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M A R T I N B O U N D A R I E S OF C A R T E S I A N P R O D U C T S

O F M A R K O V C H A I N S

M A S S I M O A. P I C A R D E L L O A N D W O L F G A N G W O E S S

1. Introduction

Let P and Q be the stochastic transition operators of two time-homogeneous,

irreducible Markov chains with countable, discrete state spaces X and F, respec-

tively. On the Cartesian product Z = X X Y, define a transition operator of the

form Ra — a - P + (1 — a) Q, 0 < a < 1, where P is considered to act on the

first variable and Q on the second. The principal purpose of this paper is to de-

scribe the minimal Martin boundary of Ra (consisting of the minimal positive

eigenfunctions of Ra with respect to some eigenvalue t, also called /-harmonic

functions) in terms of the minimal Martin boundaries of P and Q.

The necessary preliminaries are provided in §2. Our main goal is achieved in

§3: Theorem 3.2 shows that every minimal ί-harmonic function for Ra on Z splits

as a product of a minimal r-harmonic function for P on X and a minimal

s-harmonic function for Q on F, where a*r + (1 — a) ms — t. This description is

completed in Theorem 3.3, where we prove that all such products give rise to

minimal /-harmonic functions for Ra on Z.

Theorem 3.2 is related with the work of Molchanov [Ml] , [M2], who proved

an analogous statement for the tensor product P ® Q instead of Ra Molchanov's

method (which uses the associated space-time chains) cannot be adapted to our

situation, while the converse adaptation in rather easy. Theorem 3.3 (whose ana-

logue is not given in [Ml] , [M2]) also applies to P Θ Q, thus completing the

theorem of Molchanov. For further comments and variations see §3.

We are then interested in describing the topology of the minimal (or even the

full) Martin boundary of Ra in terms of the corresponding topologies for P and Q.

In general, this leads to a difficulty: we have to use the Martin boundaries of P

(and of Q) for different eigenvalues, but we do not know how these boundaries are

related to each other. This has led us to introduce the notion of stability of the
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Martin boundary (Definition 2.4): the Martin boundary is stable if the Martin com-

pactification does not depend on the eigenvalue (with a possible exception at the

critical eigenvalue) and that the Martin kernels are jointly continuous with respect

to space variable and eigenvalue. No example is known where the contrary holds.

For a detailed discussion, see [PW]. If both P and Q have finite range and stable

boundaries, then the topology of the minimal Martin boundary of Ra can be simply

described as a product topology (Theorem 4.1).

Finally, we attempt to obtain some evidence about the structure of the com-

plete Martin compactification for Ra. In particular, we show that in a large class

of cases (random walks on Cartesian products of nonamenable groups), there have

to be nonminimal ^-harmonic functions in the Martin compactification for Ra with

respect to every eigenvalue (Theorem 4.3), even if the minimal Martin boundary is

closed in the Martin compactification.

After finishing the first version of this paper, we were informed that in the

continuous setting of Potential Theory on Riemannian manifolds, an analogue of

our Theorem 3.3 (the product of minimal harmonic functions is minimal harmonic

on the Cartesian product) has been proved by Freire [Fr] and Taylor [Ta].

2. Notation, preliminaries

Let X be a countable, discrete state space. A stochastic transition operator on X

is gi^en by a matrix P — (p(x, xr))x,xf^x with nonnegative entries and row sums

one. It gives rise to a time-homogeneous Markov chain 3Γn, n = 0,1,2,. . ., on X,

such that the entries of P are the one-step transition probabilities. If x, xf ^ X

and n > 0, then the (x, x') -entry of the matrix power Pn is

p{n)(x, xf) =

(P° = I, the identity matrix). We shall always assume that P is irreducible: for

every x, xr ^ X, we have p(n)(x, xr) > 0 for some n > 0. On real valued func-

tions /on X, P acts by

Pf{χ) = Σρ(χ,χ')f(χ')
xr

whenever this sum converges for every x €= X . A t-harmonic function is an eigen-

function h of P with respect to eigenvalue t:Ph = t'h(t^R). The linear space

of ^-harmonic functions is denoted by $!(P, t). In particular, we shall be

interested in the cone $?+(P, t) of positive ί-harmonic functions. The cone of posi-

tive t-superharmonic functions is
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J+(P, t) = {f:X->R+\Pf< t-f}.

