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Abstract

The Hamiltonian of a conventional quantum system is Hermitian, which ensures
real spectra of the Hamiltonian and unitary evolution of the system. However, real
spectra are just the necessary conditions for a Hamiltonian to be Hermitian. In
this paper, we discuss the metric operators for pseudo-Hermitian Hamiltonian which
is similar to its adjoint. We first present some properties of the metric operators
for pseudo-Hermitian Hamiltonians and obtain a sufficient and necessary condition
for an invertible operator to be a metric operator for a given pseudo-Hermitian
Hamiltonian. When the pseudo-Hermitian Hamiltonian has real spectra, we provide
a new method such that any given metric operator can be transformed into the same
positive-definite one and the new inner product with respect to the positive-definite
metric operator is well defined. Finally, we illustrate the results obtained with an
example.

2020 Mathematics subject classification: primary 81Q12.

Keywords and phrases: pseudo-Hermitian Hamiltonian, metric operator, vec map, real
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1. Introduction

As a fruitful extension of conventional quantum mechanics, pseudo-Hermitian quan-
tum mechanics has developed into a noteworthy area of research, especially
PT-symmetric quantum mechanics [3, 4, 8, 23]. This theory has been widely discussed
and developed. Consider a quantum system determined by a Hamiltonian H. In order
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to ensure the applicability of the conventional theory of quantum mechanics, it is
necessary for H to be diagonalizable with real spectra [16]. However, such a necessary
condition can be satisfied even if H is not Hermitian [2, 11]. Mostafazadeh [12] showed
that a non-Hermitian Hamiltonian with discrete spectra and a complete biorthonormal
system of eigenvectors is pseudo-Hermitian if and only if the spectra are all real,
or the complex eigenvalues come in complex conjugate pairs and the geometric
multiplicity and the Jordan dimensions of the complex-conjugate eigenvalues coincide.
The pseudo-Hermitian Hamiltonian which is defined by a similarity transformation,
H† = WHW−1, where W is called a metric operator for H, has developed into
a noteworthy area of research, and systems evolving under pseudo-Hermitian
dynamics display rich phenomena [7, 9, 10, 22]. In fact, the metric operator for a
pseudo-Hermitian Hamiltonian is not unique, and it is worthwhile to discuss the
properties of the metric operator and the structure of the set of all metric operators.

Indeed, H is diagonalizable and has real spectra if and only if there exists a
positive-definite operator η such that H† = ηHη−1 [13]. The positivity of η implies that
H belongs to a special class of pseudo-Hermitian operators called quasi-Hermitian
operators [21], while the pseudo-Hermitian operators only require that η is invert-
ible. Then a consistent quantum theory can be built with a new inner product
〈·|·〉η = 〈·|η|·〉, and any H satisfying 〈·|H·〉η = 〈H · |·〉η is Hermitian [12]. Furthermore,
putting � =

√
η, we have H similar to the Hermitian Hamiltonian, h := �H�−1. Hence,

the quasi-Hermitian quantum theory that is determined by H admits an equivalent
Hermitian description in terms of the (standard) Hilbert space with the Hermitian
Hamiltonian h [14, 15]. However, the specific form of h depends on the choice of �,
since �̃ = U

√
η also satisfies the condition. This has motivated the search for alternative

methods of computing the most general metric operator for a given pseudo-Hermitian
Hamiltonian [17, 18, 20]. For a quasi-Hermitian Hamiltonian H, if the given metric
operator W is not positive, then the inner product with respect to W is indefinite. While
Mostafazadeh [13] ensures that there must exist a positive-definite metric operator,
changing the nonpositive metric operator to a positive definite one is an interesting
topic to explore.

