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Large Time Behavior for the Cubic
Nonlinear Schrodinger Equation

Nakao Hayashi and Pavel I. Naumkin

Abstract. 'We consider the Cauchy problem for the cubic nonlinear Schrédinger equation in one space
dimension

W i+ S+ =0, tERXER,
u(0,x) = up(x), x €R.

Cubic type nonlinearities in one space dimension heuristically appear to be critical for large time. We
study the global existence and large time asymptotic behavior of solutions to the Cauchy problem (1).
We prove that if the initial data ug € H"*NH"" are small and such that sup|¢| <, | arg Fuo(§) — 5| <
g forsome n € Z, and infj¢|<; |Fuo(€)| > 0, then the solution has an additional logarithmic time-
decay in the short range region |x| < 4/t. In the far region |x| > 1/t the asymptotics have a quasi-
linear character.

1 Introduction

The purpose of this paper is to study the global existence and large time asymptotic
behavior of solutions to the Cauchy problem for the cubic nonlinear Schrodinger
equation in one space dimension

@) Lu+i® =0, teR,xER,

u(0,x) = up(x), x €R,
where L = i9, + ;0. Cubic type nonlinearities in one space dimension heuristically
appear to be critical for large time. Cubic nonlinear Schrédinger equations have wide
physical applications (see [15], [16], [17]).

There are some works (see [2], [3], [6], [8], [12], [14], [19], [20], [23]) concerning
the large time asymptotics of solutions to the nonlinear Schrédinger equations with
cubic nonlinearities which have the self-conjugate property: N(eu) = ¢?N(u) for
all & € R . Recent developments in this direction can be seen in [11], where we
studied the asymptotic behavior in time and scattering problem for the solutions to
the Cauchy problem for the derivative cubic nonlinear Schrédinger equation Lu =
Ni (1) with nonlinearity

(3) Ni(u) = )\1|u|2u + i)\2|u\2ux + iy, + )\4|ux|2u + )\5ﬂui + i)\6|ux|2ux,
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where the coefficients A, A\s € R, and Ay, A3, A4, As € C are such that \, — A\3 € R
and Ay — A5 € R. We proved the global in time existence and large time asymptotics
of solutions to the corresponding Cauchy problem. In paper [9] we considered the
cubic nonlinear Schrodinger equation Lu = N(u) without a self-conjugate property,
when the nonlinearity can be represented in the form of the full derivative N(u) =
i (ulu)y + (W) + A3(@u)x + Aa(#)5, A1 € R, A2, A3, Ay € C. We proved the
nonexistence of the usual scattering states if Ay # 0 and if A\; = 0 we proved the
existence of the usual scattering states. In [9] we used the techniques developed in
our previous work [7], where we introduced an appropriate representation of the
solution and instead of the operator J = x + it0, we used the dilation operator
907" = x+2t0,0;", where 07" = [*__ dx. The nonlinear Schrédinger equation
with cubic nonlinearities, containing at least one derivative was studied in paper [18],
where the large time asymptotics of solutions was found for small initial data u, €
H**, where H™* = {¢ € L? : ||¢|lmx = [|[(x)*(i0)"¢||1> < oo} is the weighted
Sobolev space, m, k € R, (x) = v/1 + x2. The special nonlinearities uu2 or uu? were
considered in [22] and the global existence of small solutions was shown by a different
method from [18] and ours (he used the method of the normal forms of Shatah [21])
under different assumptions on the initial data, roughly speaking, uy € H'* N L! for
the case uu? and (1 — A)>uy € HY N L for the case %>, Recently in paper [10] we
improved the previous result of paper [18] by using much more simple and general
approach and estimates in a natural function space. In [10] we studied the Cauchy
problem for the cubic nonlinear Schrodinger equation Lu = N (1) + N, (u), where
the nonlinear term N is given by (3) and the nonlinearity

N, = 3a,1’u, + Sazuui + 3(13u,3c + 3by i, + 317212[1,2( + Sbgﬂf’c
) 2- ) _n 2-
+ i Uy + po|ul iy, + ity + e + ps ||

does not satisfy the self-conjugate property, here the coefficients a;, bj, pu; € C, j =
1,2,3,1=1,...,5. Thus the nonlinearity N; + N, includes all possible cubic terms
with integer powers of u, #, u, and 7, and contains at least one derivative of the
unknown function. We proved that if the initial data 4y € H>° N H>! with suffi-
ciently small norm |Jug||3,0 + ||t40]|2,1, then there exists a unique global solution u €
C(R; H*? N H?!) of the Cauchy problem for the cubic nonlinear Schrédinger equa-
tion Lu = Nj(u) + Np(u), and there exists a unique modified final state W, € L*
such that the asymptotics

u(t,x) = MDW, ¢lW:I"Alost | o(e3p—1—a)

is valid for t — oo uniformly with respect to x € R, where M(t) = e% , D(t) is the
dilation operator D(t)¢p = %(b(;), A) =M — (g — X)E+ (Mg — X)€% — Ae&?
and a € (0, i .