Consider the convergence norm (sometimes also called spectral radius)

p(P) = lim supp(n)(x, x')ι/n.
n-*oo

By irreducibility, p(P) is independent of x and x\ We say that P has finite range

if {x' I p(x, xf) > 0} is finite for every x e X.

THEOREM 2.1([Pr]). d+(P, t) is nonvoid if and only if t > p(P). In particular,

$Ϊ+(P, t) is nonvoid only if t > p(P). If X is infinite and P has finite range then

M+(P, t) is nonvoid if and only ift>p(P).

Let XQ ^ X be a reference point. A function h ̂  ffl+(Pf t) is called minimal

or extremal if h(xo) = 1 and, whenever 0 < hi < h and hi ̂  ^f(P, 0 , then hι/h

is constant. The set of minimal ί-harmonic is denoted by 8(P, t). The positive

^-harmonic functions are determined by the minimal ones. To state this more pre-

cisely, we shall recall the construction of the Martin boundary.

In addition to the n-step transition probabilities pin)(x, x'), define

f{n)(x, xf) = Pr[9Cn = x';XtΦx'ϊorO<i<n\9Co = x],

f{0)(x,xf) = 0

and

F(x,x'\t)= Σf(n)(x,x'A, t>p(P).
«=0 t

The Green kernel is

G(x,x'\t) = Σ ί ( Λ ) ( j , / ) - ~ .
«=0 t

It converges for real t > p(P). Furthermore, by [Ve], for t = p(P)

either G(x, x'\p(P)) < ~ V i , x / e I

or G{x, x'\ρ{P)) = o o v χ , / e l

P is called p(P) -transient in the first case and p(P)-recurrent in the second. The

following is essentially due to [Pr], see also [PW].

THEOREM 2.2. Assume that P is p(P) -recurrent.

(a) There is precisely one function h in $(P, p{P)), and every function in

s£+(P, p(P)) is a constant multiple of h.

(b) F(x, x'Ί p(P)) is finite for all x, x' ^ X, and
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The Martin kernel is

Recall the formula G(x, x'\ t) = F(x, x'\ t)G(x', x'\ t). Hence, if t> p{P)

or if t=p{P) and P is p(P)-transient, then UΓ(.r, x' \ t) = G(x, xf \ t)/

G(xo,x'\t).

The Martin compactification X(P, t) of X with respect to P and t > p(P) is

uniquely determined up to homomorphism by

(I) X(P, t) is compact, and X is discrete, dense and open,

(II) K(-,- I t) extends continuously to X X X(P, 0 , and

(III) the extended kernels (also denoted by K ( , | 0 ) separate the points of

the Martin boundary M(P, t) = X(P, t)\X.

It is known [Do], [Hu], [KSK] that every minimal ί-harmonic function is of the

form K(-, ξ\ t), where £ e M(P, t). We identify 8(P, t) with the corresponding

(Borel) set of points in the Martin boundary.

THEOREM 2.3 ( [ D O ] , [ H U ] ) . Every h e X+(P, t) has a unique integral repre-

sentation

h= f K(-,ξ\t)vh(dξ),
J M(P,t)

where vh is a nonnegative Borel measure onM(P, t) satisfying

vh(M(P, t)\8(P, t)) = 0.

We remark that in our definition of the Martin compactification,

X(P, p(P)) is the one point-compactίfication of X in the p(P)-recurrent case.