Since in a finite-dimensional quantum system each Hamiltonian has a matrix
presentation with respect to the given orthonormal basis, the Hamiltonian and the
corresponding matrix are considered to be identical and there is a growing body
of literature that pertains to the finite-dimensional case, such as pseudo-Hermitian
random matrix theory, and pseudo-Hermitian spin systems [5, 6, 19]. In this article we
discuss the metric operators for pseudo-Hermitian Hamiltonians in finite-dimensional
quantum systems. In Section 2 we first establish some properties of the metric
operator and obtain a sufficient and necessary condition for an invertible operator
to be a metric operator for a given pseudo-Hermitian Hamiltonian according to the
vec map. Then in Section 3 we provide a method to change a given metric operator
which is not positive-definite to become a positive one when the pseudo-Hermitian
Hamiltonian has real spectra. Our findings and conclusions are summarized in
Section 4.
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2. The two golden rules

A physical system which is determined by a Hamiltonian is a Hilbert space (a
complex vector space with inner product), and the Hamiltonian corresponds to a linear
operator. Suppose that H ∈ B(Cd) is a Hamiltonian, H† is the adjoint of H, HT is the
transpose of H, |ψ〉 is a unit column vector, 〈ψ| = (|ψ〉)† is a unit row vector.

DEFINITION 2.1 [12]. Let H ∈ B(Cd). If there exists an invertible operator W such
that H† = WHW−1, then H is called a pseudo-Hermitian Hamiltonian and W is called
a metric operator for H.

We note from the Definition 2.1 that, in particular, when W = I, the pseudo-
Hermitian Hamiltonian coincides with a Hermitian Hamiltonian. Therefore, all
Hermitian Hamiltonians form a subset of the set of pseudo-Hermitian Hamiltonians.

We now present some results about the pseudo-Hermitian Hamiltonian and its
metric operators.

THEOREM 2.2. Let H be a pseudo-Hermitian Hamiltonian on B(Cd) with a metric
operator W.

(i) The spectra of H are all real or complex conjugate pairs.
(ii) W† is also a metric operator for H, and a Hermitian metric operator for H can

always be determined.
(iii) For any λ ∈ R\{0}, λW is a metric operator for H.
(iv) If M is another metric operator for H and W +M is invertible, then W +M is a

metric operator for H.
(v) If an invertible operator A commutes with H, then WAk(k ∈ N) are metric

operators for H.
(vi) If an invertible operator B commutes with H†, then BkW(k ∈ N) are metric

operators for H.

PROOF. Let H be a pseudo-Hermitian Hamiltonian with a metric operator W, that is,
H† = WHW−1.

(i) Because the spectra of H and H† are complex conjugate to each other and a
similarity transformation does not change the spectra, the spectra of H are all
real or complex conjugate pairs.

(ii) From H† = WHW−1 it follows that H = (W†)−1H†W† and H† = W†H(W†)−1.
Thus, W† is also a metric operator for H. If the given W is Hermitian, then that
is true. Otherwise, there exists a θ ∈ R such that −e2iθI � W−1W†; put

W̃ = eiθW + e−iθW†.

Then W̃ is Hermitian and satisfies H†W̃ = W̃H. Since the spectra of W−1W†

does not contain −e2iθ, the inverse of W̃ is e−iθ[I + e−2iθW−1W†]−1W−1. Hence,
W̃ is a metric operator for H.
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(iii) This follows from the definition of the pseudo-Hermitian Hamiltonian.
(iv) This follows from the definition of the pseudo-Hermitian Hamiltonian.
(v) By the definition of the pseudo-Hermitian Hamiltonian and since AH = HA,

we have (WA)H = WHA = H†(WA). Thus, for all k ∈ N, Wk = WAk are metric
operators for H.

(vi) This is similar to (v).

The proof is now complete. �

In order to understand the metric operators for a given pseudo-Hermitian Hamilto-
nian operator, we introduce the operator–vector correspondence as follows. We know
that

vec : L(X,Y)→ Y ⊗ X

is the linear bijection and isometry, mapping an operator to a vector [1]. For u ∈ X and
v ∈ Y, we have

vec(uv†) = u ⊗ v̄,

where the bar denotes the complex conjugate.

THEOREM 2.3. Let H ∈ B(Cd) be a pseudo-Hermitian Hamiltonian and W ∈ B(Cd) be
invertible. Then W is a metric operator for H if and only if

(I ⊗ HT − H† ⊗ I)vec(W) = 0.

PROOF. Necessity. Let W be a metric operator for H. Then H† = WHW−1 and

vec(H†W) = vec(WH).

Using the property of the vec mapping,

vec(AXBT ) = (A ⊗ B)vec(X),

we have

(H† ⊗ I)vec(W) = (I ⊗ HT )vec(W).

