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Abstract. We prove the decidability of shift equivalence of sofic systems and discuss
algebraic invariants.

1. Introduction
Nasu [5], Nasu and Hamachi [3] showed that conjugacy of sofic shifts and resolving
maps can be expressed in terms of strong shift equivalence with matrices of noncom-
muting variables. This extends the fundamental result of Williams to the sofic case.
Boyle and Krieger [1] building on their work showed that strong shift equivalence
can be conveniently handled as strong shift equivalence in a reduced semigroup
semiring Zo(Mn(/+)). They defined shift equivalence of sofic systems and proved
it is equivalent to eventual conjugacy.

As usual a subshift of finite type is the subset of Nz = {(a,)}, N = {1,2,. . . ,«}
such that for all i the a,-, ai+i entry of a given matrix A is nonzero, and the shift Sf
changes each coordinate to the next. All subshifts are topologized as subsets of the
product of discrete topologies on Nz. A subshift is a general closed shift invariant
subset of Nz.

Equivalently instead of a set of points (a,) subshift can be considered as the
isomorphic sequence of arcs {atai+x) in the graph of A.

Definition. Let ifx, V2 be subshifts of Nz, Mz, N = {1,2, . . . , n}, M = {1,2, . . . , m}
and i/> a map N -* M which induces a map ifx to y2 • It is right resolving if whenever
a}a2 and a}a3 occur as two element subsequences (two blocks) of members of 9"x

and 1^(02)= ty(&-i) then a2 = a3. Left resolving is the same condition for a2ax, a3a,.
Biresolving means left and right resolving.

Definition. The mth power of a subshift &" of Nz is the subshift of (Nm)z induced
by the mth power of the shift map whose underlying set is the image of the original
under the map which sends (ak) to ({amk, amk+x,..., amk+m^)).

Definition. Two subshifts are eventually conjugate if and only if there exist conjugacies
of their mth powers for all m>m0 for some m0.

Definition. Two maps h:Z-*W, f.X^Y are conjugate if there exist conjugacies
c:Z-*X,d:W+Y such that dh =fc.

t Partially supported by NSF DMS-8521533.
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Two resolving maps are eventually conjugate if and only if the induced maps
Z"-» Y", X"^ Y" are conjugate for all sufficiently large n.

Kitchens and Nasu independently characterized maps topologically equivalent
to resolving maps and gave an algorithm for recoding such maps as resolving maps.

Nasu [5] defined a A-matrix as a matrix whose entries are formal sums

I k(a)a, fc(a)eZ+, aeA0,
aeA

where Ao is an alphabet.
Any map of subshifts of finite type A to B can be represented up to conjugacy

as a map of sequences (aiai+l) induced by a map / from the edges of the graph of
a matrix for A into the edges of the graph of a matrix for B. We obtain a A-matrix
by taking the matrix of the graph for A, and labelling nonzero entry corresponding
to an edge a of the graph of A, by the label f(a). These A-matrices are in general
not unique.

THEOREM (Nasu [5] and Hamachi and Nasu [3]). Two factor maps are conjugate if
and only if the k-matrices are strong shift equivalent.

2. Representations
Definition. The semigroup semiring 9t(©) for a semigroup © over a semiring 91 is
the set of functions / : © -» 9f which are zero for all but a finite number of elements
of©, added byf(x) + g(x) and multiplied by fg(z) = 'Lxy=zf(x)g(y).

Definition. A representation of a semigroup (semiring) © into a semiring 91 is a
multiplicative (multiplicative and additive) homomorphism of © into 9t.

Definition. A left module over a semiring 9t with 0,1 is an additive commutative
semigroup ® with 0 and a multiplication 91 x ® -* §L such that for all a, b e S, d, e e 9t:

d(a + b) = da + db, (d + e)a = da + ea, d(ea) = (de)a

\a = a, 0a=0, d0 = 0.

Definition. A left action of a semigroup © on a module 2R is a product © x 3R -* Wl
preserving module operations such that

d(e(a)) = (de)a for d, e e ©, a e Wl.

Right actions and modules are defined by reversing products in the above.

