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Kahane-Khinchin’s Inequality for Quasi-Norms
A. E. Litvak

Abstract. We extend the recent results of R. Latała and O. Guédon about equivalence of Lq-norms of logcon-
cave random variables (Kahane-Khinchin’s inequality) to the quasi-convex case. We construct examples of
quasi-convex bodies Kn ⊂ Rn which demonstrate that this equivalence fails for uniformly distributed vector
on Kn (recall that the uniformly distributed vector on a convex body is logconcave). Our examples also show
the lack of the exponential decay of the “tail” volume (for convex bodies such decay was proved by M. Gromov
and V. Milman).

1 Introduction

It turned out that many crucial results of the asymptotic theory of finite dimensional spaces
hold also in the quasi-convex case. It is somewhat surprising since the first proofs of most
of theorems substantially used convexity and duality. Because using convexity and duality
in the quasi-convex setting lead to the weak results, extensions to this case demand devel-
opment of the new methods. As an example of one of the difficulties arising in dealing
with quasi-convex bodies let us mention that, contrary to the convex case, intersection of
the p-convex body with affine subspace (or any convex set) is not necessarily p-convex set
and even is not necessarily connected set. This is an obvious remark, but it can be impor-
tant when one works with the logconcave measure which is known to concentrate on some
affine subspace.

In this note we extend the recent results of R. Latała [La] and O. Guédon [Gu] about
equivalence of Lq-norms of logconcave random variables (Kahane-Khinchin’s inequality)
to the quasi-convex case. Both theorems seem to be an important result of the asymptotic
theory. See e.g. [MP], where the particular case of the theorem was proved and used. The
Latała’s theorem as well as our extension of it was already used in [LMS].

Of course not every result of the theory admits an extension to the quasi-convex case.
In the last section we provide examples which illustrate why certain results are not possible
to extend.

Let us introduce several definitions.
Recall that a set K is said to be quasi-convex if there is a constant C such that K + K ⊂

CK, and given a p ∈ (0, 1], a body K is called p-convex if for any λ, µ > 0 satisfying
λp + µp = 1 and for any points x, y ∈ K the point λx + µy belongs to K. Note that for
the gauge ‖ · ‖ = ‖ · ‖K associated with the quasi-convex (resp. p-convex) body K one
has ‖x + y‖ ≤ C max{‖x‖, ‖y‖} (resp. ‖x + y‖p ≤ ‖x‖p + ‖y‖p) for all x, y ∈ Rn and
this gauge is called the quasi-norm (resp. p-norm) if K is a compact centrally-symmetric
body. In particular, every p-convex body K is also quasi-convex and K + K ⊂ 21/pK. A
more delicate result is that for every quasi-convex body K, with the gauge ‖ · ‖K satisfying
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Kahane-Khinchin’s Inequality 369

‖x + y‖K ≤ C(‖x‖K + ‖y‖K ), there exists a q-convex body K0 such that K ⊂ K0 ⊂ 2CK,
where 21/q = 2C . This is the Aoki-Rolewicz theorem ([KPR], [R], see also [Kön, p. 47]).
For an additional properties of p-convex sets see [KPR].

Let us recall that the definition of the seminorm (quasi-seminorm, p-seminorm) can be
obtained from the definition of the norm (quasi-norm, p-norm) by omitting the condition:
‖x‖ = 0 implies x = 0.

Given body K ⊂ Rn we denote its n-dimensional volume by |K|.
Below we consider Borel measures only. A Borel measure µ on Rn is called a logconcave

measure if for every Borel subsets B,K of Rn and all 0 < λ < 1

µ∗
(
λB + (1− λ)K

)
≥ µ(B)λµ(K)1−λ,

where

µ∗(B) = sup{µ(K) | K ⊂ B,K is compact}

for every B ⊂ Rn. We refer to [Bor1], [Bor2], [Pr] for basic properties of logconcave
measures.

We say that a random vector Y with values in Rn is logconcave if the distribution of Y is
logconcave.

For a random vector Y on Rn and a quasi-seminorm ‖ · ‖ on Rn we denote ‖Y‖q =

(E‖Y‖q)1/q for non-zero q, and ‖Y‖0 = lim
q→0
‖Y‖q = exp(E ln ‖Y‖).