Thus,

(I ⊗ HT − H† ⊗ I)vec(W) = 0.

Sufficiency. Let W satisfy (I ⊗ HT − H† ⊗ I)vec(W) = 0. Then

(I ⊗ HT )vec(W) = (H† ⊗ I)vec(W)

and

vec(WH) = vec(H†W).
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Since the vec mapping is a linear bijection, we have WH = H†W. Since W is invertible,
it is a metric operator for H. This completes the proof. �

REMARK 2.4. When S ∈ B(Cd2
) commutes with I ⊗ HT − H† ⊗ I, we have that

S(vec(W)) is also an eigenvector of I ⊗ HT − H† ⊗ I corresponding to eigenvalue
0. If S is invertible, then vec−1(S(vec(W))) is a metric operator for H. When H is
invertible, we have the following results.

(i) Take S = I ⊗ HT and I ⊗ HT (vec(W)) = vec(WH). Then W̆ = WH is a metric
operator for H. Moreover, we see that it is consistent with Theorem 2.2(v);
here, we take A = H.

(ii) Take S = H† ⊗ I and H† ⊗ I(vec(W)) = vec(H†W). Then Ŵ = H†W is a metric
operator for H, and it is consistent with Theorem 2.2(vi); here, we take
B = H†.

(iii) Take S = H† ⊗ HT and H† ⊗ HT (vec(W)) = vec(H†WH). Then W̌ = H†WH is
a metric operator for H.

Furthermore, for all k ∈ N, WHk, (H†)kW and (H†)kWHk are Hermitian if the metric
operator W for H is Hermitian.

For example, when H = ( i 1
2 −i ), we have

I ⊗ HT − H† ⊗ I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2i 2 −2 0
1 0 0 −2
−1 0 0 2
0 −1 1 −2i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

By calculation, the eigenvalue zero of the operator (I ⊗ HT − H† ⊗ I) has multiplicity
2, and α1 = (0, 1, 1, 0)T and α2 = (2,−2i, 0, 1)T are two linear independent eigenvectors
of I ⊗ HT − H† ⊗ I. Then we obtain two metric operators for H:

W1 = vec−1(α1) =

(
0 1
1 0

)
, W2 = vec−1(α2) =

(
2 −2i
0 1

)
.

For any nonzero linear combination β of α1 and α2, if vec−1(β) is invertible, then
vec−1(β) is also a metric operator for H. We see that the metric operator W2 as
above is not Hermitian. From the proof of Theorem 2.2(ii) a new Hermitian metric
operator,

W̃2 = eiπ/3W2 + e−iπ/3W†2 =
(

2
√

3 − i√
3 + i 1

)

as θ = π/3, is obtained for H.
In the following section, for a pseudo-Hermitian Hamiltonian H, the corresponding

metric operator W may always be chosen to be Hermitian, that is, W = W†.
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3. The results of metric operators for pseudo-Hermitian Hamiltonian

In this section we assume that the Hamiltonian H ∈ B(Cd) has different eigenvalues.
Let H admit a complete biorthonormal set of eigenvectors {|En〉, |Ên〉}. Then it satisfies
the following defining relations:

H|En〉 = γn|En〉, H†|Ên〉 = γn|Ên〉, (3.1)

〈Ên|Em〉 = δnm, (3.2)

∑
n

|Ên〉〈En| =
∑

n

|En〉〈Ên| = I. (3.3)

Here, δnm stands for the Kronecker delta function, and I is the identity operator. In
view of equations (3.1)–(3.3), we have

H =
∑

n

γn|En〉〈Ên|, H† =
∑

n

γn|Ên〉〈En|. (3.4)

In addition, if H is a pseudo-Hermitian Hamiltonian with metric operator W, that is,
H† = WHW−1, put

〈x|y〉W = 〈x|W |y〉, for all |x〉, |y〉 ∈ K.

Then, for any m,n,

γn〈Em|En〉W = 〈Em|WH|En〉 = 〈Em|H†W |En〉 = γm〈Em|En〉W ,

and we can write

(γn − γm)〈Em|En〉W = 0. (3.5)

Therefore, this determines

〈Em|En〉W = ρm,neiθ(m,n)δγn,γm , (3.6)

where ρm,n = |〈Em|En〉W | ≥ 0 and θ(m, n) = Arg(〈Em|En〉W) is the argument of
〈Em|En〉W .

