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Effects of asymmetric rough boundaries
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We report on an experimental study of turbulent Rayleigh–Bénard convection with
asymmetric top and bottom plates. The plates are covered with pyramid-shaped roughness
elements whose aspect ratios are λ = 1 or λ = 4. In the low-Rayleigh-number regime
(Ra < 1.9 × 109), the heat transport efficiencies in the asymmetric cells, characterized
by the Nusselt number, are smaller than those measured in a symmetric λ = 1 cell and
are greater than those for a symmetric λ = 4 cell, whereas in the high-Rayleigh-number
regime (Ra > 1.9 × 109), the Nusselt numbers of the asymmetric cells are, in turn,
greater than those for the symmetric cell with λ = 1 and smaller than those for
the symmetric cell with λ = 4. In addition, the heat transports of individual plates
are studied based on the temperature drops across both halves of the cell. In the
low-Ra regime, the λ = 1 plate shows higher heat transfer than the λ = 4 plate, while
for the high-Ra regime, the λ = 4 plate shows a higher heat transport ability. In
both regimes, the individual Nusselt number of the plate with lower heat transfer
is insensitive to the topology of the other plate. Besides, it is found that the
symmetry of the centre temperature distribution is robust to the symmetry breaking
of boundary topographies. For the Ra range explored, a weak temperature inversion
is observed in the bulk of asymmetric rough cells. Finally, we remark that the
temperature fluctuation at the cell centre and the Reynolds number associated with the
large-scale circulation show universal power laws in terms of the flux Rayleigh number as
σTc ∼ Ra0.68

F and ReLSC ∼ Ra0.36
F , respectively.
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1. Introduction

Symmetry is a crucial concept in physics, mathematics and even the arts. For a dynamical
system, symmetry breaking is often associated with violation of a conservation law and
global state bifurcation. Being a classic dynamical system, turbulent Rayleigh–Bénard
convection (RBC) is, by its definition, highly symmetric and a well-known paradigm for
studying thermal-driven turbulence. It involves a fluid layer strongly heated from below
and cooled from above. Under the Oberbeck–Boussinesq (OB) approximation (Oberbeck
1879; Boussinesq 1903), the governing equations of RBC satisfy translation, reflection
and rotational symmetry (Zhang, Ding & Xia 2021). The RBC system generally has two
control parameters, i.e. the Rayleigh number Ra = αg�TH3/(νκ) and the Prandtl number
Pr = ν/κ . Here, g is the gravitational acceleration constant, and α, ν and κ are the isobaric
thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity of the
convecting fluid, respectively, while �T and H are the temperature difference across
the fluid layer and the height of the convection domain. In practice, one needs a third
parameter, i.e. the aspect ratio Γ = D/H, to describe the finite horizontal scale of the
domain. For a cylindrical cell, which is the case of the present study, D is just the diameter.

In an RBC cell with an aspect ratio around unity, when the flow is fully turbulent for
large enough Ra, a coherent structure, known as the large-scale circulation (LSC), spans
almost the entire convection domain (Krishnamurti & Howard 1981; Xi, Lam & Xia 2004;
Ren et al. 2022). The LSC is a quasi-two-dimensional structure that rotates in a vertical
plane just like a ‘flywheel’. The formation of the LSC can be considered as a classic
example of spontaneous symmetry breaking in turbulence. In the long term, the LSC can
sample all azimuthal locations by reorientation (Brown, Nikolaenko & Ahlers 2005; Sun,
Xia & Tong 2005), resulting in dynamical restoration of the azimuthal symmetry. The
LSC is also rich in other dynamical behaviours, including torsion, sloshing, azimuthal
meandering, cessation and reversal (Xi & Xia 2007; Xi et al. 2009; Zhou et al. 2009; Xie,
Wei & Xia 2013), the last of which can also be interpreted as a process that restores the
statistical symmetry of the system (Huang et al. 2015).

The up–down reflection symmetry of RBC can be broken for many reasons,
for example, adopting different temperature/velocity boundary conditions on the top
and bottom, or violating the OB approximation. The latter is also known as the
non-Oberbeck–Boussinesq (NOB) effect (Ahlers et al. 2006). The NOB effect sets
in when the temperature difference across the top and bottom plates, �T , is too
large so that material properties of the working fluid can no longer be treated as
temperature-independent. Previous studies showed that the Nusselt number and Reynolds
number (which quantify the non-dimensionalized heat-transfer efficiency and flow
strength, respectively) for the OB and NOB cases only show slight differences (Ahlers
et al. 2006, 2007; Demou & Grigoriadis 2019; Wan et al. 2020). In addition, the Nusselt
number is also found to be insensitive to the symmetry property of the temperature
boundary conditions (Verzicco & Sreenivasan 2008; Johnston & Doering 2009; Stevens,
Lohse & Verzicco 2011; Urban et al. 2021), even though both the flow strength and
the flow structure exhibit remarkable changes for different combinations of constant
temperature and constant flux boundary conditions (Huang et al. 2015; Vieweg, Scheel
& Schumacher 2021). On the other hand, top–bottom asymmetry induced by slip–non-slip
velocity boundary conditions not only alters the flow structure but also causes observable
changes in the heat transport (Xie & Xia 2013; van der Poel et al. 2014; Huang et al. 2022).