Thus considering all possible twenty types of cubic nonlinearities: u?, |u|*u, uii?,
B, WPy, [U|* Uy, Uik, TP Uy (UL, 020, w2, G0, uluy |, dluy|?, uitl, @i, u, |uc*uy,
|ux|*diy, and @2, containing integer powers of u, i, u, and 7, we can see that as far
as we know there are no results on the global existence and large time asymptotics

‘
>
3
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of solutions for the following three types of nonlinearities u°, #> and ui* which do
not satisfy the self-conjugate property. For the nonlinearity A|u|?u with complex A,
the large time behavior of solutions is also unknown. In the present paper we make
an attempt to cover this gap considering the Cauchy problem (2) with nonlinearity
#’. We believe that the other two types of nonlinearities #* and uii* could be also
considered via some modification of our method.

To state our result precisely, we give now some notations. We denote the linear
Schrodinger evolution group by

1

vV 2mit

where M(t) = e%, D(t) is the dilation operator D(t)¢p = ﬁgﬁ(j), Fo = (b =
\/% [ e ¢(x) dx denotes the Fourier transform of the function ¢. Then the inverse
Fourier transformation is F~'¢ = \/—12; [e*¢(€)d¢, D)~ =iD(L) and

Ut)p = Fle 1€ F¢p =

/ 500 6(y) dy = M(D(OFM(1),

— 1\ —
U(—1)p = iM()F 1D ( ;) M(t).
We essentially use the estimates involving the operator
J = x+it0, = U(t)xU(—t) = itM(t)0.M(t)

to prove the main result.

We denote the usual Lebesgue space L = {¢ € S';||¢||, < oo}, where the norm
loll, = (fg ()P dx)'/?if 1 < p < oo and ||@lee = ess.sup{|p(x)|;x € R} if
p = oo. For simplicity we write || - || = || - [ = || - |- Weighted Sobolev space
is H" = {¢ € S : [|¢]lmx = [[(x)¥(i0)"¢|| < oo}, mk € R, {x) = V1 +x2.
Different positive constants we denote by the same letter C. We use greek letters for
Fourier space variables to make notations more transparent.

The aim of the paper is to prove the following result.

Theorem 1.1  Let the initial data uy € H"Y N H"! have a sufficiently small norm
[uoll1,0 + lluolloq = € > 0. Also we assume that sup ¢ <, |argio(§) — 5| < § —¢
for some n € Z, and infj¢|<; |1l(§)| > Ce > 0. Then there exists a unique solution
u € C([0,00), H NH"") of the Cauchy problem (2). Moreover there exists a unique
final state W € L*° such that the following asymptotics for t — oo

! W, (2)]
Vit [l 21w, (3) P log(min(r, ()

ixz
u(t,x) = e

(4)
1

Viloglog(t +1),/1+ Z[W..(3)] log(min(t, (%))

+0

is valid uniformly with respect to x € R.
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Remark 1.2  Note that the solution u given by the asymptotic formula (4) gains
an additional logarithmic time-decay in the short range region |x| < /. In the far
region |x| > +/t the asymptotics has a quasi-linear character.

We now give a sketch of the proof. As is well-known it is very important to esti-
mate the norm ||Jul| to obtain the large time decay estimates of the solution. If we
apply operator J to equation (2) we get

Ldu + @?Ju + 4ird. (i) = 0.

The last term in the left-hand side of the above equation has an explicit time growth.
To eliminate this term we apply (see Lemma 2.1 below) the method analogous to that
of normal forms by Shatah [21]. By making use of the identity given by Lemma 2.1
we get the estimate

|u]] < Ce+Ce¥i(1+elogt) 3.

Then to obtain optimal time decay estimates of the solution in the uniform norm we
need to estimate the function v(t) = FU(—t)u(t). Here we use the method similar
to our paper [5]. Roughly speaking, we get from equation (2)

1 2.2 5
v(t, &) = —?e_iltg P(t,€) +0(et (1 +e”logt)"2).