This is not the recurrent Martin boundary, as defined in [KSK, Ch. 11]. In the

p(P)-recurrent case we have in particular by Theorem 2.2 (b)

K(x, xf I p(P)) = F(x, xo I p(P)) = h(x) V x, xr e X,

where h is the unique function in 8(P, p(P)).

In studying the topology of the Martin boundary of a Cartesian product, the

following notion of boundary stability will be useful. It has been introduced by the

authors in [PW].

DEFINITION 2.4. We say that (X, P) has stable boundary if the following con-

ditions are satisfied
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(1) For t\, t2 > p ( P ) , icU extends to a homeomorphism X(P, t\) —* X(Py

t2), (That is, K( - , xn\ tλ) converges pointwise on X as n-+ oo if and only if

K(-, xn I t2) converges). In this case, we write M(P) — M(P, t), t > p(P).

(2) For t>p(P),idχ extends to a continuous surjection τ : X (P, t)

~^X(P, p(P)). We write K(-, ξ I p(P)) = K(-, τ(ξ) \ p(P)), if ξ e M ( P ) .

(3) The map (ξ, t) *-> K(x, ζ\ t) is jointly continuous on M(P)

x ip(P),™).

In addition, we say that {X, P) has strictly stable boundary if (1) holds for all tι, t2

> p(P) (or, in other words, r in (2) is a homeomorphism).

For all irreducible Markov chains with finite range and infinite state space

whose boundaries are known, there is at least strong evidence of stability. For a

more detailed discussion and examples, see [PW].

3. Cartesian products

We now consider two state spaces X and F, equipped with irreducible

stochastic transition operators P and Q, respectively. We consider the direct

product Z — X x Y. If x ^ X and y €= Y then we write xy for the resulting pair

in Z. P and Q act on functions / : Z—* R by

Pf(χy) - Σρ(χ,χ')f(χ'y)
X'

Qf(xy) = Σq(y, yr)f(xyf).

Now we choose and fix a, 0 < a < 1, and define the transition operator

on Z. (More precisely, R — a- P® J + (1 — a) I® Q, where / and / are the

identity operators on X and F, respectively, and ® denotes tensor product.) Thus

R is an irreducible stochastic transition operator on Z.

We want to determine the minimal ί-harmonic functions for R on Z in terms

of those for P and Q on X and F, respectively. Molchanov [ M l ] , [M2] has stu-

died (a part of) this problem for the operator P ® Q on Z, assuming conditions of

"uniform aperiodicity". We remark that, in view of structural considerations con-

cerning X, Fand Z, it is usually more natural to consider an operator of the form

Ra on Z rather than P ® Q. (For example, the simple random walk on Zdl+d2 can

be written in this way in terms of the simple random walks on Zdl and Zd\)

If / and g are real valued functions on X and F, respectively, then we define
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f®g{xy) =f(x)g(y).

The following is obvious.

LEMMA 3.1.

(a) As transition operators on Z, P and Q commute.

(b) /// e # ( P , r) and g e fl(Q, s) thenf e #(/?, f),

t — a r + (1 — a)-s.

(c) p(R) = a p(P) + ( l - α ) p(Q).

Now let Xo and #0 be the reference points in X and Y, respectively, and choose

ZQ — Xot/o as the reference point in Z. The Martin kernel for P is denoted by

Kp(-,'\ r), r> p(P). For t > p(R), consider the segment

= ί ( r , s) ^R2\r>p(P)1s>p(Q)1 a-r+ (1 ~a)-s = t}.

THEOREM 3.2. // h e g(R, t), t > p(R), then there are (r, s) e / ( f ) ,

5(P, r) and £ e g(Q, 5) such that h = f®g.

Proof. We proceed in several steps.

CLAIM 1. There is (r, s) e /(/) such that, on Z, PA = r-h and Qh = s-h.

Proof of Claim 1. First, by Lemma 3.1 (a),

i?PA = Pi?A - P(ί A) = ί PA,

and PA e fl(R,t). Second,

A = j'Rh>j-Ph.