It is known that the presence of a rough surface has a significant impact on the transport
properties in RBC (Shen, Tong & Xia 1996; Qiu, Xia & Tong 2005; Xie & Xia 2017).
As one might expect, the up–down reflection symmetry of RBC can also be violated by
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applying different roughness on the top and bottom boundaries (Tisserand et al. 2011;
Salort et al. 2014; Wei et al. 2014; Liot et al. 2016, 2017; Rusaouën et al. 2018; Jiang
et al. 2018; Belkadi et al. 2020, 2021). Tisserand et al. (2011) conducted heat transport
measurements in a RBC cell with a smooth top plate and a rough bottom plate. They
found that the individual Nu–Ra relation of the smooth top plate was approximately the
same as that measured in a symmetric smooth cell. They also concluded that the heat
transport behaviours of the smooth and rough plates are independent, and the interaction
between the flow and solid boundary is mainly a local process. Later, researchers from the
same group (Rusaouën et al. 2018) carried out heat-transfer measurements in asymmetric
cells with larger roughness elements and different aspect ratios, and they confirmed the
three heat transport regimes in symmetric rough cells reported by Xie & Xia (2017).
Wei et al. (2014) conducted a systematic study of smooth–rough boundary asymmetry
in turbulent RBC. Their results showed that the heat transport property of a smooth
plate is robust to the changes in geometries and temperature boundary conditions of
the opposite plate. In contrast, a rough plate is susceptible to the topology (smooth or
rough) and the temperature boundary condition of the other plate. By conducting direct
numerical simulations, Belkadi et al. (2021) confirmed the findings above and highlighted
the role of roughness valleys in determining global heat transport. Using particle image
velocimetry (PIV), Liot et al. (2016) measured the boundary layer structure at the rough
plate of a smooth–rough asymmetric RBC cell using air as the working fluid. They found
that at low Rayleigh number, there is no heat-transfer enhancement and the velocity
profiles are compatible with those measured in a smooth cell, while at high Rayleigh
number, heat transfer enhancement is observed and the velocity profiles are closer to the
logarithmic profiles expected in the case of turbulent boundary layers. Later, researchers
from the same group (Liot et al. 2017) conducted PIV measurements in a smooth–rough
asymmetric cell and a smooth–smooth (SS) symmetric cell, both using water as the
working fluid. With the presence of roughness elements, they found a significant increase
in the velocity fluctuations but only a subtle change in the mean flow strength. In addition,
the smooth–rough cell also featured a breaking of the top–bottom symmetry in its vertical
velocity profile.

To our knowledge, almost all existing studies on asymmetric boundary geometries were
carried out using a smooth plate and a rough plate. In fact, the up–down symmetry can
be broken for any combination of plates with different geometries. It is still unclear
how geometrical asymmetry, in general, affects the transport property and how different
boundary geometries interact with each other through the bulk flow. In the present study,
we use plates with different pyramid-shaped roughness elements to explore how turbulent
thermal convection responds to a geometrical boundary asymmetry. For many industrial
applications, heating and cooling usually take place at different scales, and employing
different kinds of roughness elements (pin-fins) is a common solution for efficient thermal
dissipation (Ahmed et al. 2018; He, Yan & Zhang 2021). But the general questions of how
heating and cooling sites with different (asymmetric) roughnesses interact in thermally
driven turbulence and which kind of roughness controls the heat transport both remain
open, which also motivates the present study.

Systematic measurements of the heat transport, the mean temperature profile, the
temperature fluctuations and the flow strength were carried out. We will also compare
the results obtained in the present study with those measured in symmetric rough cells
reported by Xie & Xia (2017) whenever possible. The rest of the paper is organized as
follows. In § 2, we introduce the apparatus used in this study. The experimental results
are then presented in § 3. This section is further divided into six subsections, in which we
will discuss the global heat transport, the centre temperature behaviour, the heat transport
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T4B1

T1B4

h = 8 mm

w = 2 mmw = 8 mm

w
w

(a) (b) (c)

(d)

Figure 1. Panels (a,b) show photographs of the rough plates used in this study with λ = 1 and
λ = 4, respectively. Panels (c,d) show schematics of the asymmetric Rayleigh–Bénard (RB) cells, with red
representing the heating plates and blue the cooling plates.

properties of individual plates, the bulk temperature inversion, the Reynolds number and
the convective temperature and velocity scales in turn. Finally, we summarize our main
findings in § 4.

2. Experimental set-up

Geometric boundary asymmetry is introduced using plates with two types of pyramid-like
roughness elements (see figure 1a,b). The height of the roughness element is fixed at
h = 8 mm, and the base width is w = 2 mm or 8 mm. So the corresponding aspect ratio
of the roughness elements, defined as λ = h/w, is either 1 or 4. In the experiments, one
cell is assembled with a λ = 1 top plate and a λ = 4 bottom plate, which we refer to as the
‘T1B4’ set (figure 1c) hereinafter. The other cell is assembled by switching the top and
bottom plates, and we refer to this set as ‘T4B1’ (figure 1d).