In order to eliminate the first divergent term in the right-hand side of the above
equation we change the dependent variable v(t, &) = f(t,&)e™?"¢ for |¢| < 1, where
¢ and g are real valued functions such that

By =~ R(eHE P ) (1,0)

and
g = — e (e e P ),

with initial conditions ¢(2,£) = 0, g(2,£) = 0, then we obtain a more rapid time
decay for f

fi1,6) = (7 1e?(1 + 2 log )" %),

hence f can be easily estimated and as the result we obtain the asymptotic for-
mula (4).

The rest of the paper is organized as follows. In Section 2 we give some preliminary
estimates. In Lemma 2.1 we prove an identity which is an analog of the method
of normal forms by Shatah. In Lemmas 2.2-2.4 we prepare large time estimates of
the solution via the operator J and estimates of the operator FU(—f) acting to the
nonlinearity of equation (2). Lemma 2.5 is devoted to the large time asymptotics of
the nonlinearity in the FU(—t) representation. Section 3 is devoted to the proof of
Theorem 1.1.
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2 Preliminary Estimates

First we derive an analog of the method of normal forms by Shatah. Define the
trilinear operators Qy by the Fourier transformation

Qulp, 6, 1h) = LT / / (1+itA) () HE)D(E) dn d,
s

whereé, =$+n— (& =5 —n—(&=5§+2C A= 22+ +3¢%
Lemma 2.1 We have the identity

"7 = —iL"Qy (i, i, i) — t"Qy (a1, i, it) — (n — 1)t"Qy (i1, i, i1)
© —3it"1Qy (a1, i, Lu),

wheren > 0.

Proof Applying the operator X = FU(—t) = ¢3'€'F, then for the function v(f) =
Ku(t) we get

K(@) = [ [ 5 —gte, e € dn .

where &) = §+7—( & = §-1—(, & = §420 A = J(E+ 1, &) = 38+ +3¢2
Using the identity

¢t =0, (t(1+itA) T e™) — (L+itA) e + (1 +itA) e,

we obtain

() = 0, <%/ (14 itA)~ e (e, =6 )v(t, =), —&)dndC)

/ (1+itA) 2T, —EW(T, —EW(T, —&) diy dC

1
™

+ % / / (1+itA) "™ v(t, —E)W(t, —E)V(t, &) dnd¢

- //(1 +itA) e (t, —E0v(t, —Ew(t, =€) dn dC.
™

Since X190, = —iL, applying the inverse operator X!, we return to the function
u(t, x) to have

@ = —iltQ (i, i, i) — Qi1 i, it) + Q (i1, i, i1) — 3itQy (dt, i1, Lu),

hence via the relation t"L = Lt" — int"~! we get the identity (5). Lemma 2.1 is
proved. ]

it ¢2

Denote X = FU(—t), E = e2% .
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Lemma 2.2  We have the estimates
IDOFM — DU(—H)u(t)]|, < Ct™ 5 | Jull,

where2 < p < o0,
10eE5 K (1) < CllullZ, ||u]

and
2K (1) [ oo < Ct (|9 Kul|oo + ¢ (| Jull)® + Co ™ [|u]] 2, || u]

forallt > 0, where ) = (t£2)=7, v > 0.
Proof Since |[M — 1| < Cl% forall x € R, t > 0 we obtain
[DOFM — DU=D)u()]| = (M — DU=t)u(t)||
< Ct 7 | U(—tu(t)|| = Ct ™7 || Jul.
Using the estimate ||¢]|oo < v/2||¢]|2 [|8x]|2, we get

IDOFM — DUCDu(®) oo

= Ct™ 3| F(M — DU=1)u(®) ]|

< CHH|FM — DUDu(0)||F | 9:FM — DU-1)u(r)|*
< CH T |xU(—1)u(t)|| = Ct (| ull.

