μκ

∥∥∥M̄−1
∥∥∥2

λ2θ̂

)
− p2λ2︸ ︷︷ ︸

input saturation compensate terms

(44)

where κ = diag[tansig(σe2i)].

Remark 2. Compared with the basic simple controllers such as MPC and Proportional-Derivative
(PD), our proposed model-free adaptive robust controller can deal with disturbance and input satura-
tion simultaneously. Meanwhile, it does not necessitate the accurate dynamic model of the complicated
system.
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5. Simulation studies
In order to verify the effectiveness of the method in this paper, a two-link robot as shown in Fig. 2 is
used. The mathematical model of the two-link robot is given as follows [43]:

M(q) =
[

(m1 + m2) r2
1 + m2r2

2 + 2m2r1r2 cos(q2) m2r2
2 + m2r1r2 cos(q2)

m2r2
2 + m2r1r2 cos(q2) m2r2

2

]

C(q, q̇) =
[−m2r1r2 sin(q2) q̇2 −m2r1r2 sin(q2) (q̇1 + q̇2)

m2r1r2 sin(q2) q̇1 0

]

G(q) =
[

(m1 + m2) r2
1 cos(q2) g + m2r2 cos(q1 + q2) g

m2r2 cos(q1 + q2) g

]
(45)

In the simulation, parameters of the two-link robot are shown in Table I. The input saturation is{
τmax = 15
τmin = −16

. The friction is assumed to be F(q̇) =
[

0.02 sin(q1)
0.02 sin(q2)

]
, and the external disturbance is d =

2 ×
[

2.5 sin(2�t) + 4 sin(3�) + 1.3
5 sin(2�t − �/2) + 0.6 sin(5�t) + 1.4

]
.

The desired trajectory is given as yd =
[

y1d

y2d

]
=

[
0.4 sin(�t) + 0.4 cos (�t)
0.6 sin(�t) + 0.6 cos(�t)

]
. The initial condition of

the position, auxiliary system states, and the adaptive bounds are chosen as q1(0) = q2(0) = 0.55, λ1(0) =
λ2(0) = [0; 0], θ1(0) = θ2(0) = 0.01, respectively.

The control method proposed in this paper is compared with the methods in refs. [23] and [37].
Simulations are conducted with various feedback gains in two cases.

l1

l2

q
2

1
q

m1

m2

g

Figure 2. Model of a two-link robot.

Table I. Simulation parameters of the two-link
robot.

Symbol Definition Value
r1 Length of link 1 0.38 m
r2 Length of link 2 0.31 m
m1 Mass of link 1 2 kg
m2 Mass of link 2 0.85 kg
g Gravity acceleration 9.8 m/s2
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Figure 3. Control input signals.

5.1. Case 1. With larger gain
In case 1, the parameters in the proposed method are K1 = [2 0; 0 2], K2 = [20 0; 0 20], p1 =
[2 0; 0 2], p2 = [260 0; 0 260], J = [440 0; 0 440], M̄ = [0.35 0;0 0.05], β = 0.01, μ = 0.8, and σ = 20.

Figure 3 shows the control input signals in refs. [23, 37] and this paper. Since the input saturation
cannot be handled in ref. [23], it can be seen that the method in ref. [23] generates severe chattering when
the input torque reaches the saturation limit. In ref. [37], since an auxiliary system is developed to deal
with the adverse effects of the input saturation limit, it can be seen that the input torque is smoother than
that in ref. [23]; however, there is still chattering. The method proposed in this paper can compensate
for the input saturation better by introducing the saturation deviation boundary to the auxiliary system
and the adaptive law for it.

Figures 4 and 5 show the joint position tracking and position tracking errors. From Fig. 4, it can
be seen that the method in ref. [23] becomes significantly worse in position tracking when the input
saturation occurs. The position tracking performance in ref. [37] is improved compared with that in ref.
[23] when input saturation occurs. The method proposed in this paper can track the desired position
and does not result in large position error when the input saturation occurs. Figure 5 shows that the
tracking error of the proposed method converges to zero quickly, and compared with the other two
methods, the position tracking error is smaller. Furthermore, the proposed method can maintain desired
tracking performance when the input saturation occurs due to the effective compensation of the input
saturation.

Figures 6 and 7 show the TDE error observations and the adaptive results of the saturation deviation
boundary developed in this paper. One can see that the value of θ̂ of joint 1 is constantly adjusting when
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Figure 4. Position tracking.
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Figure 5. Position tracking errors.

the input saturation occurs, while the value of θ̂ of joint 2 does not change because no input saturation
occurs.

5.2. Case 2. With smaller gain
It can be seen from Case 1 that the chattering in the controller [23] is severe with a larger control gain.
Now, a smaller feedback gain is taken in Case 2 where K2 = [10 0; 0 10] and other comparison conditions
are kept unchanged. The results are shown in Figs. 8–10.
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Figure 7. Adaptive saturation deviation boundary in proposed method.