The convection cells are both cylindrical in shape, with diameters and heights being
D = 192 and H = 193 mm, respectively, so their aspect ratios are close to unity. The
sidewalls of both cells are made of 4 mm thickness Plexiglas. The top plate is cooled
by passing temperature-regulated water through a chamber fitted on its top surface. The
temperature stability of the cooling water is better than 0.005 K. The bottom plate was
embedded with resistive heaters. The heaters are connected to a DC power supply with
a voltage stability of approximately 99.99 % for bottom heating. With the above settings,
the thermal boundary conditions are constant temperature at the top plate and constant
heat flux at the bottom plate. The temperature of the top/bottom plate is measured using
four/five thermistors. The distance between the thermistor head and the valley of the
roughness elements is approximately 5 mm. In addition, a small waterproof thermistor
with a head diameter of 0.38 mm and a response time of approximately 30 ms is used
997 A72-4
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to measure the temperature at the centre of the cell, Tc. Deionized and degassed water
is used as the working fluid throughout the experiments. The centre temperature Tc is
kept at 40 ◦C, corresponding to a Prandtl number of Pr = 4.34. In the present study,
the Rayleigh number covers a range of 2.6 × 108 ≤ Ra ≤ 9.8 × 109. For the temperature
profile measurement, another waterproof thermistor is mounted on a linear stepping motor
by a stainless-steel tube, which can then move along the vertical centre line of the cell with
an accuracy of approximately 4 µm.

For high-precision heat-transfer measurements, the system must have good thermal
insulation from the environment. To achieve this, the convection cell is placed inside a
homemade copper thermal shield during the measurement. The temperature of the shield
was regulated to match Tc with a stability better than 0.1 K. In addition, a copper basin
is placed underneath the convection cell to compensate for the downward heat leakage
from the bottom plate. A proportional-integral-derivative temperature controller is used to
regulate the temperature of the basin by setting its temperature to be the same as that of
the bottom plate. The experimental results are listed in table 1.

3. Results and discussions

3.1. Global heat transport
Figure 2(a) shows the Nu–Ra data measured in two sets of asymmetric cells (T1B4 and
T4B1). Data taken from the literature for symmetric rough cells (T1B1 and T4B4) (Xie &
Xia 2017) and an SS cell (Wei et al. 2014) are also plotted as references. For the Rayleigh
number range explored, the heat transport efficiencies of symmetric and asymmetric
rough cells are considerably higher than in the smooth case. For a clearer view of the
differences between the symmetric and asymmetric cells, we present the corresponding
compensated plots of NuRa−0.5 versus Ra in figure 2(b). It is seen that the Nusselt numbers
of the two asymmetric sets are just in between the curves for the symmetric rough cells
(T1B1 and T4B4), and the four curves cross over at a Rayleigh number of approximately
Rac = 1.9 × 109. This implies that at this particular Rayleigh number Rac, the heat
transport ability (or equivalently the thermal impedance) of a λ = 1 rough plate is the same
as that of a λ = 4 rough plate, regardless of whether they are located at the top or bottom
of the cell and whether they are assembled symmetrically or asymmetrically. Whereas for
Ra < Rac, the heat transport in asymmetric cells is dominated by the λ = 1 rough plate
and bottlenecked by the λ = 4 rough plate, for Ra > Rac it is the λ = 4 plate that
prompts the heat transfer, and the overall transport is limited by the λ = 1 plate. It is
also worth noting that the Nu–Ra relations measured in the two asymmetric cells (T1B4
and T4B1) show the same behaviour, and they differ only by a factor of approximately
5 % at small Rayleigh numbers. This observation also agrees with the fact that the
heat-transfer efficiency in thermal convection is insensitive to the applied temperature
boundary conditions (Johnston & Doering 2009; Stevens et al. 2011; Wei et al. 2014).
The solid and dashed lines in figure 2(b) show effective power-law fits with Nu = BRaβ

to the data before and after the intersection point, respectively. The fitting results are
summarized in table 2. As expected, the effective scaling exponents β of the rough cells
are all larger than the value of 0.30 for the smooth case. With each data set, the scaling
exponents for Ra ≤ 1.9 × 109 are larger than those for Ra > 1.9 × 109. Xie & Xia (2017)
interpreted such a transition as a process in which the viscous boundary layer thickness
gets thinner than the height of the roughness elements. We emphasize that the present
data for asymmetric rough cells are consistent with this physical picture. Lastly, the fact
that the Nu–Ra curves for asymmetric cells are just in between those measured in the
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�T Tc − Tm σTc Ra RaF Re
Cell No. (K) (K) (K) (×108) (×1010) Nu (×103)

T4B1 1 6.47 −0.091 0.082 20.5 34.0 165.4 4.52
T4B1 2 6.48 −0.065 0.084 20.6 34.0 165.0 4.36
T4B1 3 8.57 −0.166 0.108 27.2 51.2 188.5 5.01
T4B1 4 12.01 −0.321 0.154 37.8 82.9 219.1 6.18
T4B1 5 15.37 −0.481 0.188 48.2 117 243.6 6.99
T4B1 6 4.75 −0.025 0.061 15.0 21.2 141.0 3.82
T4B1 7 3.09 0.021 0.037 9.81 11.1 112.7 3.11
T4B1 8 1.89 0.032 0.022 5.98 5.12 85.6 2.32
T4B1 9 1.58 0.030 0.019 5.05 3.91 77.3 2.07
T4B1 10 1.14 0.017 0.013 3.64 2.36 64.8 1.69
T4B1 11 1.01 0.012 0.012 3.21 1.93 60.2 1.63
T4B1 12 0.73 −0.007 0.008 2.33 1.20 51.6 1.35
T4B1 13 0.84 0.000 0.009 2.67 1.47 55.0 1.47
T4B1 14 2.17 0.041 0.026 6.92 6.35 91.8 2.45
T4B1 15 1.37 0.030 0.015 4.34 3.06 70.6 1.95
T4B1 16 2.58 0.039 0.031 8.17 8.28 101.4 2.73
T4B1 17 3.79 0.020 0.046 12.1 15.1 124.5 3.39
T4B1 18 10.54 −0.237 0.133 33.3 67.9 204.0 5.71
T4B1 19 29.87 −0.950 0.348 94.7 293 309.4 9.31
T4B1 20 24.65 −0.782 0.290 78.0 224 287.6 8.55
T4B1 21 18.85 −0.573 0.225 59.7 154 258.5 7.53
T4B1 22 15.60 −0.391 0.192 49.4 119 239.8 6.80