) _2
We apply the Holder inequality ||¢[[, < C||¢[/? ||<;S||3>O " to have the first estimate of
the lemma. Via the identity

gMg 0 ()Mo = vin (L) BoTgmi g (1) W',

where E = €, p # 0, we get

Wi — i?M&HD(%) M — i%ﬁ@(—%) SFMs:rl@(%) M,
Therefore

ocE! K| = | ocTmt 5D %) M|

1
<c|on ()M | < o] < Clul, |3ul,

t
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where we have used the identity J = Mitd,M. Thus the second estimate is true. To
. . . . . . 1 1
prove the third estimate, we write via the inequality ||¢||oo < V2|02 [|0x¢]

et v (G)aee]

1
2

oMt~ 1)3—193(%) M

(SIE

< cf| gt - 1)9—193(%) M|

1 l 1 1
<crt aw(;)Mw <crt tBXM3123H <t |2, | 9ull.
Then since
1\ —
w2 (5) w0

< Sl + || 501 - 03D () W] _

lgerou - 1)9*193(%) Ml *

< ([l oo + CH (M — 1)?*19(%) Mu

< Koo +Ct ™3

a,ga(%)m” < Cl[Kulwo +Ct 4 Fu,
we find that
1 C 1N — I3 C 1
3 1 3.3 <> 2 < = — 3,
O I P P e
Thus we get

1 1 1
13K | o < CHS"(M3 - 1)3"—173(;)1\43#“ +CH1/;3D(?) M3123H
< Ct (WKl oo + £ 5| Jul])* + Ct 5 |u]2, | 3ull.

Therefore the third estimate of the lemma is true. Lemma 2.2 is proved. ]

The next lemma will be used below for estimating nonlinearities of the form
KQx (i, 1, it), where X = FU(—t). Consider the following integrals

// e"SA® dnd¢ and // S AR(D — By) dndC,

where

A
£=1(6,6,8), &G =X+n—-( &L=X—-n—-C(, fszaﬁ"‘zﬂ

3
b= (e ), 2=a©=[[oe) @ =),
i=1
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2
S= (§2+Z§§+a§§) =w& + 1’ +BC,

j=1

N —

1, N
a>0,8=1+20, w=-+A"+—,
2 2a

the function

1
Ak:Ak(gvnaC’t): ;(1+itA)_k7 k= 1a27 A=

N | =

3
(#+56)

j=1
Denote ¢ = (t£%)~7, v > 0 is small enough.

Lemma 2.3 We have the estimates

<t§2>5// ¢S A dndCH <Cr ' Tdweslle + 751651
[eS) j=1
and

3
ae) [[ esae - a0 dndCH <8 S 1t T e + 141610

k=1 otk

forallt > 1, wherek = 1,2, € [0,1 — 37].

Proof First using the identity /S = Y 5% (ne*S), with Y = (1+2itn?)~", we integrate
by parts with respect to ) to get

// ei’SAk(<I> — O'q)o) d’l] dC = Il +Iz +I3,

where o = 0,1 and
L=c / / ¢"S(@ — o®o)nd,(ALY) d dC,

L=— / / eSAMYO, ®dnd( and I = / / ¢"SAMYOe, ® dn dC.

Using the identity
, 9 .
eztS _ Za_c(celts)v
where Z = (1 + 2it3¢?) ™!, we integrate by parts with respect to ¢ in the integral I;
to find that

L =C / / ¢ (® — o®0)n¢0,0: (AYZ) dnd¢ +C / / 10, (AY)C20:® dn dC.
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Via the estimates
(tA) > C(t&) + C(t€%),  |nd,(AY)| < Cln*) ' (tA) !, |2] < C(t¢?)™!

and
n€8,0c(AYZ)| < C(tn?) =1 (#¢*) " (eA) !

we obtain

NP — o®| dnd
)

te?) ICHac‘I’IdndC
Vo

hence in the case 0 = 0

dnd
16€)L 1 <cH||w¢k||oo ] wee

cer Y g T [ o) [ 755

j=1 k#j

3 3
Ct T Ilodrlloo + Ce= 4> NI T T Hlvoilloo

k=1 =1 kAj
andinthecase o =1
1{t6%)° 11 | ow
\/In\+ [and¢ [ dy [[ dc
<o |H|w¢k|w( il —)
=1 ktj // 2)(t¢?) /<”72> /<t<2>
3
<=y I TT lveklloo-
=1 k#j

Now we estimate the second integral I,. We make a change of variables of integration
n=pB¢—nand (= —(—7toget

=C / / ¢ AnYoe, @ dC dij,
where
Q= we B+ A + 1+ O, & =X+ (1+ A
& =X+ - MC+20, & =26\~
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We integrate by parts with respect to 7 via the identity et = H %(ﬁeitﬂ), where

H = (1+2it(1+p)7?) ' to obtain

=C / / ¢ 70, (AxnYH)de, ® diy dC + C / / ¢ AenY i HO,, 8,® dij dC.