If there exists an eigenvalue γj � R, then 〈Ej|Ej〉W = 0. In this case, it is impossible
to define an inner product with respect to W. If all eigenvalues are real, the product
in equation (3.6) which can be become negative due to this exponential factor
(for example, W has negative eigenvalues), cannot define an inner product. In fact,
the quadratic form in equation (3.6) satisfies the inner product conditions except
positive-definiteness, because the metric operator W is not necessarily positive, and
H is Hermitian with respect to this quadratic form since

〈x|H|y〉W = 〈x|WH|y〉 = 〈x|H†W |y〉 = 〈Hx|W |y〉 = 〈Hx|y〉W .

Thus, when the spectra of pseudo-Hermitian Hamiltonian are all real, it is significant to
find a positive metric operator such that equation (3.6) is a well-defined inner product,
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and the non-Hermitian Hamiltonian can be exchanged for the Hermitian case. Besides,
the existence of this positive metric operator was shown by Mostafazadeh [13], who
proved that the spectra of H are real if and only if there is a positive invertible linear
operator η such that H† = ηHη−1.

Hence, for a pseudo-Hermitian Hamiltonian H with real spectra, we provide in the
following a method to change the given nonpositive metric operator (W ≯ 0) into a
positive one (η > 0).

THEOREM 3.1. Let H be a pseudo-Hermitian Hamiltonian with real spectra. For any
metric operator W for H, it can be transformed into η =

∑
n |Ên〉〈Ên|.

PROOF. Let the eigenvalues of H be all real, that is, γn ∈ R for all n. By equation (3.4),

H =
∑

n

γn|En〉〈Ên|, H† =
∑

n

γn|Ên〉〈En|. (3.7)

Put

Pn = |En〉〈Ên| (3.8)

and

A =
∑

n

anPn, an ∈ R\{0}. (3.9)

We have

A−1 =
∑

n

1
an

Pn,

AH =
∑

n

an|En〉〈Ên|H = H
∑

n

an|En〉〈Ên| = HA

and

A|En〉 = an|En〉.

So |En〉 are simultaneous eigenstates of A and H, and the coefficients of expansion an

in equation (3.9) are indeed the eigenvalues of A. Take

η = WA.

Then

η† =A†W = WW−1
∑

n

ānP†nW = WA = η.

Since A commutes with H, we get that η is also a metric operator for H by
Theorem 2.2(v). Next define

〈φ|ψ〉η = 〈φ|η|ψ〉.
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We have

〈Em|En〉η = an〈Em|En〉W .

Since W is invertible and Hermitian, by equation (3.6), we have

〈Em|En〉W =
⎧⎪⎪⎨⎪⎪⎩

0, m � n,
〈Em|W |Em〉 ∈ R\0, m = n.

Then

〈Em|En〉W = ρ̃nδm,n,

where ρ̃n are positive or negative real numbers. Thus,

〈Em|En〉η = anρ̃nδm,n.

If we choose the coefficients of A as

an =
1
ρ̃n

,

then

〈Em|En〉η = δm,n. (3.10)

By this method of constructing η, we have

η = WA = W
∑

j

ajPj =
∑

j

W
〈Ej|Ej〉W

|Ej〉〈Êj|.

According to equation (3.3),

W
∑

n

|En〉〈Ên| =
∑

n

|Ên〉〈En|W,

and multiplying |Ej〉 yields

W |Ej〉 = |Êj〉〈Ej|W |Ej〉.