As A is minimal, we must have PA — r - h for some r > 0. In the same way,

(JA = s-h for some s > 0. By Theorem 2.1, (r, s) e / ( ί ) . This proves Claim 1.

Therefore on X one has

A( */) 6Ξ2T(P, r ) V ^ G F ,

and by Theorem 2.3 there is a unique Borel measure ί/ on M(P, r) such that

v>(M(P, r)\8(P, r)) = 0
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for all y ^ Y and

h(xy) = f Kp(x, ξ\r)vy(dξ) V xy ^ Z.

By Claim 1,

/ Kp(x, ξ\ r)s'vy(dξ) = S'h(xy) = Qh(xy)
J M(P,r)

= f Kp(x,ξ\r) Σ q{y,y')V'{dξ).
J M(P,r) y'^γ

By uniqueness of the representing measure,

Σ # ( # , y')vy' = s-vy Vy e F .

If z/? 2/' e F, then, by irreducibility, q{k)(y, y') > 0 for some k. But

qik)(y, yr)vyr ^ s^ rΛ

In particular, all the vy are mutually absolutely continuous and have the same

support

5 = supp(i/) V z/€Ξ F .

CLAIM 2. S has only one point.

Proof of Claim 2. Suppose the contrary. Then there are two closed disjoint

subsets A, B cz 5 such that

vy(A) > 0 and vy(B) > 0

for some and hence all y ^ F . Consider

hA(xy) = I KP(X, ξ\ r)vy(dξ) and hB(xy) — \ KP(x, ξ\ r)vy(dξ).
J A J B

Then ^ , hB

 e ^f(i?, t), hA> 0, hB> 0 and hA + bB < h. By minimality of A

there are constants £A, CB > 0 such that A = CA'hA — Cβ'hβ. Again by uniqueness

of the representing measure

which contradicts the fact that A and £ are disjoint. This proves Claim 2.

Thus 5 = {ξ} with ξ e J ( P , r) , and

^ = g(y)'δξ, where £(//) > 0.

Furthermore it must be
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f=KP( ,ξ\r) e«(P,r)

Therefore

h(xy) = f{x)g(y) V xy^Z,

and it follows that g e tf+(Q,s), g(y0) = 1. Suppose that g£8(Q, s). Then

# = Λ & + (1 - Λ) ft with 0 < K U , e ^(Q.s), #(#>) = 1 and ft # ft.

But then

is a proper convex combination of two functions in #£(R, t) by Lemma 3.1 (b).

This contradicts the minimality of h. •

We now state the main theorem of this section. It involves a few technical

points arising from the fact that a priori we do not know whether certain

sets-over which we need to perform an integration-are Borel sets in Jί(R, t). (It

seems that [Ml] does not discuss an analogous problem in a somewhat different

situation.)

THEOREM 3.3.

8(R,t) = U 8(P, r) ®8(Q,s),
(r,s)e/(ί)

that is, products of minimal functions for P and Q respectively are minimal for R, and

conversely.

Proof. Theorem 3.2 says that 8{Ryt) is contained in the set on the right. Us-

ing this fact, we prove the converse inclusion. Let

h= / ® g, where feg(P, r),geg(Q, s) and (r, s) e /(f).

Then

h(xy) = f KR{xy, ζ\t)v(dζ)

for a unique probability measure v with v(J/l(R, t)\8(R, t)) = 0. Recall that the

topology of M(R, t) is the one induced by pointwise convergence of

ί-superharmonic functions. By (8(P, r)®8(Q, s))~ we denote the closure in

this topology.