Then via estimates

705 (AnYH)| < C(|7] + [n]) (en?) = (e0?) ' (¢Q2) !

and |H| < C(t#*) ™! we obtain

1{t6*)° | oo
<CH// (t&?) (|n|+77|)|351<1>|d77d77H
2)(tQ2) o
(t&?)° \nl \nl \3&3@4’\ dn dnH
)(tQ

—Ly g ’ d77
<ci ||¢1|<kHz||¢¢k||oo S R E oy
+t ]z;|¢]|||¢¢5—1|oo\// <t7]2> \// <t'f]2>>

3
< Ctmlg11 Y I sl oo

j=2

Integral I5 is considered in the same manner as the integral I,. Lemma 2.3 is proved.
|

Denote K = FU(—t), ¥(t, &) = (t€2)~7, v > 0 is small.
Lemma 2.4  We have the estimates

1(¢6) K Qu(at, i, )| o + 3110 Qe 1, )| < Ct ™ ([Kul| o + ¢+ [[Fu]))°

and

(162K Q, (i1, i1, 1) || oo + 1710, Qy (i, i1, 1)
< Ct (| Kull oo + 77| Jull)® + o™ a2 |dul| (1K ul| oo + ¢~ (| Jul)?

forallt > 0, wherek = 1,2, € [0,1 — 37].
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Proof Since

1tS
KQx( L_l u, n) // 1 +ltA)k H:Klzl(t fj)d’qdc // ”SAk(I)d’I]dC,

where

§1=§+77—C7 &= §—TI ¢, &= §+2C7

3
3
1 2
A= g(er2e) = Je e,
the functions

1 S
Av=—(1+ith) ™ k=12, @ = (¢ = [ ] Kulr, ¢,

s .

where

£=66.6), &o=(563638)

Then by the first estimate of Lemma 2.3 witha = 1, A = },w = £, 8 = 3, we get

(1)’ / / e“SAk@dnch

< O (¢ Koo + 1 HBe(Ku)])

1662 K Qu(it, 1, )| oo = ’

< (9 Kulloo + £ | Jul)
since 0; X = KJ and || K¢|| = ||¢||. Similarly

10xQi(, i, @)|| = || KOxQx(a, @, )|

= |€XQu(a, 4, @)|| =t~ 2

()i / [eone dndCH
(16?)° / / ¢"SAP dndCH

< Ct™ 1 (|| Kl oo + £ 7| Ju]))?

¢S ALD dn ch

<Ct%||<t52>ﬂ|]

<Ct i

Therefore the first estimate of the lemma follows. To prove the second estimate we
write

Qi (i, 1) = / / ¢S AL dn dC,
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where
51:§+7I—C7 5225—77—@ 53:36"'24—7
1 2 1 5 5
s=5(£2+j215§+5£§) =24+ 3¢,

the functions

3
A= AEnGH= (4N, A= (e+38),
=1

2
U= W) = [ [ Kult, —§)E (Ku)(t, &),

j=1

where E = ¢%8, ¢ = (£1,€2,&3). Then by Lemma 2.3 with o = %, A=lLw=
8= g, and by Lemma 2.2 we get

LST1S)]

H <t§2>6g<Ql(ﬂ7 aa u3)||oo

o ffnvne

< Ot (9 Kalloo + 179K (10 oo + 17|06 (B (5) | )

_ _1 _s _1
< Ct 2 ([[9Kul|oo + 75| Ful))’ + Com 3 JullZ, [|Full (90K ull oo + 5| Tul))?.
In the same manner

Hale(b—l, 1’_1; 1/[3)”
= [|K0,Qi (@, i1, )|

= |€XQ (i1, 1, )| = ¢

evi / / R dnch

(t€2)it / / ¢"SA dn dgH

6y’ [[esa dndCH

< G (ukulloo + ¢~ 1K) ) (1 (K)o + 7| 0 (EF (X)) )

< Ct 3 ||(ee2) =i

<Ct i

< Ct™ % ([ Kul| oo + 1% [ ul))® +Co 2 ullZ 13ull (19K ulloo + 17+ | Full).

Lemma 2.4 is proved. ]
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Denote as above X = FU(—t), (¢, &) = (t&*) 7. Define
O e +r)edr
Q=Q—Qy, Q(77)2—/ Lz
V3 Jo ( 1—i(n+ r))

Note that
Q)| < Cn)~!

and
rdr T

T [ _
Q0) = — e = —
O-F5) TV
Lemma 2.5 We have the asymptotics
———_f‘féitgz 2\ (AF 3 _§
KQs(it i, 1) = re” € Qee2) Kaa)* (1,3 )

+O((€) 74| ull ([ Kull oo + 17+ Jull)?)

forallt > 0.