Thus,

η =
∑

j

|Êj〉〈Êj|. (3.11)

This completes the proof. �

We see that η is positive-definite, 〈·|·〉η = 〈·|η|·〉 is a well-defined inner product,
and the eigenstates of H form an orthonormal basis by equation (3.10). Indeed, the
positive-definite metric operator η we obtained in equation (3.11) which was shown by
Mostafazadeh [13], satisfies our Theorem 2.3. By equation (3.7) and vec mapping,

I ⊗ HT − H† ⊗ I = I ⊗
∑

n

γn|Ên〉〈En| −
∑

n

γn|Ên〉〈En| ⊗ I,

https://doi.org/10.1017/S1446181123000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000184


[9] The metric operators for pseudo-Hermitian Hamiltonian 223

By equation (3.7) and vec mapping,

I ⊗ HT − H† ⊗ I = I ⊗
∑

n

γn|Ên〉〈En| −
∑

n

γn|Ên〉〈En| ⊗ I,

vec(η) =
∑

j

|Êj〉 ⊗ |Êj〉,

followed by biorthogonality relation equation (3.2), we have

(I ⊗ HT − H† ⊗ I)(vec(η)) =
∑

n

γn|Ên〉 ⊗ |Ên〉 −
∑

n

γn|Ên〉 ⊗ |Ên〉 = 0.

Moreover, since η is positive-definite, there exists an operator ρ such that η = ρ†ρ. Put

ρ =
∑

j

|ej〉〈Êj|,

where {|ej〉} is the standard basis of Cd. Then

ρ−1 =
∑

j

|Ej〉〈ej|

and

(ρHρ−1)† =
∑

j

rj|ej〉〈ej| = ρHρ−1.

Hence, H is similar to a Hermitian operator.
As we know, the eigenvalues of pseudo-Hermitian Hamiltonians are all real or

complex conjugate pairs. When there exists a pair of nonreal eigenvalues γj = γk such
that

W |Ej〉 = 〈Ek|W |Ej〉|Êk〉,

we get

η =
∑
t�j,k

|Êt〉〈Êt | + δγj,γk

(|Êk〉〈Êj| + |Êj〉〈Êk|
)
, (3.12)

which is not positive-definite. In this case, 〈Ej|Ej〉η = 〈Ek|Ek〉η = 0. Thus, it is impos-
sible to define an orthonormal basis with respect to the metric operator η.

Let us next apply our construction to a simple 2 × 2 matrix Hamiltonian which is
pseudo-Hermitian. Consider the Hamiltonian

H =
(

reiθ seiφ

te−iφ re−iθ

)
� H†, r, s, t, θ, φ ∈ R,

and the given metric operator

W =
(

0 eiφ

e−iφ 0

)
= W†.
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Clearly, WH = H†W. The eigenvalues of W are λW± = ±1 which means W ≯ 0, so the
inner product 〈·|·〉W = 〈·|W |·〉 is not well defined. The eigenvalues of H are

γ± = r cos θ ±
√

st − r2 sin2 θ.

Therefore, for st > r2 sin2 θ, the eigenvalues are real, while for st < r2 sin2 θ, the
eigenvalues are complex conjugates of each other (for st = r2 sin2 θ, the Hamiltonian
cannot be diagonalized).

Case 1. For st > r2 sin2 θ, the eigenvalues of Hamiltonian H are

γ± = r cos θ ±
√

st − r2 sin2 θ ∈ R.

Then H is quasi-Hermitian, and there must exist a positive-definite metric operator.
The eigenstates of H corresponding to the two eigenvalues are

|E±〉 =
1√

2(st − r2 sin2 θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
seiφ/2

(
− ir sin θ ±

√
st − r2 sin2 θ

)
e−iφ/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

the eigenstates of H† corresponding to the two eigenvalues are

|Ê±〉 =
1

√
2
(√

st − r2 sin2 θ ± ir sin θ
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

teiφ/2

(
ir sin θ ±

√
st − r2 sin2 θ

)
e−iφ/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and

〈Êi|Ej〉 = δij, i, j ∈ {+,−}.

The operator P in this case can be determined according to

P+ = |E+〉〈Ê+| =
1

2
√

st − r2 sin2 θ

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

st − r2 sin2 θ + ir sin θ seiφ

te−iφ
√

st − r2 sin2 θ − ir sin θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

P− = |E−〉〈Ê−| =
1

2
√

st − r2 sin2 θ

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

st − r2 sin2 θ − ir sin θ −seiφ

−te−iφ
√

st − r2 sin2 θ + ir sin θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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The coefficients a± of A are

a+ =
1

〈E+|E+〉W
=

√
st − r2 sin2 θ

s
,

a− =
1

〈E−|E−〉W
=
−
√

st − r2 sin2 θ

s

and

A =

√
st − r2 sin2 θ

s
(P+ − P−) =

1
s

(
ir sin θ seiφ

te−iφ −ir sin θ

)
.