The Kahane-Khinchin’s inequality says that for every q, s ∈ (0,∞) there exists a constant
Cq,s, depending on q, s only, such that ‖Y‖q ≤ Cq,s‖Y‖s for every seminorm ‖ · ‖ and every
logconcave vector Y on Rn. Recently, R. Latała [La] demonstrated that the constant in this
inequality can be taken independent on s, i.e., there exists a constant Cq, depending on q
only, such that ‖Y‖q ≤ Cq‖Y‖0. Let us mention that for the Steinhaus random vector such
equivalence was proved by Ullrich [U]. Furthermore, using a different method, O. Guédon
[Gu] has extended Latała’s result to the negative exponent: ‖Y‖1 ≤ C

′

q‖Y‖q for every q ∈

(−1, 0], where C
′

q =
4e

1+q . His paper helped us to realize that an extension to the negative
exponent can be done also using Latała’s method. We adapt Latała’s methods to prove both
inequalities for p-seminorm and for q ∈ (−p,∞).

Theorem 1.1 Let p ∈ (0, 1] and q1 ≥ 0 ≥ q > −p. Let Y1, . . . ,Yk be independent
logconcave random vectors on Rn. Let ‖ · ‖ be p-seminorm on Rn. Then

∥∥∥ k∑
i=1

Yi

∥∥∥
q1

≤ max{1, q1} ·C(p, q) ·C p ·
∥∥∥ k∑

i=1

Yi

∥∥∥
q
,

where C(p, q) = 1 for q ≥ −p/2, C(p, q) = (p + q)1/q for q < −p/2, C p = (2/p)c/p with
an absolute constant c.

Applying this theorem to the uniformly distributed on a convex body K vector, i.e., for
the vector Y with Pr(Y ∈ B) = |B ∩ K|/|K|, we get
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370 A. E. Litvak

Corollary 1.2 Let ‖ · ‖ be a p-seminorm on Rn. Let K be a convex body with non-zero
volume |K|. Then for every q1 ≥ 1, q ∈ (−p, 0)

1

q1 ·C p

(∫
K
‖x‖q1 dµ(x)

)1/q1

≤

∫
K
‖x‖ dµ(x) ≤ C pC(p, q)

(∫
K
‖x‖q dµ(x)

)1/q

,

where dµ(x) = dx/|K|, C(p, q) and C p as in Theorem 1.1.

Let us note, that for ‖ ·‖ being a linear functional and q = 0 the right hand side inequal-
ity was proved by V. Milman and A. Pajor [MP]. In the last section we construct examples
showing that the condition of convexity in this Corollary can not be replaced by the condi-
tion of p-convexity even in the case of linear functional. These examples also show the lack
of the exponential decay of the “tail” volume (for convex bodies such decay was proved by
M. Gromov and V. Milman in [GrM]; see also [Bou], [MS]).

2 Proof of the Extension of Latała’s Theorem

Let C be some constant. We will use the term C-quasi-seminorm for the quasi-seminorm
‖ · ‖ if C is the constant of quasi-convexity of ‖ · ‖, i.e., ‖x + y‖ ≤ C(‖x‖ + ‖y‖) for every x
and y. Analogously, a body K is said to be C-quasi-convex if K + K ⊂ CK.

Given body B ⊂ Rn we denote Rn \ B by Bc.
We follow Latała’s scheme of the proof. First we prove a straightforward extension to the

quasi-convex case of Borel’s lemma ([Bor1], see also [MS, App. 3]).

Lemma 2.1 Let t,C > 0. Let µ be a logconcave probability measure. Let B be a C-quasi-
convex symmetric Borel set. Then for every λ ≥ C

µ
(
(λB)c

)
≤ µ(tB)

(
1− µ(B)

µ(tB)

) λ+tC
(1+t)C

.

Proof Set α = C 1+t
λ+tC ≤ 1. Then by C-quasi-convexity of B one has B − (1 − α)tB ⊂

C
(

1 + t(1− α)
)

B = αλB. That means (1− α)tB + α(λB)c ⊂ Bc. Using logconcavity of µ

we get 1− µ(B) = µ(Bc) ≥ µ
(
(λB)c

)α
µ(tB)1−α, which implies the lemma.

The following lemma is the crucial step in the proof of Theorem 1.1. To prove it we
adapt ideas of [La] to the p-convex case.