Proof As in the proof of Lemma 2.4 we get

KQs(a, 1, 1) = Py / / ¢ A, diyd( + / / ™ AL — Do) dy e,

where

=S¢ a=t-n-¢ &=Se,

3
_ o 2 _ 2., 2 2
A=3(¢ +Z;fj) =5+t 43¢,
=
the functions

Ay = A6 G = SAQ+ i) = Ay - A,
3
o = d(&) = [ [ Kulr, =&,
j=1

where L1l
£=(6.6.6), &=(56563¢)-

Then by Lemma 2.3 with v = 1, A = §,w = %, 3 = 3, we get

we)’ [[ étae -2 dnch < Gt gull (|9 Kulloo + £ gl
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Therefore we obtain the result of the lemma, since
O(t8?) = —ited ™ // ¢"MAs dn d¢
= L // e~ i+ &t+n*+¢%) . dn d¢
V3 (1— i@+ +¢2)
/ i (fzt +7)dr
RV (1—iet+n)”

Lemma 2.5 is proved. ]

3 Proof of Theorem 1.1

By virtue of the method of papers [1], [4], [13], [19] we obtain the existence of local
solutions in the functional space H'® N H%!. Denote

1llx = 1Klloc + /1 + 2 log(t + D[ K]l

1 _3\ 1
+ (1 +& 7+ 17 (147 log(t + 1)) 2) 3l
where X = FU(—t), ¥(t, &) = (t&*) 7, v € (0, ﬁ), € > 0is small.
Theorem 3.1  Let the initial data uy € H"* N H®'. Then for some time T > 0 there
exists a unique solution u € C([0, T], H* N H™') of the Cauchy problem (2). If in
addition we assume that the initial data uy € H* "MH®! have a sufficiently small norm
luoll1.0+]tollo, = € > 0, then there exists a unique solution u € C([0, T], H"*NH"")
of the Cauchy problem (2) on a finite time interval [0, T] with T > 2, such that
Jullx < Ce
forallt € [0, T].

In the next lemma we obtain the a priori estimate of solutions in the norm X.

Lemma 3.2 Let the initial data uy € H'* N H*' have a sufficiently small norm
[uol[1,0 + [[uolloq = € > 0. Also we assume that sup ¢ <, |argin(§) — 5| < § —¢
for somen € Z, and infi¢|<; |ig(§)| > Ce. Then there exists a unique global solution of
the Cauchy problem (2) such that

(6) ullx <&'=

forallt > 0.
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Proof Applying the result of Theorem 3.1 and using a standard continuation argu-
ment we can find a maximal time T' > 2 such that

7) lullx <&'=

is true for all ¥ € [0, T]. If we prove the estimates (6) for all t € [0, T], then by the
contradiction argument we obtain the desired result of the lemma. In view of the
local existence Theorem 3.1 it is sufficient to consider the estimates of the solution
for time interval ¢ > 2 only.
We start with the estimate of the norm ||Ju||. Applying the operator J to equa-
tion (2) we get
LIu+ i*Ju + 4itde(i®) = 0.

By virtue of Lemma 2.1 with n = 1, we obtain
(8) L(Ju+4r0,Q(d, i, i) = —ir*Ju + 4it0:Q, (11, &, i) + 12670,Q, (i, i1, ).

Since
u(t) = U U(—)u(t) = MDKu+ MDF(M — 1)U(—1t)u,

by Lemma 2.2 and (7) we have the estimate
lulloe < €t~ [ Kulloo + Co™ 3 gul) < Ce' 772,

hence by Theorem 3.1

_3
9) [2dul| < Cllull% [|dull < Ce~>7¢71(1+* log(t +1)) 2.

Since by Theorem 3.1,

1
2

Kut|loo <77, [[vKul|oo < e'77(1+*7 log(t + 1)
g

and ,
|dul| < e'~7ts (1+&* 7 log(t+1)) *
we have by Lemma 2.4
t[10.Qu(it, i1, @) || + £*|0xQy (i, i1, )|
< Gt ([[§Kul oo + £ 5| Jul])* + C 3 ([[9pKu| oo + ¥ (|Jul))?