Thus,

η = WA =
1
s

(
t −ir sin θeiφ

ir sin θe−iφ s

)
.

It can now be checked that

〈Em|En〉η = δn,m, m, n = ±.

Therefore, {|E±〉} is an orthonormal basis with respect to new inner product 〈·|·〉η in C2.
We see that

η = |Ê+〉〈Ê+| + |Ê−〉〈Ê−|.

Case 2. For st < r2 sin2 θ, the eigenvalues of H are

γ± = r cos θ ± i
√

r2 sin2 θ − st � R,

the eigenstates corresponding to two eigenvalues are

|E±〉 =
1√

2(r2 sin2 θ − st)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
seiφ/2

−i
(
r sin θ ∓

√
r2 sin2 θ − st

)
e−iφ/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

the eigenstates of H† corresponding to the two eigenvalues are

|Ê±〉 =
−1

√
2
(√

r2 sin2 θ − st ± r sin θ
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

teiφ/2

i
(
r sin θ ∓

√
r2 sin2 θ − st

)
e−iφ/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and

〈Ê±|E±〉 = δij, i, j ∈ {+,−}.
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The operator P in this case can be determined according to

P+ = |E+〉〈Ê+| =
1

2
√

r2 sin2 θ − st

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

r2 sin2 θ − st + r sin θ −iseiφ

−ite−iφ
√

r2 sin2 θ − st − r sin θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

P− = |E−〉〈Ê−| =
1

2
√

r2 sin2 θ − st

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

r2 sin2 θ − st − r sin θ iseiφ

ite−iφ
√

r2 sin2 θ − st + r sin θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

According to equation (3.5), we have

(γ− − γ+)〈E+|E−〉W = 0, (γ+ − γ−)〈E−|E+〉W = 0.

Since γ− = γ+, we have

〈E+|E+〉W = 0, 〈E−|E−〉W = 0.

The coefficients a± of A are

a+ =
1

〈E−|E+〉W
=
−i

√
r2 sin2 θ − st

s
,

a− =
1

〈E+|E−〉W
=

i
√

r2 sin2 θ − st
s

and

A =
−i

√
st − r2 sin2 θ

s
(P+ − P−) =

−1
s

(
ir sin θ seiφ

te−iφ −ir sin θ

)
.

Thus,

η = WA =
−1
s

(
t −ir sin θeiφ

ir sin θe−iφ s

)
,

which is also not positive-definite. Furthermore,

〈E+|E+〉η = 0, 〈E−|E−〉η = 0, 〈E+|E−〉η = 1,

and

η = |Ê+〉〈Ê−| + |Ê−〉〈Ê+|.
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4. Conclusion

In this work, the metric operators for pseudo-Hermitian Hamiltonians on B(Cd)
are discussed and some properties of the metric operators are obtained. Under
the condition that H ∈ B(Cd) is a pseudo-Hermitian Hamiltonian and W ∈ B(Cd) is
invertible, W is a metric operator for H if and only if

(I ⊗ HT − H† ⊗ I)vec(W) = 0.

This provides a method for calculating a metric operator for a pseudo-Hermitian
Hamiltonian. Furthermore, when a pseudo-Hermitian Hamiltonian has real spec-
tra, Theorem 3.1 states that any given metric operator can be transformed into a
positive-definite one as

η =

d∑
j=1

|Êj〉〈Êj|.

Moreover, the positive-definite metric operator by this method is not unique, provided
that we change the construction of Pj in equation (3.8). If we put

Pj = pj|Ej〉〈Êj|, pj > 0,

then the positive-definite metric operator is

η1 =

d∑
j=1

pj|Êj〉〈Êj|.

When there exists a pair of nonreal eigenvalues of a pseudo-Hermitian Hamiltonian,
equation (3.12) provides an expression for the metric operator η. In fact, consider

η2 =
∑

t

|Êt〉〈Êt | + δγj,γ̄k i(|Êk〉〈Êj| − |Êj〉〈Êk|),

where i makes η2 Hermitian. It can be checked that η2 is also a metric operator for H.
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