The right regular representation of a semigroup © over Z is the representation p
into matrices indexed on © such that p(x) has y, z entry 1 if yx = z, 0 otherwise.
There is a 1-1 correspondence in general between: (1) representations of © over
Mn(9t) for a commutative semiring dt with 0,1; (2) representations of 9t(©) into
Mn(9t) (extend linearly); (3) © actions on an 9? module of the form 3d© • • • ©91;
(4) 9t(©) modules which as 91 modules have the form 91© • • • ©91.

We will work with the reduced semigroup semiring 9to[©] and the reduced regular
representation. The former is the quotient of the semiring by the ideal of elements
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/ such that f(x) = 0, x ^ 0, where 0 e © is assumed. The latter is the submatrix
indexed on y, z ̂  0. As usual we can interpret the semigroup semiring as the set of
formal sums

such that as = 0 for all but finitely many s. The regular representation corresponds
to the group ring itself taken as right module.

PROPOSITION 1. For any semigroup homomorphism p :©-»!£ if x is (strong) shift
equivalent to y then p(x) is to p(y).

Proof. If rs = x, sr = y then p(r)p(s) = p(x), p(s)p(r) = p(y). If rx = xr, xs = sy,
rs = y", sr = x" then p(r)p(x) = p(y)p(r), p(x)p(s) = p(s)p(y), p(r)p(s) = p(y)n,
p(s)p(r) = p(x)n. D

If 272, is a proper nonzero submodule of 2ft such that 2J?j, W/$Rx are isomorphic to
sums 91© • • • ©9t then l3Jt1,'3K/Wl give new representations. If no such submodule
2J2, exists the representation is called irreducible.

In matrix form this process represents the matrices of the representation as

\ A

IB
where if we take right modules (actions on row vectors), A corresponds to the
invariant submodule 9ft; and C to the quotient module 3K/97J,.
Definition. A left (right, 2-sided) ideal in a semigroup © is a set J such that for all
r, s e ©, x e J, sx e $• (xse 3>, all of xs, sx, sxr e $). The principal left (right, 2-sided
ideal) generated by x is <Bx (x<&, x© u @x u ©x<5).

Definition. The semigroup TN of partial transformations consists of transformations
on subsets of N". Equivalently Tn is the semigroup on n square Boolean matrices
with at most one 1 per row (acting on zero-one row vectors, each of which represents
a subset of N). TT

n is the semigroup of its transposes, Tn n TT
n is called the semigroup

of partial permutations.

Example. The following are in Tn, T
T

n, Tn n TT
n

'\

1
0

0
0

0

0 '

0
0

1

0
0

1

0
0

0"
0

0
J

'0

1
0

0
0

1

o"
0
0

Example. The 2-sided ideals in Tn,Tnn TT
n are the set of elements of rank at most

fc for some k (image size at most k). The principal left ideals are elements whose
image lies in a given set. We multiply as in matrix products in Tn.

PROPOSITION 2. For any left (right) ideals of © , ^ i c i 2 ) there are left (right)
submodules SR( ,̂) t= 9ft(^2) spanned by the corresponding basis elements in the reduced
semigroup ring. Each submodule and the quotient are isomorphic to sums 3t© • •
as ?R-modules.
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Proof. Ideal closure implies the closure needed to be a submodule. The submodules
are additively 9t© • • -©9t on nonzero elements of ^ i , ^ 2 , and the quotient is
spanned by nonzero elements of S2/^\. •

The relevance of semigroups to shift equivalence of sofic systems comes from the
following result of Boyle and Krieger. Let MX(Z+) denote matrices indexed on Z+

with a finite number of nonzero entries each in Z+. We identify Mn(Z
+) with a

subset of MX(Z+) by x-*x®0.

THEOREM 3. Topological conjugacy of factor maps is equivalent to strong shift
equivalence of their k-matrices in the reduced semigroup semiring Zo[Mao(Z

+)]. For
bounded-to-one maps, shift equivalence in this semiring is equivalent to eventual
conjugacy.

Two sofic systems are defined to be shift equivalent if they have canonical resolving
covers which are shift equivalent.

It is equivalent to work in Mco(Z+) or in Mn(Z+) of varying dimensions.

Example. T2n Tj has 6 nonzero elements:

fi ol To ll To ol To ol ["1 ol To 1]
Lo o j ' Lo o j ' Li o j ' Lo u ' Lo i j ' Li o j '

Let them be denoted A,, A 2 , . . . , A6. The right reduced regular representation has
the following block structure;

0 0 0 0'
0 0 0 0

0 0
0 0
* *
* * .