T1B4 1 5.39 0.027 0.070 17.0 25.4 148.8 4.32
T1B4 2 1.32 −0.013 0.015 4.14 2.96 71.5 1.91
T1B4 3 19.48 1.115 0.246 62.1 163 262.3 8.28
T1B4 4 11.06 0.366 0.136 35.1 73.6 209.8 6.30
T1B4 5 3.83 −0.019 0.046 12.0 15.1 125.9 3.61
T1B4 6 2.46 −0.047 0.030 7.74 7.77 100.4 2.78
T1B4 7 0.95 0.000 0.011 2.98 1.79 60.1 1.61
T1B4 8 1.79 −0.038 0.020 5.61 4.75 84.6 2.28
T1B4 9 3.09 −0.047 0.038 9.72 10.9 112.7 3.20
T1B4 10 6.67 0.063 0.086 21.1 34.7 164.5 4.86
T1B4 11 8.05 0.133 0.107 25.5 45.7 179.5 5.35
T1B4 12 9.63 0.224 0.125 30.5 59.5 194.9 5.82
T1B4 13 13.96 0.567 0.180 44.4 102 230.3 7.04
T1B4 14 16.62 0.808 0.214 53.0 132 248.1 7.69
T1B4 15 12.80 0.463 0.159 40.7 89.9 221.0 6.72
T1B4 16 6.07 0.021 0.078 19.1 30.1 157.1 4.57
T1B4 17 4.48 −0.046 0.059 14.1 19.2 136.4 3.93
T1B4 18 3.43 −0.032 0.043 10.8 12.9 119.3 3.34
T1B4 19 2.78 −0.041 0.033 8.72 9.31 106.7 2.98
T1B4 20 2.10 −0.057 0.025 6.61 6.11 92.5 2.55
T1B4 21 1.54 −0.036 0.018 4.83 3.75 77.7 2.12
T1B4 22 1.14 −0.022 0.014 3.56 2.35 65.9 1.74
T1B4 23 0.83 −0.005 0.009 2.59 1.45 56.0 1.51
T1B4 24 28.35 2.139 0.345 90.8 278 306.6 10.3
T1B4 25 23.64 1.549 0.308 75.5 215 285.0 9.28
T1B4 26 21.70 1.320 0.269 69.4 193 277.8 8.99
T1B4 27 25.93 1.848 0.317 82.9 244 294.8 9.77
T1B4 28 11.16 0.270 0.147 35.4 73.8 208.4 6.38

Table 1. The temperature difference between the top and bottom plates (�T), the difference between the centre
temperature and the arithmetic mean temperature of the conducting plates (Tc − Tm), the standard deviation
of the centre temperature fluctuation (σTc ), the Rayleigh number (Ra), the flux Rayleigh number (RaF), the
Nusselt number (Nu) and the Reynolds number (Re). The data sets are listed chronologically.
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Figure 2. (a) The Nu–Ra relations measured in the T1B4 cell (squares) and the T4B1 cell (diamonds). For
comparison, data from the literature for symmetric rough cells (T1B1 and T4B4) and a symmetric smooth
cell (SS) are plotted as triangles and circles, respectively. The solid line shows a power-law fit of Ra0.30.
(b) Compensated plots of NuRa−0.5. The legends are the same as those in panel (a). The solid and dashed
lines represent power-law fits to the data in two Rayleigh number regimes. The fitting results are listed in
table 2.

Ra ≤ 1.9 × 109 Ra > 1.9 × 109

Cell B β C γ B β C γ Data source

T1B4 0.0023 0.52 0.0018 0.09 0.020 0.42 0.055 −0.07 Present study
T4B1 0.0013 0.55 0.0029 0.07 0.039 0.39 0.053 −0.07 Present study
T1B1 0.015 0.43 0.032 −0.05 0.10 0.35 0.33 −0.15 Xie & Xia (2017)
T4B4 0.00052 0.59 0.00091 0.12 0.0040 0.50 0.11 −0.10 Xie & Xia (2017)
SS 0.141 0.30 0.060 −0.10 0.141 0.30 0.060 −0.10 Wei et al. (2014)

Table 2. Fitting parameters of Nu = BRaβ and σTc/�T = CRaγ for different cells.

symmetric cases suggests that using cells with different roughnesses might be an efficient
way to extend the Rayleigh number range with high heat-transfer efficiency (Zhu et al.
2019; Toppaladoddi et al. 2021).