Lemma 2.2 Let µ be a logconcave probability measure. Let B be a Borel p-convex, symmetric
set such that µ(mB) ≥ (1 + δ)µ(B) for some m > 1 and δ > 0. Then for every ε ∈ (0, 1)

µ(εB) ≤ f (mp/δ) · εp · µ(B),

where f (x) = max{ 32
p ln (x/2); 64

p ln(16/p)}.
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Kahane-Khinchin’s Inequality 371

Remark In the case p = 1 one can take f (x) = max{16 ln(x/2); 50}.

Proof of the lemma Let us note first that when lemma is proved for some value δ0 it
automatically holds for all δ > δ0. Therefore, it is enough to prove the lemma with fixed
m > 1 and δ ≤ δ0 := (8mp/p) · ln(16/p).

Denote

z =
2δ

mp
and α =

µ(εB)

εpµ(B)
.

If α ≤ 4z then µ(εB) ≤ 4zεpµ(B) ≤ 8(δ0/mp)εpµ(B) ≤ f (mp/δ)εpµ(B) and we are done.
In the case εp > p4p−1/(2+ p) one has f (mp/δ)εp ≥ 1 and assertion of the lemma follows.

Therefore we may assume

(1) εp ≤
p4p

4(2 + p)
and α > 4z.

For u > 0, w > 0 denote B(u; w) = {x | up − wp < ‖x‖p < up + wp}, where ‖ · ‖ is the
gauge of B.

Given ε satisfying (1) there is A > 1 such that

(2) µ
(
B(A; ε)

)
≥ zεpµ(B).

Indeed, let

l =

[
mp

2εp

]
and up

j = 1 +
2 j + 1

2l
(mp − 1).

Clearly, εp < 1/2. So for every point x ∈
(
(mB) \ B

)
there is 0 ≤ j ≤ l − 1 such that

x ∈ B(u j ; ε), i.e.,
⋃l−1

j=0 B(u j ; ε) ⊃
(
(mB) \ B

)
. Thus

l−1∑
j=0

µ
(
B(u j ; ε)

)
≥ µ
(

(mB) \ B
)
≥ δµ(B)

and, by definitions of z and l, δ/l ≥ zεp from which (2) follows.
Denote γ = 2−1+1/p. Since for every λ ∈ [0, 1], u > 0, w > 0

λB(u; w) + (1− λ)wB ⊂ B(λu; γw),

we get

(3) µ
(
B(λu; γε)

)
≥ µ
(
B(u; ε)

)λ
µ(εB)1−λ.

Using (1)–(3) we obtain µ
(
B(1; γε)

)
≥ µ
(
B(A; ε)

)1/A
µ(εB)1−1/A ≥ zεpµ(B). Choose

w = γ2ε = 4−1+1/pε, v =
2wp(1− wp)−1+1/p

p
and l =

[
p(1− wp)

2wp

]
≥ 1.
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Denote B j = B( jv,w), 1 ≤ j ≤ l, and β = (z/α)v. Then the sets B j are mutually disjoint
and B j ⊂ B \ εB.

Since by (3): µ(B j) ≥ µ
(

B(1; γε)
) jv
µ(εB)1− jv ≥ αεpβ jµ(B), we obtain

µ(B) ≥
l∑

j=1

µ(B j) + µ(εB) ≥ αεpµ(B)
l∑

j=0

β j .

Using (1) we get

α ≤ ε−p 1− β

1− β1+l
≤ 2ε−pv ln

α

z
≤

16

p4p
ln
α

z
.

Hence α ≤ 32
p ln
(

max{(16/p)2; 1/z}
)
, which concludes the proof.

The following theorem follows from the lemma in a way similar to that in the convex
case (cf. [La]).

Theorem 2.3 Let µ be a logconcave probability measure. Let B be a Borel p-convex symmet-
ric set such that µ(B) < 1. Then there is an absolute constant c such that for every t ∈ [0, 1]

µ(tB) ≤
c

p
· ln(2/p) · t p ·

(
1− lnµ(Bc)

)p
· µ(B).

Proof Denote γ := µ(B). The assertion of the corollary is obviously true for γ = 0. Let us
consider the case γ ∈ (0, 2−

√
2).