Here the (1,7)-entry is zero if AtAk ^ Aj for every k. The 2x2 main diagonal blocks
correspond to quotients in the chain of right ideals {0}<={A,, A2,0}c
{A 1 ,A 2 ,A 3 ,A 4 ,0}c r 2 n r I .

3. Decidability
It happens that for a right resolving factor map given by a A-matrix £ AjS,, each S,
has at most one nonzero entry per row, which is 1. We next show that this means
all matrices R, S involved in a shift equivalence of such A-matrices can be taken in
the smaller semiring ZoiT^]. Similarly, for left resolving maps it is sufficient to
work in ZQ [ Tj,] and for biresolving maps (and thus AFT sofic systems) it is sufficient
to work in Zo [ Tec nTj,].

For brevity, let A denote as mentioned earlier, the actual matrix sum for a formal
sum A.

THEOREM 4. Let A, B be matrices in the reduced semigroup semirings 9t0 ofTn, T
T

n,
or Tn n TT

n. If A, B are shift equivalent over the reduced semigroup semiring o/Mn(Z+)

0
0
*

0
0
*

4c

*

*

4c

*

*
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then A, B are shift equivalent over 9t0. If A, B have all row and column sums nonzero,
a shift equivalence R, S must lie in 9t0. If A, B are strong shift equivalent over MOO(Z+),
then they are also over Zo(Tm), Zo(Tl), or Zo(Txn Ti).

Proof. Write

First assume that for all i, row i is nonzero in A if and only if column i is nonzero
in A, and row /' is nonzero in B if and only if column i is nonzero in B. The same
then hold for A" and B". This means that for all i, all terms of A have row i zero
if and only if all terms of A have column i zero, and so on.

Let tiRo = Zo[Tn]. Suppose some row j of r, has two ones.

Case 1. Let sp have k,j entry one. Then sprt has two ones in A". This is false.

Case 2. Let all sp have column j equal to 0. Then the product SR is unchanged if
row j of rt is replaced by 0. Also column j of RS = B" thus row j is 0. So it is
unchanged if we replace row j of r, by 0.

Since S has column j equal to 0 so does RS = B". So then does B. And row j of B
is zero. Also RA = BR so it has row j = 0. So changing row j of R to 0 does not
affect RA. And BR is unchanged since column j of B is 0.

Therefore we may replace any row of R, S with two ones by 0, whenever for all
j row j is nonzero if and only if column j is nonzero in A and B.

This argument also works for the other cases of 9t0 when we consider columns.
Next we show that any matrix A is strong shift equivalent over 9i0 to one of the

desired form A, and that one-step strong shift equivalences in Mn(Z+) from A to
B give one-step strong shift equivalences over Mn(Z+) from A, to Bx.

As A, we take the matrix obtained from A by replacing row and column j by
zero whenever j lies on no biinfinite edge sequence of the graph of A.

For a strong shift equivalence, A to Ax we repeat a process of making row j zero
whenever column j is zero and vice versa. To do this write A = AE where E is
diagonal matrix with e$= 0, eu= 1, i^j. Refactor as EA.

This process continues as long as some vertex of A does not lie in a biinfinite
sequence, but is on some edge. But when every vertex on an edge lies on a biinfinite
sequence the sets of nonzero rows and columns coincide.

Now A is strong shift equivalent to A, which is obtained by making row and
column y' zero if j is on no biinfinite edge sequence in the graph of A.

Consider a strong shift equivalence of one-step RS = B, SR = A. Let Ri be obtained
from R by making a row j zero if j is in no biinfinite edge sequence for B and a
column j zero if it is in no biinfinite edge sequence for A. Let S, be obtained from
S by the transpose process. Then /?,S, < B and ^ S , has those rows and columns
zero which were made zero in B{. So R,S,^Bt. Also SlRl<Ai. Let ioi"i be a
nonzero edge in the graph of Ax. Then it extends to a biinfinite sequence (in).

Since in RS
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we can choose fc, so that

Then

k)+i '

means (kj) is biinfinite sequence in the graph of B. So the fc,'s are not made zero
in R, S and 5,/?, has i0, i, entry 1. So 5,7?, = A,, and K,S, = B,.