3.2. Temperature at the cell centre
Figure 3(a) shows the difference between the time-averaged centre temperature Tc and the
arithmetic mean temperature of the top and bottom plates, Tm = (Tt + Tb)/2, as a function
of the temperature difference �T applied across the two conducting plates. Here Tt and
Tb denote the time-averaged temperatures of the top and bottom plates, respectively. The
same quantity measured in a symmetric smooth cell is plotted for reference as well (Ahlers
et al. 2006). It is seen that for �T ≥ 5 K (corresponding to Ra > Rac), the measured centre
temperatures Tc show apparent deviations from Tm for all three data sets. For an SS cell,
it is known that such deviation results from the NOB effect (Ahlers et al. 2006). In this
regime, we note that the curve of T1B4 is always higher than in the SS case, which suggests
that for the T1B4 cell, the heat-transfer capability of the bottom plate (λ = 4) is greater
than that of the top plate (λ = 1). In other words, the thermal impedance of the bottom
plate is lower than that of the top plate in this regime. For the case of T4B1, Tc − Tm
is negative when �T ≥ 5 K, which again suggests that the λ = 4 plate is more efficient
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Figure 3. (a) The difference between the temperature Tc at the cell centre and the arithmetic mean temperature
Tm of the conducting plates as a function of the applied temperature difference �T across the top and bottom
plates. (b) The corresponding normalized temperature deviations as functions of the Rayleigh number. The
legends are the same as those in panel (a).

in heat transfer than the λ = 1 plate. On the other hand, when the applied temperature
difference is small (�T < 5 K), for which the OB approximation is valid, the centre
temperatures Tc show no apparent difference with Tm for all three cases. To have a clearer
view of this regime, we plot in figure 3(b) the normalized centre temperature deviations
(Tc − Tm)/�T as functions of the Rayleigh numbers for the two asymmetric cells. It is
seen that for the low-Rayleigh-number regime (Ra < Rac), the signs of bulk temperature
deviations are opposite to those measured in the high-Rayleigh-number regime for both
the T1B4 and the T4B1 cases. This indicates that for Ra < Rac, the λ = 1 plate, in turn,
shows a higher heat-transfer capability, regardless of whether it is assembled on the top or
at the bottom.

We can now conclude that the heat-transfer capability of an individual plate is mainly
determined by its topography and is not sensitive to the applied temperature boundary
condition. For the two types of roughness explored in the present study with λ = 1
and 4, the former shows a higher heat-transfer efficiency (lower thermal impedance) at
small Rayleigh numbers, whereas the latter dominates heat transport at high Rayleigh
numbers. The critical Rayleigh number separating these two regimes is approximately
Rac = 1.9 × 109. At this particular Rayleigh number, the heat transport abilities of the
two rough plates are balanced. It is also worth mentioning that the relative strength of heat
transport abilities of individual plates deduced from centre temperature behaviours shows
qualitative agreement with those measured in symmetric cells (see figure 2). In addition,
we remark that when the bulk temperature Tc is higher (lower) than Tm, the temperature
drop associated with the upper thermal boundary layer must be larger (smaller) than that
of the lower thermal boundary layer. In this sense, the up–down symmetry of thermal
boundary layers is very vulnerable to the change in boundary geometries.

Figure 4(a) shows the normalized centre temperature fluctuations σTc/�T measured in
asymmetric and symmetric rough cells, respectively. The same quantity measured in an
SS cell is also plotted for reference (Wei et al. 2014). It is interesting to note that the centre
temperature fluctuations, in general, show similar behaviours to the global heat transports
(figure 2). The temperature fluctuations in symmetric/asymmetric rough cells are always
larger than those measured in an SS cell. This agrees with the physical picture that
roughness elements can trigger more plume-emission events and thus increase the intensity
of turbulence. A transition is also discernible around Ra = 1.9 × 109 for each rough data
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Figure 4. (a) The normalized bulk temperature fluctuations σTc/�T as functions of Ra. The data for the SS
case are adapted from Wei et al. (2014). The solid and dashed lines show power-law fits to the data. The fitting
parameters are summarized in table 2. (b) The measured centre temperature fluctuations σTc as functions of
RaF . The solid line represents a power-law fit with Ra0.68

F . Panels (a,b) share the same legend.

set. In addition, the curves for the two asymmetric rough cells collapse well onto each
other, and they are both located in between the two curves representing symmetric rough
cells. The solid and dashed lines in figure 4(a) indicate power-law fits of σTc/�T = CRaγ

to the data before and after the transitional Rayleigh number, respectively. The fitting
parameters are also summarized in table 2.

The fact that the centre temperature fluctuations (figure 4) and the global Nusselt
numbers (figure 2) show a high degree of similarity indicates that they might be highly
correlated. In figure 4(b), we plot the measured centre temperature fluctuation as a function
of the flux Rayleigh number RaF = NuRa (which is proportional to the total heat flux).
Remarkably, all data sets collapse well onto a single master curve, regardless of whether
the boundary is symmetric or asymmetric, rough or smooth. A single power-law fit to all
the data points yields σTc ∼ Ra0.68

F . In fact, by assuming Nu ∼ Raβ and σTc/�T ∼ Raγ ,
one can obtain �T ∼ Ra ∼ Ra1/(1+β)

F and σTc ∼ Ra(1+γ )/(1+β)

F . Therefore, the universal
scaling observed in figure 4(b) implies (1 + γ )/(1 + β) = 0.68 ≈ 2/3, or equivalently
γ ≈ (2β − 1)/3. The result above reveals that the centre temperature fluctuation is mainly
determined by the total heat flux and is robust to the changes in the geometrical boundary
conditions.