CLAIM 3. supp(v) c M(R, t) Π (8(P, r) ®8(Q, s))~.
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Proof of Claim 3. For ε > 0, the sets

As = {u:Z-^R+\Ru < t u, Pu < (r - ε)-u} Π g(R, t)

and

Bε = {w : Z - + R + | i ? w < ί w, Qu< (s - ε) u) Π <?(i?, 0

are Borel sets with respect to pointwise convergence. Indeed, 8(R, t) is a Borel

set by [KSK, Proposition 10.38], and Aε> Bε are formed by intersecting ${R, t)

with closed sets. Again, we identify Aε and Bε with the corresponding (Borel) sub-

sets of M(R, t). Let

h'(xy) = f KR(xy, ζ\t)v(dζ).
J Ae

By Theorem 3.2, in Aε one has

KR(',ζ\t) G « ( P , r ' ) ® S ( O , 5'),

where

, _ t - arf . dl f t - a{r- ε) .

Hence

snh = Qw/z > Q ^ 7 > sf/z7 V n e N,

and it must be λ' Ξ 0. Thus y(i46) = 0 and similarly v(BE) — 0. Now the set

(<?(P, r)®$(Q, s))~ has empty intersection with g(P, rf) <8>S(Q, sf) if (r, s)

Φ (r\ sθ) e /(O Again by Theorem 3.2,

δ(i?,ί) \(δ(P, r) ® g(Q, s))- = U i41/Λ U BVH,

and

vU(Λ, t)\(8(P, r)®g(Q, s))-) = 0.

This proves Claim 3.

Note that we do not yet know if 8(P, r) ®${Qy s) itself is a Borel set in

M(R, t). However,

S = 8(R, t) Π {g(P, r)®g(Q, s))~

is a Borel set, and S a g(P, r) ®g{Q, s) by Theorem 3.2. Furthermore, by

Claim 3, suppO) c S" and v(M(R, t)\S) = 0. Hence
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h(xy) = f KR(xy,
J S

Suppose that supp(v) has more than one element. Then we can decompose S into

two disjoint Borel sets B\ and B2 with positive μ-mass, such that S\BΓ ^ 0 .

Setting

v^jBKR{xy, ζ\t)v(dζ),i= 1,2,

one gets

Phi = r-ht, i= 1,2, and h= i CBO Ai + v(B2)'h2,

a proper convex combination because of uniqueness of the representing measure

(Theorem 2.3). Then ht(-y)/g(y) e tf+(P, r) and

By minimality of/ it must be

where ct(y) > 0, 1' = 1,2. In the same way, by minimality of g,

where di(x) > 0, i = 1,2. Comparing the last two formulas we get

Ci(y) = di(x) = d, Cr0) = 1 V xy G Z .

Thsu Λi = A2, a contradiction, and S has only one point. •

A posteriori we get the following from Theorem 3.3 and its proof.

COROLLARY 3.4. (a) // (r, s) G I(t), then g(P, r) ® g(Q, 5) t5 α Bord set in

M(R, t).

(b) // h e $Ϊ+(P, r) ® X+(Q, s), then its unique representing measure on

M(R,t) (in the sense of Theorem 2.3) gives zero mass to the complement of 8(P, r)

Note that I(t) collapses to one point if t=p(R). Thus 8(R, p(R)) =
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, p(P))®S(Q,p(Q)).

We finish this section by discussing the relation between these theorems and

Molchanov's result and by outlining some alternative statements.

1.) The method of [Ml] , [M2] does not apply to Ra because, contrary to

P ® Q, the Green kernel of the associated space-time chain does not split as a

product of the Green kernels associated with the space-time chains of the factors.

2.) Theorems 3.2 and 3.3 apply immediately to the case when R is a transi-

tion operator on Z of the form

R = a-P + b-Q + φ(P, Q),

where a, b > 0 and φ is a polynomial with nonnegative coefficients. Indeed,

if I(t) is replaced by the set {(r, s) | r, s > 0, α * r + b'S + φ(r, s) = t), all the

steps of the proofs remain unchanged (sε in the proof of Claim 3 has to be mod-

ified).

3.) Here is how our proof of Theorem 3.2 can be adapted to deal with P ® Q.