This proves the last statement, since we have over 9t0 strong shift equivalences
A to A,, B to B, and over M0O(Z+) from Ai to B], where each term has equal sets
of nonzero rows and columns. Then as in the first portion we make the strong shift
equivalences over 9t0 • •

Example.

1 0

=

=

'0
0
0

"o
0

0

0
0

0

0
1
1

0"
1
1

r
0
0

The reduced strong shift equivalence is

"o
0
0

"o
0
0

0
0
1

0
0
0

0 '
0

0

0"
1
0

'o
0

0

0
0
0

0
0

0

0
0
1

o"
1

0

o'
0
0

=

=

'o
0
0

'0
0
0

0
0

0

0
1

0

0"
0
1

o"
0

0_

THEOREM 5. Shift equivalence of resolving maps (and hence of sofic systems) is
decidable.

Proof. It suffices by the previous result to show shift equivalence is decidable in
Zo[TJ. Let |Tn| = m + l and let p:Zo[Tn]^>Mn(Z) be the reduced regular rep-
resentation where we identify a basis xs for Zm with the nonzero elements J of Tn.

The module action is right multiplication xst = xsl if st ^ 0, xst = 0 if st = 0. This
is the quotient of the regular representation by the 2-sided ideal generated by zero
in Tn. In matrix form the element X! oss goes to the matrix whose w, v entry is the
sum of all as such that us = v. This map embeds Zo[Tn]-> Mn(Z) as a subring. If
all asS:0 then so are the matrix entries which are sums of as.

The e, s entry, where ee Tn is the identity is precisely as. So if it is nonnegative
as >0. This proves that x e Z+[Tn] if and only if p(x) s 0. Therefore we can apply
theorem 10.8 of [4]. We have represented Zo[Tn] as the nonnegative elements in a
finitely additively generated ring of matrices. •
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In the next theorem all actions will be on the right. In Tn we will take compositions
as in matrix products, i.e., ((*)/) = (x){fg).

The origin of the representations in the next theorem is simply any pair of ideals
•Pk-i1- xS + ̂ k-i where x has rank k and Sk-X consists of all elements of rank at
most fc-1. The quotient Z+(^fc_1 + x©)/Z+(^_1) has an action of the symmetric
group sk of degree k which permutes elements of the image of x provided we choose
an identification of the different size k images. Clifford and Preston [2, Chapter 5]
discuss the theory of these representations.

THEOREM 6. For each k, there is a representation p of Tn into matrices over the
semigroup semiring Z+[s^], defined as follows: Let rows and columns be indexed on
subsets of size k of N. Select a specific isomorphism hs of each subset S of size k to
{1,2,. . . , k}, e.g., let hs be monotone. The x,y entry of p(f) is vesk iff(x) = y as
sets and as ordered sets hxir=fhy. Iff(x) # y the entry is zero. This representation
(taken into Mx(Z

+(sk))) is compatible with the inclusion Tnc Tn+1. Each of these
representations yield representations of Z0[Tn] which are onto, even restricted to
2o[7"n

 n Ti], and the direct sum of these representations is onto.

Proof. Consider x, w entry of p(fg). It is nonzero if and only if (x)fg = w as sets.
This is if and only if for some y, (x)f=y, (y)g = w, i.e., if and only if the product
of the matrices for p(f),p(g) has nonzero x, y entry.

If it is nonzero, the set y will be unique. The product of p(f)p(g) has x, w entry

the x, w entry of p(g). So we have a representation.
If we include Tn in Tn+l and extend the family of sets x, y and of mappings hs

then the nonzero entries of p ( / ) , / e Tn will still lie only in the set of ordered pairs
x, y of original entries since the domain and range of / both lie in {1,2, . . . ,«}.
And the representation gives the same result on both. The mapping is onto since
we can choose for all x, y, IT a partial permutation of rank k mapping x to y with
effect corresponding to IT multiplication. This partial permutation will not be denned
on any other size k subset, so this is the only nonzero entry. •

COROLLARY 7. Strong shift and shift equivalence classes of the images of these
representations are strong shift and shift equivalence invariants.

COROLLARY 8. If we compose these representations with any rational irreducible
representation the rational group ring of the symmetric group, they are irreducible.

Proof. An irreducible representation of Q(sfc) is onto a full matrix algebra over Q
so since those are onto matrices over 0(6*) the composite representation is a full
matrix ring over Q. It therefore cannot be reduced. •

PROPOSITION 9. The sum of the representations given is an isomorphism onZ(Tnn T^).