Next, we plot in figure 5(a–c) the probability density functions (p.d.f.s) of the centre
temperature fluctuations measured at three different Rayleigh numbers (Ra = 5.0 × 108,
2.0 × 109 and 5.0 × 109), which correspond to two heat-transfer regimes and the critical
Rayleigh number (figure 2). It is quite remarkable that different combinations of individual
rough plates show precisely the same p.d.f. at different Rayleigh numbers, and they all
conform to an exponential distribution (see the solid lines in figure 5a–c), suggesting
that thermal plumes are vigorous and turbulence is fully developed in the bulk region
(Heslot, Castaing & Libchaber 1987). More importantly, the p.d.f.s in figure 5(a–c) are
almost symmetric. To quantify this point, we plot in figure 5(d) the vertical profiles
of the skewness coefficient ST of the temperature fluctuation (ST = 〈(Tc − 〈Tc〉)3〉/σ 3

Tc
)

measured at different Rayleigh numbers. We can see that the value of ST is around zero
in a region of 0.3 < z/H < 0.7 for all cases. This is counterintuitive since, for most of
the Rayleigh number range explored, the heat-transfer capabilities of the two asymmetric
plates are not balanced, as discussed above. For example, when Ra < Rac, the thermal
impedance of the top plate is lower than that of the bottom plate in a T1B4 asymmetric
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Figure 5. (a–c) Probability density functions (p.d.f.s) of the centre temperatures measured in different cells at
Ra = 5.0 × 108 (a), Ra = 2.0 × 109 (b) and Ra = 5.0 × 109 (c). The legends are the same as those in figure 4.
The black lines show exponential distributions. (d) The vertical profiles of the temperature skewness measured
in asymmetric rough cells at different Rayleigh numbers.

cell, so one might at first expect that the cold plumes emitted from the top plate are
more intense than the hot plumes that come from the opposite plate. On the contrary,
centre temperature measurements reveal that the symmetry of temperature fluctuation is
robust to the symmetry breaking of boundary topography. In other words, for the bulk
region of RBC with asymmetric geometrical boundaries, the symmetry of temperature
fluctuation is spontaneously restored by adjusting the mean centre temperature Tc to a
specific value. Such ‘spontaneous symmetry restoring’ behaviour can also be viewed as an
inverse process of spontaneous symmetry breaking, which is often observed in condensed
matter physics.

3.3. Heat transport properties of individual rough plates
With the centre temperature Tc, the Rayleigh number and Nusselt number of individual
plates can be calculated as follows (Tisserand et al. 2011; Wei et al. 2014):

Rai = αg (2�Ti) H3

νκ
, (3.1)

Nui = Q
χ (2�Ti) /H

, (3.2)
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Figure 6. The Nui–Rai relations of (a) the λ = 1 rough plate and (b) the λ = 4 rough plate. The vertical
dashed lines in both panels correspond to a transitional Rayleigh number of Rac = 1.9 × 109.

where �Ti = |Tc − Ti|, the subscript i represents the top plate (i = t) or the bottom
plate (i = b), and χ is the thermal conductivity. Since the heat flux Q of the two plates
is always balanced, when the centre temperature is higher than the arithmetic mean
temperature of the two plates, i.e. Tc > Tm, we can readily obtain �Tt > �Tb, Rat > Rab
and Nut < Nub, which means that the bottom plate is better in heat transport than the top
plate (and vice versa).

Figure 6(a,b) show the Nui–Rai relations of the λ = 1 plate and the λ = 4 plate
calculated from various data sets. It is evident that for the low-Rayleigh-number regime
(Ra < Rac), the heat-transfer efficiencies of the λ = 1 plate are higher than those of the
λ = 4 plate, i.e. compensated values of NuiRa−0.5

i for the λ = 1 plate are all larger than
3.5 × 10−3 and those of the λ = 4 plate are all smaller than 3.5 × 10−3. Moreover, we
also note from figure 6(b) that for this regime, the Nui–Rai relations of the λ = 4 plate
measured in asymmetric and symmetric cells collapse with each other. But for the λ = 1
plate, the Nusselt numbers measured in asymmetric RB cells are apparently lower than
in the symmetric case of T1B1. On the other hand, for the high-Rayleigh-number regime
Ra > Rac, where the heat-transfer abilities of the λ = 4 plate dominate over those of the
λ = 1 one, the curves of the λ = 1 plate in turn collapse (see figure 6a), while for the
λ = 4 rough plate, Nusselt numbers measured in asymmetric cells show deviations from
the symmetric case of T4B4. These observations suggest that the heat transport properties
of individual rough plates can interact with each other in a ‘one-way’ manner. The Nusselt
number of the plate with lower heat transport capability is robust, and it serves as a
‘bottleneck’ for the system’s overall heat transfer. Meanwhile, this plate can considerably
hinder the heat transport efficiency of the other plate with a higher heat-transfer efficiency.
Such a ‘one-way communication’ interpretation is also applicable to a smooth–rough
asymmetric turbulent RBC system (Tisserand et al. 2011; Wei et al. 2014), where the
smooth plate always acts as the plate with lower heat-transfer ability.