(10) ) B ,
+ CllullZe 13ull (9 Kulloo + ¢+ [[Jul))

lw

<CTi (1 4+ log(t +1)) 2.

Application of the energy method to equation (8) via estimates (9) and (10) yields

t 3
Ju + 420,Q (i1, i, 1) || < Ce + Ce>= 1+ e log(r+1))
8
2

*1|§~..
EN ]

olw

< Ce+Ce i (14 log(t +1)) .
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Hence in view of (10) we get the estimate

olw

(11) |dull < Ce+Ce>™t1(1+ ¥ log(t + 1)) 2.

Now we prove the estimate || Ku| o + /1 + 27 log(t + 1)|[¢)Kullc < Ce. By
virtue of Lemma 2.1 with n = 0, we have

Lw + Qs(a, i1, it) + 3itQy (i1, i1, u®) = 0,

here Qs = Q) — Q; and w = u + itQ, (i1, i, &1). Then via Lemma 2.5 we get for the
function v = Kw

n(t,6) = —Le e QueN @ (1,-5) + 0@
+0(E7 7 (14 loglt + 1)) 7).
Since
[cu(1,-5) — %ute, 00| < cy/ENoul = C/IEIu]

< Cet™ /€t +CE7 Y Et(1+e log(t +1)) 7,

therefore in view of estimates (7) and |Q(t£?)| < C(t£?) ! we obtain
1 2002 —_— 5
w(t,§) = —26_3”5 Q) (Ku)’(£,€) + O 17 3)

+ O(ES_S'Yt_li/)(l +e™7 log(t + 1)) —%) )

Then applying Lemma 2.4 to the relation v = Ku + itKQ, (i, i1, i), we obtain

).

olw

(12) Ku = v+ 0771+ log(t + 1) ~
Thus, we get

W(6,6) =~ FEAENP (1,6 + 0
+ 0(55_571‘_%(1 +e" 7 log(t + 1)) _%) .
We change the dependent variable v(t, £) = f(t,£)e™ %" for |¢| < 1, then
fre M8 — pv+igw = —%e‘gi[fzﬁ(t£2) e384 O3 )
+0(&E (14 loglt +1) )
= —%e*%itgzﬂ(tfz)ﬁf*lve*w*‘“g +0(EEH)

+ 0(55*5%*11/;(1 + e log(t + 1) ’3> .
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We let ¢ and g be real valued functions such that

Gy = Te PR(eT P06 1, 0008Y)

and )
g = —;e—ws(e—%“ﬁz‘4”gf3(t,g)f‘l(t,@ﬂ(tgz)) :

then
_s
£i(t,€) = O3t~ 1) + o(ss—sw—lqwm + e log(t + 1)) ) .
Thus we get a system

G = 1 R (e P ) f (1, QD))

g = —1e S (e P ) f7 (1, O)0€Y))

flt,€) = 021%™ 1) + O 551 Hped (14 €7 log(t + 1) ),
¢(27£) =0, g(zag) =0, f(z)f) = ‘V(27£)'

(13)

Let us prove the following estimate

(14) sup |f| <e'™7
lgl<1

forall t € [2, T]. We prove estimate (14) by contradiction. Suppose that there exists
a maximal time T} € (2, T], such that

(15) sup |f] < &'
lgl<1

forall t € [2, T1]. Then from the first equation of system (13) we get
9e? = 0(2~ 7,

which gives us the estimate

(16) e’ < 1+Ce* log(t +1)

forallt € [2, T;]. Now from the third equation of system (13) we see that
of= 0(53_371‘7_%) + 0(55—9vt—1 (1 4 et log(t + 1)) —2) ‘

Integrating with respect to t € [2, T;] we have

t . t 5-97 4
t,6)| <Ce+Ce® | idr+C £ @ < Ce
2
2 2 7(1+e2log(r + 1))
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for all t € [2, T1]. By the contradiction estimate (14) is true for all t € [2, T]. Now
taking estimate (16) for all ¢ € [2, T] into account, we find from the third equation
of system (13)

e dr

T(l + &2 log(T + 1)) :

T T
|f(T,8) — f(2,€)] §C53_37/ 77‘3d7+c/

<CET(1+ 7 og(t +1))
forallt € [2, T]. And also we have
f(t,6) = f(2,6) + O(e¥),

hence
inf |f(t,€)] > inf [f(2,&)]+0(>™%) > e,
<1 lgl<1

and

arg 0,6~ 7| + 01y < T e

sup argft{—Tn < sup 5

[€1<1 lg1<1

forall r € [2, T] since by the local existence Theorem 3.1 we have for the initial data
f(2,8) = v(2,€) : |[v(2,8)] > |Ku| — 2|KQ, (4, @, i)] > Ce. Then we obtain from
system (13)