By Borel’s theorem [Bor1], [Bor2], every logconcave probability measure on Rn is con-
centrated on some k-dimensional affine subspace E of Rn. Moreover, on this subspace it is
absolutely continuous with respect to the corresponding k-dimensional Lebesgue measure
on E. So, for every Borel p-convex set B with µ(B) > 0 we have supt µ(tB) = 1. Therefore
we can choose m ≥ 1 such that

µ(mB) ≤ 2
1− γ

2− γ
and µ(2mB) > 2

1− γ

2− γ
.

By Lemma 2.1 and p-convexity of B, for every λ ≥ C = 21/p

µ
(
(λmB)c

)
≤ µ(2mB)

(
1− µ(mB)

µ(2mB)

)(λ+2C)/(3C)

≤
(

1−
γ

2

)k
,

where k = λ/(3C). Choose λ = 3C(ln 1−γ
2 )/
(
ln(1− γ/2)

)
< 6C ln 6

γ
, then

µ(λmB) ≥
(
1− (1− γ/2)k

)
µ(mB)/γ ≥

(
1 +

1− γ

2γ

)
µ(mB).

Let f be the function defined in Lemma 2.2 and A := f
(
2λpγ/(1 − γ)

)
= 64

p ln(32/p).

Then Lemma 2.2 implies µ(tmB) ≤ At pµ(mB) for every t ≤ 1.
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Therefore, if µ(mB) < 2µ(B) then µ(tB) ≤ µ(tmB) ≤ 2At pµ(B) for every t ∈ (0, 1). If
µ(mB) ≥ 2µ(B) then

mp ≤ A
µ(mB)

µ(B)
≤ 2A

(
µ(mB)

µ(B)
− 1

)
.

Using Lemma 2.2 again, we obtain µ(tB) ≤ f (2A) · t p · µ(B) ≤ A · t p · µ(B). That proves
the corollary for γ ≤ 2−

√
2.

In the case γ ≥ 2−
√

2, by Lemma 2.1, we have for C = 21/p

0 < 1− γ = µ
(
λ(B/λ)c

)
≤

(
1− µ(B/λ)

µ(B/λ)

)λ/(2C)

.

Thus for λ = 2C log2

(
1/(1− γ)

)
we get µ(B/λ) ≤ 2/3 and, by above, µ(tB) ≤ A · t p ·λp ·

µ(B/λ), which completes the proof.

Proof of Theorem 1.1 Since the convolution of logconcave measures is also logconcave
([Bor1], [Bor2], [Pr], see also [DKH] where corresponding result was proved for logcon-
cave functions), it is enough to prove the theorem for the case k = 1. Let Y = Y1 and µ is
distribution of Y . Let B be the unit ball of ‖ · ‖. If µ({x | ‖x‖ = 0}) = 1 there is nothing to
prove. Otherwise, by Lemma 2.1, µ({x | ‖x‖ = 0}) = 0. Therefore we can choose m such
that µ(mB) ≤ 2/3 and µ(2mB) > 2/3.

Then, by Theorem 2.3, µ(smB) ≤ C psp for s ∈ (0, 1) and C p =
c0
p ln(2/p) with an

absolute constant c0. Thus for q ∈ (−p, 0) one has

E‖Y‖q = −qmq

∫ ∞
0

sq−1µ(‖Y‖ < ms) ds ≤ mq

(
−C p

q

q + p
+ 1

)
.

Therefore there is an absolute constant c such that

‖Y‖q ≥

{
(p/2)c/pm for q ∈ [−p/2, 0),

(p/2)c/p(p + q)−1/qm for q ∈ (−p,−p/2).

On the other hand for q > 0: E‖Y‖q = q(2m)q
∫∞

0 sq−1µ
(
(s2mB)c

)
ds. Since µ(2mB) ≥

2/3, by Lemma 2.1 and p-convexity of ‖ · ‖ we obtain

‖Y‖q
q ≤ q(2m)q

(∫ C

0
sq−1 ds +

∫ ∞
C

sq−12−
s

2C ds

)
≤ 2qCqmq

(
1 + q2qΓ(q)

)
,

where C = 2−1+1/p and Γ(·) is the Gamma function. Thus ‖Y‖q ≤ cCqm for q ≥ 1 and
‖Y‖q ≤ ‖Y‖1 ≤ cCm for q < 1, where c is an absolute constant. That proves the theorem.