3.4. Bulk temperature inversion
Figure 7 shows the vertical mean temperature profiles (T(z) − Tc)/�T measured at
various Rayleigh numbers in the asymmetric rough cells. For the bulk region, all
profiles collapse well with each other. A linear fit to all the data points in a range of
0.2 < z/H < 0.8 yields (T(z) − Tc)/�T = 0.033z/H − 0.016. The positive slope of the
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Figure 7. The normalized mean temperature profiles measured along the centre line of the asymmetric rough
cells at different Rayleigh numbers. The black solid line shows a linear fit of (T(z) − Tc)/�T = 0.033z/H −
0.016.

temperature profiles indicates that the flow is stably stratified in a time-averaged sense.
A weak temperature inversion has also been reported in the bulk region of SS cells
(Chillà et al. 1993; Tilgner, Belmonte & Libchaber 1993; Wang & Xia 2003; Maystrenko,
Resagk & Thess 2007). However, we note that the non-dimensional temperature gradient
obtained in the present asymmetric rough settings (∂T/∂z = 0.033�T/H) is apparently
stronger than those observed in SS cells. For example, Tilgner et al. (1993) obtained a
value of ∂T/∂z = 0.019�T/H at Ra = 1.1 × 109 in a rectangular SS cell.

The bulk temperature inversion can be formed when the diffusion time scale of thermal
plumes is much larger than the characteristic time scale of the LSC (Tilgner et al. 1993).
In such a case, when the thermal plumes are emitted from one plate and then moved to
the opposite side by the LSC, their enthalpies are not much dissipated and therefore can
lead to a temperature inversion. Compared with smooth topography, a rough plate can
significantly enhance the plume emission rate and promote the flow’s coherency. For the
present case, we believe that the thermalization time of the plume is also extended by
the presence of both rough plates, resulting in a strong temperature inversion. Lastly, we
remark that with the formation of a distinct stratification in a strong turbulent background,
the present system might be a promising platform for studying the interplay between
internal gravity waves and convection (Barel et al. 2020; He, Cheng & Xia 2022), which
is an essential topic in physical oceanography and atmospheric turbulence.

3.5. Reynolds numbers
In this section, we explore the effects of asymmetric topographies on the Reynolds number
associated with the LSC. It is known that the LSC undergoes ceaseless oscillations. The
oscillation period τf of the LSC is determined by first calculating the autocorrelation
function of the temperature time series measured by the thermistors embedded in the
conducting plates, and then locating the position of the first peak (see figure 8a). For
each case, the oscillation period of the LSC is averaged over all thermistors. With this,
we can obtain the Reynolds number by Re = 4H2/(τf ν), where we have assumed 4H to
be the typical length of the LSC flow path. It is worth mentioning that the above is only
a first-order approximation since the exact length of the LSC flow path should be smaller
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Figure 8. (a) An example of the autocorrelation function of the temperature time series. (b) The Reynolds
number Re as functions of Ra for different sets of convection cells. (c) Compensated plots of ReRa−0.5 versus
Ra. (d) The Reynolds number as functions of the flux Rayleigh number RaF . The legends of panels (b–d) are
the same.

than 4H and in general depends on the Rayleigh number (Niemela & Sreenivasan 2003;
Sun & Xia 2005).

Figure 8(b) shows the Re–Ra relations measured in asymmetric and symmetric rough
cells, respectively. The reference SS curve is adopted from Wei et al. (2014), which was
obtained using the same method as in the present study. It is seen that the presence of rough
plates results in a significantly higher Re than in the SS case. Compared with the Nusselt
number behaviour (figure 2a), the Reynolds numbers for asymmetric and symmetric cells
show a slighter deviation. For a clear view, we compensate Re with Ra0.5 in figure 8(c). It is
seen that the curve for a symmetric rough cell follows a power law, which is approximately
Re ∼ Ra0.50 for T1B1 (downward triangles) and Re ∼ Ra0.57 for T4B4 (upward triangles).
Similar to global heat transfer, the Reynolds number behaviours of the two asymmetric
rough sets (T1B4 and T4B1) can also be divided into two regimes. For small Rayleigh
numbers Ra < Rac, they are close to the T4B4 case. But in the large-Rayleigh-number
regime Ra ≥ Rac, their Reynolds numbers both show transitions to a power-law scaling
around Re ∼ Ra0.5. The observation above is also consistent with the heat transport
properties of individual plates (figure 6), i.e. when heat transport is dominated by the λ = 1
plate (Ra < Rac), the bottleneck of the λ = 4 plate lies in its capability of transporting not
only heat but also momentum (and vice versa for Ra ≥ Rac).

Lastly, we plot the Reynolds number Re as a function of the flux Rayleigh number RaF
in figure 8(d). In this plot, all data points again collapse onto a single master curve of
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Figure 9. (a) The normalized centre temperature fluctuation σTc/θ
∗ as a function of Ra. Here θ∗ is the

convective temperature scale. The horizontal dashed line shows σTc/θ
∗ = 0.85. (b) Plot of Re/Re∗ as a function

of Ra, where Re∗ is defined by the convective velocity scale. The legends are the same as those in panel (a).