Proof. By counting dimensions this follows from the onto result. Rank k partial
permutations on N number kid)2 by choice of permutation, domain, image set.
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The fcth representation is onto (£)x(£) matrices over the group ring which has k\
elements, the image dimension also is k\(£)2. •

4. Example
To illustrate this procedure, we give an example of a sofic system not conjugate to
its inverse, but whose domain is conjugate to its inverse.

The periodic data of a shift and its transpose are the same. M. Boyle has remarked
that the subshift of points with preimage having more than one point provides an
alternative way to distinguish this shift from its transpose. The example will be
almost of finite type so we can work in Tn n TT

n.
The degree 1 representation of Theorem 6 sends an element A to A, the sum of

the matrices whose formal sum is A. Each transformation is represented by itself.
The element A is the domain subshift.

The rank 2 representation of a rank 2 partial permutation g will have a single
nonzero entry. If we take as sets {2,3}, {1, 3}, {1, 2} in the order of their complements
{1}, {2}, {3} the nonzero entry is located in that row where g has no ones and in
that column where g has no ones.

We take a formal sum of rank 2 partial permutations whose image has nonzero
entries located where the ones occur in this Boolean matrix

1
1
1

0
1

0

0"
0
1

For example, we take this formal sum of matrices;

X =

Let the functions h be monotone. Then the group ring images of the respective
terms are

'0
0
0

0
1

0

0"
0

1

+
1

0
0

0

0
0

0"
0
1

+
"0

0
0

0

1
0

0 '
0
1

+
"0
0

0

1

0
0

0"
0
1

+
"0
0

0

1

0
0

0'
1

0

1
0
0

0
0
0

0'
0
0

' 0
0

0

0
1

0

0"
0
0

1

0
0

0
0
0

o'
0
0

s

0
1

0

0
0
0

0 '
0
0

'0
0
1

0
0
0

0"
0
0

Then if we map the group semiring Z+(Z2) into the Boolean algebra by
0-»0, we obtain

1

1
1

0

1

0

0'

0
1

This matrix is not shift equivalent to its transpose (which is the image of the transpose
formal sum).
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'o
1

0

0

0
0

0 '
0

0

+
'0
1

0

0
0

0

o"
0
0

+
"o
0

0

0
0

1

o'
0

0

Now to make the domain symmetric we just add rank 1 partial permutations.

y =

Now X + Y is the required example. The sum X + Y is symmetric.

5. Rational shift equivalence of sofic shifts
THEOREM 10. Any function from Z.O[TX] to an abelian group satisfying f(xy) =f(yx)
andf(x + y) —f{x)+f(y) is (i) a linear function composed with the function assigning
to £ "i^i the sum £ n,z, where zt is the strong shift equivalence class of yt in Tx{2.);
(ii) a linear function of the traces of representations of Theorem 6 to Mn(Z(sk))
composed with representations of the symmetric group.

Proof. Any such function factors through the abelian group obtained from Zo[ 7^]
by identifying xy with yx. But this is precisely the group of £ n,z,.

We next show that strong shift equivalence classes of partial transformations r
are conjugacy classes of their final permutations. The final permutation is the partial
transformation induced by T on

D=nr" (Z + \{0}) .
n = 1

These sets converge since r has finite image and they are decreasing. The mapping
T restricted to D will be onto since r(D) is also the image of T"+1, n large. So T is
a permutation of D. Let T' be this partial permutation.

To obtain a strong shift equivalence of T to T', let en be an idempotent with image
T"(D). We can write T restricted to T'{D) as rer+1. And er+ir is T restricted to
rr+\D). Here the domain of en is assumed to equal its image.

Strong shift equivalences will not alter the traces under any representation. Partial
permutations such as T which have the same image as T2 are conjugate if and only
if their cycles have the same sizes. And if they are strong shift equivalent their cycles
must have the same sizes, since strong shift equivalences will be conjugacies on
their domains. Let 0 be the mapping assigning to £ ">Zi their traces under all the
representations to Mn(sk) of Theorem 6 composed with irreducible representations
of the symmetric group. Suppose 6 has a nonzero element x in its kernel. Assume
x is a linear combination of partial permutations of types T in distinct conjugacy
classes. Let k be the largest rank of partial permutations in x. Then partial permuta-
tions of rank less than k go to zero.