We end this section with another corollary of Theorem 1.1.
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Corollary 2.4 Let ‖ · ‖ be a p-seminorm on Rn. Let C p be as in the theorem. Denote the
Euclidean sphere in Rn by Sn−1 and the rotation invariant normalized measure on Sn−1 by ν.
Denote

Mq =

(∫
Sn−1

‖x‖q dν(x)

)1/q

and M0 = exp

(∫
Sn−1

ln ‖x‖ dν(x)

)
.

Then for every q1 ≥ 2, q ∈ (−p,−p/2)

Mq1

q1 ·C p
≤ M2 ≤ C p ·M−p/2 ≤ C p(p + q)1/qMq.

This corollary immediately follows from Corollary 1.2 and integration over the Eu-
clidean ball.

Let us note that for seminorms and q ≥ 1 inequality Mq ≤ c
√

qM1 is known and, more-

over, Mq/M1 ≈ max{1, b
√

q/n} for b = maxSn−1 ‖x‖ and q ∈ [1, n] (see Statement 3.1
of [LMS]).

3 Decay of “tail” Volume

By “tail” volume of a body we mean the volume of difference of the body and some sym-
metric strip.

In the eighties M. Gromov and V. Milman investigated the law of decay of the “tail”
volume when the width of the strip grows up. They proved the exponential decay of the
“tail” volume ([GrM], see also [Bou], [MS]). For every p ∈ (0, 1) we construct examples
of p-convex bodies without the exponential decay of the “tail” volume. Moreover, our
examples show lack of any decay of the “tail” volume that is independent of the dimension.
Thus, result of M. Gromov and V. Milman can not be extended to p-convex bodies in
any sense. Our examples show also that the condition of the convexity in Corollary 1.2 is
essential.

We need more definitions and notations.
Given set K ⊂ Rn, the p-convex hull of K, p-conv K, is the intersection of all p-convex

sets containing K.
It was shown by J. Bastero, J. Bernués, and A. Peña [BBP] that

p-conv K =
{ m∑

i=1

λixi | m ∈ N, xi ∈ K, λi ≥ 0,
m∑

i=1

λ
p
i = 1

}

=
{ m∑

i=1

λixi | m ∈ N, xi ∈ K, λi ≥ 0, 0 <
m∑

i=1

λ
p
i ≤ 1

}
.

In this section it will be more convenient for us to represent Rn+1 as R × Rn = {(x, y) |
x ∈ R, y ∈ Rn}. So we fix one direction. Given a < b by S(a; b) we denote the strip
{(x, y) ∈ Rn+1 | a ≤ x ≤ b} and S±(a; b) = S(a; b) ∪ S(−b;−a).

Given vector y = {yi}n
i=1 ∈ Rn we denote the Euclidean norm

√∑
y2

i of y by |y|.
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Let v, w be positive numbers. Let p ∈ (0, 1) and n > 0 be an integer. Throughout
this section by Vn we will denote the volume of the n-dimensional Euclidean ball, and by
Bp = Bp(v; w; n) we will denote the following p-convex body

Bp = p-conv {(x, y) ∈ Rn+1 | x ∈ R, |x| ≤ v, y ∈ Rn, |y| ≤ f (x)} ⊂ Rn+1,

where

f (x) =

{
1 for |x| ≤ 1,

w otherwise.

The following lemma provides estimates of the volume of Bp.

Lemma 3.1 Let p ∈ (0, 1), w ∈ (3/4, 1) and v > 3/2. There is an absolute constant
c ∈ (0, 1) such that if 1− wp < βp := c1/(1−p) then for x0 = max{3/2; 4(1− wp)1/pv} the
following holds

|Bp ∩ S(3/2; x0)| ≤ 4 ·Vn ·
v

n1/p
,

and Bp∩S(x0; v) = {(x, y) ∈ Rn+1 | x0 ≤ x ≤ v, |y| ≤ w} (thus its volume |Bp∩S(x0; v)| =
Vn · (v − x0) · wn).

For the reader’s convenience we postpone the proof of this lemma.
Let us recall the result of M. Gromov and V. Milman [GrM].
Let K be a centrally-symmetric compact convex body in Rn+1. Denote

Vt (K) = |K ∩ S±(t ;∞)| = |K| − |K ∩ S(−t ; t)|.