Re = 0.34Ra0.36
F , as the temperature fluctuations do (figure 4b). This also suggests that the

typical velocity of the LSC is also, to a large extent, determined by the overall heat flux Q
that flows through the convection cell, regardless of whether the geometrical boundary is
smooth or rough, symmetric or asymmetric.

3.6. Convective temperature and velocity scales
By dimensional analysis, Deardorff (1970) proposed that the convection temperature
scale and convective velocity scale, which are expressed as θ∗ ≡ Q2/3/(αgH)1/3 and
w∗ ≡ (αgHQ)1/3, can be used to describe the fluctuations of temperature and velocity
in buoyancy-driven turbulence. More recently, Xie et al. (2019) reported that, when scaled
with the convective temperature scale, the bulk temperature fluctuation in symmetric RBC
remains constant (σTc/θ

∗ = 0.85) over a Rayleigh number range of 108 ≤ Ra ≤ 1015 and
a Prandtl number range of 0.7 ≤ Pr ≤ 23.34. In addition, the normalized vertical velocity
fluctuation shows a weak positive Rayleigh number dependence.

For RBC with asymmetric topographies, we have shown that the positive and negative
temperature fluctuations are symmetric (figure 5). So we can take the standard deviation of
the centre temperature σT as the single typical scale of temperature fluctuation. Figure 9(a)
presents the normalized centre temperature fluctuations σTc/θ

∗ as functions of Rayleigh
number measured in symmetric and asymmetric rough cells. It is seen that the curves for
different cells approximately collapse onto each other, and the data points all fall around a
value of 0.85 as reported by Xie et al. (2019). A single power-law fit to all the data yields
a weak Rayleigh number dependence of σTc/θ

∗ ∼ Ra0.03. Similarly, we plot in figure 9(b)
the ratio between the LSC-based Reynolds number Re and the Reynolds number defined
by the convective velocity scale Re∗. The four rough cells with different symmetries again
show the same trend, and a single power-law fit results in Re/Re∗ ∼ Ra0.04. The analyses
above suggest that, even when the boundary symmetric is broken, the convective scales
(θ∗ and w∗) are reasonable approximations of turbulent fluctuations in the bulk of the
convection cell.

4. Conclusion

This paper reports the results of an experimental study on turbulent RBC with asymmetric
geometric boundary topology realized by different roughness elements. The heat transport,
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the temperature statistics in the bulk and the Reynolds number associated with the LSC are
measured. It is found that the Nusselt number measured in the asymmetric rough cells is in
between those of the symmetric rough cells, and they show good heat transport capability
over a wide range of Rayleigh numbers when compared with the symmetric rough cases.
The Nu–Ra behaviours of the asymmetric cells show two regimes: for Ra < 1.9 × 109,
the heat-transfer capability of the λ = 1 plate is greater than that of the λ = 4 plate;
while for Ra ≥ 1.9 × 109, the λ = 4 plate, in turn, dominates the overall heat transport.
Furthermore, in both regimes, the Nusselt number of the plate with higher heat-transfer
ability will be reduced by the plate on the opposite side. In contrast, the Nusselt number
of the plate with lower heat-transfer capability is unchanged.

The time-averaged centre temperature in an asymmetric rough cell can deviate from
the mean temperature of the top and bottom plates even when the flow satisfies the
OB approximation. This implies that the temperature drops associated with the top and
bottom thermal boundary layers are not equal when the symmetry of boundary topology
is broken. Counterintuitively, the symmetry of the centre temperature fluctuations is
found to be robust even with asymmetric boundaries, evident from its p.d.f.s and
skewness coefficients. When plotted against the flux Rayleigh number RaF, standard
deviations of the centre temperature conform to a single power law of σTc ∼ Ra0.68

F ,
regardless of whether the boundary is rough or smooth, symmetric or asymmetric.
Measurements of the vertical temperature profiles reveal a temperature inversion in the
bulk of symmetric/asymmetric rough cells, with a non-dimensionalized stratification of
∂T/∂z = 0.033�T/H, which is stronger than those reported in smooth cells. It is also
shown that the convective temperature scale and velocity scale are appropriate scales in
asymmetric RBC systems.

The asymmetry in boundary topography is also reflected in the Reynolds number Re
associated with the LSC. It is found that the effective Re–Ra scaling changes across
Rac = 1.9 × 109. However, when Re is plotted against the flux Rayleigh number, a
universal power law of Re ∼ Ra0.36

F is observed.
To summarize, when different rough topologies break the up–down symmetry of RBC,

turbulent convection evolves to a state in which the bulk temperature is closer to that
of the plate with a higher heat-transfer efficiency. For heat transport efficiency, the
interaction between the two plates can be generalized as a ‘one-way communication’.
Spontaneous symmetry restoration is observed in the sense of the centre temperature
distribution, suggesting that turbulent fluctuations in the bulk are not sensitive to the
symmetry properties of the boundaries. This conclusion also applies to the centre
temperature fluctuation and the LSC Reynolds number, which both show universal
power-law dependencies on the flux Rayleigh number. Thus, one can estimate the global
heat transport by measuring the local fluctuations of the bulk flow, which may be very
useful for natural systems when direct measurement of the global quantity is either
technically inaccessible or impracticable owing to factors such as complex boundary
topology or enormous system scale. The findings above may also help improve thermal
design and thermal management in industrial applications, where roughness elements of
different shapes are extensively involved.
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