Assume the representative partial permutations all fix k = {1,2, . . . , it}. Then their
matrices have only the k, k entry nonzero and it will be a permutation from a
conjugacy class. The trace will be that of the permutation. But the traces of irreducible
representations of any finite group are linearly independent on classes by orthogonal-
ity relations. •

COROLLARY 11. 77ie above functions are invariants of shift equivalence in J-o[Toc] ond
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Proof. The traces of matrices over Q are shift equivalence invariants. •

There exists a semigroup homomorphism Qo( Tn) -» Qo( Tn n Tr
n). Take the map

ir, of Qo( Tn) onto the direct sum of matrix rings of group rings denned by Theorem
6. Compose this with the inverse of the isomorphism v2 of Qo(Tn n TT

n) onto the
same image of Proposition 9. The inclusion gives a right inverse Ai :Q0(Tn n T )̂->
Q0(Tn). The kernel of TT, can be shown to consist of nilpotent elements by the last
part of the proof of the next theorem or because in the regular representation of
the group ring these elements will be zero on and above the main diagonal.

Two major questions which remain are, what algebraic invariants can be computed
from Zot^n] and is there any difference between shift and strong shift equivalence in
this setting? Regarding the former, the characteristic polynomials of all representa-
tions give rational invariants closely related to periodic data [1]. Over integral group
rings shift equivalence is in principle decided by [4]. However, we do not know
whether strong shift equivalence in integral group rings coincides with shift
equivalence in even the simplest case of the group Z2.

Over the full ring Z0[Tn] there will exist additional shift equivalence invariants
beyond what the representations give. The kernel of all representations is a nilpotent
ideal. The additional invariants have Jordan form type but their structure depends
on the nature of the image in the representations especially on eigenvalue multi-
plicity. This structure exists over fields F in Fo[ Tn ]. We are not able to solve completely
the question of whether strong shift equivalence coincides with shift equivalence
over Q0[rn] but the next theorem represents results concerning these topics.

THEOREM 12. For any finite dimensional algebra si over afield F for all x there exists
a polynomial e(x) which is idempotent such that for all large n right multiplication by
e(x) is an isomorphism on the ideal generated by x".

Ifx, y are shift equivalent they have the same minimum polynomial up to powers of
x. This means we can take a common polynomial e(x). Then x, y are shift equivalent
if and only if separately xe{x), ye(y), and x-xe(x), y-ye(x) are shift equivalent.
The elements xe(x), ye(y) are always shift equivalent if and only if they are strong
shift equivalent and the elements x-xe(x), y-ye(y) are always shift equivalent to
0 and nilpotent. For nilpotent elements in Fo[ Tn ] shift equivalence coincides with strong
shift equivalence if and only if the characteristic of F does not divide n!. Let ir, denote
the representation of F0[Tn] into the direct sum of matrix rings over F[sk] obtained
from the representations of Theorem 6, by tensor product with F. The kernel of TTX 'S

a 2-sided ideal of nilpotent elements.

Proof. We decompose an element x as a sum of nilpotent and invertible summands
in a finite dimensional F algebra si. The left ideals x" of s4 must eventually become
constant, since their dimensions are nonincreasing. Choose an x" to represent such
an ideal.

To find e(x) we let p(x) be the minimum polynomial of x. Let p(x) = xqpl(x),
= l. Let

e(x) = xmr(x), (r(x), xp(x)) = 1, m>q,n, 1.
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Then idempotence of e(x) is equivalent to

p(x)\e(x)2-e(x)oTPl(x)\xmr(x)-l.

Since (/>i(x), xm) = 1, we can find r(x). From p(x)\(xmr(x) -1) follows the property
that e(x) generates the ideal generated by x", since in the ring x2mr(x) = xm.

Then e(x) depends only the minimum polynomial satisfied by x. If p(x) = 0,r,s
are a shift equivalence then rp(x)s = 0 is y"p(y) for some n. So they have the same
minimum polynomial up to powers of x.

Given one-step strong shift equivalence rs = y, sr = x, then e(x)s = se(y), re(x) =
e(y)r and e(x)rse(x) = e(x)x, se(x)e{x)r = e(y)y. Also

So we have strong shift equivalences between their two parts. This also goes through
for shift equivalences.