In Fig. 8 with smaller feedback gain, the torque chattering in refs. [23] and [37] are reduced compared
with Fig. 3 with larger gain. However, the reduction of chattering in refs. [23] and [37] is at the cost
of larger tracking errors as shown in Figs. 9 and 10 compared with Figs. 4 and 5. In contrast to refs.
[23] and [37], the torque in the proposed method still maintains smooth without severe chattering in
Fig. 8. Meanwhile, the proposed method still achieves the optimal tracking accuracy among the three
methods. Moreover, the saturation time of the proposed method is the least. Table II further shows the
statistical analysis of the three methods. The index mean absolute percentage error (MAPE) is used to
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Figure 9. Position tracking.
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Figure 10. Position tracking errors.

Table II. Statistical analysis.

Gain Method Joint Torque Saturation time MAPE of tracking errors
Larger gain [23] Joint 1 Severe chattering 2.0497 s 175.0475%

Joint 2 Severe chattering 0.0083 s 25.9561%
[37] Joint 1 Small chattering 2.4472 s 40.8751%

Joint 2 Small chattering 0.0000 s 5.7522%
Proposed Joint 1 Smooth 1.9732 s 13.9512%

Joint 2 Smooth 0.0000 s 4.3447%

Smaller gain [23] Joint 1 Small chattering 3.0202 s 177.1326%
Joint 2 Small chattering 0.0529 s 180.7400%

[37] Joint 1 Smooth 2.0404 s 60.5572%
Joint 2 Smooth 0.0000 s 7.7787%

Proposed Joint 1 Smooth 1.7922 s 17.1934%
Joint 2 Smooth 0.0000 s 6.7811%

evaluate the tracking errors, where MAPE = 1

Ñ

Ñ∑
k=1

∣∣∣∣y (k) − yd (k)

yd (k)

∣∣∣∣ ∗ 100%, k = 1, 2, . . . , Ñ represents

each sampling time.

6. Experiments
In this section, the experiments are conducted on a Phantom Omni robot. The experimental setup is
composed of a Phantom Omni robot and a computer, which is shown in Fig. 11. The robot is connected
to the computer through a 1394 FireWire cable. In the experiments, the first and third joints are used
(the second joint is locked for brevity). In the experiments, the proposed method is also compared with
the methods in refs. [23] and [37].
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1q

q2

3q

Phantom Omni 
Robot

1394
FireWire cable

Figure 11. Experimental setup.
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Figure 12. Control input signals.

The parameters of the controller are taken as K1 = [60 0; 0 60], K2 = [100 0; 0 100], p1 =
[60 0; 0 60], p2 = [200 0; 0 200], J = [140 0; 0 140], M̄ = [0.5 0; 0 0.9], β = 0.02, μ = 0.6, σ = 40.

The disturbance is d =
[

3 sin (2t + 0.785)
3 sin(2t + 0.785)

]
, and the desired trajectory is given as qd =

[
q1d

q3d

]
=[

0.4 sin(�t) + 0.4 cos(�t)
0.6 sin(�t) + 0.6 cos(�t)

]
. The input saturation for joint 1 and joint 3 are set as

{
τ1 max = 35
τ1 min = −60

, and{
τ3 max = 75
τ3 min = −35

.
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Figure 13. Position tracking.
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Figure 14. Position tracking errors.

Figures 12–16 show the experimental results of the methods in refs. [23, 37] and the proposed method.
The proposed method takes the TDE error and input saturation into account compared with ref. [23].
The saturation deviation boundary is introduced based on the auxiliary system in ref. [37] to further
attenuate the negative impact of input saturation on the system. Comparing with Figs. 12–14, we can
see that the proposed method can adequately cope with the effect of input saturation on position tracking
when input saturation occurs and achieve accurate tracking. The control performance in the proposed
method is better than those in refs. [23] and [37]. The time and the position error when input saturation
occurs are significantly less than those of the other two methods. The TDE error observation and the
adaptive saturation deviation boundary are shown in Figs. 15 and 16.
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Figure 15. TDE error observation in proposed method.
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Figure 16. Adaptive saturation deviation boundary in proposed method.

In summary, the control method proposed in this paper achieves desired position tracking for robotic
system with external disturbances under input saturation. It can effectively reduce the position tracking
error and saturation time caused by input saturation without computing the complicated dynamics model
of the robot.

7. Conclusions
This paper proposes a model-free adaptive robust control based on TDE for robot with disturbance and
input saturation. TDE is adopted to estimate all the uncertainty terms and external disturbance under
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input saturation of the system. The TDE error observer is used to estimate the approximation errors
of the nonlinear terms. The adaptive auxiliary system is developed to reduce the undesirable effects
of the input saturation. The backstepping is employed to obtain the final model-free adaptive robust
controller. This method does not necessitate the accurate dynamic model of the complicated system
while guaranteeing the desired position tracking performance of the robot even subject to disturbance
and input saturation. The validity of the proposed method is demonstrated by both simulations and
experiments. Besides, fault-tolerant control for resilient robot is an interesting topic and a significant
challenge [44, 45]. Therefore, how to extend our proposed method to deal with faults, disturbance, and
input saturation simultaneously to ensure a safe and effective control for resilient robot needs to be
further investigated.
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