Molchanov's [M2] "uniform aperiodicity" condition for a transition operator P says

the following:

(A) The set M = { r f e N | Pm+d > λ - Pm for some m e N, λ > 0} has

greatest common divisor one.

The crucial point is the proof of Claim 1; the rest goes through as it stands with

the obvious modifications.

CLAIM 1'. If P and Q satisfy (A) and h e 8(R,t), where R = P ® Q, then

there are r, s > 0 such that rs = t and on Z , Ph = vh and Qh = s-h.

Proof of Claim 1'. Let h e g(R, t). Choose d e M, with m and λ associated

as above. Then by Lemma 3.1

* = -^'Rm+d h > -j^'Rm®dh = γd Q
dh

As Qdh e tf+(R,t), it must be Qdh = s(d)-h for some s(d) > 0. This holds for

every d ^ M. Now we can find du . . . ,dk

 e M , /i, . . . ,/* e N and j , 1 < j < k

such that Wi — n2 — 1, where ^i = Σ{=i /ίrf/ and n 2 = Σf=/+i ^ d, . Thus QW1 /z =

sr/z and 0 W 2 h = s2'h for some Si, s2 > 0, and

si'h = Qmh= QQn2h = s2'Qh,

so that Qh = s-h for s = Sι/s2. In the same way, Ph — r-h for some r > 0, and it

must be rs = t.
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4.) V.A. Kaimanovich has kindly pointed out to us that condition (A) implies

the following weaker condition for the underlying Markov chain (compare with

[Ka]):

(B) The stationary sigma-algebra coincides with the tail sigma-algebra.

In order to prove Molchanov's result for the operator P 0 Q, it is sufficient to

assume that (B) holds for P and Q.

5.) Finally, we remark that irreducibility is used in our proof of Theorem 3.2

at the point where we show that the measures vy all have the same support. With

some additional effort, one can adapt the proof in order to drop the irreducibility

hypothesis. However, we believe that "connectedness" (irreducibility) is the natural

setting for our considerations, so that we have restricted ourselves to this assump-

tion in order to keep the presentation more compact.

4. Cartesian products and the Martin topology

In the preceding section we have determined the minimal ί-harmonic func-

tions for the operator R — a P + (1 — a) Q on the Cartesian product Z = X

X Y, so that we know the "essential" part of M(R, t) in terms of P and Q.

However, it is not clear if or when this gives us the whole Martin boundary, and

how we can describe the Martin topology of M(R, t), t > p(R). This turns out to

be a very difficult task, and in this section we obtain only a few indications aim-

ing at a better understanding of this question.

Throughout this section, we assume that (X, P) and ( F , Q) have stable

boundaries and that 7? has finite range. For t > p(R), we define compact spaces

J\f(R, t) as follows.

(I) M(R, p(R)) = M(R, p{R)) x M(Q, ρ(Q)) with the Cartesian product

topology.

(II) If t > p(R) then set ro(t) = (f - (1 - a)p(Q))/a, so(t) = (t -

ap(P))/(l - a) and /°(ί) = I(t)\{(p(P), so(O), (ro(f), p(Q))). Define

Af(R, t) = (M(P, p(P)) x M(Q)) U (M(P) x M(Q) x

U (M(P) xM(Q,p(P))),

a disjoint union.

The topology on <λf(R, t) is induced by the product topology on M(P) X

M(Q) x I{t) via the map

π:M(P) X M(Q) x I(t)-^JV(R, t)
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(ξ, η, r, s), if (r, s) e /«(f);

π(ξ, 17, r, 5) = (Γa (ξ), 17, r, 5), if r = p(P) and s = So(O;

(ξ, τy(η), r, s), if r = r 0 (0 and 5 = p ( 0 ) .

Here, r^ and τy denote the surjections of Definition 2.4 (2) associated with (X, P)

and ( F , (?), respectively. If in particular (X, P) and ( F , (?) have strictly stable

boundaries, then JV(R, t) = i<(P) x M(Q) x /(/) for f > p(i?). Observe that

with N(R, t) in the place of M(R, t), all requirements of Definition 2.4 are met.