If we have shift equivalences of lag n, r,, s, from xe(x) to ye(y) and r2, s2 of
lag n from x-xe(x) to y—ye(y) we can assume r1; 5, are divisible by xe(x) and
r2, s2 by x-xe(x) possibly increasing lag. Then rxs2, r2sx, s2r,, sxr2 all have factors
e(x)(l-e(x)) and are zero. Then rx + r2, Si + s-, give shift equivalences JC to y.
(This is true for strong shift equivalence if rx = rye{x), si = e(x)si, r2=r2-r2e(x),
s2 = s2-e(x)s2.)

Suppose we have a shift equivalence r, s on the invertible parts xe(x), ye(y).
Choose a polynomial/(x) with xf(x)e{x) = e{x), since x|e(x). Let r, s be divisible
by xe(x). Then if rs= y"e(y), sr = x"e(x), r(/(x)e(x))" and s give a strong shift
equivalence since for instance

r(f(x)e(x))ns =f(y)ne{y)nrs =f(y)ne(y)yne(y) = e(y).

Therefore on the invertible parts shift equivalence and strong shift equivalence
coincide.

If the characteristic p of F divides n! then we will show shift equivalence and
strong shift equivalence differ in F(sn). By the maps to and from F(Tn) this implies
they differ in F( Tn). Strong shift equivalence preserves the linear (not multiplicative)
map on F[sn] which identifies two elements in the same class (by the proof of
Theorem 10). Under this (1-x) does not go to zero since they are in different
conjugacy classes, if x has order p in sn. But

so (1-x) is nilpotent and shift equivalent to zero. To complete the proof we show
nilpotent elements in F(Tn) are strong shift equivalent to zero.

Here we use the representations into group rings and that they give an isomorphism
on Tn n TT

n.

Let x be nilpotent. Suppose the highest rank occurring in x is k. We claim there
exists a sum ek of partial permutations of rank at most k which is the identity on
all partial transformations of rank at most k, on the right.
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To obtain ek use the fact that the sum of the representations to matrix groups in
1-1 onto on F(Tn n TT

n). Then take the identity element in all summands for fc, < k.
It can be obtained as an integral sum of partial permutations of rank at most k, by
the previous construction. This has the desired property on all partial permutations.
But all rank kx transformations / can be written gh when h is a rank fc, partial
permutation with the same image, denned on a set mapping 1-1 onto to the image.
So ek has been found. Then x = xek is shift equivalent to ekx. This means that now
among rank k elements of x we have only partial permutations. Moreover if x is
any element in the kernel of TTX repeated refactoring xek to ekx reduces x to zero.
Therefore, if xeker(7r,) it is nilpotent. The kernel is a 2-sided ideal consisting
solely of nilpotent elements so is a nilpotent ideal.

Let TTX{X) = (0 , . . . , 0, xk,..., xx) in the direct sum of matrices over group rings.
Let fk = (0 , . . . , S, 0 , . . . , 0) with the S> in degree k.

We may write x = x, + x2 where x2 consists of rank k partial permutations, xx of
rank less than k partial transformations. Then ir^fk is zero on all partial permuta-
tions of rank less than k. So gX-xir^fk is zero for partial transformations / of rank
less than k since f=gh as above. Let <f> = AiTrJ1/*- Then X(f> = xx<f> = <f>xl<f> since <f>
is central in image irx, so in ¥(Tn n TT

n). We have x{l -<j>) consists of terms of rank
at most (k-1). Let nk be the representation to M(sfc). Let Trk(x) = x3. Now we can
extend any strong shift equivalence on x3 to x. Let X(f> = sr where r, s are divisible
by <f> on each side. Then

(s + x(l - <f>))(r + (l - (/>)) = sr + x -x</> = x.

So if we reverse this factorization we extend a strong shift equivalence on x3. So
we can make x<f> zero if x3 is strong shift equivalent to 0.

Since the characteristic of F does not divide the order of sk the rings ¥[sk] are
direct sums of matrix rings over division algebras and in them niipotents are strong
shift equivalent to zero. This means we can make all parts of x of rank at most
fc-1. By induction x is strong shift equivalent to zero (strong shift equivalence
preserves nilpotency). •

The study of strong shift equivalence in F( Tn) is a problem of considerable interest.
Is it always the same as shift equivalence together with whatever characteristic
polynomials can be defined over F?
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