= Lo WR (e HENTT €) (T, )08
+0 (&t le (14 2 log( + 1) ),
g = —Le XS (e HET E) [T, 0)01€2)
+O<54’1071/1t*16’2¢(1 +er 7 og(t +1))

Denote pur = arg (T, £) and since arg 2(0) = 0, we have

e (€2,
e HEQE) = 007 + O( (t€) ) ’

therefore denoting h = 4g + 4p1 we get a system

¢ = Le=2[(T, &) Q(t§2)|cosh+0(€4 07! 7205(552)))
+O(E4 107t—1e—2¢(1+82+3710g(t+1)) - )
h = _%e—2¢|m29(t£2)|sinh+0( 0 le _2¢(<tr5£2>>

N— =

(17)

Let us prove the following estimates

(18) e >1+& log(min(t,£7?)) and |h| <e
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forall |£| < 1,t € [2,T]. We prove estimate (18) by contradiction. Suppose that
there exists a maximal time T; € (2, T, such that

(19) e > 1+ log(min(t,£7%)) and |h| <e
g

forall |¢] < 1andt € [2, T]. Since ¢(2,&) = 0 and

€2 d min(1,t¢%) d
/ Q| =L = / 2=+ o(1)
I n e n

min(1,¢£2)
i) [T Zvom
& n
= |Q(O)|log(min(t,§_2)) +O(1),

multiplying by €2? the first equation of system (17)

(9t€2¢ =

| N

TG e o o s L6 )

+ O(g‘*‘“”t‘l(l +&7log(t + 1)) _1) ,

hence integrating with respect to t > 2 we get

t
d
20> 1 +2|f(T,§)\2/ cos h|Q(te?)| -
2 T
+ O<52_137 log( 1+ log(t + 1)) )

1€?
20) > 120/ P ose [ |2
262 n

+ O<527137 log( 14> log(t + 1)) )
> 147 log(min(t,f_z))

forall |£| < landt € [2,Ty].

By virtue of the second equation of system (17) via (19) we see that
(tg?)
(t&?)’

O < CETO T (14 ¥ log(r +1))  +Ce® 11l

hence integrating with respect to time ¢, we obtain

(21) |h| <Ce*™ P < ¢
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forall || < 1andt € [2,T;]. By (20) and (21) we have (18) for all |¢| < 1 and
t € [2, T]. From (21) it follows that

™ iy 1+
—|+lgl<-—¢
5 8] S

arg f(t, &) —

n
sup |argv(t,&) — 5 < sup
|€1<1 l§1<1

forall |£] < 1andt € [0, T]. By (12) we get

s £ {1+ 1))

1
2

< CE( 1+ &> log(min(t, £?)) )
forall €] < 1,andif || > 1 we have |Q(t£?)] < Ct™!, therefore
A, €) = O(3~177) + O(¥ 117 177),

Integration with respect to time ¢ € [0, T] yields |Xu| < |v| < Ce. Hence

|Ku| oo + \/1 + &2 log(t + 1) || Ku|| o < Ce

forallt € [0, T]. Thus in view of (11) we get (6) for all t € [0, T]. The contradiction
obtained proves (6) for all ¥ > 0. Lemma 3.2 is proved. ]

Proof of Theorem 1.1 The global existence of solutions follows from Lemma 3.2.
We need only to prove asymptotic formula (4). By Lemmas 2.2, 3.2 we have

u(t) = MDKu+ MDF(M — 1)U(—t)u = M@fe—qﬂig i O(t_% (log(t + 1)) _%) .

By the third equation of system (13) we see that there exists a unique final state
Wi(€) =lim;, o f(£,€) € L*°(R) such that

|f(t) — W,| < C(ogt)™".

Denote oo = arg W, (&). Since 2(0) = % in the same manner as in the proof of
Lemma 3.2 we obtain

e’ =1+ 2—\/7;|W+|2 log(min(t, (¢72))) + O(loglogt)

and h = 4¢ + 4p00 = O((loglogt)_l) ast — oo, therefore § = —p +
O((loglogt)_l) ast — o0o. Hence we get the asymptotics (4). Theorem 1.1 is
proved.
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