In particular M(R, t) = ^ ( i ? , t') for ί, f > p{R). By Theorem 3.3, «(/?, t)

embeds naturally as a subset of JV(R, t) for t > p(R).

THEOREM 4.1. Suppose that (X, P) and ( F , (?) /ι<m? sίabte boundaries and

finite range. Then we have the following.

(a) The Martin topology on $(R, t) is the relative topology induced by M'(/?, 0

(b) If all boundary functions of (X ,P) and ( F , (?) αr<? minimal, then 8(R, t) =

M {R, t) is closed in the Martin topology.

(c) // (X, P) and ( F , (?) /law strictly stable boundaries and all corresponding

boundary functions are minimal, then 8(R, t) = M{P) X M(Q) X /(£) topologically.

By boundary functions we mean of course the Martin kernels /£/>(-, ξ | r) and

KQ(- ,η\ s), where $ e (P, r ) , r? e ϋ ( Q , s), r > ρ(P) and s > p(Q). Recall

once more that the Martin topology is the one induced by pointwise convergence of

ί-superharmonic functions. In view of this fact, of Definition 2.4 and of Theorem

3.3, the proof of Theorem 4.1 is a straightforward topological exercise.

CONJECTURE. Under our hypotheses, N(R, t) always embeds naturally into

M{R, t).

In other words, we believe that every function on Z of the form Kp{-, ξ \ r)

® KQ( ', η\ S) can be written as a Martin kernel KR{ ζ | t) on Z (even if it is

nonminimal).

Vice versa, one might also be tempted to believe that M(R, t) will give the

whole Martin boundary M(R, t). Our next aim is to disprove this: we exhibit a

class of Cartesian products where 8(R, t) = N(R, t) is closed and M(R, t) con-

tains nonminimal elements for every t > p(P). Thus M{R, t)\8(R, t) is nonvoid

and open in M(R, t). In particular, this disproves the suggestion of [KV] that the

Martin boundary can always be obtained as the closure of the minimal

{t~) harmonic functions with respect pointwise convergence of (ί-)superharmonic
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functions. The points in M{R, t)\8(R, t) arise as limits in the Martin topology of

sequences (xιyn) or {xnyd in Z, where n-+ oo, while xγ and yγ, respectively, are

fixed.

LEMMA 4.2. Let P and Q have finite range. Suppose that Xι ^ X and that (yn)

is a sequence in Y such that the pointwise limit of

KR( , xλyn\ t), n->oo,

exists on Z and is in $(R, t), t > p(R). Then the limit exists for every x2 £= X in

the place of Xι and is independent of X\.

Proof By irreducibility of P, for X\, x2

 G X we have p{k) (xi, x2) > 0 for

some k = k(xu x2) > 0. Set C(xu x2) — (a t)kp(k)(xu x2). If G — GR denotes the

Green kernel for R = Ra, then

G(xy, xιyf I t) > C(xu x2)G(xyf x2y
r \ t)

for all xy, Xχyf, x2y
r e Z. Set D(xu x2) = C(xu x2)C(x2i Xι). Then we obtain

for the Martin kernel K — KR

Wn\t) - D(xu x2)
 V ^ G Z

By assumption

| , t).

Now let (X2ynk) be a subsequence which converges in the Martin topology. As R

has finite range,

lim K ( , 2̂ί/«fc I 0 — A

is a ί-harmonic function on Z. Then

M) - h ~

By minimality of f®g, and using the fact that h{xQy0) = 1 = f(xo)g(yo), we

obtain h = / ® g.

This holds for every convergent subsequence (x2ynk) oί (x2yn). The statement

follows by compactness. Π
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Given a countable group Γ and a probability measure μ on Γ, the random walk

n Γ with law μ is the Markov chain with state space X — Γ and transition prob-

bilities p(x, y) — μ(x~ιy), x,y e Γ. "Irreducible" then means that the support

f μ generates Γ as a semigroup.