Let m be the median of K, i.e., a number which satisfies Vm(K) = |K|/2 (precisely speaking,
m is the median of the function f

(
(x, y)

)
= |x| on the probability space (R× Rn,Pr) with

Pr
(
(x, y) ∈ B

)
= |B ∩ K|/|K|).

M. Gromov and V. Milman [GrM] proved that there is an absolute constant c such that

Vt (K) ≤
1 + e

2
exp
(
−

c

1 + e

t

m

)
|K|

for every t ≥ (1 + e)m.
Lemma 3.1 yields the following corollary.

Corollary 3.2 Let p ∈ (0, 1). Let A > 0. Then for large enough n ∈ N there exists a
centrally-symmetric p-convex body Bp ⊂ Rn+1 with median m such that there is t ≥ Am for
which

Vt (Bp) ≥
1

32
|Bp|.
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Proof Let βp be as in Lemma 3.1. Let n be large enough to satisfy

n > (32A)p, α := ln
n1/p

4
< nβp,

(
1−
α

n

)n
≥

2

n1/p
.

Put v = n1/p

16 and w = 1 − α
n . Let Bp = Bp(v; w; n) ⊂ Rn+1 be as in Lemma 3.1. Then by

choice of Bp and by the lemma, one has |Bp ∩ S(−1; 1)| = 2Vn, |Bp ∩ S±(1; 3/2)| ≤ Vn,
|Bp ∩ S±(3/2; x0)| ≤ Vn/2, |Bp ∩ S±(x0,∞)| ≤ Vn/2, where x0 was defined in Lemma 3.1.
Hence m ≤ 1. Take t = v/2. Then t/m > A and t > x0, since 1− wp ≤ α

n ≤
ln n

n . Thus

Vt (Bp) = |Bp ∩ S±(t ; v)| = 2 ·Vn · (v − t) · wn ≥ Vn · v ·
2

n1/p
≥

1

32
|Bp|,

which proves the corollary.

Proof of Lemma 3.1 Let L = {(x, y) ∈ R2 | 0 ≤ x ≤ v, 0 ≤ y ≤ f (x)}. Let

G = {λ(1, 1) + (1− λp)1/p(v,w) | λ ∈ [0, 1]} ⊂ R2

be p-convex curve between points (1, 1) and (v,w). By definition of p-convexity we have
K := p-conv L = L ∪ {λz | z ∈ G, λ ∈ [0, 1]}. Clearly, Bp is the rotation body of K ∪−K.
We will show that

K ⊂ {(x, y) ∈ R2 | 0 ≤ x ≤ v, 0 ≤ |y| ≤ g(x)},

where

g(x) =




1 for x < 3/2,

(1− xp

4pvp )1/p for 3/2 ≤ x ≤ x0,

w for x0 < x ≤ v,

and x0 = max{3/2; 4 · (1− wp)1/p · v}. Since

∫ x0

3/2

(
1−

xp

4pvp

)n/p

dx ≤

∫ ∞
0

exp

(
−

nxp

p4pvp

)
dx =

4 · v · p1/p

n1/p
Γ(1 + 1/p) ≤ 4

v

n1/p
,

where Γ is the Gamma function, the result follows.
Let (x, y) ∈ G. Then {

x = x(λ) = λ + (1− λp)1/pv,

y = y(λ) = λ + (1− λp)1/pw.

Hence (v − w)p = (vy − xw)p + (x − y)p. Therefore,

y p = y p

(
v − w

vy − xw

)p

− y p

(
x − y

vy − xw

)p

=

(
1 +

xw − yw

vy − xw

)p

−
xp

vp

(
xyv − vy2

xyv − x2w

)p

.
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Assume (x, y) ∈ G be such that y ≥ w and 3/2 ≤ x ≤ x0 = 4(1− wp)1/pv (if for every
x ≥ 3/2 one has y ≤ w, we are done).

Then y ≥ 1/2 and vy ≥ 2xw as long as 1− wp ≤ 8−p. So, x−y
vy−xw ≤

4·x
v . Since x ≥ 3

2 y,

we have xyv−vy2

xyv−x2w > 1/3. Hence

y p ≤
(

1 + 4
xw

v

)p
−

1

3p

xp

vp
≤ 1 + 4

xw

v
−

1

3p

xp

vp
≤ 1−

xp

4pvp

if

γp :=

(
1

4

(
1

3p
−

1

4p

)) p
1−p

·
1

4p
> 1− wp.