Now consider two infinite, finitely generated discrete groups Ξ and T car-

ying finitely supported probability measures μ and v, respectively, each one giv-

ng rise to an irreducible random walk. On the Cartesian product Γ — Ξ X T, con-

ider σ = a-μ + (1 — a) v (0 < <2 < 1). As the reference points for the corres-

londing Martin kernels, we choose the respective group identities Xo, z/o and

)bserve that the Martin kernels satisfy a cocycle identity:

_ Ku(x2Xi, X3 t)
K Λ T Λ TO TO I f ) = „ ) — 4 L ~ A 1 ^-\ f- V TΛ TO TO €Ξ H

Q this situation we have the following.

THEOREM 4.3. Suppose that (yn) is a sequence of distinct elements in T such

hat for some t > p(θ),

\imKσ(',Xoyn\t) =f®g(Ξg{σ, t)

xists. Then

(a)/(xrθ =f(x)f(x/) Vx, x' e Ξ\

(b) Ξ carries an irreducible, finitely supported probability measure μ which admits

\o nonconstant bounded (1-) harmonic functions;

(c) in particular, Ξ is an amenable group.

Proof. By Lemma 4.2 we have

l im Kσ{xy, xxyn I t) = f(x)g(y) Vχ,Xι^Ξ,y<^T.

Applying the cocycle identity to Kσ yields

K (TU r-1 u \n - KΛ(χiχ)y,χoyn\t)

Λσ{xy, Xι yn\i) — κ ( |7\ .
*±\Xy X$j I t)

Recall that Xo and z/o are the respective group identities.) In the limit,

f(χ)g(y) =f(χιχ)g(y)/f(χi).

?his proves (a).

We have / ^ 8(μ, r) for some r > p(μ). Define a new probability measure
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on Ξ by

β(x) = μ(x)f(x)/r.

(In other words, for p{x,xr) = μ(x~ι xf) and p(x,xr) — β {x~ιxf) we have

/>(#, #') — P(x, x') f (x')/rf {x).) As / ^ $(μ, r) , a standard argument (see e.g.

[KSK, Lemma 10.32]) shows that the constant function 1 is in 8(β, 1). This means

that all bounded (1-) harmonic functions for μ are constant on Ξ, and (b) is

proven.

Statenent (c) now follows from [KV]. O

COROLLARY 4.4. // in the above situation Ξ or T are nonamenable, then M(σ, t)

\8(<τ, t) is nonvoid for every t > p{o).

In particular, in view of the examples of [PW], one can choose Ξ and T such

that one of the two is nonamenable and equip them with irreducible, finitely sup-

ported probability measures μ and v, respectively, such that

• μ and v have stable boundaries, and

• the boundaries have no nonminίmal elements.

Then, for σ= a-μ + (1 - a)' v on Γ = Ξ x T, S(σ,t) = J\f(σ, t) is closed and

M(σ, t)\8(σ, t) is nonvoid for every t > p(σ).

This holds, for example, for the simple random walk on the Cartesian product

of two free groups F*; and F/ with respective number of free generators k, I ^ 1

and not k = / = 1. For this case, Fatou-type boundary theory has been studied

extensively by Picardello and Sjόgren [PS]. Guivarc'h and Taylor [GT] have deter-

mined the Martin boundary of the Cartesian product of two or more hyperbolic

with respect to the smallest positive eigenvalue. This is in some sense analogous

with studying M(σ, p{σ)) for the simple random walk on Γ = ¥k X F/ and the

methods of [GT] can be adapted to this situation, see also [PS]. For arbitrary

/ > p(cr), it is possible to calculate the limits of Kσ(' ,Xιyn \ t), n—+oo, on Γ, but

the determination of the whole Martin boundary is a more difficult task which

stands for further work.
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