Obviously, γp ∈ (c1/(1−p), 8−p) for some absolute constant c. Therefore if 1−wp < c1/(1−p)

then for every (x, y) ∈ G satisfying y ≥ w, 3/2 ≤ x ≤ x0 = 4(1 − wp)1/pv we obtain

y ≤
(

1−
(
x/(4v)

)p
)1/p

.

Due to behavior of the function y = y(λ) and since wp = 1 − xp
0

4pvp , we get that if
(x, y) ∈ G with x ≥ x0 then y ≤ w. That proves the lemma.

The following corollary shows that the condition of convexity in Corollary 1.2 can not
be replaced by the condition of p-convexity even if the seminorm is just the absolute value
of the first coordinate.

Corollary 3.3 Let p ∈ (0, 1). There are centrally-symmetric p-convex bodies K = K(n) ⊂
Rn+1 = {(x, y) | x ∈ R, y ∈ Rn} such that for every q ∈ (0,∞) if n is sufficiently large then

1

21/q
(3/8)1+1/q

(
1

1 + q

)1/q ( n

ln n

)1/p
(ln n)−

1
qp

≤

(
1

|K|

∫
K
|x|q d(x, y)

)1/q

≤ 21/q(3/8)1+1/q

(
1

1 + q

)1/q ( n

ln n

)1/p
(ln n)−

1
qp .

Remark This result demonstrates the existence of the centrally-symmetric p-convex bod-
ies K = K(n) ⊂ Rn+1 such that for every s < q from (0,∞) if n is large enough then

(
1

|K|

∫
K
|x|q d(x, y)

)1/q/( 1

|K|

∫
K
|x|s d(x, y)

)1/s

> Cs,q(ln n)
1
p ( 1

s−
1
q ),

where Cs,q depends on s, q only.

Proof Let βp be as in Lemma 3.1. Let n be large enough. Put

v =
3

8

( n

ln n

)1/p
and w = 1−

ln n

p · n
> 1− βp.
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Let K = Bp = Bp(v; w; n) ⊂ Rn+1 be as in Lemma 3.1. Then, repeating the proof of the
previous corollary, we obtain 2Vn < |K| < 4Vn and, since 1 − w > 1 − wp > p(1 − w),
x0 = 4(1− wp)1/pv ≥ 3/2 for large enough n. Therefore,

1

|K|

∫
K
|x|q d(x, y) ≥

2Vn

|K|
wn

∫ v

0
xq dx >

1

2

v1+qwn

1 + q
,

1

|K|

∫
K
|x|q d(x, y) ≤

2Vn

|K|

(
wn

∫ v

0
xq dx +

∫ x0

0
xq dx

)
<

2v1+qwn

1 + q

if v1+qwn ≥ x1+q
0 = 41+q(1− wp)(1+q)/pv1+q, which is true for large enough n. Since

γn
3

8

(
1

ln n

)1/p

< v · wn <
3

8

(
1

ln n

)1/p

for some γn −→ 1, we obtain the result.

Remark Let us fix a constant C > 1/p. Slightly different choice of v and w in the proof
gives us

(
1

|K|

∫
K
|x|q d(x, y)

)1/q

≈ (3/8)1+1/q

(
1

1 + q

)1/q ( n

ln n

)1/p
(ln n)−

C
q

up to the factor 21/q. Moreover, if we restrict ourselves by the interval [α,∞) for some
α > 0 then one can find bodies K = K(n) such that for every q ∈ [α,∞) and for large
enough n one has

(
1

|K|

∫
K
|x|q d(x, y)

)1/q

≈

(
3

8(1 + α)1/p

)1+1/q( 1

1 + q

)1/q ( n

ln n

)1/p
n−

α
qp

up to the factor 21/q. Thus, for every s < q from [α,∞) there is a constant Cs,q such that
for large enough n

(
1

|K|

∫
K
|x|q d(x, y)

)1/q/( 1

|K|

∫
K
|x|s d(x, y)

)1/s

> Cs,qn
α
p

(
1
s−

1
q

)
.
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